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Katedra Kybernetiky
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Abstract

This diploma thesis deals with the problem of optical character recognition (OCR) using
neural networks. I am focusing on improving text detection and OCR by fine-tuning an
E2E-MLT scene text detector by training it on synthetic data which emulates real data. The
model was fine-tuned on several datasets with synthetically generated data and real data,
then the models were tested on one synthetic and two real datasets, one with the majority
of the wild text, the second with the majority of TV news imprinted text. On the dataset
with majority of TV news imprinted texts the fine-tuned models achieved improvement by
decreasing character error rate from 52% to 31.6% word error rate and from 56.5% to 22%.
It was also experimentally discovered that training models on synthetic data simulating real
TV news images deteriorate detection and reading model capability on wild text data.

Keywords

neural network, optical character recognition, scene text detector, deep learning, data gener-
ating

Abstrakt

Tato diplomová práce pojednává o problému optického rozpoznáváńı znak̊u při použit́ı neu-
ronových śıt́ı. Zaměřuji se na zlepšeńı detekce a rozpoznáváńı textu pomoćı dotrénováńı
E2E-MLT scénového detektoru textu tak, že ho trénuji na umělých datech, která napodobuj́ı
reálná data. Model byl dotrénováván na několika datasetech obsahuj́ıćıch uměle generovaná
a reálná data, poté byly vybrány nejlepš́ı modely a otestovány na jednom umělém a dvou
reálných datasetech, jeden s převahou divokého textu, druhý s většinou textu vtǐstěného
televizńım zpravodajstv́ım. Na datasetu s většinout digitálně vložených text̊u bylo dosaženo
zlepšeńı sńıžeńım chybovosti znak̊u z 52% na 31.6% a chybovosti slov z 56.5% na 22%. Během
experiment̊u bylo také zjǐstěno, že trénováńı model̊u na umělých datech simuluj́ıćı skutečné
obrázky ze zpravodajstv́ı zhoršuje schopnost śıtě detekovat a č́ıst reálné divoké texty.

Kĺıčová slova

neuronová śı̌t, optické rozpoznáváńı znak̊u, detektor textu ve scéně, hluboké učeńı, generováńı
dat
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1 Introduction

1.1 Optical Character Recognition

Optical character recognition, otherwise OCR, is one of the most important and most com-
monly used branch of computer vision. OCR consists of two main parts which are text area
detection and text reading. The goal of the part of text area detection is to make a polygon
or most often a square around the detected text. The Detected text could be a letter, word,
or a whole sentence, but it is mostly a word. The main task of the second part, the part of
text reading, is to correctly classify each letter and in the case of reading texts also correct
mistakes such as letter duplicity or superfluous spaces. The texts could be standardized spe-
cial fonts for official documents, handwritten scripts, normal or special fonts at various sizes
or graphical text as on advertising banners or logotypes.

Figure 1: An Example of E2E-MLT [6] results on the ICDAR MLT 2017 data-set [34].

In OCR reading, the quality of input data is crucial. It is one of the main parameters which
determine reading success rate, therefore preprocessing is commonly used. In preprocessing
we adjust brightness, contrast, focus or zoom to achieve the possibly best quality, the biggest
contrast of letters and background and the most similar size of letters.

Preprocessing with high quality is not always possible. In daily routine e.g. when using
a camera on a mobile phone, we never have ideal or often even a good light condition, a
perfect focus, the biggest contrast or same size of text with the same font. Due to the real
conditions when the read text is very diverse, systems like template matching cannot be used.

After the big boom of neural networks around 2012 after AlexNet [25] was introduced, the
stance on OCR changed. Neural networks are based on big training data sets which quality
directly influences obtained results and reached success rate. Data sets could be created in
two ways, first is by annotating a huge amount of images by hand, which requires a lot of
money and a lot of time, the second one is by creating a synthetic data generator. The goal
is to create such a generator that the generated images will be indistinguishable from reality.
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1.2 Motivation

As mentioned in the Section 1.1, in deep learning, the quality of data is one of the main
criteria which determine the later quality and precision of OCR reading. In my bachelor’s
work [1], I have created a program that generates synthetic data imitating the television
news. My motivation in my diploma thesis is to verify that the generator of synthetic data
could replace real data or even overcome the real data by the generator’s ability of producing
almost infinite amount high-quality images.

Figure 2: An illustration of real image (left) and synthetic image (right) with same text

generated with AITGM module [2].

The scientific motivation is to determine which way leads to better results of reading digitally
generated text in television. Whether a better way is to invest time or money to annotate
big amount of real data with only limited volume, or whether it is better to invest time or
money to creating or improving synthetic data generator. The final statement is going to be
proved by experiments containing graphs and result tables.
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2 Related work

Optical character recognition with the task to detect and correctly read all texts in the image
is one of the most important and mostly used thing in computer vision. This topic has been
addressed by researchers since first computers in 1960. Over the years, methods and algo-
rithms have been improving from a single template matching working with one font to a deep
neural network providing very good recognition even for handwritten fonts with outstanding
results. Namely, the end-to-end systems were an improvement because in training the input
is image and the output is detected text. There is no need to make preprocessing or to detect
text before its reading separately, only to have a dataset with annotated images, which makes
it powerful.

2.1 Optical Character Recognition by traditional approaches

A first method for reading or most likely assigning character on paper to a letter in char-set
was pattern matching in 1960. Over the years until 1980’s, OCR were improved but the main
idea of approach to problem remained still. The main idea was to first make a preprocessing in
the form of noise reduction, thresholding and segmentation. Then for feature extraction, three
main methods were used. Those were a) Points distribution, b) Transformations and series
expansions and last c) Structural analysis meaning geometric and topological structures of a
symbol. After feature extraction was made a deciding was next step. There were three main
used classifiers and these were the minimum distance classifier, statistical classifiers as e.g.
Bayes classifier and neural networks. Neural networks were described as a non-perspective
method, because they have limited predictability and generality which looks amusing in
today’s optic. Systems based on mentioned principles were used with technique of Magnetic
Ink mostly in bank sector or at state authorities due to its high price [12].

Around the year 2000 as computing power increases, new methods of feature extraction and
classification have appeared. For the feature extraction, I would like to mention a represen-
tatives as Histogram of gradients and Scale-invariant Fourier transform. For the group of
classifiers the mains are AdaBoost [9] and Support vector machines [44].

2.2 Text detection and recognition using Neural Networks

There are three branch of computer vision reading using neural networks. These are Text de-
tection [24, 22, 17, 45, 49], Text recognition [27, 42] and End-to-end methods [5, 28, 30].
Representatives of each branches will be presented in further subsections.
In branch of text detection and text, recognition are almost all systems designed in the way
that there is a regressor as the main part, it is always some type of Neural Network, and
auxiliary algorithms provide sorting, filtering, thresholding and NMS (Non-Maximum Sup-
pression). In addition, there may be another neural network for geometric transformation of
parameters or pseudo-parameters such as feature vectors to position parameters etc.
End-to-end methods in text reading are characterized by addressing both text spotting and
text recognition consequently without the need for any third part intervention. They can also
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use the same neural network for text detection and recognition, respectively same features
from various layers. Architecture could be complemented by other neural network layers such
as mostly used convolutional or fully connected layers.

2.2.1 Reading Text in the Wild with Convolutional Neural Networks from

Jaderberg et al.

Jaderberg et al. [22] designed a six-stage method where horizontal-boxes are the first stage
predicted by combining Aggregate Channel Feature Detector [11] and Edge Boxes [50]. Then
at the second stage they used Random Forest [4] classifier for reducing proposals, more pre-
cisely to decrease false-positive detections. The next two steps are using CNN for refining
bounding box proposals estimates and performing text recognition for refined text regions.
Detections are merged by proximity and recognized text. Also, a score is assigned to each
merged region. The last stage is thresholding for the final text spotting result by the as-
signed rating. The disadvantage of this approach is that recognized words have to be from
dictionary so it is not a lexicon-free system and word probability is gained from word dis-
tribution which depends on training data. As a final product is text box with recognised word.

Figure 3: Text spotting and reading pipeline proposed by Jaderberg et al. [22].

In more detail works proposed model illustrated in the Figure 3 as follows: a) A combination
of Edge Boxes and Aggregate Channel Feature Detector. b) Filtering by Random Forest clas-
sifier. c) A CNN is used to refine bounding boxes position. d) A VGG-16 [43] was retrained to
estimate probability that the cropped region defined by bounding box belongs to class, where
number of classes is 90 000 words in English dictionary. e) Merging refined detections by
proximity and recognised words with adding score. Score is maximal probability mixed with
probability of word in the word distribution. f) Thresholding by score obtained in previous
step.
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2.2.2 Synthetic Data for Text Localisation in Natural Images from Gupta et al.

Gupta et al. [17] proposed a YOLO object detector [37] like the network with a fully-
convolutional regression network and trained it on synthetic data. Architecture of the network
was inspired by VGG-16 [43] which means the usage of several small dense filters however,
Gupta et al. found out that a smaller model is as good and even more efficient for text. As
predictors they implemented seven 5×5 linear filters each for regressing one of seven object
pose parameters p. P is composed of four position parameters, two rotation parameters
and one object presence confidence. They also implemented multi-scale detection because of
limited receptive field arising from anchor box sizes and the inability of spotting large texts.
The input image is resized down by scales 1, 1/2, 1/4, 1/8. Final detections are obtained by
suppressing lower score detections with a condition of their overlapping. The advantage of
this model is that it has 30 times less parameters then YOLO [37] network and its are 45
times smaller.

Figure 4: Text spotting pipeline proposed by Gupta et al. [17]. A fully-convolution neural

network (FCNN) composed of nine convolutional layers with ReLU and sometimes followed

by max-pooling. Object pose parameters (position, rotation) are (x-u,y-v,w,h,cosΘ , sinΘ).

2.2.3 Detecting Text in Natural Image with Connectionist Text Proposal Net-

work from Tian et al.

Tian et al. [45] introduced an idea of using Connectionist Text Proposal Network (CTPN)
supplemented by a Bi-Directional Long short-term memory network (BLSTM) [16, 41]. First
a VGG-16 [43] is used to generate feature maps which feeds BLSTM. After that fine-scaled
output from BLSTM is attached to the fully-connected layer working as an transformation
of feature vector into pose coordinated. Because of output of BLSTM which is k-sequential
vertically oriented thin rectangles are pose parameters in shape 2k vertical coordinates, 2k
scores and k side-refinement where k is number of vertical thin rectangles. Width of thin
rectangles is fixed to 16px.
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Figure 5: Detecting Text in Natural Image with Connectionist Text Proposal Network from

Tian et al. [45].

In more detail, VGG-16 [43] last layer (conv5) is densely slid by a 3×3 spatial windows. Win-
dows are recurrently connected by row to a Bi-Directional LSTM [16, 41] which afterward
provides a feature vector for a fully connected layer. Output values of fully connected layer
contains these parameters: coordinates of thin vertically oriented rectangles, text or no-text
score, and side-refinement. The final area with detected text is defined by the amount of thin
rectangles.

2.2.4 EAST: An Efficient and Accurate Scene Text Detector by Zhou et al.

In 2017 Zhou et al. presented EAST - An Efficient and Accurate Scene Text Detector [49]
which uses U-shape [40] network design. U-shape designed network is the key component of
their approach because then they can eliminate intermediate steps such as word partition,
candidate proposal and text region formation. Post-processing steps are only thresholding
followed by Non-maximum suppression (NMS) on predicted geometric shapes. The interest-
ing part is NMS because they do not use the standard version because of complexity O(n2)
and instead a Locality-Aware NMS is used with a best case complexity O(n). Due to often
highly correlated near by pixels can be geometries merged row by row and iteratively merge
the current geometries with the last merged, all happens in same row. In article EAST is
stated that in practice, the algorithm runs sufficiently fast as long as the locality assumption
holds.

Figure 6: EAST: An Efficient and Accurate Scene Text Detector by Zhou et al. [49].
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Network has four convolution stages followed by four unpool stages where in each unpool
stage is merged unpooling features with features from convolution branch of same stage.
Thresholding is done on score map which is one of predicted channels and it just consider
score over predefined threshold as valid.

2.2.5 An End-to-End Trainable Neural Network for Image-based Sequence Recog-

nition and Its Application to Scene Text Recognition from Shi et al.

A lexicon-free text recognition network was presented in 2016 by Shi et al. [42]. The proposed
network is composed of the convolutional part, where are extracted features from image fol-
lowed by mapping to sequences. Feature sequences then continue to a deep Bi-Directional
LSTM [16, 41] which provides character sequence for Connectionist Temporal Classification
(CTC) [15]. CTC is a transcription layer where duplicities, inner word spaces etc. are deleted.
Inner word spaces, duplicities or miss-classified characters of the same letter could occurred
because feature sequence which can be represented as a rectangle in an original image covers
only half of the letter and so the letter is split into two or more rectangles. They also pro-
posed a lexicon-based transcription in the form of method added after CTC where a word
from a dictionary is chosen by its minimum distance to generated CTC string.

Figure 7: An End-to-End Trainable Neural Network for Image-based Sequence Recognition

and Its Application to Scene Text Recognition from Shi et al. [42].

FCNN in Figure 7 composes of five convolutions each followed by max-pooling and then three
convolution layers are used each with batch normalization. Feature maps are then mapped
to feature sequences that represent the receptive field in form of thin rectangles vertically
oriented. These continue into Bi-directional LSTM and result in character sequence as one
character for one feature sequence.

2.2.6 Recursive Recurrent Nets with Attention Modeling for OCR in the Wild

from Lee et al.

Lee et al. [27] introduced in 2016 a recursive recurrent neural network model and showed
an approach of recursive CNN complemented by recurrent NN in the form of soft-attention
mechanism. For obtaining the text from image are firstly used four recursive convolution
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layers provides feature extraction. Then feature maps are transformed by two fully con-
nected layers and brought into a recurrent networks. Soft-attention mechanism decode image
features into output characters concerning for implicitly learned and saved character-level
language model. In this form can model provides a lexicon-free image to text transcription or
rather a recognition however, there are still included language statistics inside soft-attention
layers.

Figure 8: Recursive Recurrent Nets with Attention Modeling for OCR in the Wild from Lee

et al. [27].

Recursive CNN (RCNN) is specific by sharing weights across layers and keeping the same
number of channels. A recurrent network with a soft-attention mechanism implicitly contains
learned language statistics which helps or forces to generate meaningful results without the
need for a lexicon.

2.2.7 Towards End-to-end Text Spotting with Convolutional Recurrent Neural

Networks from Li et al.

Li et al. [28] created a complex end-to-end model for text spotting and recognition. He makes
use of convolution layers for feature extraction in the first place, then a Text Proposal Net-
work make a list of text region proposals which is fed into Region Feature Encoder (RFE).
RFE provides convolutional features conversion into fixed-length representation because of
following Text Detection Network (TDN) which is a multi-layer perceptron (MLP) giving
textness score and calculating bounding box offsets. MLP output is bring back (dashed line
in Figure 9) into RFE for again computing fixed-length bounding boxes provided by TDN. In
the last step Text Recognition Network (TRN) recognizes characters in the bounding boxes
with usage of attention to focus in ”time steps” on specific slide of given bounding box. Dur-
ing a time step is generated one character.
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Figure 9: Towards End-to-end Text Spotting with Convolutional Recurrent Neural Networks

from Li et al. [28].

While describing model more precisely, CNN is modified VGG-16 [43] by removing fully con-
nected layers and keeping only 1st, 2nd and 4th max-pooling layers so down sampling ratio
is changed from 1/32 to 1/8. Fully ConvNet extracts convolutional features and provides set of
bounding boxes and coordinates offset. RoI pooling is spatial max-pooling trying keep ratio
between width and length at rate 2w:h which is be beneficial for characters like ”i” or ”l”.
In Multi-layer perceptron part are two fully-connected layers with 2048 neurons followed by
two parallel layers as is shown in figure. Standard LSTM [20] is accompanied by attention
mechanism because in each time step attention generates heat map in form of sliding window.

2.2.8 Deep Text Spotter: An End-to-End Trainable Scene Text Localization

and Recognition Framework from Bušta et al.

Bušta et al. [5] introduced an approach based on fully convolutional network (FCNN) with
adapting the YOLOv2 [38] architecture because if its accuracy and significantly lower com-
plexity than the standard VGG16 [43] architecture. As in YOLOv2 and Faster R-CNN [39]
they use a Region Proposal Network (RPN) for region proposals generation and in addition a
rotation θ is added as a crucial parameter for recognition. Proposals are filtered by its score
rp that give the probability that the region contains text. Because regions have different
scales and rotations a bilinear sampling is used instead of classical RoI pooling. Bilinear
sampling allows network normalise rotation and size with respect to original aspect ratio
and positioning with giving to this approach an advantage. Finally a CTC layer [15] give
a conditional probability distribution over labeled sequences for choosing the most probable
characters sequence.

16



Figure 10: Deep Text Spotter: An End-to-End Trainable Scene Text Localization and Recog-

nition Framework from Bušta et al. [5].

Adopted YOLOv2 network has deleted fully-connected layers so it is fully convolutional.
Region proposal is a Region Proposal Network (RPN) supplemented with rotation rθ. Best
proposals box means selecting regions with score higher than 0.1. Bilinear sampling normalise
rotation and scale with leaving original aspect and position unchanged.

2.2.9 FOTS: Fast Oriented Text Spotting with a Unified Network from Liu et

al.

FOTS: Fast Oriented Text Spotting with a Unified Network is a system from Liu et al. [30]
presented in 2018. Liu makes use of U-shaped [40] convolutional network for generating
feature maps in scale 1/4 considering input image by upscaling features from 1/32 ratio fol-
lowed by two parallel branches, text detection and text recognition. In text detection branch
one convolution layer is applied to generate per pixel text probability and distances to all
sides for each positive sample. Feature map is then processed with thresholding and NMS
and rectangle areas with text are generated. If a quadrangle as in [49] have been used then
in my point of view they could have better straightened detected text which is obvious in
original article [30] on their Figure 4 at top right bbox with text ”TEMT”. In text recog-
nition pipeline RoI rotate is fed with predicted bounding boxes and feature map in scale 1/4
for obtaining axis-aligned feature maps with fixed feature high and unchanged aspect ratio.
Then by a sequence of VGG-like [43] sequential convolutions with pooling, one bi-directional
LSTM [16, 41] and fully-connected layer and finally CTC decoder [15].
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Figure 11: FOTS: Fast Oriented Text Spotting with a Unified Network from Liu et al. [30].

More precisely described Figure 11, FCNN encodes features to 1/32 scale and then upscale
back to 1/4 size of input image by bilinear upsampling. Text Detection contains one deep
convolution layer with six channel providing per-pixel text detection in one channel. For each
positive sample are computed distances to all sides (4 channels) and the last channel predicts
the orientation of the related bounding box. Then thresholding and NMS is applied. RoI
rotate make use of affine transformation for axis-aligned straightening with fix height and
unchanged aspect ratio.
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3 E2E-MLT

An Unconstrained End-to-End Method for Multi-Language Scene Text or shortly E2E-
MLT [6] was presented in 2018 by researchers from ČVUT in Prage, namely Michal Bušta,
Yash Patel and Jǐŕı Matas. They drew inspiration from modern growing cities where the same
information can be written in several languages and different scripts like Latin, Chinese or
Cyrillic alphabet, all together at one poster as in Figure 1. Even though deep learning helped
a lot in text detection [17, 22, 24, 49, 45] and text recognition [22, 42, 27], there still exists a
branch, a multi-language scene texts, where methods of text detection or text recognition as
previously mentioned or other more complex methods as [28, 5, 30] fall short because of the
following aspects. A) only English texts are trained and evaluated, so if multiple language
detection and recognition in the same scene are needed, there have to be used more networks
which could lead to mistakes, B) text localization and recognition are not solved together as
a dependent but as two independent problems [22, 17] which is a mistake e.g. for Chinese or
Japanese scripts as they are often vertically oriented, C) most of the existing OCR systems
are insufficient for highly rotated texts.
One of the challenges of multi-language scene text is the fact that it is not sufficient amount
of publicly available training data for deep neural networks.

Figure 12: Multi-language text detection and recognition demonstration by E2E-MLT [6].

Because of all reasons stated above Bušta et al. proposed a single end-to-end trainable fully
convolutional network with shared convolutional layers for both tasks, scene text detection
and text recognition with script identification. The method can recognize 7 500 characters
in the original version and 8 400 in the newer one, it doesn´t use any fix dictionary and it
solves all the listed lack previous solutions.
This method was chosen because it was trained primarily on synthetic dataset and network
shown to be good at generalising and ability of learning from synthetic data. Next reason is
that network is able to recognise Czech characters without any changes however, it has never
seen Czech characters before so it has to be retrained or more likely only fine-tuned.
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Model could be different from model described in article [6] because Bušta made newer one
after article was released, so a newer changed model is used in this work.

3.1 Overall architecture

The architecture of this method is different from the others [28, 30, 5] because it is based on
a single fully convolutional network. The network has three parts, see Figure 13, the first
part is a base image processing followed by the two parallel branches, the text localisation
branch and the text recognition branch. The first part contains four segments each made
from 2D 3×3 convolution (Conv2D), Instance Normalisation (IN) [46, 8] and Concatenated
Leaky Rectified Linear Unit (CLReLU) [32] and provides dimension reduction with feature
extraction to 1/4 size of height and width compared to the input image, with 64 channels. As
the backbone of the text localisation branch is used ResNet-34 [19] with Feature Pyramid
Network (FPN) object detector [29] as a core. First layer of ResNet-34 was replaced by 3×3
convolutions with stride 2 because the text itself is small compared to the whole image area,
so 7×7 convolution window is too big. Because high resolution consumes a lot of memory,
the proposed detector works on a scale 1/4 of the input image same as it does FPN object
detector [29]. Stride is a shift of convolution window and it determines the size of next layer
by relation 1/stride.

Figure 13: E2E-MLT model architecture overview: FPN [29] architecture is used to generate

dense text proposals by extracting information from shared layers. Next OCR branch takes

cropped feature regions according to the text proposals and generates a character sequence

or remove the proposal as non-text.

The architecture of E2E-MLT model is graphically illustrated in Figure 13 concerning to
all used techniques. All parts of the network are presented in more detail in further chap-
ters 3.2, 3.3, starting with the initial part different from ResNet-34 [19] in Table 1. The initial
part is important because it is advantageous to work with lower resolution due to memory
consumption. This part is also interesting by the fact, that channel increase is not made by
convolution but by CLReLU function defined in Eqn. 3.
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Initial part

Type Channels Size/Stride Dimension

Conv2D, IN, CLReLU 16 3 × 3/1 W × H

Conv2D, IN, CLReLU 32 3 × 3/2 W/2 × H/2

Conv2D, IN, CLReLU 64 3 × 3/1 W/2 × H/2

Conv2D, IN, CLReLU 64 3 × 3/2 W/4 × H/4

Text localisation part

Type Channels Size/Stride Dimension

ResNet block ×3 64 3 × 3/1 W/4 × H/4

ResNet block ×4 128 3 × 3/2 W/8 × H/8

ResNet block ×6 256 3 × 3/2 W/16 × H/16

ResNet block ×4 512 3 × 3/2 W/32 × H/32

Dropout (0.2)

FPN lateral con 256 1 × 1/1 W/16 × H/16

FPN lateral con 256 1 × 1/1 W/8 × H/8

FPN lateral con 256 1 × 1/1 W/4 × H/4

Dropout (0.2)

Conv2D 7 1 × 1/1

Text recognition part

Type Channels Size/Stride Dimension

Conv2D, IN, LReLU 128 3 × 3/1 W/4 × 10

Conv2D, IN 128 3 × 3/1 W/4 × 10

Conv2D, LReLU 128 3 × 3/1 W/4 × 10

maxpool 2 × 1/2×1 W/4 × 5

Conv2D, IN, LReLU 256 3 × 3/1 W/4 × 5

Conv2D, LReLU 256 3 × 3/1 W/4 × 5

Conv2D, LReLU 256 3 × 3/1 W/4 × 5

Conv2D, LReLU 256 3 × 3/1 W/4 × 5

Conv2D, LReLU 256 3 × 3/1 W/4 × 5

maxpool 2 × 1/2×1 W/4 × 2

Conv2D, IN, LReLU 256 2 × 3/1 W/4 × 2

Dropout (0.2)

Conv2D |Â| = 8400 1 × 1/1 W/4 × 1

Table 1: Layer by layer E2E-MLT architecture is based on a fully convolutional network

(FCN). W and H represent the width and height of the original image and the dimension

column shows the size of the feature map after each layer. IN - Instance Normalisation [46, 8],

CLReLU - Concatenated Leaku ReLU [32] as Eqn. 3. ResNet block - ResNet-34 [19] convo-

lutional block, FPN - Feature Pyramid Network [29] object detector with lateral connection

in detail depicted on Figure 13.
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Concatenated Leaky Rectified Linear Unit - CLReLU
In the late 1960s has appeared a new activation function with development of visual feature
extraction which was called Rectified Linear unit (ReLU). ReLU is defined as a positive part
of its argument, mathematically as:

f(x) = x+ = max(0, x) (1)

and it is sometimes also called a ramp function. This function shows as advantageous be-
cause it solves many issues and it helps training and improve performance as experimentally
proved [14]. The main issues in training which appeared during time are a) gradient vanish-
ing, b) gradient explosion and c) slow training mainly because symmetric activation functions
cause training stagnation. After that in 2014 Bing et al. [48] did an empirical study of ReLU
and its modifications as Leaky ReLU:

f(x) =

{
x if x ≥ 0
x
a if x < 0

= max(0, x) +min(0, x)ai (2)

where a is the fix parameter and determines a negative slope of function. Some small negative
slope brings an experimentally proved additional advantage in form of better results when
training deep neural networks.

Figure 14: Illustration of ReLU, LReLU, PReLU and RReLU [48]. In LReLU ai is a fixed

constant but in PReLU it is by learning trained parameter. RReLU samples aij as a variable

in a uniform random distribution in given range.

Parametric ReLU (PReLU) was presented by He et al. [18] in 2015 and defined same as
ReLU only with the small change that parameter a is not a fix number but it is a learned
parameter during backpropagation training. Also a version Randomised Leaky ReLU
was presented but it has not achieved any bigger successes. Only difference against Leaky
ReLU is that aij is a random number generated from the uniform distribution U(l,u).

Concatenated Leaky ReLU
Concatenation is in this model used for channel multiplication. The number of channels is
multiplied by 2 and it is created as a concatenation of tensors x and -x.
The whole formula for the activation function used in the model (Table1) in the initial part is:

CLReLU = LeakyReLU(InstanceNorm2D(Concatenation(x,−x))) (3)
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3.2 Text localisation

When the input image with text scene passes through the initial and then through localization
part of the network, on the output, appears seven per-pixel text scores and geometries. These
seven scores are: a) text/no-text confidence score rp ∈ (0, 1), b,c,d,e) distances to the b)
right, c) left, d) bottom and e) top sides of the bounding box containing this pixel, f) angle
of rotation rθ.
For localisation and recognition is used same joint loss function which consists of four mutually
independent loss functions.
Those are:

Lfinal = Lgeo + λ1Langle + λ2Ldice + λ3LCTC (4)

In original article, Bušta et al. [6] used λ1 = λ2 = λ3 = 1, but for fine tuning in this master’s
thesis have been values changed to λ1 = 2, λ2 = 0.5 and λ3 = 1.
Lgeo: Loss function for geometrical shape which is invariant to text regions of different scales.
An IoU loss proposed in EAST from Zhou et al [49] is used,

Lgeo = LIoU = −logIoU(R̂, R∗) = −log
|R̂ ∩R∗|
|R̂ ∪R∗|

(5)

where R̂ is estimated rectangle and R∗ is ground truth box.
Langle: Angle loss is computed as mean squared error (MSE) of sin(rθ) + cos(rθ) and their
ground truth sine and cosine values. Combination of sine and cosine is used because there
exists a discontinuity or rather jump of argument around angles where phase shifts and using
a combination of sine and cosine eliminate the issue, because by switching to sine and cosine
we can reach a continuous transition everywhere.
Ldice: As in [33], a dice loss is proposed to be a loss function for pixel-wise prediction maps
or in other words for segmentation. Dice score or sometimes called F1 score is similar to
IoU score function, it has same field of values in interval [0,1], but Dice is more soft when
penalising mislabelings which is convenient because it helps with imbalance between area
of text region and area of non-text region which is basically the rest of the image, so the
difference in size is not negligible. Dice loss is defined as:

Ldice = 1− 2TP

2TP + FN + FP
= 1−

∑N
i rpigi∑N

i r2pi +
∑N

i g2i
, (6)

TP represents true positive, FN false negative and FP false positive. Summations is over all
points which means over all feature points rpi same as over all ground truth points gi, i is
pixel index.
LCTC : CTC loss works on the word level and it is further explained in Section 3.3.2.

Last step of text localization is Dense ROI predictions which are generated by two steps:
a) filtering feature maps by confidence score rp through threshold, when only those with
rp higher than threshold value are kept, b) merging points in filtered maps into boxes with
Locality-Aware NMS proposed in EAST [49]. Locality-Aware NMS is based on prerequisite
that near by points are often highly correlated so they do not have to be passed with com-
plexity O(n2) but could be passed in the best case of O(n) when using merging row by row
and in the same row merging currently encountered element with the last merged one.
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Predicted text is bordered not by rectangles but by quadrangles which could be little baf-
fling because loss function for geometry work with representation of rectangle LAABB. The
key idea behind it is that a maximal rectangle is cropped from quadrangle and used for loss
function as an argument. The prerequisite is that there would not be many or none texts
with highly trapezoid shapes.

3.2.1 U-Net vs Feature Pyramid Network

In 2015 was presented U-Net [40] as an improvement to fully convolution networks [31] for
image segmentation which used simple down-sampling by convolutional layers and then up-
sampling by learned deconvolution filters. U-Net architecture adopted the same principle of
convolution compression into feature vectors followed by decompression creating segmenta-
tion maps, but with added skip connections.

Figure 15: Two important segmentation models. a) Fully convolution network without skip

connection [31] b) U-Net architecture using skip connection [40].

U-Net domain is mainly the medical field where was proved by many experiments and works
that a piece of extra information from skip connection significantly improves segmentation
results. Skip connection in U-Net is created as a simple concatenation of the feature map
from contracting part as the next channel to feature maps on the expansive path. The dis-
advantage of skip connection in the form of a concatenation of high- resolution feature maps
to the feature maps on the extensive path and after that processing by 3×3 convolution is
that skip connection can only transfer information for segmentation because high resolution
feature maps are firm and so the information has to be added and processed to the output
segmentation branch in one step by mentioned 3×3 convolution. Another disadvantage is
that U-Net like architectures predicts only at the last stage.

In 2016 was presented Feature Pyramid Networks (FPN) for Object Detection [29] which
outperform both [31, 40] not only in segmentation tasks but also in the number of imple-
mentation options because it can be set specifically with regarding to solved job. It is almost
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always used as a module for more complex neural networks because it can hardly ever stand
alone due to its properties. In the original article was experimentally proved on many neural
network models e.g. Fast R-CNN [13] and Faster R-CNN [39].

Figure 16: Feature Pyramid Network (FPN) [29]. Left: part focused on lateral connection,

an alternative to skip connection. Right: An illustration of the advantage multiple level

prediction which reduce no. of multi-scale anchors.

The Architecture of FPN is based on a pyramid scheme with two pyramids, one for feature
extraction and second for creating a segmentation map. The first one for feature extraction
contains multiple levels of the contracting path which provide feature extraction into smaller
feature maps but with the increased number of channels. Feature map size reduction is made
by convolution with stride 2 followed by Batch Normalisation and Leaky ReLU. The sec-
ond part, the expansive path, provides extraction of compressed feature maps with multiple
channels into larger maps with fewer channels. Larger feature maps are obtained by bilinear
interpolation to higher resolution followed by convolution.

Other methods for upscaling are using deconvolution by trained filters such as [31]. In U-Net
is upscaling made similarly as in FPN by bilinear upsampling with convolution. Different
approaches were presented in [35] where the first one is unpooling, an operation that places
values on the pixel with the same index as where it was before pooling and the second one
is deconvolution as shown in Figure 17 also used in [31]. Another option was introduced in
DeepLab [7] called atrous convolution by its inspiration from an ”algorithm à trous” [21].
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Figure 17: Illustration of the unpooling and deconvolution from [35] with classical pooling

and convolution on the left side and atrous convolution from DeepLab [7] on the right side.

Same levels of pyramids are connected by lateral connection which is an alternative to skip
connection used in U-Net [40] etc. The name skip connection came into use because in
graphical representation of the model several layers were skipped. But it is different with
the FPN because model was proposed as bent and its graphical representation is always
drawn as up and down the path so the name lateral connection has been chosen since the
connection going from side of one pyramid to the side of second one. Connection is not a
simple summation or concatenation as in U-Net but there is added a 1×1 convolution which
can transform feature maps from contracting path to almost anything. It was proved by Lin
et al. [29] that this type of bridging provide better results for object detection.

3.3 Text recognition

The text recognition branch or in other words OCR part consists of a several convolutional
layers followed by Instance Normalisation and Leaky ReLU as described in Table 1. Word
boxes predicted from localisation part are compared with ground truth boxes and when the
IoU is higher than 0.9, the detected text is used for OCR training. Then the parameters for
spatial transformer layer [23] are estimated from selected predictions and the spatial transform
is applied. Spatial transformation provides not only rotation but also a scale transformation.
The affine grid transformation is applied to the input image and the rotated and scaled im-
age part with detected text is than bring on the input of the initial network part (Tab. 1) to
compute features again. Therefore the number of channels goes from 64 to 128 in the first
OCR layer. Feature from the rotated image will be different than feature from the original
image because convolution is only translation invariant, not rotation invariant. An idea for
rotating input image with a forward pass and not only rotate features may be that is faster
to rotate input image with only three channels and pass it forward through network than
rotate features with 256 channels, however Mr. Bušta have not stated the true reason in
his article [6]. During image transformation a bilinear interpolation is used to get smoothed
image without misalignment pixels and with fixed height but variable width. Words text
regions retain its aspect ratio after rotation and scale transform.

After spatial transformer the OCR model or in other words the part of the text recognition
described in Table 1 obtain feature tensor with variable-width and fix height and outputs a
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matrix containing estimated characters where probabilities of characters are recomputed by
log-SoftMax due to CTC loss implementation which is in PyTorch [36] and log-SoftMax is
required because of numerical stability. Size of the input feature vector is W

4 ×40×C and and

size of the output matrix is W
4 ×|Â| where:

W = w×H′

h
w, h = width and height of text region
H ′ = fixed height of transformed text region, by Bušta et al. choose 40
C = number of channels
|Â| = number of output characters, log-Softmax with 8400 characters.
Than an algorithm similar to CTC [15] transcripts the output matrix into the output text
and concurrently during training CTC compute loss function which is used for training the
OCR part. For transcription of network output during experiments in original article [6] was
used greedy decoding. Other methods of decoding could be language respecting techniques
however those could be language dependent which rule out generalisation, some of methods
are e.g. language models [22] or attention mechanisms [27, 28]. Due to using CTC decoding
is the presented network lexicon-free, language independent and generalized.

3.3.1 Spatial transformer

Spatial transformer [23] is composed of two main steps, a) estimation of the transformation
parameters and b) feature map or in general matrix transformation. Parameters for 2D affine
transformation, which is sufficient because transformed object is input image, are define by
the affine transformation matrix Aθ:

Aθ =

[
θ11 θ12 θ13
θ21 θ22 θ23

]
=

[
sxcos(α) −sysin(α) tx
sxsin(α) sycos(α) ty

]
(7)

Pointwise transformation is then defined by an equation:

(
xsi
ysi

)
= Tθ(Gi) = Aθ

xti
yti
1

 =

[
θ11 θ12 θ13
θ21 θ22 θ23

]xti
yti
1

 (8)

where (xsi , y
s
i ) is the source map, (xti, y

t
i) are the target coordinates of a rectangular grid,

α is the angle predicted from text detection part and Tθ is a 2D affine transformation. An
illustration of described process is bellow in the Figure 18.
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Figure 18: Illustration of an affine transformation fo 2D image by applying the parameterised

sampling grid. a) Transformation by sampling grid with identity transformation parameters

I. b) Transformation by warped regular grid and with affine transformation Tθ(G). [23]

In the Figure 18 in part b) we can see that for one pixel in transformed grid V is not a
whole single corresponding pixel but there is multiple pixels in the U grid belonging into a
one V pixel. This challenge is solved by bilinear interpolation which mean multiple pixels
are combined by average into a single one, this process with a grid is called a bilinear sampling.

3.3.2 CTC - Connectionist Temporal Classification, CTC Loss

CTC [15] was presented in 2006 by Graves et al. as an alternative to the Hidden Markov
Model (HMM) for neural networks as output processing. Besides output processing CTC
also provides a loss function that is used for backpropagation training.

To clearly explain how CTC works and why is it used for neural networks working with
sequential pieces of information is necessary to explain what the last layer of OCR does and
what is the other unused way. The last layer is as a sliding windows where the number of
windows is determined by the number of recognized characters. Each window is represented
as a channel and this window slides over the last feature map with dimension 2 × text width
by one pixel or by one-time step. Each time step has its own column with responses of
windows so multiple time steps create a matrix where are responses of characters over time
(moving windows).

LogSoftmax(xi) = log

(
exp(xi)∑
j exp(xj)

)
(9)

On this matrix is applied log-SoftMax (Eqn. 9) function which makes some kind of normal-
ization according to sum not necessarily equal to one. The matrix in this form is convenient
because it can be used for back propagation training and also for finding the most probable
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text. Windows are hardly ever wider than recognized characters so a window can see the
same character for several consequential time steps. Therefore there has to be a symbol to
tell where the space between two characters is almost always an underscore " ".

Decoding path is now easy to perform since decoding is simply finding the highest value in
each column as illustrated in the Figure 20 in the right bottom corner and then making two
simple operations defined by following rules in this order.
1) Duplicate deleting - If there are the same characters next to each other, delete one of
them.
2) Blank deleting - If there is a ”blank” character " ", delete it.

The loss function is created a little bit differently because no character is deleted and it is
not about choosing the best values or neither the worst. As a first step for obtaining loss
function all paths which are after decoding same as ground truth label are detected. This
step ensures that all possible alignments are taken in account. Than all possible alignments
of input to ground truth target are summed up and reversed since loss function cannot be
positive. This process is also illustrated in the Figure 20 with the difference that we do not
have to make a logarithm because it has been done in the last NN layer. Logarithm is done
because loss function has to be derivable so it can be back-propagated.
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Figure 19: CTC algorithm with loss computation in the left bottom corner and best path

decoding in the right bottom corner. Algorithm works with a probability matrix on the input

where on the horizontal axis there are time steps and on the vertical axis there are possible

characters. The decoding process generates a text which should in the best case match the

real text. The loss generates a negative logarithm of sum of probabilities of all possible

alignments of the input to the target hence the positions of the characters are not needed

since all alignments are taken into account. The negative logarithm is necessary because the

loss function cannot be positive and it has to be derivable because of back-propagation.

3.4 Training

Original network have been trained by Bušta et al. in an end-to-end way, it means both parts
OCR and localisation part were trained together. As a training dataset were used several
united datasets, namely ICDAR 2015, ICDAR RCTW 2017, ICDAR RCC-MLT 2017 and
Synthetic multi-language dataset created by framework from Gupta et al. [17]. Whilst the
largest ICDAR dataset RCC-MLT 2017 contains 7200 training images and 1800 validation
images, neural networks need hundreds of thousands of images to be trained properly. There-
fore a synthetic dataset contains 245 000 images based on 8000 backgrounds from [17]. Both
the ICDAR RCC-MLT 2017 dataset and the synthetic language dataset are six-language.
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Synthetic text is generated into the image by the logic that in real world texts are laying in the
uniformly structured and well-defined area with same color. So on the background image is
applied several methods providing prospective segmented region where can be imprinted text
with respect to region lean and orientation. Imprinted are same six languages as in ICDAR
RCC-MLT 2017: Arabic, Bangla, Chinese, Japanese, Korean, Latin. Annotation contains
word level bounding boxes, character level bounding boxes, text transcription and script class.

As a training optimizer was used Adam [26] with the parameters setting from PyTorch im-
plementation [36] except base learning rate which was set to lr = 0.0001. Joint loss function
Eqn. 4 is used for both, text localisation and recognition.

Figure 20: Synthetic data generated with adjusted framework [17].
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4 Experiments

E2E-MLT dataset contains only English words specifically text in wild, so for the purpose of
this diploma thesis which is detecting and recognizing texts from the news broadcasting had
to be network retrained or more likely only fine tuned. Experiments was divided into several
parts, where the two main parts are in the first part was network trained by synthetic data
(Section 4.1) generated by [3, 2] and in the second part a real annotated data from the news
broadcasting provided by the university (University of West Bohemia, Faculty of Applied
Sciences, Department of Cybernetics) were used, both for fine-tuning the original network
for the purpose of contribution comparison.

model

d
a
ta

original synthetic real

synthetic test1 test2 test3

real test4 test5 test6

Table 2: Table of experiments by their category.

During experiments were evaluated a) IoU per image, b) precision, c) recall, d) loss
provided by joint loss function (Eqn. 4), e) CER and f) WER (all described in section 4.3).

Training parameters of Adam remained unchanged with the respect to previous original train-
ing. It is lr = 0.0001, β1 = 0.9, β2 = 0.999, ϵ = 1e-08, weight decay = 0. Network has been
trained on CESNET clusters, mainly on Adan cluster with 2x 16-core Xeon processor and 2x
nVidia Tesla T4 16GB.

4.1 Synthetic data

Synthetically generated data is used because of amount of data needed for neural network
training. Unlike the real annotated data where can be mistakes caused by annotators, syn-
thetic data can contain only systematic mistakes caused by its creator and those are often
revealed and corrected. Data generator [3] uses [2] as a core for generating synthetic im-
ages in five patters and one random text. Generator is created in an effort to copy TV
news broadcasting which correspond with a goal to generate images unrecognizable from real
ones. Patterns are characterised by same positions for semitransparent background and same
starting pixel positions in patterns. Basic elements which can generate templates by its com-
binations are a) time, b) name and optionally politic party, c) job, d) report title, e) live,
f) source, g) crawl text, h) subtitles and i) uncategorisable descriptive text. From these are
assembled patterns shown in table bellow (Tab. 3).
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a) b) c)

d) e) f)

Table 3: Six representatives of possible templates containing elements according to previous

paragraph. Individual representatives contains a) report title, b) source, c) time, name, job,

political party, crawl text, d) uncategorisable random wild text, e) time, name, job, political

party, crawl text, subtitles, f) live.

Distribution of generated templates is set to 16.6% alias 1/6 where the specific case is template
e) according to Tab. 3. If the pattern e) is chosen for generating, basic element is subtitles
and there are added elements from template c) in 30% cases. Each time is text for imprinting
chosen from text files, where there are individual files for almost any part of elements so the
whole generator is very flexible.

An extra setting is hidden in YAML configuration file which is published and fully set for
CT news broadcasting with respect to observed attributes. By adjusting deep setting in
configuration file can be generator easily reconstructed for different news broadcast, however
it is not designed for the general public, but for machine learning experts and programmers.

Applied font is TV Sans Screen which is non-public font and it is also a private property
of Czech Television loaned for this experiment. Font has its three variants called ”Bold”,
”Medium” and ”Regular”. Text for generating is split into several files according to what is
it used for, e.g. first names, surnames, street names, town, web domains etc. From non-public
database were obtained names of all streets and towns in Czech Republic. From a public data
were compiled surnames, web domains, jobs etc. and the large files with wild and random
text or with titles were acquired from Czech Wikipedia dumps.

For training were generated two datasets. The first one is smaller and is composed of 4000
train images, 1000 validation images and 1000 test images. The second one is larger with
16000 train images while validation and test images remained same. Two differently sized
datasets were created because it was desirable to ascertain how much is larger dataset signif-
icant for recognition.
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4.2 Real data

Real annotated data are rare, therefore available amount of data is only 594 images which
were split into 400 images for training and 194 images for testing. In synthetic data was
background without text, so inside generated image was only imprinted text. In real data is
inside images not only text from (Czech Television) CT but also text from real scenes, also
called a wild text. This text is not always annotated as it is sometimes hardly visible even for
human, however some text are not annotated because annotater appraises text as too small
for reading or hardly detectable. From reasons stated above is real data annotation accuracy
lower than at synthetic ones.

a) b) c)

d) e) f)

Table 4: Real data demonstration. a) Illustration of report title template however with mul-

tiple bevelled real annotated texts, b) Image with half annotation, annotated is only text on

the left but recognized will be both text, c) Image where is a lot of wild text but at least 20%

is annotated, d) Image also same as template ”e” in Fig. 3, e) A representative of uncate-

gorisable image, simulated in synth data by random wild text, f) Different representative of

wild text but well annotated which were not simulated in synthetic data.

As could be seen in Table 4 in the picture ”c” and as is described in caption, not negligible
part of real images has imperfect of more likely incomplete annotation, so because of that is
not possible compute precision accurately, and also because of that is recall only indicative.
To moderate the impact of images with mostly wild text were from group of testing images
separated the minority part of wild text images in quantity of 40 samples. Test group of real
data is then divided into two groups with 154 images where is dominant text imprinted by
CT, and 40 images where is dominant wild text. Annotations were created in specialized
software independent on this work and were made by several different annotators.

4.3 Evaluation metrics

For the purpose of measuring important characteristics of fine-tuned model and comparing
it against the original model were chose following metrics normalized to interval [0,1].
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• Intersection over Union (IoU)

• Precision

• Recall

• Levenshtein distance

• Character error rate (CER)

• Word error rate (WER)

Annotations and predictions for each image contains list of word boxes defined by four points
and their text. Both are not sorted in any way so prediction can not be aligned to anno-
tation just by succession. It cannot be neither assigned by sorting only one, ground truth
(GT) boxes or predictions, and then choosing second for pair, because there could emerge
situations described in Fig. 21 where multiple GT boxes fits more predictions or where is GT
box interspersed into more predictions. In both situations will assigning not be the possibly
best one because searching the best assignment is a problem of searching global maximum
in matrix of all possible combinations, an n×n cost matrix. This problem is called Linear
Sum Assignment.

Figure 21: Illustration of two basic situations which have to be taken into consideration. a) a

single prediction for multiple ground truth boxes, b) multiple predictions for a single ground

truth box.

The algorithm solving a task of an n×n cost matrix also known as minimum weight matching
in bipartite graphs is a ”Hungarian method” developed in 1955 with complexity of O(n4).
An improved method with complexity O(n3) is called Jonker-Volgenant algorithm [10] and
it is also implemented in Python SciPy library [47] since version 1.4.0.

4.3.1 Intersection over Union - IoU

IoU was used in two cases, the first one was to compute overlap for assigning predictions
to ground truth boxes where assignment is subsequently realized via linear sum assignment.
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Computation is done simply on pixel level. Second case was computing IoU for whole im-
age and several situations which could possible happened had to be taken in account while
proposing counting method. An illustration in the Figure 21 shows the situation one-to-many
and for that reason had to be counting done by uniting all GT boxes, then all predictions
and from those two then computing IoU. In this work is uniting implemented as NumPy 2D
array. In mathematical formulation is IoU computed as:

IoUper img =
(∪ GTs) ∩ (∪ preds.)

(∪ GTs) ∪ (∪ preds.)
. (10)

4.3.2 Precision and recall

First of all have to be defined four term, ”true positives”, ”false negatives”, ”false positives”,
”true negatives” with following meaning:

1. true positive (TP) - elements correctly detected

2. false negative (FN) - non-detected elements which should be detected

3. false positive (FP) - elements incorrectly detected

4. true negative (TN) - elements which were not detected and should not be detected

Precision and recall are both metrics for measuring quality of detection and classification.
Precision is defined as a ratio between true positives and sum of true positives and false
negatives elements. In other words precision metric is a number which says what is the ratio
of correct detections to all detections. In the following experiments where elements are GT
boxes and predictions could be definition of precision reformulated into

Precision =
TP

TP + FP
=

#correct detections

#predictions
(11)

where # is an abbreviation for number of.
Recall is measuring the second missing part of quality of the detection which is how many of
relevant elements were detected. It is a number telling the ratio of correctly detected elements
to all correct elements. Using this formulation can be recall written in mathematical form as

Recall =
TP

TP + FN
=

#correct detection

#GTs
. (12)

In both, as a ”correct detection” is considered a detection with IoU higher than parameter
τ . By setting different level of tau, quality of detection could be observed from descending
values of precision and recall. The relation between recall or precision and tau is as follows,
the slower precision or recall decrease when tau is increasing, the better is detection.

4.3.3 CER and WER

Character error rate (CER) and word error rate (WER) are both metrics which allows to
ascertain how good is character recognition. After matching by linear sum assignment is on
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each pair of GT box and prediction applied Levenshtein (LV) distance which is an metric
for measuring edit distance between two word sequences. Because Levenshtein distance is
used for computing CER and we wanted CER to be between 0 and 1 to indicate error rate
of reading, formula for Levenshtein distance had to be adjusted as follows:

LV dist. = min(LV (prediction,GT ), GT ). (13)

Normalization of LV by length of GT is not done because it is required CER to be weighted
by GT length. Due to that fact is CER normalized by sum of all lengths of GTs so each error
has same weight independent on word length. Formula for CER is then:

CER =

∑
i LV dist.∑

i length(GTi)
=

∑
imin(LV (predictioni, GTi), GTi)∑

i length(GTi)
. (14)

In algorithm for computing CER are under-detections and over-detections also penalized. Be-
cause of over-detections could CER grow up over 1, so it could be taken as an indicator of that.

WER is then computed as a count of all words where is Levenshtein distance between pre-
diction and GT text is bigger than 0.

WER =

∑
i

{
0 if CERi = 0

1 if CERi > 0

#GTs
(15)
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4.4 Results

Validation of training on synthetic dataset - 4000 images

As a first step the original model was trained on synthetic dataset with 4000 training images
and validated on dataset with 1000 synthetic images. Training was performed for 30 epochs
with parameters as described in Section 4.

After training, models were validated by criteria described in Section 4.3 and by joint loss
function Lfinal Eq. 4 with following results.

Table 5: Validation curves of model: trained on 4k synth. dataset, validated on 1k synth.

dataset.

The best model by CER is the last one (epoch 30) with:

Train data Val. data Epoch CER WER IoU

4k synth. 1k synth. 30 0.05575 0.15571 0.86298

Table 6: Validation results on synthetic dataset of model trained at 4k synthetic dataset.

CER and WER are figures for evaluating recognition or reading, however for evaluating
detection serves precision and recall figure, where as a correct detection is considered the
ones with IoU higher than set threshold τ (tau). The more area under curve is, the better
is detection and the more confident the detector is. For the purpose of this work cannot be
one value, neither recall or precision, bigger to the detriment of the second one, they should
be in equilibrium.
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Table 7: Precision and recall curves of model: trained on 4k synth. dataset, validated on 1k

synth. dataset.

In the graph are not all model because it will then be labyrinthine and also because impor-
tant is trend of training, which is obvious from the selection. The best model chose from
CER-WER figure in Tab. 5 is in the figure in Tab. 7 highlighted.

Validation of training on synthetic dataset - 16000 images

Next a 16000 training set of synthetic data was used. By this dataset was trained the original
model and also the best model from training by 4000 synthetic dataset. Training original
model by second four times larger dataset was performed because it was required to deter-
mine whether we can reach better results with bigger dataset or whether have synthetic data
limited information value. Retraining the best model from previous 4k dataset was done for
finding out if new synthetic dataset can ameliorate results.

With experiences from previous training and because of very long training time was training
only for 26 epochs. Original model retrained by bigger dataset reached better results shown
in Table 8.

Table 8: Validation curves of model: trained on 16k synth. dataset, validated on 1k synth.

dataset.
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The best model is model after epoch 22 with results:

Train data Val. data Epoch CER WER IoU

16k synth. 1k synth. 22 0.03416 0.11775 0.88463

Table 9: Validation results on synthetic dataset of model trained at 16k synthetic dataset.

Table 10: Precision and recall curves of model: trained on 16k synth. dataset, validated on

1k synth. dataset.

In the Figures in Tab. 10 is clearly visible that the model of epoch 22 best by CER and WER
is also very successful in detection confidence which confirms it was chosen correctly and that
CER and WER are correlated with precision and recall through convolution neural network
functionality.

Validation of training on synthetic dataset - 4000+16000 images

As a last model trained on synthetic dataset with 16000 samples was the best model pre-
trained on 4000 synthetic dataset (Table 6).

Table 11: Validation curves of model: trained firstly on 4k and then on 16k synth. dataset,

validated on 1k synth. dataset.
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The best model is model after epoch 4 because of the best WER and CER very similar to
others with results:

Train data Val. data Epoch CER WER IoU

4k,16k synth. 1k synth. 4 0.03642 0.08534 0.88080

Table 12: Validation CER, WER, IoU of model: trained firstly on 4k and then on 16k

synthetic dataset, validated on 1k synth. dataset.

Table 13: Precision and recall curves of model: trained firstly on 4k and then on 16k synth.

dataset, validated on 1k synth. dataset.

By plotting precision and recall in the Table 13 could be seen that training with more syn-
thetic data cannot improve detection confidence and only recognition part of model is im-
proved slightly.

Validation of training on real dataset - 400 images

After the training of models by synthetic data was done, the original model was trained using
real data. Because of the real data content, meaning that sometimes is missing annotation of
text and that some images are unsuitable for training because of texts inside, and because of
small amount of real data was expected that training by real images will not be successful.
That was proved by experiment where model from training were evaluated on synthetic
dataset as models before for choosing the best one for later testing.
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Table 14: Validation curves of model: trained on 400 real images dataset, validated on 1k

synth. dataset.

The best model is the one after epoch 4 because of CER is almost two times better than
a middle value, however results are much worse than the original model which confirm the
supposition that training by the real data we have will not be good.

Train data Val. data Epoch CER WER IoU

400 real 1k synth. 4 0.58614 0.99987 0.63254

Table 15: Validation CER, WER, IoU of model: trained on 400 real images dataset, validated

on 1k synth. dataset.

Table 16: Precision and recall curves of model: trained on 400 real images dataset, validated

on 1k synth. dataset.
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Testing

For testing were real dataset divided in two because real data contains images with more or
less wild and generated text, so two groups were created on the bases of text type majority.
Besides the real data was models tested also on synthetic dataset with 1000 images. Precision
and recall values in Tables 17, 19 and 21 are the maximal values which is if τ is equal to zero.

Testing on 1000 synthetic dataset

Model No. Train data Epoch CER WER IoU Precision Recall

1 original 0 0.21016 0.50615 0.74510 0.87534 0.96138

2 4k synth. 30 0.07618 0.17342 0.85360 0.96758 0.98442

3 16k synth. 22 0.04445 0.13442 0.87628 0.96946 0.99751

4 4+16k synth. 4 0.06513 0.08821 0.86579 0.97337 0.99070

5 400 real. 4 0.59558 1.0 0.61643 0.14958 0.48992

Table 17: Testing best models by validating on 1000 synthetic dataset.

Table 18: Precision and recall curves of best models tested on 1000 synthetic dataset. Legend

is derived from Table 17.

Testing on real dataset with majority of imprinted texts

Model No. Train data Epoch CER WER IoU Precision Recall

1 original 0 0.52002 0.56612 0.66255 0.64049 0.92124

2 4k synth. 30 0.35155 0.26448 0.65248 0.67710 0.91604

3 16k synth. 22 0.36453 0.22288 0.66044 0.67896 0.91604

4 4+16k synth. 4 0.31623 0.22511 0.66181 0.73246 0.91530

5 400 real. 4 0.94696 1.0 0.48533 0.38942 0.63447

Table 19: Testing best models by validating on real dataset with majority of imprinted texts.
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Table 20: Precision and recall curves of best models tested on real dataset with majority of

imprinted texts. Legend is derived from Table 19.

Testing on real dataset with majority of wild texts

Model No. Train data Epoch CER WER IoU Precision Recall

1 original 0 2.01185 0.57264 0.55706 0.33673 0.98717

2 4k synth. 30 1.64962 0.69658 0.50639 0.33984 0.96581

3 16k synth. 22 2.06962 0.58974 0.49636 0.29268 0.97435

4 4+16k synth. 4 2.18962 0.63247 0.49751 0.28719 0.94871

5 400 real. 4 0.75259 1.0 0.36846 0.48571 0.58119

Table 21: Testing best models by validating on real dataset with majority of wild texts.

Table 22: Precision and recall curves of best models tested on real dataset with majority of

wild texts. Legend is derived from Table 21.

From figures and tables above is evident that models trained on synthetic data reached bet-
ter results than original model on real images where is majority of imprinted texts. On the
images where is wild text was the best model the original one even if CER is high. CER
is high because of many over-detection, however not all are over-detections because of some
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non-annotated text. Low CER value of model 5 is caused because model tend to under de-
tect and sometimes it hit the most clear letters, so there is not penalization for many fail
detections. However it causes that none word is correctly recognized. Low precision of model
5 has same explanation as low CER and at recall is clearly visible that only 58% of boxes
with text are hit while other models have from 94% to almost 99%. In the Table 21 is also
visible that model 5 hit GT boxes only by a small area because with growing τ is recall and
precision rapidly decreasing.

Model trained on real data failed totally in all testings. I blame from such a failure annotations
of real data which were not in the top quality for training and the amount of available real
data.

45



5 Conclusion

The objective of this diploma thesis was to discover what is better for training neural net-
work which detects text area in the image and then recognizes text inside. Whether it is
better to invest the time in the synthetic data generators or whether it is better to invest the
time and money into annotating the real images. Another task was to examine the behavior
of E2E-MLT [6] architecture on synthetic data and on Czech characters for future possible
enhancement of the architecture.

I have discovered that synthetic data which simulate real image data from TV news broad-
casting improved the accuracy of text detection and also text recognition. On the dataset
composed of real images where TV news imprinted text is a majority was an improvement of
the best model trained on synthetic data against original model is following; In character er-
ror rate parameter (CER) there is a 20% absolute improvement reached with the best model
by decreasing CER from 52% error rate to 31.6% error rate against the original model. In
the word error rate parameter (WER) there is an absolute improvement of decreasing WER
of the best model by 34% from 56.5% error rate to 22% error rate. By observing recognized
data by hand it was discovered that the most mistakes are in wild text, while in the imprinted
text the error is rare.

The next finding was that the training of the model on synthetic data simulating TV news
broadcasting harms the detection and the recognition accuracy on wild data. The result
of training the original model with the real annotated images was that model deteriorates
rapidly and the number of detections decreases. Knowledge consequent from that result is
that it is required to use real data for training detection and recognition. The data need to be
well-annotated without missing text annotations. Also images should contain well readable
words which means that words can be read without guessing them by knowing the real words.
Namely smudgy words which can be read by humans by guessing from the context of the real
word, words going over the edge where only a half is readable etc. Special attention should be
paid to text annotation which should contain information about box or quadrangle rotation,
because if the text is rotated from 90 degrees to 270 degrees, there does not exist a way for
an untrained network to recognize that the text is inverted and it could deteriorate the results.

From observing behaviour of the current architecture I propose an enhancement of the ar-
chitecture by changing the number of recognized characters. They are determined by the
number of channels in the last layer of text recognition part. Otherwise, the architecture is
suitable for training with synthetic data. The model is suitable for recognizing wild text as
well as for detecting and recognizing TV news imprinted text.

The results of this thesis build on my bachelor thesis and are the culmination of several years
collaboration on a project with Czech Television and the Faculty of Applied Sciences. My
work has brought significant improvements to the reading of digitally produced television
texts and the trained model is going to replace the one previously used.
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5.1 Future work

The future work for improving results on real images where the wild text is side by side with
the well-formed imprinted text could be reached by improving the synthetic data generator.
The generator used in this work simulates TV news well formed digitally added text, but it
does not generate rotated or deformed wild texts. First variant would be to generate a single
synthetic dataset with both wild texts generated by adjusted generator from E2E-MLT and
TV news texts, and then train the model. In the case that the model would not be capable
to learn both text types with sufficient accuracy then the second variant would be to train
two separate models, one for TV news text and second for wild texts.

The next improvement could be changing the number of channels in the last layer of text
recognition part in the network architecture because now there are 8400 possible recognizable
characters. Reducing this number to only Latin characters could help because sometimes
network detects a part of a building with windows as Chinese or other exotic characters.
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