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Abstract—The paper deals with development of active anti-
sway feedback control method for gantry cranes. Inertial mea-
surement unit is chosen as a load motion sensing device allowing
to close a feedback loop. The paper provides guidelines for
the successive steps of mathematical modelling, data-driven
identification and model-based controller design. The proposed
method is experimentally validated on an industrial overhead
crane system.

I. INTRODUCTION

Crane systems are considered to be a most common type
of manipulators used in numerous pick-and-place applications
ranging from construction to factory automation or offshore
cargo handling. Crane operators have to deal with inherently
underactuated dynamics of the hanging load causing unwanted
transient and residual oscillations.

Extensive research has been devoted to development of
various anti-sway control systems in recent years to aid the
human operators with precise, safe and reliable manipulation.
The developed solutions can be roughly divided into two main
categories. Passive approaches try to modify the motion trajec-
tories of the crane in a feedforward manner to avoid excitation
of the load resonance frequencies. Various types of notch,
smoothing or zero vibration input shaping filters can be used
for this purpose [1]–[5]. Main advantage of the feedforward
approaches is the simplicity of implementation. On the other
hand, moderate robustness to uncertainty and impossibility to
compensate for external disturbance are considered to be main
drawbacks. Active approaches employ a sensing device which
detects position of the hanging load and close a feedback loop.
In this manner, both vibrations due to reference and external
disturbances can be attenuated.

Various strategies have been proposed for the design of the
feedback controller [6]–[9] using several ways of obtaining
the load motion feedback ranging from cameras supplemented
by advanced image processing algorithms [10]–[14] through
lasers [15] or inclinometers [16] to the utilization of IMUs
[17] (inertial measurement units). Particularly the use of
IMUs combining the accelerometers and angular rate sensors
(known also as gyroscopes) seems to be appealing due to low
acquisition cost and small dimensions of the device. Moreover,
the IMU can be easily mounted to the load-side of the crane.
The proper spot to place the unit is probably the crane hook
as it allows an easy installation of the sensor and, unlike the

IMU location on the carried load itself, it does not require
the reattachment of the unit whenever the load is replaced.
Therefore, we opted for development of IMU-based feedback
solution to active anti-sway system.

A particular difficulty encountered when dealing with feed-
back control of cranes comes from their oscillatory dynamics
containing multiple resonance modes. Majority of the methods
proposed in the literature use a simplified single pendulum on
cart model [9]. It may serve as a reasonable approximation of
the most dominant low-frequency mode of the hanging load
and usually proves to be sufficient for the design of feed-
forward controllers. However, employing feedback methods
using overly simplified models often leads to problems with
unmodelled dynamics. Especially weakly damped mechanical
systems are prone to spill-over effect which may cause closed-
loop instability due to the occurrence of unmodelled higher
bending modes [18]. Crane systems with non-negligible hook
mass and length of the thimble used for the load attachment
typically exhibit second significant mode of oscillations. For
this sake, double-pendulum model may be more relevant for
active stabilization. Combining the aforementioned IMU-based
sensing system with the double-pendulum dynamics forms
a control scenario with a partially available state information,
as only hook motions are directly measured. This requires
careful design of the feedback controller. This paper presents
a suitable approach which is experimentally validated using
an industrial grade crane system.

The paper is organized as follows. Section II derives the
mathematical model of the double-pendulum system and ex-
plains the functionality of the load motion sensor. Combination
of the assumed model structure and data-driven experimental
identification is used to acquire a plant model that is sub-
sequently used to design a feedback controller providing the
desired active anti-sway functionality. Section III deals with
experimental validation of the proposed control strategy using
a five ton industrial overhead crane.

II. ALGORITHMS AND METHODS

A. Physical analysis of the system
The gantry crane can be modelled as a double-link pendu-

lum on the cart (see Fig. 1). The first link then represents the
hook suspended by rope from the hoist while the second one is
a load hanging on the hook. First, we will use the Lagrange’s
equations to derive the model of the general n-link pendulum
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Fig. 1. Double pendulum on cart with A{0,1,2} denoting axes of rotation,
T{1,2} designating the centers of gravity and ϕ{1,2} the deflection angles

on cart (for details see [19]). For this purpose, we need to
state the relationships for the potential and kinetic energy
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where the particular points can be expressed as

yi(t) =

i∑
k=1

lksin(θk(t)) + y0(t), zi(t) =
i∑

k=1

lkcos(θk(t)), (3)

Yi(t) =
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lksin(θk(t)) + ailisin(θk(t)) + y0(t), (4)

Zi(t) =

i−1∑
k=1

lkcos(θk(t)) + ailicos(θk(t)). (5)

Here, A0, . . . An−1 are the revolute joints and An the free
end of the pendulum. These points are characterized by
coordinates as Ai(t) = [yi(t), zi(t)]

T . We will also denote
T0(t), . . . , Tn(t) (Ti(t) = [Yi(t), Zi(t)]

T ) the centre of gravity
of the pendulum links, θ0(t), . . . , θn(t) the pendulum link
angles with respect to the axis of rotation. Further, mi, Ji,
li, ai, bi indicate the mass, moment of inertia, pendulum link
length, the relative position of the pendulum link center of
gravity and friction of the i-th joint or link, where i = 0, . . . , n,
parameter g is the gravitational acceleration. Force actuating
the cart is here denoted f(t). We will assume that the virtual
action variable is the cart acceleration (i.e. the reverse action
of the pendulum on the cart is omitted). In other words, we can
say that the cart will be driven by the ideal velocity controller.
Since the system will be affected by nonconservative viscous
friction forces we need to further form the Rayleigh dissipation
function which holds as follows
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Now, we will define the generalized coordinates of the pen-
dulum model as

[q1(t), . . . , qn+1(t)]
T

= [θ1(t), . . . , θn(t), y0(t)]
T (7)

and the equations of motion for n-link pendulum on a cart
model can be written as
d

dt

(
∂L(t)

∂q̇k(t)

)
− ∂L(t)

∂qk(t)
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where L(t) = T (t)− V (t) is called Lagrangian.
Now, by evaluating equations (8), (9) for n = 2 and assum-

ing that the cart is driven by the ideal velocity controller, we
acquire the nonlinear motion equations for a double pendulum
on a cart
p1θ̈1(t) + p2(−gsin(θ1(t)) + u(t)cos(θ1(t))) + p3θ̇1(t) + p4(θ̇1(t) − θ̇2(t)) =

−θ̈2(t)cos(θ1(t) − θ2(t)) − θ̇
2
2(t)sin(θ1(t) − θ2(t)), (10)

p5θ̈2(t) + p6(−gsin(θ2(t)) + u(t)cos(θ2(t))) + p4(θ̇2(t) − θ̇1(t)) =

−θ̈1(t)cos(θ2(t) − θ1(t)) − θ̇
2
1(t)sin(θ2(t) − θ1(t)), (11)

ÿ0(t) = u(t) (12)

with parameters
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We can transform the system to the state-space realization and
linearize it around the lower stable equilibrium point resulting
in a model

~̇x(t) = A~x(t) +~bu(t), (14)

where ~x(t) = [θ1(t)− π, θ2(t)− π, y0(t), θ̇1(t), θ̇2(t), ẏ0(t)]T

and
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Transfer function model can be subsequently derived for the
assumed plant input and output in a general form of

P (s) =
Θ1(s)

s2Y0(s)
=

K(s2 + 2ξzωzs+ ω2
z)

(s2 + 2ξ1ω1s+ ω2
1)(s2 + 2ξ2ω2s+ ω2

2)
,

(17)

where Θ1(s) is the deflection angle of the rope, s2Y0(s)
denotes gantry acceleration and the modal parameters ξi, ωi

arise as functions of the physical parameters in (13).

B. Load-side motion sensing

Inertial measurement unit equipped with 3-axis accelerom-
eter and gyroscpe is used as a load motion sensor attached
to the hook. Sensor fusion algorithm was implemented to
improve overall sensing accuracy. A quaternion-based heading
estimation method used in [20], [21] was employed leading to
a nonlinear state reconstruction problem for the system
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 0
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Fig. 2. Five ton industrial gantry crane used for the experiments

with ~q(t) denoting the state vector represented by the unit
quaternion containing the information about the hook sway
angles with respect to the inertial reference frame and ωx(t),
ωy(t), ωz(t) being the hook angular rates in the particular axes.
The output ~y(t) then represents the gravitational accelerations
expected to be measured in the individual axes by the IMU,
R(~q(t)) is the rotation matrix expressing the same information
as ~q(t) and g is the gravitational acceleration magnitude.

Extended Kalman filter (EKF) [22] was employed as a non-
linear observer. The acquired instantaneous values of inclina-
tion angles and angular rates are sent to a controller base-
station using a wire-less transmission system of our own
development [23].

C. System identification

Relay feedback is used for the automatic excitation of load
oscillatory modes, which is necessary for identification of the
plant model. The topic of the relay experiment itself is quite
complex and out of scope of the current paper. It will be
published soon in a separate study. Data collected from an
industrial five ton gantry crane setup (Fig. 2) during such an
experiment are shown in Fig. 3. The second resonant mode
is poorly observable when examining just the deflection angle
estimate. However, the situation becomes better when working
with angular rate measurements since the derivative amplifies
high frequencies by nature. This suggests the use of measured
angular velocity θ̇1(t) as a system output in the identification
procedure. Measured hoist velocity v(t) is then preferred over
the velocity set-point as system input in order to reduce the
model order.

With respect to these considerations and the knowledge of
system dynamics described above, the model structure was
chosen as

sΘ1(s)

V (s)
=
b4s

4 + b3s
3 + b2s

2 + b1s+ b0
s4 + a3s3 + a2s2 + a1s+ a0

, (20)

where sΘ1(s) is the measured angular rate,
V (s)

∆
= sY0(s) denotes the gantry velocity and

~θ = [b4 b3 b2 b1 b0 a3 a2 a1 a0]T are the model
parameters to be identified.
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Fig. 3. Measured data as a result of the identification experiment
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Fig. 4. Response of the model and the measured angular rate

Due to our choice of relay excitation and practical re-
quirement on short experiment duration, we employed time-
domain algorithms that do not require steady states and can
deal with transient effects well. In particular, the tfest()
routine of the Matlab System Identification Toolbox was used.
This function implements the Simplified Refined Instrumental
Variable Method [24] with the subsequent nonlinear least-
squares optimization minimizing the weighted prediction error
norm.

The following model parameters were obtained

~θ =

[
−5.88e−5, 1.08e−4,−4.12e−3,−1.75e−4,−3.46e−4,

0.0921, 45.1, 0.51, 127

]T
.

(21)

The model response is plotted in Fig. 4 in comparison with
measured data in order to provide a basic model validation.
The frequency response is then shown in Fig. 5. The two
resonant frequencies correspond to a preliminary frequency
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Fig. 5. Model frequency response functions

analysis of the measured data which may be considered as
another form of validation.

The identified model (20) contains two resonant modes
which is consistent with the physical model (17). However, at
low and high frequencies, there is a large difference between
both models due to the fact that this deviation contributes
little to the estimation error in the time domain. Therefore, the
identification may be considered as a first step and the model
is then modified for the control system purposes by replacing
the low-frequency pair of zeros with two differentiators and
by mirroring the high-frequency pair of zeros into the left
complex half-plane to reflect the physical nature of the model.
The transfer function then has a form

sΘ1(s)

V (s)
=

Ks2(s2 + 2ξzωzs+ ω2
z)

(s2 + 2ξ1ω1s+ ω2
1)(s2 + 2ξ2ω2s+ ω2

2)
(22)

with all the model parameters easily determined from (21).
Next, a reduced order model was derived by omitting the
second resonance and the anti-resonance in (22) resulting in
transfer function

sΘ1(s)

V (s)
=

K
ω2
z

ω2
2
s2

(s2 + 2ξ1ω1s+ ω2
1)
. (23)

The corresponding frequency response functions are displayed
in Fig. 5.

D. Control strategy

For the active anti-sway control, the algorithm illustrated
with Figure 6 was chosen, where v(t) is the cart velocity
being the system input, vsp(t) is its set-point and θ1(t), θ̇1(t)
represent the hook angle and angular rate as system outputs.
The controlled system is modelled by (22).

First, a full state feedback controller was designed using the
reduced-order model (23) to evaluate potential performance
deterioration due to the unmodelled dynamics of the second

Notch
filter

Controlled
system

Augmented model

Fig. 6. Control structure diagram

-25 -20 -15 -10 -5 0 5

Real axis

-8

-6

-4

-2

0

2

4

6

8

Im
a
g
in

a
ry

 a
x
is

25 20 15 10 5

0.995

0.98

0.955 0.91 0.84 0.74 0.56 0.3

0.995

0.98

0.955 0.91 0.84 0.74 0.56 0.3

x - 
d
 = 0.01

o - 
d
 = 5

Fig. 7. Root locus without notch filter - full-state feedback for the reduced-
order single-mode model

oscillatory mode. The feedback gains k1, k2, k3 were com-
puted by solving the pole-placement problem

det(Ared
aug −~bredaug

~k(k1, k2, k3)− λI) =

3∏
i=1

(λ− pi) (24)

where Ared
aug and ~bredaug represent the matrix of dynamic and

input vector belonging to the state space representation of the
augmented model which is denoted by the dashed rectangle
in the control diagram.

The desired poles pi were in all the following cases selected
in a Butterworth pattern as p1 = −ωd, p2,3 = −0.5ωd ±
jωd

√
1− 0.52 with one free design parameter ωd affecting

desired closed-loop bandwidth. The loop was closed with
the full-order system (22) to evaluate the mismatch due to
unmodelled dynamics. The location of all the closed-loop
poles under varrying ωd parameter was examined. Now, a case
without notch filter (i.e. v̄(t) = v(t)) is assumed. Figure 7
displays the location of the poles for ωd ranging from 0.01
to 5. We can notice that the poles that we intended to place
directly by the feedback are located elsewhere due to the
neglection of the second mode. Next, the poles belonging to
the second resonance enter the right half-plane even for small
values of ωd which results in unstable closed-loop dynamics.
The performed analysis advocates the modelling effort to find
a more complex double-pendulum model capable of properly
capturing the second mode dynamics. However, appropriate
adjustment of the controller design procedure is also necessary.
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The feedback gains k1, k2, k3 may alternatively be found
by solving the partial pole placement problem

det(Afull
aug −~bfullaug

~k(k1, k2, k3)− λI) =

3∏
i=1

(λ− pi)

n−3∏
i=1

(λ− p∗i )

(25)

where Afull
aug and ~bfullaug belong to the state space representation

of the full augmented model of order n. We are clearly
able to arbitrarily place three closed-loop poles (denoted as
pi) while the location of the remaining ones (p∗i ) cannot be
independently affected. In contrary to the previous design
method, this approach advantegeously ensures the precise
location of the poles p1, p2 and p3 that were again selected
to match the third-order Butterworth polynomial.

First, a case without the notch filter (i.e. v̄(t) = v(t)
and N(s) = 1) is studied in Fig. 8 showing the location
of the closed-loop poles for ωd ∈< 0.01, 5 >. The pair of
complex conjugate poles whose location cannot be arbitrarily
determined again crosses the imaginary axis even for small
values of ωd which results in unstable closed-loop.

This issue suggests a need to introduce a notch filter for the
passive stabilisation of the second resonant mode. A standard
notch filter described by transfer function

N(s) =
(s2 + 2ξ2ω2s+ ω2

2)

(s2 + 2ξdω2s+ ω2
2)

(26)

was chosen, canceling the poles of the second mode and
replacing them with sufficiently damped pair of poles with
the damping factor set specifically to ξd = 0.8. Assuming
such a control strategy, Figure 9 shows the location of all
closed-loop poles for values of ωd between 0.01 and 1.8. With
increasing ωd, the pair of poles that cannot be directly placed
approaches the real axis. One of these poles then proceeds
towards the imaginary axis, potentially destabilizing the loop
for high values of ωd. Using this design procedure, there is
no risk that the pair of complex conjugate poles that is not
directly affected by the designer becomes weakly damped and
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we can quite simply find a value of ωd for which a fair closed-
loop performance is achieved. It turns out that a reasonable
choice is ωd = 1.8 which is illustrated by Figure 9. It can
be observed that for ωd = 1.8 the pole moving on the real
axis towards the right half-plane meets the pole that moves in
the other direction and the maximum closed-loop bandwidth
is achieved in this way. With further increase of ωd, the
closed-loop bandwidth decreases as this pole approaches the
imaginary axis.

III. EXPERIMENTAL RESULTS

The control structure shown in Fig. 6 including the notch
filter (26) and using the feedback gains tuned by the partial
pole placement method with parameter ωd set to value 1.8
was then implemented in the REXYGEN real-time control
system [25] and experimentally tested on the industrial gantry
crane from Fig. 2. In order to verify the relevance of the
identified model for the control design purposes as well as
the overall viability of the proposed active anti-sway control
algorithm in practice, the experimental data were compared
with the simulations exploiting the virtual model of the system
by means of Fig. 10.

The whole experiment may be divided into two phases.
First, the feedback control was inactive and the cart moved
according to its inner cart velocity set-point in the form of
a rectangular signal leading to oscillatory response of angle
and angular velocity. Then, the control algorithm was activated
which first resulted in the active damping of the first resonance
when the set-point signal was set to 0. Next, when the hoist
started to move again, the feedback control caused that the
first resonant frequency was no more excited at the cost of
slower cart velocity set-point tracking.

Figure 10 shows a good match between the simulation and
experimental data which proves the proposed identification and
control methodology to be suitable for practical use. A slight
difference between real and simulation data may be caused
by several factors including the nonlinearity of the real crane
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Fig. 10. Experimental results vs simulated closed-loop response

system or neglected reaction forces from the load acting on the
gantry. The presence of the inner cart velocity loop which was
omitted during the control system design can also play a part
as well as possible inaccuracies in sway angle and angular rate
measurements.

IV. CONCLUSION

The paper proposes a feedback control strategy for the active
anti-sway system applicable to industrial cranes. The main
results of the paper are as follows:

• It is shown that an inertial measurement unit may serve
as a suitable sensing device to acquire partial state
information.

• The double pendulum model showed to be a relevant
representation of the crane dynamics.

• It turns out that proper identification of both oscillatory
modes is crucial for the successful employment of the
feedback controller.

Future work will deal with the details of the relay identification
experiment. We will also focus on the time-variant case con-
sidering vertical hoist motions with the attached load which is
essential for practical implementation, so that the identification
procedure does not have to be repeated whenever the length
of the rope changes and so that the control algorithm is robust
to model perturbations.
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