University of West Bohemia
Faculty of Applied Sciences

Department of Computer Science and Engineering

Bachelor’s thesis

Data Augmentation for
Biological Signal Processing

Plzen 2022 Vaclav Hrabik

ZAPADOCESKA UNIVERZITA V PLZNI

Fakulta aplikovanych véd
Akademicky rok: 2021/2022

ZADANI BAKALARSKE PRACE

(projektu, uméleckého dila, uméleckého vykonu)

Jméno a piijmeni: Vaclav HRABIK

Osobni ¢islo: A19B0061P

Studijni program: B0613A140015 Informatika a vypocetni technika
Specializace: Informatika

Téma préce: Rozsireni dat pro zpracovani biologického signalu
Zadavajici katedra: ~ Katedra informatiky a vypocetni techniky

Zasady pro vypracovani

1. Seznamte se s koncepty umélych a impulznich neuronovych siti a jejich vyuzitim pro klasifikaci
biologickych signald.

2. Seznamte se s datovymi kolekcemi, experimenty a klasifikatory pouzivanymi neuroinformatickou
skupinou KIV pro elektroencefalograficka data.

3. Na zakladé bodi 1 a 2 vyberte vhodnou datovou kolekci a klasifikatory (zahrnujici jak klasické, tak
impulzni neuronové sité) pro dalsi experimentovani.

4. Navrhnéte a implementujte metodu rozsifeni vybrané datové kolekce z bodu 3.

5. Poutzijte vybrané klasifikatory z bodu 3 nad rozsifenou datovou kolekci z bodu 4.

6. Porovnejte vysledky klasifikace nad plivodni a rozsifenou datovou kolekci.

Rozsah bakalai'ské prace: doporuc. 30 s. ptivodniho textu

Rozsah grafickych praci: dle potieby
Forma zpracovani bakalarské prace: tisténa/elektronicka
Jazyk zpracovani: Anglictina

Seznam doporucené literatury:

Dodé vedouci bakalarské prace.

Vedouci bakalarské prace: Doc. Ing. Roman Moucek, Ph.D.
Katedra informatiky a vypocetni techniky

Datum zadani bakaléarské prace: 4 rijna 2021
Termin odevzdani bakalai'ské prace: 5. kvétna 2022

L.S.

Doc. Ing. Milo$ Zelezny, Ph.D. Doc. Ing. Piemysl Brada, MSc., Ph.D.
dékan vedouci katedry

V Plzni dne 14. fijna 2021

Declaration

I hereby declare that this bachelor’s thesis is completely my own work and
that I used only the cited sources.

Plzen, 5th May 2022
Vaclav Hrabik

Abstract

There have been a lot of attempts of human (animal) brain simulation.
Analogue neural networks were the first major step. These neural networks
have various sub-types. All these types work with continuous data but this
data is not available every time. Spiking neural networks were developed
for work with discrete data. Neural networks in general have big problems
with learning. A dataset is necessary for learning. In many cases adding
new samples into dataset is not any problem. In neural signals like Electro-
encephalography (EEG), it is a big problem to get new samples. Because
of it, this thesis aims to augment an existing dataset in order to increase
the accuracy of automatic recognition of P300 signals. This augmentation is
done by adding the synthetic samples. The results show that augmentation
is really possible and a functional solution.

Abstrakt

Snaha napodobit lidsky (zvifeci) mozek existuje uz dlouho. Prvnim velkym
krokem byly analogové neuronové sité. Tyto sité maji spoustu podtypt, které
vSechny pracuji na principu spojitych dat, ale to neni vzdy uplné mozné.
Pro préci s diskrétnimi daty byly vyvinuty impulzivni neuronové sité, které
problém u neuronovych siti obecné je schopnost se ucit. K tomu je zapo-
tfebi mnozina dat. Ve spousté oblasti je ziskavani dat jednoduché. V oblasti
Elektroencefalografickych (EEG) dat je velmi obtizné ziskat data. Proto se
tato prace zabyva umélym zvétSenim jiz namérené mnoziny dat za tcelem
zlepseni tispésnosti automatického rozpoznavani P300 signalt. Toto zvétseni
je provedeno pridanim umeélych prvki. Vysledky ukazuji, ze tato metoda je
moznym a funkénim fesenim.

Contents

1 Introduction
2 Analogue and Spiking Neural Networks

3 Tools for Working with Spiking Networks
3.1 NEURON
3.2 Nengo
3.21 NengoDL 0
3.3 NEST
3.4 PyNN . ..
3.5 Summary ...

4 Data Augmentation
4.1 Noise Addition
4.2 Generative Adversarial Network
4.2.1 Generative Algorithm
4.2.2 How GANsWork
4.3 Sampling.
4.3.1 Oversampling
4.3.2 Undersampling
4.4 Sliding Window oo
4.4.1 Without Overlapping
4.4.2 With Overlapping
4.5 Summary

5 Primary P300 dataset
5.1 Chosen dataset
5.2 Used Format of Dataset

6 Applications of GAN on P300 Dataset
6.1 Created GANs
6.2 Training of GAN o
6.3 Implementation oL
6.4 Results.
6.5 Summary

7 Conclusion

11
11
12
13
13
13
14

15
15
16
16
17
18
19
19
19
20
20
21

23
23
23

24
24
25
26
34
38

41

Bibliography

User Guide

Setting up the Environment

Work with Project

1 Introduction

Analogue neural networks and their younger counterparts, spiking neural
networks, are not new in classification tasks and overall in machine learning.
The concepts of both analogue and spiking neural networks are based on
simulations of human brain behaviour. In order to do it, the neural network
needs its parameters. These parameters can be set manually but we are
unlikely to set millions of parameters and do not make any mistakes. To
set all parameters in the network, proper training is necessary. For training,
a specific set of inputs called a dataset is necessary. The dataset is one of
the key factors for the better performance of the neural network. Dataset is
for neural network like knowledge for human brain. Like for us quality and
quantity of knowledge are important. It is the same for neural networks.

At the University of West Bohemia there are already two successful
experiments from Roman Kalivoda [9] and Véclav Honzik [8]. These ex-
periments use electroencephalography (EEG) dataset from the Guess the
number experiment, the dataset contains samples of P300 signals. In these
experiments P300 components are classified, accuracy of 63% was achieved
on the classification task using this dataset. The main aim of this thesis
is to improve the accuracy of these experiments by augmenting the dataset
which they used.

Artificial neural networks are described in Chapter 2 and the most used
frameworks for working with them in Chapter 3. The augmenting meth-
ods are introduced in Chapter 4; the used dataset in Chapter 5. Finally,
experiments and their results are described in Chapter 6.

2 Analogue and Spiking
Neural Networks

Artificial neural networks are a subset of machine learning and deep learning
algorithms. The name of a neural network is like the structure taken from
a human brain. They are trying to mimic human brain’s behavior. As a
human brain they are composed from nodes called "neurons'. These neurons
are combined into layers. Between layers there are links called "synapses".
There are three main types of layers. First is the input layer. The input
layer reads the input data. The second one is the hidden layer. There can
be many but also none hidden layers. Number of hidden layers can differ
from an experiment to another experiment. If in neural network are two or
more hidden layers, then it is called the "deep" neural network. The last one
is the output layer. The common structure of Artificial neural network is
shown in Figure 2.1. The output layer provides the vector as an output. For
example, in the recognition tasks this vector contains the numbers whose
sum gives one. The highest value in that vector is the wanted outcome. [13]

Analogue neural networks (ANNs) are the one big group of neural net-
works. These neural networks have various sub-types. All these types work
with continuous data but this data is not available every time.

Spiking neural networks (SNNs) are the latest generation of computer
simulated neural networks. SNNs are folded from neurons and synapses and
this resemblance to biology is no coincidence. SNNs are trying to simulate
biological neural networks more precisely. For example, they have a lower
response time, reduce power consumption or allow asynchronous calculation
compared to their older related analog neural networks. [8]

Neurons in SNNs are different from neurons in ANNs. Still spiking neur-
ons (see Figure 2.2) are grouped into layers and they are connected via
synapses but here similarities end. Neurons in SNNs do not have an activ-
ation function but have a membrane potential. Neurons receive and share
information via sequences of action potentials, also known as spike trains
[25], which alter the membrane potential. Whenever a certain threshold
voltage is exceeded, the neuron produces a spike (a stimulation) and the
membrane potential is reset towards a defined baseline. This phenomenon
is also commonly called as neuron firing.

input layer
hidden layer 1 hidden layer 2
Figure 2.1: Example of ANN structure.The input layer is on the left side.

In the middle are hidden layers. Output layer is on the right side. Source:
[13]

v

O L,

L

Spiking Output
Neuron

W,

Inputs

Figure 2.2: Spiking neuron with incoming spikes on the left side and outgoing
spikes on the right side. Source: [2]

10

3 Tools for Working with
Spiking Networks

In this part, the aim is to show the most used tools available for working with
spiking neural networks. These tools are used for modeling and simulating
spiking neural networks. Each tool specializes in a different area and can
be made up of a huge framework with lots of gadgets. The main used
programming language is Python for its simple syntax, portability and vast
libraries support.

Four examples of simulators and one example of a modeler of spiking
neural networks were chosen for further description. These frameworks are
most used among all communities and have the biggest number of contrib-
utors, see Table 3.1. [§]

3.1 NEURON

NEURON [17] is a simulator of neurons and neural networks. It supports
building, managing and using a great number of models, and it works for
experimental data best. NEURON can be run on all platforms like MSWin
(98 and upper), LINUX, etc., even on parallel hardware like Beuwulf cluster
or IBM Blue Gene.

NEURON has a computational engine that uses special algorithms with
high efficiency. This high efficiency can be achieved by the structure of
the equations, which describe neuronal properties. It has several functions
for easy control of simulation and a simple graphic output that is easy to
understand. NEURON is designed to let users deal directly with familiar
neuroscience concepts.

The main goal of NEURON is to help users address high-level neuros-
cience research questions without being distracted by any low-level math-
ematical or computational issues. For that purpose, NEURON has several
gadgets. The first of them is that the user can utilize the neural syntax,
which is made of well known neural idioms. This means users do not need
any kinetic schemes or differential equations in the form of statements. The
second gadget is an integrator-independent model specification. The user
can choose between three integration methods which can increase the ac-
curacy or run fast. This depends on a practical situation and empirical

11

experiences. The last gadget is that the user can delay or even skip the
explicit specification of the spatial and temporal discretization.

NEURON has its programming language called "hoc". It uses the C-like
syntax. However, NEURON offers a another option which is the Python
programming language.

3.2 Nengo

Nengo [14] is another simulator of neurons, learning rules, optimization
methods and much more. It is optimized for building and running both ana-
logue neural networks and spiking neural networks, and it supports various
neural simulators or neuromorphic hardware. Nengo is running completely
on the Python programming language. Nengo can be run on all platforms
like MSWin (98 and upper), LINUX etc.

Nengo can be considered more pragmatic than the previous mentioned
NEURON. Nengo allows the creator to replace the manual setting of weights
or the usage of learning rules with the function for their computing. In Figure
3.1 Nengo GUI is shown in action. On the left side, there are graphs, and
on the right side, there is a source code.

-] *« # nengo_gui/examples/tutorial/15-lorenz.py = Q Q B @ Help

10 1 | LU

18
19 import nengo
20

21 model = nengo.Network(seed=5)
22 ~ with model:

30+
30 i j
30 -
30

23

—_ 24 x = nengo.Ensemble(n_neurons-688, dimensions=3, radius=38)

-30 25

304

26 synapse = 8.1
27T~ def lorenz(x):
28 signa = 18
29 beta = 8.8/3
30 rho = 28

301 32 dx® = -sigma * x[8] - sigma * x[1]
3 dx1 = -x[8] * x[2] - x[1]
En dx2 = x[8] * x[1] - beta * (x[2] + rho) - rho

36 return [dx@ * synapse - x[6],

37 dx1 * synapse - x[1],
38 dx2 * synapse - x[2]]
30 30 3 . ;
49 nengo.Connection(x, x, synapse-synapse, function-lorenz)
41

1655 2155

Figure 3.1: Nengo graphical user interface. On the left side, there are graphs
showing the action of the source code, and on the right side, there is a source
code. Source: [14]

12

3.2.1 NengoDL

NengoDL [15] is a specialized simulator for models from the Nengo mod-
eller. The models of networks created in the Nengo modeller are inputs
to NengoDL. NengoDL uses TensorFlow as an underlying computational
framework; the user can use exactly the same code for models as in the
Nengo simulator. The only change is in the different Simulator class, which
is used to execute the model. NengoDL is not a copy of Nengo. It also brings
numerous ad-dons to do the simulation, such as faster simulation speed, in-
serting TensorFlow code directly into a Nengo model and optimizing the
parameters of a model through deep learning the training methods.

3.3 NEST

NEST [4] (NEural Simulation Tool) is the most used simulator according to
Table 3.1. NEST is a type of simulator that focuses on the spiking neural
networks model as a whole rather than on modeling neurons. NEST sup-
ports over 50 models of neurons and over ten models of synapses. NEST
can use the interpreted programming language Python. NEST is supported
by PyNN, and their combination is called "PyNEST". It can also stand on
its own because NEST is implemented in the C4++ programming language.
NEST runs on UNIX-like systems, from MacBooks to BlueGene supercom-
puters. NEST is refereed in over 520 papers as the simulator which was
used. [16]

3.4 PyNN

PyNN [3] is a tool for building neuronal network models independently of
the used simulator. The source code of models is written in PyNN and
then it runs on independent supported simulators like previous mentioned
NEURON and NEST. PyNN supports high-level abstraction but still gives
an option to access a single neuron when necessary.

In PyNN, there are predefined sets of neurons, synapses and synaptic
plasticity models made for all supported simulator platforms. In the case
of connectivity algorithms, PyNN has a set of commonly-used algorithms or
provides an option to use different algorithms by writing them in the Python
source code or making them by using the Connection Set Algebra [7] library.
If the modelled neural network is used only on one simulator, it does not
have to use sets of the supported neuron, synapse and synaptic plasticity

13

models. It can use any model that can be made via the PyNN powerful
high-level interface.

3.5 Summary

In this chapter, there are presented the newest and the most promising
frameworks - NEURON [17], Nengo [14], NengoDL [15], NEST [4], and
PyNN [3]. All these frameworks have their own simulator of neural net-
works except PyNN, which is only a high-end API. In PyNN, users can
model the neural network and then transform that model into one of the
supported simulators mentioned previously - NEURON and NEST. The re-
maining frameworks, Nengo, NengoDL and NEST, are aiming for a more
pragmatic view of neural networks. The main focus of NEST is on models
of neural networks as a whole rather than on single parts of neural networks.
Nengo and NendoDL are two frameworks which differ in the simulator class
which executes the model. Nengo uses its simulator, but NengoDL uses the
TensorFlow framework as a simulator.

NEST is the most used and evolving simulator in the recent year in all
the statistics gathered in Table 3.1. The second and the third in the number
of releases are NengoDL and Nengo. Nengo is second in the number of
stars and forks as well. These two mentioned, Nengo and NengoDL, will be
further used in this thesis work.

Platform || Starts | Forks | Releases | Contributors Languages

NEURON || 207 81 9 38 C++, C, Python
Nengo 684 165 20 32 Python

NengoDL 70 14 29 11 Python
NEST 44.7k | 4.9k 62 288 TypeScript
PyNN 212 | 113 2 34 Python

Table 3.1: The comparison of frameworks. Data gathered of their GitHub’s.

14

4 Data Augmentation

In neuroscience, there are often problems with data. In one case, there is
only a little data for proper neural network training, and in the other case,
data cause overfitting and accuracy losses. One solution for this problem is
gathering more data on the topic. However, for example, when observing the
human brain by the electroencephalography (EEG) method, it is very long
and hard work to extend the dataset. For these purposes, scientists are trying
to improve the existing datasets by augmentation. Data augmentation takes
the existing dataset and adds new elements to it.

The concept of data augmentation first appeared in 2015, according to
[10]. Before 2015 some techniques enhanced data, but these were called
other names and did not form a consistent category of methods. More
interesting is that since 2015 the number of scientific papers which use data
augmentations as a category of methods has been increasing each year. For
example, according to [10], there were 53 scientific papers where a process
of data augmentation was used on EEG datasets. From 2018 to 2019, it was
37 out of 53, and in 2019 alone, there were 21 papers. In this Chapter are
presented the most used and known methods of augmenting.

4.1 Noise Addition

The general aim of this method is to blur the original data. There are
different types of noise like Gaussian, Poisson, "salt and pepper’, etc., which
represent different types of distribution of changed parts of the original data.
Each of these types has different parameters that it controls, for instance, a
mean value and standard deviation for Gaussian noise. This method takes
one data element (for example, an image) and makes a copy for further work
so that the original image remains unchanged. Then the method adds noise
to this image. This noise must have the same shape as the original image
and follow the selected division that determines how much individual pixels
will change.

111
For example, taking the matrix [2 2 2|, the method will create a noise
3 3 3

0.010 —0.010 —0.016
matrix: | —0.034 0.092 —0.075 | which was done using Gaussian distri-
0.106 0.047 —0.034

15

bution with parameters u = 0,0 = 0.1. Then the method adds the noise
1.010 0.990 0.984

to the original and the final matrix is | 1.966 2.092 1.925 |. This whole

3.0106 3.047 2.966
procedure can be seen in Figure 4.1.

This procedure is possible to use not only for images, but also for raw
signals with a few changes. A signal can be converted to sequences of images,
and then this method can perform the same procedure with these images as
before. Once this is done, the images can be converted back to signals [10].

Figure 4.1: An example of noise addition in the image from the left (original)
image to the right image. Source: [20]

To augment EEG data is even simpler than to augment an image. The
image is a matrix, but the signal is a vector. This means that this method
can augment signals as well as images. As well as in the previous example
with the matrix, this procedure can be applied here too.

4.2 Generative Adversarial Network

The generative adversarial network, shortly GAN, is composed of two neural
networks working one against the other, thus adversarially. The main goal
of this network is to generate new synthetic instances of the data. GANs are
used in image, video and voice generation. GANs’ usability is wide because
they can learn to mimic any distribution of data in any domain: images,
music, speech etc.

4.2.1 Generative Algorithm

GAN is a generative algorithm. To understand the generative algorithm, we
need to know the contrast with a discriminative algorithm. The big contrast
is how these algorithms classify the input data.

16

The discriminative algorithm tries to predict a correct label from symp-
toms in the data. For instance, symptoms will be words in the email and
labels will be spam or nospam. The discriminative algorithm tries to assign
the right label to the words in the email. Considering symptoms x and la-
bels y, P(y|z) means the probability of y given x. In the case of the email,
this is the probability that an email is spam given to the words it contains.

On the other hand, generative algorithms like GAN are attempting an
inverted approach. They assume the label and answer the question: How
likely are these symptoms? In the word of the previous example, a generat-
ive algorithm assumes that the email is spam, and then it ascertains what
must be in the email to be spam. Since generative algorithms are inverted
to discriminative ones, mathematical expressions are also inverted. They
capture the formulation P(z|y)-the probability of x given y.

4.2.2 How GANs Work

GAN is composed of two neural networks. One of them is a generator which
creates new instances of data, and the other one is a discriminator which
evaluates data for authenticity. The main task of the discriminator is to
recognize the given data. If the sample is from the original dataset, the
discriminator must say that the sample is authentic. On the other hand, the
generator generates new synthetic samples and feeds the discriminator with
them. The generator wants its samples to be authentic - even though they
are fake. The task of the generator is to create new passable data. The aim
of the discriminator is to reveal the synthetic samples which are from the
generator. These samples are considered fake.
The process has these steps:

1. The generator is fed by a random number.
2. The generator creates a synthetic sample from the random number.

3. The new sample is given to the discriminator with the data stream
from the original dataset.

4. The discriminator returns the number from 0 to 1; 0 means the syn-
thetic sample is recognized as fake. 1 means that the discriminator
thinks the synthetic sample is from the original dataset.

Both neural networks go against each other. The generator creates new
synthetic samples, and the discriminator recognizes these samples as fake.
Both learn each other’s preferences and try to be better than the other.

17

The best is the state where both neural networks end up on the same ’skill
level’. In this state, both have the same chance of winning. The generator
wins if it can create new samples, and the discriminator is then unable to
distinguish these samples from the original data. The discriminator wins if
it can recognize the fake samples from the original data. If the generator
ends up training on a higher ’skill level’, it will generate samples which
can go through the discriminator as the original data, but they will be
too different from the original data. On the contrary, if the discriminator
ends up training on a higher ’skill level’, it retains almost everything that
the generator creates. The augmenting will take more time because the
generator must create more elements to pass the discriminator requirements.

[18]
Real
U Samples
Generator
(G) I|I Fake
S

amples

Discriminator

(D)

Weights tuning for D,
learn to tell apart the
fake and real samples.

Weights tuning for G,
learn the distribution

of data from real samples.

Figure 4.2: A diagram of a Generative Adversarial Network. Source: [10]

4.3 Sampling

Sampling is a technique to balance the dataset. Datasets can have classes
with high differences in numbers of elements; one or a few classes have
a greater number of elements than the other classes in the dataset. This
unbalance in the dataset can cause accuracy losses. By sampling, the dataset
can be augmented in two ways by using an oversampling or undersampling
technique. [23]

18

4.3.1 Oversampling

This method selects an element in the minority class and makes a copy of
that element for the minority class. The selection algorithm can be arbit-
rary, but common practice is to have an algorithm which chooses elements
randomly; the algorithm does not need to know almost anything about the
dataset. One element can be chosen multiple times, which adds multiple
copies of that element to the dataset. In Figure 4.3, an example of over-
sampling method on the data is shown. Oversampling will stop when the
differences in the numbers of elements of the classes are near zero. [23]

OverSampling

[T

Label 1 Label 0
Label 0 Label 1

dataaspirant.com

Figure 4.3: An example of oversampling on data. Source: [21]

4.3.2 Undersampling

Undersampling has the opposite path than oversampling. Undersampling
removes elements of a majority class in order to make the classes equal. The
selection algorithm can be arbitrary as well in oversampling. In Figure 4.4,
an example of the undersampling method on the data is shown. [23]

4.4 Sliding Window

The sliding window is a technique that divides the data elements into smaller
parts. All these parts are of the same size. The size of the window can be
computed from the data to cover all of them, or it can be set by the user.
If selected by the user, this method may not cover all the data entirely.

19

UnderSampling

Label 0 Label 1 Label 1 Label 0

dataaspirant.com

Figure 4.4: An example of undersampling on data. Source: [22]

An example can be seen in Figure 4.5. The choice of size can be difficult
because there is no easy solution for that. In [10] there are several studies
which examine the sliding window further. These studies report on windows
from size 1 s to 5 s. This choice of size needs to be tested for every dataset
and learning algorithm separately.

There are two basic options of how to do that. One option is the slid-
ing window without overlapping, and the other is the sliding window with
overlapping. [10]

4.4.1 Without Overlapping

The sliding window without overlapping is a segmentation of the data into
smaller parts where one goes after the other - see Figure 4.5 (a). Here the
data is a signal in time. This method splits this signal into three smaller
signals which have the size of 5 s each. Then these windows can be processed
separately. [24]

4.4.2 With Overlapping

The sliding window with overlapping is a segmentation of the data as well,
but in this case, the part does not end where the other part begins - see
Figure 4.5 (b). Here this method splits the data into four smaller segments.
The overlap, in this case, is 2 s, in other words, 40 % of the window size.
This overlap can be set from 100 % to 0 %. The overlap 0 % is the sliding
window without overlapping. The overlap of 100 % means that the method

20

will start on the same point over and over again, and it will never stop. Both
these extreme cases will do nothing useful if we want to use overlapping. In
the other case, between 0 % and 100 %, the method can bring improvements
to the dataset. [5]

How much is an overlap? This question has the same difficulty as the size
of a window. As well, there is no simple solution. In [10] there were reported
achievements with overlapping from 50 % to 87.5 %. Again this choice
needs to be tested for every dataset, learning algorithm and the window size
separately.

1N\6M\/\ o VT

\/ 1 4 6 9 12 15 17
1 16 17 b -
> Time(s)
Time(s) —

(a) (b)

Figure 4.5: Example 5 s sliding windows. (a) The sliding window without
overlapping. (b) The sliding window with an overlap of 2 s. Source: [6]

4.5 Summary

In this chapter, there were presented methods to augment datasets. Those
methods were noise addition, GAN, oversampling, undersampling, sliding
window without overlapping and sliding window with overlapping. Table
4.1 shows the usage of those methods which work with EEG datasets in
scientific papers by January 2020. There can be seen that the small numbers
of papers using each of the method do not differ significantly. Nevertheless,
GAN is used in the most scientific papers and the sliding window without
overlapping is used the least.

21

Method Number of uses
Noise addition 12
GAN 14
Oversampling 11
Undersampling 8
Sliding window without overlapping 6
Sliding window with overlapping 7

Table 4.1: The number of augmentation methods which work with EEG
datasets as published in scientific papers by January 2020. Source: [10]

22

5 Primary P300 dataset

There is a research group at the University of West Bohemia, the Czech
Republic. This group exists here since the year 2008. They have created
30 experimental datasets and have done approximately 1000 experiments on
them. For the purpose of sharing data inside group and into other groups
EEG/ERP Portal was created. There are stored all datasets which were
created by the group. We chose to augment the biggest dataset which is yet
published. [11]

5.1 Chosen dataset

The dataset which this thesis aims to augment is P300-based from the re-
search group on the University of West Bohemia [12]. This dataset Guess
the number is an experiment where children guess the number. In this ex-
periment a participant is tasked with choosing one number from the range
of 1 to 9. Afterwards there are shown numbers from the range of 1 to 9 in
a random order. This display of digits is recorded in a form of EEG signal
and the number selected by the participant is guessed from the EEG signal.
P300 dataset is composed of 250 samples from children at school age. Each
sample has electroencephalographic data from three different channels (Fz,
Cz, Pz) and stimuli markers. The length of each sample is 1500 ms. To
these samples metadata about the participants were supplemented (gender,
age and various interesting additional information).

5.2 Used Format of Dataset

The dataset in a raw format is hard to used effectively in programming.
For this purpose, dataset was prepared into a more efficient format. All
the samples were cut from start to length 1200 ms. After this cut all the
samples was divided into two classes. The one class called "target' con-
tains samples which represent P300 stimulus. The other class called "non
target" includes samples which are not P300 stimuli. This all is in one
MATLAB file. This pre-processed dataset can be found on this web site:
https://dataverse.harvard.edu/dataset.xhtml.

23

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/G9RRLN

6 Applications of GAN on
P300 Dataset

In the chapters above, there were presented spiking neural networks (2) and
tools we use to work with them (3). In chapter (4), there were shown meth-
ods to augment the data for training neural networks. After evaluating all
these methods, GAN supported by a sliding window were chosen because
these methods are mostly used among the scientific community - see Table
4.1. For testing the augmented datasets, the spiking neural network de-
veloped by Véaclav Honzik [8] was chosen because it uses a dataset described
in the previous chapter (5).

The previous work of Vaclav Honzik [8] reached the best accuracy on the
P300 dataset (using a spiking neural network) around 63%. The aim of this
work is to improve its accuracy. The same aim should be reached with the
work of Roman Kalivoda [9] who created a first analogue neural network to
classify the P300 dataset.

Primary dataset Augmented method
P300 GAN and Sliding window

Table 6.1: The chosen dataset for augmenting [12] and the methods to
augment the dataset.

6.1 Created GANs

A discriminator and a generator are necessary to create GAN. Two GANs
were created with the same discriminator and two different generators.

The discriminator has four-layer architecture. The input layer has a
vector of 3600 neurons which represents three channels and a 1200 ms signal.
Then there are two dense layers followed by LeakyReLU functions. The
output layer has one neuron. If the last layer is activated, the discriminator
recognizes an image as fake. The whole structure can be seen in Figure 6.1.
In this structure, the discriminator has 8 million trainable parameters.

The first model of the generator was created from scratch with a help
of an example from [18]. This article also describes how to make a gener-
ator; the example of the generator produces samples of the MNIST dataset.

24

The model I have developed consists of three layers with two activation lay-
ers. The input layer contains a randomly generated vector followed by the
LeakyReLU function. Then there are two dense layers with one LeakyReLLU
function between them. The output layer reshapes the previous layer to a
different shape which we want to mimic, see Figure 6.2. In this structure,
the first generator has 12.7 million trainable parameters.

The second model of the generator was created from the first one by
adding one more Dense layer. Another upgrade was done by adding Batch-
Normalization functions after each LeakyReLU function. These additions
lead to a four-layer structure displayed in Figure 6.3 with two different func-
tions between each layer. Surprisingly by adding one layer and some ad-
justments to the shape of layers, this structure has only 8 million trainable
parameters, which is a huge difference.

6.2 Training of GAN

The training of GAN needs two main parameters. These parameters are the
same for the entire training. The first one is the number of epochs. Epochs
are iterations of training cycles. Here 50,000 epochs were chosen for train-
ing. This number was set experimentally. The number of 30,000 epochs was
take from [18] and there testing starts. But the samples were highly differ-
ent from the original ones, the number of epochs was increased. However,
the number of epochs above 50,000 did not get significant improvements in
created samples. The next parameter is the batch size. The batch size is
the number of samples going to the discriminator in each iteration. Here
the batch size was set to 32 samples. This number originates from [18] as
well. Testing different batch sizes did not get any improvements. Half of
the samples of batch are from the generator, and the other half are from the
input dataset.

To train one model of the GAN, two generators and two discriminators
are needed. This is caused by the dataset. The dataset is split into two
different classes as it is described in Chapter 5. One couple of generators
and discriminators can learn one type of signal. For training one model there
is the need to have two couples of generators and discriminators. To get two
models there will be four couples of generators and discriminators.

After training one model of GAN is done, generators are saved and dis-
criminators are erased. Generators are saved to generate new samples of
data. In Figures 6.4 and 6.5 there are shown examples of signals from the
original P300 dataset. Generated signals from the first model are shown in

25

Figures 6.6 and 6.7. The first image shows the simulated target class, and
the second image shows the non target class. Signals from the second model
are displayed in Figures 6.8 and 6.9. As well, this image shows signals from
target and non-target classes.

6.3 Implementation

The project is written in Python version 3.8.5. The GitHub repository is
available at https://github.com/Hrabikv/Data Augmentation. There are
five Python files and three text files available. Other files are only git specific
or from the development environment.

The text file README.txt is the same as the user guide at the end of
this bachelor thesis. The requirements.txt file defines a minimum of required
libraries for the project. The most used libraries are Keras [1]|, TensorFlow
[26], and NumPy [19]. The configuration file config.trt contains adjustable
parameters for the project. The majority of these parameters are used for
work with trained models. For example, one parameter determines how
many new samples will be added to the original dataset. All parameters
have their description in same file config.txt.

Python files are segmented by activity what each of them doing. In files
disriminator.py and generator.py, there are definitions of models described
above. In the file Data Work.py, there are two methods and one class named
FileWorker. The first method merges two arrays into one. The second
method loads parameters from the configuration file config.tzt. Classes re-
sponsibility is to load input dataset, apply filter on samples from dataset and
save augmented dataset. Dataset is ready for better work as it is written in
Chapter 5. But in dataset there are damaged samples. For filtering these
damaged samples a filter is apply. Threshold of filter was set to £100uV .
This filter is applied in preparation of data in the class FileWorker. Next
file is GAN.py. This file starts with supporting methods. Only method for
the averaging of signal needs highlight. This method gets two parameters.
The one is array of generated samples and the other one is size of aver-
aging window. In the method there are created new samples by averaging
input samples. After those methods there is the second class of project
named GAN. This class in constructor define its discriminator and gener-
ator. Other methods are predict, train, save data image, save model and
load model. Predict method generate number of new samples. Number
is passed as argument. Returns generated samples. Train method takes
care of training the generator and discriminator. Save data image method

26

https://github.com/Hrabikv/Data_Augmentation

saving continuous generated data images. Save and load data methods are
here for save model after training and load model for multiple use. Last
file is main.py. This file is entering point of project. There are all previous
methods called.

27

Input layer
shape = 3600

v

Dense layer
shape = 1800

v

LeakyRelLU function
shape = 1800

v

Dense layer
shape =900

v

LeakyRelLU function
shape = 900

v

Output layer

shape = 1

Figure 6.1: GAN - discriminator neural network.

28

Input layer
shape = 1200

v

LeakyRelLU function
shape = 1200

v

Dense layer
shape = 2400

v

LeakyRelLU function
shape = 1800

v

Dense layer
shape = 3600

I

Output layer
shape = 3, 1200

Figure 6.2: GAN - generator, the first model.

29

Input Layer
shape = 450

v

LeakyRelLU function
shape = 450

v

BatchNormalization
shape = 450

v

Dense layer
shape =900

v

LeakyRelLU function
shape =900

.

BatchMNormalization
shape =900

.

Dense layer
shape = 1800

:

LeakyRelLU function
shape = 1800

.

BatchNormalization
shape = 1800

.

Dense layer
shape = 3600

|

QOutput layer
shape = 3, 1200

Figure 6.3: GAN - generator, the second model.

30

60
40 80 -
50 -
30 40 60
30 .
20 | 40 -
3 20
- 20 .
10 10 4
0 - 0-
0 -
—10
_20 .
_10 E T T T
~200 800 —200 300 800 —200 800
ms ms ms

Figure 6.4: A sample of the P300 dataset from the target stimulus class.

Cz
30 -
50 -
40 .
25
40 -
20 30
30 -
15 -
20
20
5 10 -
10 10 4
5 4
0 - 0 1 01
5 | —10
> —10
—10 - 20
20 4
T T T
—200 800 -200 300 800 —200 800
ms ms ms

Figure 6.5: A sample of the P300 dataset from the non target stimulus class.

31

60
60 1
50 .
40 40 4
30 4
20 1 20 4
10 1
0 0
—10 A
20 4 —20 A
—200 BDO —200 BDO —200 BDO
ms ms ms

Figure 6.6: A sample of the generated signal from the target stimulus class.
The first model of the generator was used.

60
40_
3 20
0
=10 4
—20

—20 +

_20 -

T T T
—200 BDO —200 BDO =200 300 800
ms ms ms

Figure 6.7: A sample of the generated signal from the non target stimulus
class. The first model of the generator was used.

32

40 -
60 |
30 - 60
20 40 - 0
> 10
20 4 20
0 -
0_
0 .
_10 -
_20 -
—201, ; — 20 L ; ;
200 300 800 -200 300 800 —200 800
ms ms ms

Figure 6.8: A sample of the generated signal from the target stimulus class.
The second model of the generator was used.

Cz
60
30 50
50 -
40 -
40 -
20 1
30 1 30
10 ~ i 20 4
z 20
10
10 ~
0 -
04
0 -
Jd1o0 4
_10 -
—10 1
20 4
T T T
—200 BDO =200 300 800 —200 BDO
ms ms ms

Figure 6.9: A sample of the generated signal from the non target stimulus
class. The second model of the generator was used.

33

6.4 Results

When the models were created and put through the training procedures, it
was time to create the augmented datasets. There is no exact number of
how much augment or where the limits of augmentation are. Because of
it, we decided to test several options to describe the ways of augmenting.
These options differ in two parameters. One parameter is the expansion of
the dataset. This parameter is labelled in percentages. For instance, 100%
is a dataset without new samples, and 200% is a dataset of double size.
The other parameter is an averaging window. This parameter describes how
many generated samples will be averaged to create a new sample. For each
model of the generator, tests were run in a parameter range from 150% to
400% of size and several different sizes of the sliding window. The size has
steps long 50% in this range. The window has the sizes of 1, 5, 20 and 50
of samples. In total, 48 different augmented datasets were created (24 from
each model).

There are five different neural networks which were created by Roman
Kalivoda [9] and Vaclav Honzik [8]. In Roman Kalivoda [9] work an analogue
neural network was created. This network is labeled as ANN in training and
testing phases over augmented datasets. Vaclav Honzik continued in this
topic. He created four new spiking neural networks. They are different in
parameters called time-steps, scaling and synapse. Parameters settings are
described in Table 6.2. The labels in the last column are used in training
and testing phases over augmented datasets.

Neural network | Time-steps | Scaling | Synapse | Label
Spiking 50 1000 0.010 | SNN 1
Spiking 50 1000 None | SNN 2
Spiking 50 1 0.010 | SNN 3
Spiking 50 1 None | SNN 4

Table 6.2: Description of parameters of used spiking neural networks

In the first batch, there were datasets with the window size 1 through
both models and all capacities. In total, 12 different datasets were created.
In Table 6.3 there are results of the first model. The results of the second
model are in Table 6.4. These settings of parameters cause a growing trend
in accuracy across almost all types of neural networks. Only SNN 3 and
SNN 4 in the second model has stagnation trend.

In the second batch, there were datasets with the window size 5 through
both models and all capacities. In total, 12 different datasets were created.

34

Type\Size | 150% | 200% | 250% | 300% | 350% | 400%
ANN 0,7208 | 0,7926 | 0,8348 | 0,8594 | 0,8828 | 0,8955
SNN 1 0,7211 | 0,7917 | 0,8345 | 0,8590 | 0,8827 | 0,8952
SNN 2 0,7208 | 0,7918 | 0,8342 | 0,8590 | 0,8827 | 0,8951
SNN 3 0,5200 | 0,5233 | 0,5291 | 0,5289 | 0,5309 | 0,5364
SNN 4 0,5198 | 0,5233 | 0,5267 | 0,5305 | 0,5353 | 0,5365

Table 6.3: The average accuracy of the 15 model with the window size of 1

Type\Size | 150% | 200% | 250% | 300% | 350% | 400%
ANN 0,7247 | 0,7925 | 0,8334 | 0,8596 | 0,8835 | 0,8987
SNN 1 0,7245 | 0,7914 | 0,8327 | 0,8594 | 0,8833 | 0,8985
SNN 2 0,7243 | 0,7915 | 0,8334 | 0,8589 | 0,8836 | 0,8988
SNN 3 0,5278 | 0,5264 | 0,5235 | 0,5249 | 0,5229 | 0,5262
SNN 4 0,5279 | 0,5300 | 0,5277 | 0,5253 | 0,5264 | 0,5296

274 model with the window size of 1

Table 6.4: Average accuracy of the
In Table 6.5 there are results of the first model. The results of the second
model are in Table 6.6. As a previous batch, this one shows improvement
of 0,6% in accuracy across ANN, SNN 1 and SNN 2 and 2% improvement
in SNN 3 and SNN 4. Here is shown a bigger growth in accuracy compared
to the previous batch. Again, stagnation trend is shown in results of SNN
3 from the second model. All other neural networks have a growing trend.
The same number, which is last column of ANN, SNN 1 and SNN 2 is caused
by rounding error because all these results are different only in digits below
this rounding.

Type\Size | 150% | 200% | 250% | 300% | 350% | 400%
ANN 0,7439 | 0,8088 | 0,8455 | 0,8685 | 0,8904 | 0,9041
SNN 1 0,7436 | 0,8083 | 0,8457 | 0,8684 | 0,8899 | 0,9041
SNN 2 0,7442 | 0,8081 | 0,8459 | 0,8684 | 0,8901 | 0,9041
SNN 3 0,5224 | 0,5290 | 0,5325 | 0,5400 | 0,5433 | 0,5546
SNN 4 0,5259 | 0,5307 | 0,5421 | 0,5396 | 0,5438 | 0,5498

Table 6.5: The average accuracy of the 15 model with the window size of 5

In the third batch, there were datasets with the window size of 20 for
both models and all capacities. In total, 12 different datasets were created.
In Table 6.7 there are results of the first model. The results of the second
model are in Table 6.8. As previous batches, this one shows improvement
in accuracy across all types of neural networks. Here is shown growth from

35

Type\Size | 150% | 200% | 250% | 300% | 350% | 400%
ANN 0,7417 | 0,8068 | 0,8446 | 0,8675 | 0,8896 | 0,9041
SNN 1 0,7419 | 0,8065 | 0,8449 | 0,8667 | 0,8891 | 0,9041
SNN 2 0,7412 | 0,8063 | 0,8451 | 0,8672 | 0,8891 | 0,9042
SNN 3 0,5281 | 0,5288 | 0,5270 | 0,5325 | 0,5286 | 0,5317
SNN 4 0,5264 | 0,5309 | 0,5299 | 0,5276 | 0,5229 | 0,5353

Table 6.6: The average accuracy of the 2"¢ model with the window size of 5

0,05% to 0,56% in accuracy from the previous batches.

Type\Size | 150% | 200% | 250% | 300% | 350% | 400%
ANN 0,7475 | 0,8069 | 0,8499 | 0,8683 | 0,8941 | 0,9049
SNN 1 0,7470 | 0,8071 | 0,8497 | 0,8683 | 0,8935 | 0,9047
SNN 2 0,7473 | 0,8069 | 0,8497 | 0,8684 | 0,8933 | 0,9046
SNN 3 0,5183 | 0,5180 | 0,5284 | 0,5386 | 0,5435 | 0,5508
SNN 4 0,5228 | 0,5214 | 0,5380 | 0,5478 | 0,5522 | 0,5554

Table 6.7: The average accuracy of the 15 model with the window size of 20

Type\Size | 150% | 200% | 250% | 300% | 350% | 400%
ANN 0,7480 | 0,8099 | 0,8491 | 0,8672 | 0,8952 | 0,9072
SNN 1 0,7474 | 0,8099 | 0,8490 | 0,8673 | 0,8947 | 0,9071
SNN 2 0,7475 | 0,8099 | 0,8490 | 0,8671 | 0,8946 | 0,9069
SNN 3 0,5288 | 0,5439 | 0,5473 | 0,5453 | 0,5478 | 0,5586
SNN 4 0,5269 | 0,5341 | 0,5412 | 0,5456 | 0,5501 | 0,5527

Table 6.8: The average accuracy of the 2" model with the window size of 20

In the last batch, there were datasets with the window size of 50 for both
models and all capacities. In total, 12 different datasets were created. This
batch was added after the previous ones were completed to test the extreme
case of window size. In Table 6.9 there are results of the first model. The
results of the second model are in Table 6.10. These extreme settings are
very interesting. The accuracy has the best starting values on 150% of
capacity from all batches. Its values are 75% for ANN, SNN 1 and SNN 2.
However, as the size was higher, accuracy start losing its advantage. At the
size of 350%, this batch lost against the previous batch by almost 0,5%.

36

Type\Size | 150% | 200% | 250% | 300% | 350% | 400%
ANN 0,7522 | 0,8060 | 0,8497 | 0,8702 | 0,8893 | 0,9040
SNN 1 0,7528 | 0,8054 | 0,8499 | 0,8700 | 0,8891 | 0,9037
SNN 2 0,7527 | 0,8056 | 0,8495 | 0,8700 | 0,8892 | 0,9038
SNN 3 0,5191 | 0,5194 | 0,5306 | 0,5359 | 0,5492 | 0,5509
SNN 4 0,5169 | 0,5258 | 0,5428 | 0,5470 | 0,5527 | 0,5579

Table 6.9: The average accuracy of the 15 model with the window size of 50

Type\Size | 150% | 200% | 250% | 300% | 350% 400%
ANN 0,7530 | 0,8091 | 0,8490 | 0,8700 | 0,8907 | 0,9049
SNN 1 0,7530 | 0,8090 | 0,8490 | 0,8699 | 0,8905 | 0,9047
SNN 2 0,7534 | 0,8093 | 0,8490 | 0,8697 | 0,8905 | 0,9049
SNN 3 0,5433 | 0,5418 | 0,5539 | 0,5476 | 0,5593 | 0,5664
SNN 4 0,5392 | 0,5405 | 0,5452 | 0,5522 | 0,5682 | 0,5484

Table 6.10: The average accuracy of the 2"¢ model with the window size
of 50

37

6.5 Summary

In the first section, a description of the created models can be found. Their
training process is given in the second section. In the third section, the
implementation was described. Finally, all results were presented.

All described results were made in normal test environments. The data-
set was split in two groups. The first group has 75% of size, and it was
labelled as the "training group". The other group has the remaining 25% of
size, and it was labelled as the "testing group".

In Table 6.11 there are results of the dataset without any augmenting.
Results are the achieved accuracy by neural network on dataset. This ac-
curacy is what to we want enhance. Also, in Table 6.11 there are the best
results from each batch. There are taken the accuracy from the capacity of
400% because these are the highest values from each test. From this com-
parison, several interesting outcomes can be seen. One of the best datasets
created is the second model and window size 20. This row is highlighted
in Table 6.11. It is the best dataset because the accuracy is the highest of
all the tested datasets. There is the best gain in total. The other outcome
from Table 6.11 is the limit of learning. From the data in Table 6.11 and
data from the previous section, it seems that the limit is just above 90%
of accuracy for ANN, SNN 1 and SNN 2. The other finding is that size of
window do not increases accuracy that much as amount of added data. For
better perspective all data in Table 6.11 are graphically shown in Figure
6.10.

Neural network ANN [SNN1 [SNN2 | SNN 3 [SNN 4
original dataset | 0,6334 | 0,6343 | 0,6335 | 0,5197 | 0,5219
1°t model, size 1 | 0,8955 | 0,8952 | 0,8951 | 0,5364 | 0,5365
2"d model, size 1 | 0,8987 | 0,8985 | 0,8988 | 0,5262 | 0,5296
1t model, size 5 | 0,9041 | 0,9041 | 0,9041 | 0,5546 | 0,5498
2nd model, size 5 | 0,9041 | 0,9041 | 0,9042 | 0,5317 | 0,5353
15t model, size 20 | 0,9049 | 0,9047 | 0,9046 | 0,5508 | 0,5554
2" model, size 20 | 0,9072 | 0,9071 | 0,9069 | 0,5586 | 0,5527
15! model, size 50 | 0,9040 | 0,9037 | 0,9038 | 0,5509 | 0,5579
24 model, size 50 | 0,9049 | 0,9047 | 0,9049 | 0,5664 | 0,5484

Table 6.11: The accuracy of the input dataset compared to the best accuracy
of each combination of model and window size

There are some interesting accuracy gains. One of them when the second
model and windows size of 50 are used. This gain can be seen in Table 6.8.

38

Graphical accuracy comparison for all neural

networks
1
0,9
0,8
0,7
0,6
>
O
o
505
3
<
0,4
0,3
0,2
0,1
0
SNN 1 SNN 2 SNN 3 SNN 4
Neural network
M Original data M First model, size 1 I First model, size 5

M First model, size 20 ™ First model, size 50 ® Second model, size 1

W Second model, size 5 M Second model, size 20 B Second model, size 50

Figure 6.10: The graphical representation of Table 6.11.

39

The first column is the most interesting one. These values represent the
highest jump in accuracy gain. It is an almost 12% jump from 63,3-63,4%
to 75,3% for ANN, SNN 1 and SNN 2. This jump is interesting even more
in terms of training the models, creating augmented datasets and testing
them. This all can take huge computational resources. It shows that weaker
computers can manage to run a decent neural network with a high accuracy.

In comparison with the other GANs, the created GAN with both models
is doing a great job. In the article [10], it was written that the the average
accuracy gain by GANs was 5,7%. It is worth mentioning that the numbers
from the article can be misleading because the most researched neural net-
works there have decent accuracy from the beginning. Decent means from
75% to 85% base accuracy. The other difference is that different dataset
were used.

After all previous tests were performed we came with idea to test different
approach. In this approach, there were taken two datasets. One dataset was
an augmented dataset which was the best dataset from Table 6.11. This
dataset was created by the second model with 20 window size on a maximum
400% capacity. This dataset was labelled as "training'. The other dataset
was the original one without any augmentation. This dataset was labelled
as "testing'. The result of this test is in the middle column in Table 6.12.
Accuracy gain is not as great as in previous test cases. The accuracy gain

of 3% on ANN, SNN 1 and SNN 2.

Neural | Original | Augmented | Only augmented
network | accuracy | accuracy dataset
ANN 0,6334 0,6639 0,9072
SNN 1 0,6343 0,6641 0,9071
SNN 2 0,6335 0,6641 0,9069
SNN 3 0,5197 0,5204 0,5586
SNN 4 0,5219 0,5205 0,5527

Table 6.12: There is the comparison of the original accuracy to the augmen-
ted accuracy. In the column named "original accuracy" there are results of
the original dataset as training and testing group. In the column named
"augmented accuracy" there are results of the original dataset only as test-
ing group. In the last column there is the accuracy of test, where only the
augmented dataset was involved.

40

7 Conclusion

In Chapter 2 there were slightly described neural networks, and in Chapter
3 there were introduced several frameworks for working with spiking neural
networks. After that in Chapter 4 there were shown the most used augment-
ing techniques. Then the work and experiments done by the neuroinform-
atics group at the University of West Bohemia were described in Chapter 5.
Created project and achieved results were presented in Chapter 6.

The created datasets and the experiments performed are the main con-
tribution of this work. They can all increase the accuracy of tested neural
networks. Some of the neural networks are worse than the others, but this is
not because of the augmenting itself. In Table 6.11 there are shown results
of the original dataset and the best dataset from each created model. The
results are incredible because of the increase, which is almost 27% in the
three out of five tested neural networks. These results are achieved only
with one dataset involved. This dataset was split into two groups. One be-
ing the training group with 75% of original size. The other one being testing
group with 25% of original size. However, if we involve two datasets - one
being the augmented dataset as training group and the other one being the
original one as testing group - results are different (see Table 6.12). Between
the original accuracy and this test, there is difference 3%. It is not much, but
it shows that , augmenting can improve the performance of neural networks
in EEG recognition tasks.

The augmenting techniques need further testing. In this thesis, only
GAN was tested because it was the most used technique according to Table
4.1. The other methods looks promising as GAN and they can may perform
as good as GAN according to [10].

The source codes for this thesis are available on a GitHub repository:
https://github.com/Hrabikv/Data Augmentation.

41

https://github.com/Hrabikv/Data_Augmentation

Bibliography

[1]

2]

M. M.-R. Aakash Nain, Sayak Paul. Keras [online|, April 2022. URL
https://keras.io/. Visited on: April 2022.

N. Anwani and B. Rajendran. Training multilayer spiking neural networks
using normad based spatio-temporal error backpropagation [online], July
2019. URL https://arxiv.org/pdf/1811.10678.pdf. Visited on:
November 2022.

A. Davison, D. Bruderle, J. Eppler, J. Kremkow, E. Muller, D. Pecevski,
L. Perrinet, and P. Yger. Pynn: a common interface for neuronal network
simulators [online]. Frontiers in Neuroinformatics, 2:11, January 2009.
ISSN 1662-5196. doi: 10.3389/neuro.11.011.2008. URL
https://www.frontiersin.org/article/10.3389/neuro.11.011.2008.
Visited on: November 2022.

R. Deepu, S. Spreizer, G. Trensch, D. Terhorst, S. B. Vennemo, J. Mitchell,
C. Linssen, H. Mgrk, A. Morrison, J. M. Eppler, N. L. Kamiji,

R. de Schepper, I. Kitayama, A. Kurth, A. Morales-Gregorio,

P. Nagendra Babu, and H. E. Plesser. Nest 3.1 [online], September 2021.
URL https://doi.org/10.5281/zenodo.5508805. Visited on: November
2022.

A. Dehghani, O. Sarbishei, T. Glatard, and E. Shihab. A quantitative
comparison of overlapping and non-overlapping sliding windows for human

activity recognition using inertial sensors [online|. Sensors, 19, 11 2019. doi:
10.3390/s19225026. Visited on: February 2022.

A. Dehghani, O. Sarbishei, T. Glatard, and E. Shihab. 5 s sliding windows.
[online], November 2019. URL https:
//www.researchgate.net/publication/337357650_A_Quantitative_
Comparison_of_Overlapping_and_Non-Overlapping_Sliding_Windows_
for_Human_Activity_Recognition_Using_ Inertial_Sensors. Visited
on: February 2022.

M. Djurfeldt. The python implementation of the connection-set algebra
[online], 2012. URL https://github.com/INCF/csa/. Visited on:
November 2022.

V. Honzik. Use of spiking neural networks [online|, 2021. URL
http://hdl.handle.net/11025/44220. Thesis, University of West
Bohemia.

42

https://keras.io/
https://arxiv.org/pdf/1811.10678.pdf
https://www.frontiersin.org/article/10.3389/neuro.11.011.2008
https://doi.org/10.5281/zenodo.5508805
https://www.researchgate.net/publication/337357650_A_Quantitative_Comparison_of_Overlapping_and_Non-Overlapping_Sliding_Windows_for_Human_Activity_Recognition_Using_Inertial_Sensors
https://www.researchgate.net/publication/337357650_A_Quantitative_Comparison_of_Overlapping_and_Non-Overlapping_Sliding_Windows_for_Human_Activity_Recognition_Using_Inertial_Sensors
https://www.researchgate.net/publication/337357650_A_Quantitative_Comparison_of_Overlapping_and_Non-Overlapping_Sliding_Windows_for_Human_Activity_Recognition_Using_Inertial_Sensors
https://www.researchgate.net/publication/337357650_A_Quantitative_Comparison_of_Overlapping_and_Non-Overlapping_Sliding_Windows_for_Human_Activity_Recognition_Using_Inertial_Sensors
https://github.com/INCF/csa/
http://hdl.handle.net/11025/44220

[9]

[11]

[12]

[16]

R. Kalivoda. Extension of neural network architecture [online], 2020. URL
http://hdl.handle.net/11025/41790. Thesis, University of West
Bohemia.

E. Lashgari, D. Liang, and U. Maoz. Data augmentation for
deep-learning-based electroencephalography [online|. Journal of
Neuroscience Methods, 346:108885, December 2020. ISSN 0165-0270. doi:
https://doi.org/10.1016/j.jneumeth.2020.108885. URL https:
//www.sciencedirect.com/science/article/pii/S0165027020303083.
Visited on: February 2022.

R. Moucek, P. Briha, P. Jezek, P. Mautner, J. Novotny, V. Papez,

T. Prokop, T. Rondik, J. Stébeték, and L. Vareka. Software and hardware
infrastructure for research in electrophysiology. Frontiers in
Neuroinformatics, 8, 2014. ISSN 1662-5196. doi: 10.3389/fninf.2014.00020.
URL
https://www.frontiersin.org/article/10.3389/fninf.2014.00020.

R. Mouéek, L. Vafeka, T. Prokop, and J. Stébetak. Event-related potential
data from a guess the number brain-computer interface experiment on
school children [online]. Scientific Data, 4, March 2017. doi:
10.1038/sdata.2016.121. URL
https://doi.org/10.1038/sdata.2016.121. Visited on: February 2022.

M. Musiol. Speeding up deep learning computational aspects of machine
learning, 01 2016. URL https://www.researchgate.net/figure/
A-general-model-of-a-deep-neural-network-It-consists-of-an\
-input-layer-some-here-two_figl_308414212.

Nengo. What is nengo? [online], 2020. URL https://www.nengo.ai/.
Visited on: November 2022.

NengoDL. Deep learning integration for nengo [online], 2020. URL
https://www.nengo.ai/nengo-dl/introduction.html. Visited on:
December 2022.

NEST. The neural simulation technology initiative [online|, 2016. URL
https://www.nest-simulator.org/publications/. Visited on:
November 2022.

NEURON. What is neuron? [online], 2020. URL
https://neuron.yale.edu/neuron/what_is_neuron. Visited on:
November 2022.

C. Nicholson. A beginner’s guide to generative adversarial networks (gans)
[online], 2019. URL

43

http://hdl.handle.net/11025/41790
https://www.sciencedirect.com/science/article/pii/S0165027020303083
https://www.sciencedirect.com/science/article/pii/S0165027020303083
https://www.frontiersin.org/article/10.3389/fninf.2014.00020
https://doi.org/10.1038/sdata.2016.121
https://www.researchgate.net/figure/A-general-model-of-a-deep-neural-network-It-consists-of-an\-input-layer-some-here-two_fig1_308414212
https://www.researchgate.net/figure/A-general-model-of-a-deep-neural-network-It-consists-of-an\-input-layer-some-here-two_fig1_308414212
https://www.researchgate.net/figure/A-general-model-of-a-deep-neural-network-It-consists-of-an\-input-layer-some-here-two_fig1_308414212
https://www.nengo.ai/
https://www.nengo.ai/nengo-dl/introduction.html
https://www.nest-simulator.org/publications/
https://neuron.yale.edu/neuron/what_is_neuron

[21]

22]

[24]

[25]

[26]

https://wiki.pathmind.com/generative-adversarial-network-gan.
Visited on: February 2022.

NumPy. Numpy [online], April 2022. URL https://numpy.org/. Visited
on: April 2022.

J. Pavlovicova. image whith noise [online], Jul 2011. URL
https://www.researchgate.net/figure/
Examples-of-images-modified-by-Gaussian-noise-Gaussian\
-noise-was-applied-on-each-image_fig7_221913964. Visited on:
February 2022.

S. Polamuri. Oversampling example [online|, August 2020. URL
https://dataaspirant.com/10-oversampling/. Visited on: February
2022.

S. Polamuri. Undersampling example [online|, August 2020. URL
https://dataaspirant.com/17-undersampling/. Visited on: February
2022.

K. Pykes. Oversampling and undersampling [online], September 2020. URL
https://towardsdatascience.com/
oversampling-and-undersampling-5e2bbaf56dcf. Visited on: February
2022.

QuanticDev. Sliding window technique [online], November 2018. URL
https://quanticdev.com/algorithms/dynamic-programming/
sliding-window/. Visited on: February 2022.

A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and

A. Maida. Deep learning in spiking neural networks [online]. Neural
Networks, 111:47-63, March 2019. doi:
https://doi.org/10.1016/j.neunet.2018.12.002. URL https:
//www.sciencedirect.com/science/article/pii/S0893608018303332.
Visited on: November 2022.

TensorFlow. Tensorflow [online], April 2022. URL
https://www.tensorflow.org/. Visited on: April 2022.

44

https://wiki.pathmind.com/generative-adversarial-network-gan
https://numpy.org/
https://www.researchgate.net/figure/Examples-of-images-modified-by-Gaussian-noise-Gaussian\-noise-was-applied-on-each-image_fig7_221913964
https://www.researchgate.net/figure/Examples-of-images-modified-by-Gaussian-noise-Gaussian\-noise-was-applied-on-each-image_fig7_221913964
https://www.researchgate.net/figure/Examples-of-images-modified-by-Gaussian-noise-Gaussian\-noise-was-applied-on-each-image_fig7_221913964
https://dataaspirant.com/10-oversampling/
https://dataaspirant.com/17-undersampling/
https://towardsdatascience.com/oversampling-and-undersampling-5e2bbaf56dcf
https://towardsdatascience.com/oversampling-and-undersampling-5e2bbaf56dcf
https://quanticdev.com/algorithms/dynamic-programming/sliding-window/
https://quanticdev.com/algorithms/dynamic-programming/sliding-window/
https://www.sciencedirect.com/science/article/pii/S0893608018303332
https://www.sciencedirect.com/science/article/pii/S0893608018303332
https://www.tensorflow.org/

User Guide

This chapter is a guide describing setting up the environment and creating
an augmented dataset. The project is written in Python version 3.8.5. The
project was tested on two different laptops with Windows 10.

First, you need all the files from the GitHub repository: https://github.
com/Hrabikv/Data Augmentation. You can download it via Git or by click-
ing Code -> Download ZIP. After downloading is finished, extract all
the files from the zip into a folder where you want to work (the best option
is a folder with do not have any non-ASCII character in the path).

Setting up the Environment

When you have prepared the folder with the project, it will need the environ-
ment. If you are familiar with Python enough, install all necessary modules
from requirements.txt.

Otherwise, follow these steps:

1. Download Anaconda3: https://www.anaconda.com/ and install it. Make
sure that it is added in PATH variables in Windows. The install pro-
cess can do it for you if you check off one checkbox in the install
procedure.

2. Open the command line. In the folder with the project, write "cmd"
into the navigation line. It is shown in Figure 7.1.

3. Now, create a new environment using the command:

conda create -n name of your environment python=3.8.5

"name of your environment' replace with the name that you want.
This will create an empty environment that can be used to install
dependencies.

4. Open the created environment by command:

conda activate name of your environment

This will switch you into the conda environment.

45

https://github.com/Hrabikv/Data_Augmentation
https://github.com/Hrabikv/Data_Augmentation
https://www.anaconda.com/

pip install -r requirements.txt

| = | Data_Augmentation - O X

Domi Sdileni Zobrazeni) 9
- L =]
* I I o 4 PFesunout do X Odstranit = % o HH

W ﬂ -
Pfipnout k Kopirovat VloZit Kopirovat do 1 prejmenovat Nova Vlastnosti Vybrat
Rychlému pfistupu [slozka - o -
Schrank; s MNové Otevrit

&« v « Bakalarka * Data_Augmentation v &) O Prohledat; Data_A...
¥ Stazené sou Mazev _ Datum zmény Typ ~
B Obrazky A idea 19.04.2022 7:22 Slozka s

Data_Augmer _pycache_ 15.04.2022 17:38 Slozka s
dataset » generated 16.03.2022 10:33 SloZka s
images images 14.04.2022 16:20 SloZka s
output_non_targ input_non_target 14.04.2022 1112 SloZka s
output_target input_target 14.04.2022 1112 SloZka s
p300_exp_outpu output_non_target 14.04.2022 11:29 SloZka s
output_target 14.04.2022 11:28 SloZka s
@ OneDrive - Person training 13.04.2022 21:48 Slozka s
& Tento pocitac venv 06.03.2022 10:57 SloZka s
¥ 3D objekty D .gitignore 06.04.2022 17:23 Textovy
) D config 19.04.2022 9:29 Textovy

Dokumenty
A DataWork 03.04.2022 10:32 Python F

J Hudba

? discriminator 06.04.2022 17:.06 Python F
LS

[&] Obrazky B ... P,

>
Pocet polozek: 23 =

Figure 7.1: Example how to open the Command line in the folder in Win-
dows 10.

5. To install dependencies write this command:

This will install all module into the conda environment.

Now, everything is ready to run the project.

46

Work with Project

Before the project is run, you will need a dataset. A dataset can be down-

loaded on https://dataverse.harvard.edu/dataset.xhtml?persistentld=doi:1

0.7910/ DVN/G9RRLN. There is a file named "VarekaGTNEpochs.mat'.

After downloading, move this file into the folder with the other project files.
The project is run by command:

python main.py

that must be written in a prepared environment.

The project has a lot of parameters in config.txt. There are all paramet-
ers necessary for running the project. Do not delete any flags of parameters.
On the next page is content of config.txt. There are parameters which need
specific values. For example, there are first two parameters which indicates
model which we want to train or used for augmenting. These specific values
are described above each parameter. If there are not described any specific
values, these parameters have no exact limitations. For example, there are
parameters with flags "-tg" and "-ng" which need files with trained GANSs.
Theses files got default name after training but you can renamed them if you
want. Because of it you must here select specific files. Same it is for next two

[

parameters "-p" and "-w" which set two main parameters for augmenting.

"-p" described size of created dataset in percents. "-w" described size of
window in number of samples. Last three parameters have again specific
values. In this case they are only switches whatever or not we want print
examples of generated data during training, print input data or print final
created data.

The training process is marked by flag "-t". This flag have three specific
values. There are described in config.txt below in the first section.

The augmenting process needs five parameters. The first parameter is
"-m" which determines used model. The second and the third parameter are
for path to trained model of GAN. Their flags are "-tg" for target GAN and
"-ng" for non target GAN. The fourth parameter with flag "-p" determines

n

size of augmented dataset. The last parameter "-w" determines size of

averaging window. These parameters are in the middle section page below.

47

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/G9RRLN
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/G9RRLN

This is content of config.txt. There are described all necessary parameters for the project.

Parameters needed for training:

parameter for training of new model 1/2/n

1 - first model

2 - second model

n - without training

-tn

HUHHH R
Parameters needed for augmenting:

model which you want used for augmenting 1/2/n

1 - first model

2 - second model

n - without generating

-mn

file of target GAN for augmenting

-tg target_gan_mk_2.h5

file of non target GAN for augmenting

-ng non_target_gan_mk_2.h5

parameter to determine how much you want augment dataset
#itis set in percents

-p 150

parameter which determines averaging window

-w 1l

HittHH R R
Optimal parameters

saving training progress as images T(True)/F(False)

-eF

save input signals as images T(True)/F(False)

-gi F

save output signals as images T(True)/F(False)

-go T

	Introduction
	Analogue and Spiking Neural Networks
	Tools for Working with Spiking Networks
	NEURON
	Nengo
	NengoDL

	NEST
	PyNN
	Summary

	Data Augmentation
	Noise Addition
	Generative Adversarial Network
	Generative Algorithm
	How GANs Work

	Sampling
	Oversampling
	Undersampling

	Sliding Window
	Without Overlapping
	With Overlapping

	Summary

	Primary P300 dataset
	Chosen dataset
	Used Format of Dataset

	Applications of GAN on P300 Dataset
	Created GANs
	Training of GAN
	Implementation
	Results
	Summary

	Conclusion
	Bibliography
	User Guide
	Setting up the Environment
	Work with Project

