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ABSTRACT
Machine learning has become a standard tool in computer vision. Nowadays, neural networks are one of the most
prominent representatives in this class of algorithms that usually require training and evaluation to work as desired.
There exist a variety of evaluation metrics to determine the quality of a trained neural network, which are usually
threshold dependent. This results in massive changes in the resulting evaluation when the threshold is changed
slightly. Further, measurements of uncertainty such as resulting from Bayesian approaches, are not considered
in this analysis. In this paper, we present evaluation metrics for machine learning approaches that are able to
attach a probability distribution to the utilized threshold and include uncertainty measures. We demonstrate the
applicability of our approach by applying the defined metrics to a real-world example where a Bayesian neural
network has been used to predict stroke lesions.
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1 INTRODUCTION
Machine learning approaches become increasingly im-
portant in the area of computer vision [1]. Especially in
classification tasks, machine learning approaches have
developed into a standard tool, massively reshaping the
respective area. In this process, the evaluation of ma-
chine learning approaches is a crucial factor. Here, a
variety of measures exist that aim to examine the per-
formance using different assumptions and focus points.

As input data, models, and the use of visualization usu-
ally include uncertainty [2], the evaluation of machine
learning approaches can be affected. Sacha et al. [3]
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proposed, that uncertainty has a crucial impact on the
decision-making process. Unfortunately, the existing
measures do not include uncertainty in their computa-
tion.

Evaluation measures such as DICE-coefficient (=F1
score) and accuracy for machine learning approaches,
usually do not consider the uncertainty inherent in
the machine learning process. Instead, they consider
a pre-selected threshold and build their computation
based on true positive (TP), true negative (TN), false
positive (FP) and false negative (FN). Unfortunately,
the selection of this threshold holds a large potential
of uncertainty. Slight changes in the choice of the
threshold can have a massive impact on the resulting
evaluation.

In addition, fuzzy machine learning approaches, such
as Bayesian Neural Networks [4], output a measure of
uncertainty in addition to the classification prediction,
which is usually not considered in the evaluation of ma-
chine learning approaches. This results in an evaluation
that is equally balanced along all classifications made in
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a machine learning model, independent of how certain
the prediction is (see Section 2).

In this work, we aim to revisit popular evaluation mea-
sures for machine learning approaches that target binary
classification tasks (see Section 3). To achieve this, we
first rephrase the terms TP, TN, FP, FN, such that we use
an uncertainty-aware threshold. Based on this, we can
rebuild popular machine learning evaluation measures
to include the uncertainty-aware threshold. Further, we
include a damping factor that allows adjusting the im-
portance of predicted classifications based on measured
uncertainty.

Therefore, this paper contributes:

• Uncertainty-aware classification of machine learn-
ing results

• A mechanism to include uncertain classification re-
sults in machine learning evaluation

• Uncertainty-aware evaluation measures for machine
learning approaches

We show how the defined uncertainty-aware measures
can be used in machine learning performance evalua-
tion using varying examples as shown in Section 4. Our
results will be discussed in Section 5.

2 RELATED WORK
In the context of the presented approach, we aim
to analyze previous work conducted in the area of
uncertainty-aware machine learning and the evaluation
of these approaches.

2.1 Uncertainty-aware Machine Learning
The importance of uncertainty analysis in the area of
machine learning has been highlighted by Klaes et al.
[5]. In their work, they summarize potential sources of
uncertainty in the respective area. The presented tax-
onomy holds a valuable starting point in the presented
area of research. This approach was also refined for
machine learning approaches in medical imaging [6].
The described sources of uncertainty are manifold and
therefore various approaches exist that aim to target one
or multiple sources of uncertainty.

Sluijterman et al. [7] provided an adapted approach of
regression, that aims to include uncertainty quantifica-
tion during the computation. Nieradzik et al. [8] ex-
changed the output activation function which is usually
set to the sigmoid function with further functions and
examined their suitability regarding the resulting pre-
diction and their uncertainty. Ding et al. [9] proposed
an uncertainty-aware training, where training data is
adapted such that more reliable data points become
more important in the training process. Eldesokey et

al. [10] aimed for a holistic uncertainty-aware ma-
chine learning approach that includes multiple sources
of uncertainty. Here, uncertainty arising from the data
as well as the uncertainty of the model is included
throughout the entire computation of the machine learn-
ing approach. Although these approaches all target the
incorporation of uncertainty into the training process,
they rely on the classic evaluation approaches for ma-
chine learning approaches, which are threshold-based.
In this work, we aim to extend these approaches such
that the threshold holds a probability distribution func-
tion to indicate its potential uncertainty.

Recently, the number of machine learning approaches
that explicitly work with mathematical concepts that di-
rectly include uncertainty increased. Here, approaches
such as fuzzy deep networks [11] or Bayesian neural
networks [4] that can output epistemic and aleatoric un-
certainty [12] in their prediction have been developed.
Epistemic uncertainty refers to uncertainty inherent in
a model, as models are always making assumptions.
On the other hand, aleatoric uncertainty refers to uncer-
tainty inherent in captured data due to random effects
and measurement imprecision.

Also, Sacco et al. [13] proposed a neural network ap-
proach that builds a second neural network to predict
the uncertainty inherent in the computational process.
All these approaches are able to attach an uncertainty to
the made prediction. Still, these values are usually only
reviewed visually but are not considered in the evalua-
tion of the proposed approach. In this work, we aim to
provide a mechanism to include this knowledge.

2.2 Uncertainty-aware evaluation of Ma-
chine Learning

The evaluation of machine learning approaches is a key
point while using them. There exist a variety of surveys
and books that summarize and categorize them [14, 15].
These measures include DICE-coefficient, accuracy, re-
call, and precision and are used for benchmarking [16].
Their selection is dependent on the underlying problem
and type of used machine learning approach [17]. All
these measures are based on the separation of predicted
values into TP, TN, FP, and FN. Here, a threshold is
selected to achieve this separation. The choice of this
threshold can have a massive influence on the evalua-
tion of the machine learning approach and needs to be
adjusted in each case.

Gao et al. [18], presented an approach that aims to gen-
erate a self-adapting threshold for the evaluation of a
neural network. The method is built on an analysis of
the imbalance of classes that are predicted. Thada et
al. [19] adapted the threshold for evaluation based on
the underlying scale of predicted classifications. Here,
different scales obtain different thresholds. Li et al.
[20] provided a machine learning approach that aims
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to guess a proper threshold based on the underlying
dataset. Here, different thresholds are examined to un-
derstand the resulting classification. Although these
approaches aim to select the threshold that is used
for evaluation, the choice may still remain uncertain.
Therefore, our approach aims to add a probability dis-
tribution function to the selected threshold to express
the uncertainty in this decision.
Taha et al. [21] presented a set of evaluation metrics
that are based on fuzzy theory. Here, the prediction and
the ground truths are considered as fuzzy sets, and met-
rics are presented that compare them. Although this
gives a valuable starting point for the presented work,
the approach is not able to indicate an uncertainty-
aware threshold. In addition, the inclusion of uncer-
tainty that can result from a neural network cannot be
included in this approach.
Psaros et al. [22] provided evaluation metrics that aim
to include the uncertainty that can be outputted by ma-
chine learning approaches. Here, prominent metrics
are adapted individually to include uncertainty informa-
tion. Still, this approach is based on a fixed threshold.
In the presented approach we aim to present a general-
ized way to include an uncertainty-aware threshold as
well as a damping factor that adjusts made classifica-
tions based on the underlying uncertainty.

3 METHODS
To achieve uncertainty-aware evaluation measures for
machine learning, we first aim to extend prominent
measures of neural network performance to include a
probability distribution to the user-defined threshold.
Based on this, we will further include potential uncer-
tainty measures that can be outputted by Bayesian Net-
work approaches.

3.1 Uncertainty-aware classification
Neural Networks aim to learn from existing datasets.
To test the performance of the neural network, the pre-
dicted results are compared to a ground truth. In gen-
eral, the closer both are to each other, the better the per-
formance. Here, each datapoint i, and its classification
c(i) is compared to the prediction p(i). Note that we
restrict the range of c(i) to 1 and 0, while the range of
p(i) is the interval [0,1], as most machine learning ap-
proaches output probabilities instead of fixed class as-
signments.
Most evaluation measures for neural networks work
based on a classification of values into TP, FP, TN, FN,
which are based on a pre-selected threshold t. There-
fore, the following definitions are known:

T Pi(t) =


A︷︸︸︷
1

B︷︸︸︷
c(i) ∧

C︷ ︸︸ ︷
[p(i)≥ t]

0 else
(1)

T Ni(t) =

{
1 !c(i)∧ [p(i)≤ t]
0 else

(2)

FPi(t) =

{
1 !c(i)∧ [p(i)> t]
0 else

(3)

FNi(t) =

{
1 c(i)∧ [p(i)< t]
0 else

(4)

with respect to the threshold t. We define subequations
for future reference in this manuscript to allow easy to
follow changes that we make. A is defined as the func-
tion output of the classification functions. B represents
the classification that was made by a neural network
and C represents the groundtruth that is is used for the
comparison.

By definition, the result of these functions can only be
0 or 1. A is either 0 or 1 in a fixed case. In our ap-
proach, we also consider uncertain ground truths. Al-
though most of the available training databases provide
a fixed classification, the number of ground truths that
hold fuzzy values increases. Therefore, we redefine c(i)
and allow it to lie in the range of [0,1]. Now, we also
have to adjust the decision to which class a point be-
longs. Here, B = [c(i)> t] holds. Still, we need to find
a mechanism that allows rating the certainty of this de-
cision.

Considering that we no longer work with fixed values
of 1 and 0, we need to make an adaptation. We aim to
define a general way to compare values to a threshold
that has a probability distribution attached.

0 1

Figure 1: Schematic description of incorporation of
Gaussian distribution of the threshold t.

As mentioned, the decision based on a fixed threshold
results in fixed classifications. The decision to choose a
threshold can be very hard as it is usually dependent on
the underlying application. In addition, slight changes
in the choice of the threshold can have a massive influ-
ence on the quality measures. Here, we use a Gaussian
distribution function that is normalized:

g(x|µ,σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (5)

ISSN 1213-6972 (print) 
ISSN 1213-6964 (online)

Journal of WSCG 
http://www.wscg.eu Vol.30, No-1-2, 2022

https://www.doi.org/10.24132/JWSCG.2022.8 65



A normalized Gaussian distribution function has bene-
ficial attributes in the presented case. As the area under
the curve is always 1, we can use this measure to adapt
our previous classifications. Here, σ decides how sharp
or flat the resulting Gaussian distribution is. We allow
users to set the standard deviation σ in conjunction with
the threshold t.

Here, a probabilistic measure if a threshold is exceeded
can be expressed as:

Ax1 = 2
∫ t

x1

g(x|t,σ)dx (6)

As the peak of the Gaussian distribution function is lo-
cated at the threshold t, the maximum size of the area
under the curve can be 0.5. As we aim for a measure
that is located in the range of [0,1], we need to double
this area. If t and x1 are located close to each other,
the resulting area under the curve converges to 0. A
close location means a high uncertainty, which means
that under this condition we aim to tone down the result
of the classification. On the other hand, if the points are
not close to each other, the area under the curve con-
verges to 1. This results in low uncertainty. Resulting
from this consideration, the classification scheme A can
be rephrased as:

T Pi(t,σ)

{
Ap(i) ·Ac(i) [c(i)> t]∧ [p(i)> t]
0 else

(7)

The values of A computed in the measures T Ni(t,σ),
FPi(t,σ) and FNi(t,σ) are computed like this as well.
Based on these extended definitions of TP, TN, FP, and
FN, we further aim to include uncertainty that is cap-
tured in predictions by machine learning approaches.

3.2 Inclusion of predicted uncertainty
Recently, a variety of machine learning approaches is
able to output uncertainty measures related to the made
prediction. Here, especially Bayesian neural networks
are able to output aleatoric as well as epistemic un-
certainty measures. In this work, we aim to include
these measures into the classifications. Here, we aim
to achieve a weighting of the classification according to
the outputted uncertainty measures. In particular, we
aim for a classification scheme, that extends the ex-
isting scheme in the following manner T Pi(t,σ ,d) =
T Pi(t,σ) ·Cd , where Cd is supposed to work as a damp-
ing factor.

The goal of this factor is to tone down prediction values
that are considered uncertain in the measures that can
be outputted by uncertainty-aware machine learning ap-
proaches. We consider u(i) as the uncertainty attached
to the prediction value p(i). Here, the uncertainty can
be located in the range of [0,∞).

To define Cd , we aim for a function that outputs 1, if the
uncertainty predicted by a machine learning approach
is 0. In this case, the made classification will remain
the same. In contrast, if a data point is classified as
uncertain, we aim to let the damping function converge
to 0. Here, we utilize the function:

Cd = e−(u(i)·d) , (8)

where d works as an additional damping factor, that can
be located in the range [0,∞).

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

1.2
e 0.5x

e x

e 2x

Figure 2: Different damping functions, based on the
damping factor d. Examples are shown for d = 1

2 , d =
1, d = 2.

To indicate the effect of d, Figure 2 shows examples of
interesting classes of the damping factor. The higher
the damping factor, the more pronounced is the influ-
ence of the damping on the result. This gives the user a
further input parameter with which to control the damp-
ing of the classification based on uncertainty quantifi-
cation of the predictions made by machine learning ap-
proaches. If this quantification does not exist or cannot
be achieved, Cd can be set to 1 and therefore does not
change the made classifications.
Based on the made extensions of the classification
schemes, we can extend the formulas from equations 1,
2, 4 and 3 using the scheme as explained:

T Pi(t,σ ,d) =

{
T Pi(t,σ) ·Cd [c(i)> t]∧ [p(i)≥ t]
0 else

(9)

T Ni(t,σ ,d) =

{
T Ni(t,σ) ·Cd [c(i)≤ t]∧ [p(i)≤ t]
0 else

(10)

FPi(t,σ ,d) =

{
FPi(t,σ) ·Cd [c(i)≤ t]∧ [p(i)> t]
0 else

(11)
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FNi(t,σ ,d) =

{
FNi(t,σ) ·Cd [c(i)> t]∧ [p(i)< t]
0 else

(12)

Based on these definitions, we are able to extend
well-known evaluation metrics for machine learning
approaches.

3.3 Uncertainty-aware evaluation mea-
sures

In the following, we will summarize potential evalua-
tion measures that are based on the prior classifications.
The measures have been chosen as they are popular
choices for machine learning evaluation [23]. Here,
we need to sum all values that will be outputted
when considering all n datapoints. Therefore we
define T P(t,σ ,d) := Σn

i=0T Pi(t,σ ,d). Respectively,
T N(t,σ ,d), FP(t,σ ,d) and FN(t,σ ,d) can be defined.

Accuracy :=

T P(t,σ ,d)+T N(t,σ ,d)
T P(t,σ ,d)+T N(t,σ ,d)+FP(t,σ ,d)+FN(t,σ ,d)

(13)

Precision :=
T P(t,σ ,d)

T P(t,σ ,d)+FP(t,σ ,d)
(14)

Recall :=
T P(t,σ ,d)

T P(t,σ ,d)+FN(t,σ ,d)
(15)

FalsePositiveRate :=
FP(t,σ ,d)

FP(t,σ ,d)+T N(t,σ ,d)
(16)

F1 :=
2 ·Precision ·Recall
Precision+Recall

(17)

4 CASE STUDY
In this section, we aim to apply the developed
uncertainty-aware evaluation metrics to a trained
Bayesian U-Net (BNN) [24] for stroke lesion predic-
tion [25]. We aim to show how the defined metrics can
be used and how the defined parameters influence the
computation.

4.1 Use Case Description
The provided BNN generates lesion maps from stroke
patients that predict their final formation. Here, a multi-
modal input is used to predict a lesion map that can be
found in the work of Gillmann et al. [26]. In addi-
tion, it predicts voxel-wise epistemic and heteroscedas-
tic aleatoric uncertainty alongside [27]. The epistemic

uncertainty stems from Monte Carlo dropout and is a
property of the model used to describe the real-world
process. It expresses not knowing exactly, which model
generated the data in the real world. The heteroscedas-
tic aleatoric uncertainty was trained as an unsupervised
parameter in the loss function. We will use this model
to demonstrate the applicability of the presented ap-
proach.

(a) (b) (c) (d) (e)

Figure 3: Cross section of lesion map prediction (a)
and epistemic uncertainties (b) from BNN, thresholded
at t = 0.8 (c) and compared to the ground truth (d).
(e) shows the groundtruth (in red) overlayed on top of
the CT Angiography, which is one of the inputs to the
BNN.

In this use case, we consider a particular cross-section
of the 3D volume of a patient. Figure 3(a) shows the
prediction made by the BNN, whereas 3(b) shows the
predicted epistemic uncertainty. The prediction holds
values between 0 (no lesion predicted) and 1 (lesion
predicted). The ground truth that was labeled by med-
ical experts is shown in Figure 3(d). Usually, perfor-
mance measures are computed based on the thresh-
olded prediction (Fig. 3(c)) and the pre-labeled ground
truth. In this case, the groundtruth was created by med-
ical experts that reviewed each patient individually and
marked areas in the image that show a stroke lesion. For
this example we show how the presented uncertainty-
aware measures can be applied.

4.2 Results
In the following we aim to discuss the influence of the
user-selected values σ and d to the classification values
as well as the resulting metrics that can be computed
based on these classifications. We define a consistent
colorscheme for the four classes, i.e. TP (green), FP
(red), TN (blue) and FN (purple).

Influence of σ to classifications As mentioned, the
user-defined variability of the selected threshold shapes
the sharpness of the classification result. The resulting
classification of the presented prediction of stroke le-
sion into TP, FP, TN and FN with varying σ can be
seen in Figure 4. 4(a), 4(e), 4(i) and 4(m) show the
original computation of the classification. Here, clear
boundaries can be identified due to the strict separation
of classifiers. This coincides with an application of our
evaluation approach when σ → 0. Therefore, the pre-
sented measures extend the existing ones.

When increasing σ , the crisp boundaries of the clas-
sifications vanish and the separation into the classes is
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(a) no σ (b) σ = 0.1 (c) σ = 0.2 (d) σ = 0.3

0.0

0.5

1.0

(e) no σ (f) σ = 0.1 (g) σ = 0.2 (h) σ = 0.3

0.0

0.5

1.0

(i) no σ (j) σ = 0.1 (k) σ = 0.2 (l) σ = 0.3

0.0

0.5

1.0

(m) no σ (n) σ = 0.1 (o) σ = 0.2 (p) σ = 0.3

0.0

0.5

1.0

Figure 4: Classification of TP, FP, TN and FN (rows)
with varying σ (columns). With larger σ , the score for
classifications decreases according to the closeness to
the threshold.

less clear. This matches with the intuition that a high σ

represents a large uncertainty of the selected threshold.

Figure 5 shows the merged visualization of the made
classification with varying σ . Figure 5(a) show the
strict separation of the made prediction into the four
classes. For increasing σ , an area with uncertain val-
ues is visible that indicates values of the prediction that
are close to the threshold but would be considered as
certain as the other predictions if the threshold is set
fixed.

(a) no σ (b) σ = 0.1 (c) σ = 0.2 (d) σ = 0.3

Figure 5: Classification of TP, FP, TN and FN with
different values for σ and fixed d = 0.

Influence of d The damping factor d has a large influ-
ence where the uncertainty of the BNN is high.

This effect to the classification metrics can be seen in
Figure 6. Here, the value of σ is set to 0.1 in all cases.
d is altered with 0,0.5,1 and 2.

The damping factor controls the influence of the un-
certainty on the made classifications. With increasing
d, values that contain a high uncertainty will result in

(a) d = 0 (b) d = 0.5 (c) d = 1 (d) d = 2

0.0

0.5

1.0

(e) d = 0 (f) d = 0.5 (g) d = 1 (h) d = 2

0.0

0.5

1.0

(i) d = 0 (j) d = 0.5 (k) d = 1 (l) d = 2

0.0

0.5

1.0

(m) d = 0 (n) d = 0.5 (o) d = 1 (p) d = 2

0.0

0.5

1.0

Figure 6: Classification of TP, FP, TN and FN (rows)
for a fixed σ = 0.1 and varying d (columns).

a less strong classification. This effect can be seen
very clearly when considering Figure 6(i) 6(j), 6(k) and
6(l). When setting d to 0, the result is almost binary.
While increasing d, values with a high uncertainty get
a lower classification score. When comparing the result
of Figure 6(l) with Figure 3(b) we can identify the large
influence of uncertain values in the prediction. Here,
the uncertainty results in areas that cannot be separated
clearly. Further, areas that do not contain a high un-
certainty will not be affected by the application of the
damping factor.

(a) d = 0 (b) d = 0.5 (c) d = 1 (d) d = 2

Figure 7: Classification of TP, FP, TN and FN with
fixed σ = 0.1 and varying d.

The effect of varying the damping factor d on the com-
bined image of the classifications into TP, FP, TN and
FN is shown in Figure 7. Here, we can identify that a
high uncertainty lowers the overall classification score
of datapoints. When increasing d, uncertain areas will
result in unclassified data values.

Influence on evaluation metrics Based on the made
classifications, we adapted prominent examples of eval-
uation metrics.
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0.0 0.1 0.2 0.3 0.4 0.5

0.50

0.55

0.60

0.65

0.70

0.75

0.80
F1

F1, with t=0.8

d = 0
d = 0.5
d = 1
d = 2
standard F1

Figure 8: Results of adapted F1 metric. By incorporat-
ing the epistemic uncertainty information we get higher
scores from the metric. The F1 score increases for
small σ , but for large σ we get lower scores.

Figure 8 shows the results of the adapted F1 metric (also
known as DICE-coefficient) with a threshold of t = 0.8,
variable σ and selected values for the damping factor d
(0, 0.5, 1 and 2).

The unmodified F1 score is also highlighted in the
graph (indicated with a black x). Incorporating the
epistemic uncertainty into the classification by using
a damping factor improved the final F1 score signifi-
cantly while increasing the σ reduced the score overall.
This results from the fact, that an increased σ removes
confidence in the classifications and therefore lowers
the result of the measurement output.

On the other hand, the damping factor removes uncer-
tain values from the computation. Usually, these values
are located around the boundary of areas in the ground
truth which turn out to be classified wrongly in many
cases. The damping factor removes these areas and
therefore increases the overall performance result. At
this point, we want to highlight that this effect might be
reversed when uncertain areas are located within cor-
rectly predicted regions.

Interestingly, the best output of the evaluation metrics
can be achieved with a sigma slightly lower than 0.1 and
a damping factor of 2. In the given case this means that
a consideration of an uncertainty-aware threshold leads
to a better rating of the network performance. This fits
with the intention of this work which aims to remove
the fixed thresholding.

We also applied our adapted measures to further evalua-
tion measures as shown in Figure 9. Here, we examined
the measures Accuracy, Precision, Recall and FPR.

When considering Accuracy (Figure 9(a)), we can iden-
tify that the unmodified accuracy metric shows a good
result for the network (0.97). In the presented case,
this is not surprising as the network predicts a high

amount of TN correctly. Increasing σ results in even
better ratings for the network as uncertain classifica-
tions are weighted less than certain classifications. In
addition, an increased d further improves the network
performance.

Figure 9(b) shows the results of the measure Precision,
when varying σ and d. Here, we can observe that the
best choice of σ in the presented case is 0.1. Interest-
ingly a further increase of σ leads to a dramatic loss in
precision. This matches with the observation that can
be made in Figure 4(d) and 4(h). Increasing σ results
in a slow vanishing of FP and a faster vanishing of TP.
Resulting from this, the output of precision decreases
as well. Overall the effect of d is low in the considered
case.

A similar effect can be seen when considering Recall.
Again the best results are achieved when using σ at
around 0.1. The measure is computed using TP and
TN. In Figure 4(l), we can observe that increasing σ

results in less vanished values for TN. Therefore, this
effects the Recall metric similarly to the Precision met-
ric. In contrast to precision, for recall, the effect of d is
high in the given case.

The effect of σ and d for FPR can be seen in Figure
9(d). When increasing σ , the result improves. This
also holds for an increased d.

5 DISCUSSION
General Observations The presented metrics allow
generalizing original machine learning performance
metrics. When setting σ and d to 0, the resulting values
are equal to the original computations.

The classifications that we proposed are based on a
Gaussian distribution function but can be exchanged
with any distribution function that holds an overall in-
tegral of 1. Also, the used damping function could be
adapted if required. Here, functions that output 1, when
a damping factor of 0 is used can be considered.

By using the adapted definitions of TP, FP, TN, and FN
with a σ > 0 we can basically encode how far away
the predictions are from the threshold. The benefit of
this can be seen in Figure 5, wherewith increasing σ

one can easily assess the quality of the threshold. For
this particular example, it seems like the threshold is
well chosen to classify the TN while keeping FN to a
minimum. With increasing σ the TN stays the same,
except at the boundaries, while the FN quickly fades
away, which means that they are close to the threshold
– they are classified with high uncertainty. The classifi-
cations of TP and FP also fade away relatively quickly.
They are also relatively close to the threshold, and thus
also relatively uncertain.

Using the damping factor allows to include the uncer-
tainty captured in the made prediction of a machine
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Figure 9: Results of the adapted metrics. Accuracy, Precision, Recall and FPR are affected by the choice of σ and
d. The unmodified values of these metrics are indicated by a black x.

learning approach into the classification scheme. In
Figure 7 it can be clearly seen that the classification
around the general area of the lesion in the ground truth
data is very uncertain. The same effect happens at the
boundaries of the brain. Interestingly, the BNN predicts
with high certainty FP. This is of course not desirable
and such errors can be easily spotted with the method
presented in this paper.

As a rule of thumb, it holds, that if for high σ and d
the classifications of TP and TN are high and for the FP
and negatives it is low, the model is trustworthy. This is
also reflected in the adapted metrics, for example in the
adapted accuracy metric depicted in Figure 9(a). The
values are monotonically increasing with increasing σ

and overall higher with higher d. One could infer, that
our model is generally trustworthy where the uncer-
tainty is low. If the graph in Figure 9(a) was mono-
tonically decreasing, it would mean that the model pre-
dicts with high certainty wrong results, i.e. it is not
that trustworthy. Care has to be taken for very unbal-
anced datasets, or datasets where one class can be much
more easily identified than the other. This is the case for
our model because a brain lesion can only occur in the
brain, therefore a significant portion of the head scan
can be easily classified as a TN with very high certainty.
These problems can be alleviated by also considering
the other metrics, like the F1-score.

Limitations Although the presented approach provides
large flexibility, it also results in more input parameters.
In this work, we showed that the influence of the input
parameters can be inspected visually. Here, contrary
to the original measurements, a visual inspection of the
parameters is required.

In the presented work we showed that the provided
measures are applicable for a BNN. We do not see lim-
itations in the application to further networks, but we
have not proven this statement.

6 CONCLUSION
This paper introduced adaptations to existing metrics
for evaluating a binary classifier, that can incorporate
uncertainty information from the model itself and un-
certainty regarding the exact location of the thresh-

old. For that, we use a Gaussian distribution func-
tion attached to the threshold and allow a damping
factor for uncertainty-aware machine learning outputs.
These metrics were applied to a real-world example of
a Bayesian neural network to prove applicability.

As future work, we aim to use the measures in the back-
propagation in the learning phase of neural networks.
In addition, we further research the visual inspection of
the chosen parameters of the presented measures.
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