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ABSTRACT 
In this paper, we present a new deep convolutional neural network to classify 2d contours, described by a 

sequence of points coordinates representing the boundary of objects. Several works dealt with this subject, even 

those using learning, but few works use deep learning. This is due to the fact that contours data are very narrow 

and inappropriate for convolution. To enrich this representation, we use curve evolution and consider 

simultaneously a multi-scale representation of a contour. Associated with coordinates, curvature estimated at 

each point is the most used descriptor who can help distinguishing objects. Despite deficiency of large 2d contour 

datasets, required for a convergent learning, the use of several additional techniques, such as data augmentation, 

lead to results outperforming the state of the art. We train ContourNet on MPEG-7 database CE-1 part B, witch 

achieves 100% for Top-1 accuracy rate on MPEG-7 test set, and 91.78% on Kimia216 dataset. 
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1. INTRODUCTION 
Classification and clustering of planar shapes 

described by their contour are of great importance for 

automation of several tasks such as the manufactory 

control (fault detection, automatic assembly), text 

recognition (sorting postal, RADAR control), security 

(digital fingerprints, facial, retinal)…. Given a set of 

planar shapes such as MPEG-7, KIMIA, ANIMAL 

bases, it is desirable to divide them into 

homogeneous groups sharing common 

characteristics, in order to facilitate the retrieval of 

images with similar content. When the number of 

groups is not known, it is a clustering, but when the 

number of groups is known, it is a classification. In 

both cases, it will be necessary to design 

discriminating descriptors making it possible to 

assign the form to a specific group in the first case, 

and to assign a label to a form in the second one. 

Several criteria should be verified by these 

descriptors, namely, invariance according to 

geometric transformations (translation, rotation and 

scale), robustness with respect to noise, occlusion and 

field of view. These descriptors must also be 

quantified and be part of a metric space, allowing 

measurement of similarity between shapes. 

Approaches cited in literature can be divided into 

main categories: category of approaches dealing with 

a single scale of a contour, and category of 

approaches using a multi-scale representation of 

contours.  

In the first category, we can mention works like shape 

context [Bel02], curve edit distance [Seb03], the 

phase of Fourier descriptors [Bar05], the inner 

distance [Lin07], etc. With shape context [Bel02], 

authors introduce a new shape descriptor and a 

similarity distance measure to evaluate likeness 

between shapes. At each point of the shape (reference 

point), a local descriptor is created, based on the 

distribution of all remaining points, with regards to 

reference point. All obtained vectors are then 

embedded in a log-polar space, divided in many bins, 

according to length, and angle between a vector and a 

reference direction. This resulting histogram is called 

shape context descriptor, and used to evaluate 

correspondence between two points on two different 

shapes. Then, authors estimate the transformation that 

best align the two shapes. Distance between two 
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shapes is computed as the sum of matching errors 

between all matched points, added to the magnitude 

of aligning transformation. In [Lin07], Ling use also 

shape context but replace Euclidean distance by 

geodesic distance under some hypothesis to reduce 

computing complexity. This assumptions allow 

method to gain about 9% in accuracy rate, compared 

to original shape context. In [Seb03], Curve edit 

distance is used to estimate similarity of shapes. 

Based on curve length, arc-length parameterization 

and curvature, authors look for the function, from 

functions space, that minimize required energy to 

align curves. This function must satisfy the additivity 

property so that global alignment is the sum of many 

local alignments. Bartolini [Bar05] use phase of 

Fourier descriptors with dynamic time warping to 

compute similarity between shapes. This contribution 

focuses on importance of information contained in 

phase of Fourier coefficients, often neglected in favor 

of amplitude information, to ensure rotation 

invariance of descriptor. Using phase of Fourier 

descriptor makes inappropriate the use of Euclidean 

distance between shapes, thus dynamic time warping 

is well suited to measure similarity between shapes, 

as it allows matching of elastic deformations of a part 

of shapes. Best performances achieved for this 

category of approaches are those of shape context 

with inner distance [Lin07], with error rate of 14.60% 

for MPEG-7 dataset, and 2.63 for Kimia216 dataset. 

Among approaches from multi-scale category, we can 

mention visual parts [Lat00], curvature scale space 

and its derivatives [6,7,8], beam angle statistics 

[Ari03], convexity-concavity multi scale 

representation [Ada04], triangle area representation 

[Ala07], Eigen and Fisher barycenter [Tho09], etc. In 

visual parts contribution [Lat00], Latecki aim to 

measure similarity between 2d shapes, by matching 

significant parts of shapes instead of matching the 

whole shapes. A shape is considered as a union of 

several concave or convex sub parts. The use of 

digital curve evolution is performed by substituting 

two consecutive line segments with a single line 

segment, joining the endpoints of initial segments. 

This contour simplification is done to eliminate noise 

digitization and segmentation errors. Then, each 

shape is represented by a tangent function, which is a 

step function. Similarity measure is deduced by 

computing area difference between tangent function 

of two shapes, after aligning their functions. Another 

contribution, part of current category of approaches, 

is Curvature Scale Space CSS [Mok03]. In this 

contribution, authors consider the normalized arc-

length parameterization of the initial contour, with 

several variants extracted using curve evolution 

process. It consists of smoothing original contour 

shape by Gaussian functions with progressive  

parameter. These successive convolutions eliminate 

gradually points with high absolute value of curvature 

estimated, until reaching a convex shape (ellipse or 

circle in most cases). Shrinkage of evolved contours 

caused by curve evolution process is compensated 

with a motion vector to obtain evolved curves with 

same length as the original contour. CSS image 

descriptor is then obtained as solution of equation 

(µ,) = 0,  is curvature value,  is the curve 

evolution parameter, and µ is the point coordinate. 

To compute similarity between two shapes, authors 

begin by shifting one shape until the two maximum of 

curvature coincides, and retain the sum of Euclidean 

distances between matched maxima. Another 

contribution in this category is the beam angle 

statistics BAS [Ari03]. In this work, a BAS descriptor 

is computed as follow: from each boundary point on 

the shape, a set of beams is considered, linking the 

reference point to all remaining points on the shape. 

Angles between each pair of beams help extracting 

the topological structure of contour. Use of multi-

scale information in this context is realized by 

considering multiple levels of neighbors with a 

function called K-neighborhood. This leads to K-

curvature function, regarded as a random variable. 

The BAS descriptor is a vector of third order 

statistical moments, which is invariant to translation, 

rotation, and scale and insensitive to distortions.  In 

[Ada04], Adamek use curve evolution to generate a 

multi-scale representation of a contour. An estimation 

of convexity/concavity is done on each point of 

contour on original shape and all of its evolved 

versions, and result is a two-dimensional matrix 

descriptor (MCC). Columns of this matrix represents 

contour points while rows represents levels of 

evolution: . A dynamic time warping is then used to 

find the optimal global alignment between contours, 

and measure distance between corresponding shapes. 

In [Ala07], inspired by works on 3D shapes, Alajlan 

al introduce a new descriptor, called TAR, to 

characterize 2D shapes. Unlike previous works, 

where triangle area was normalized by global 

signature, alajlan and al locally normalize signature 

by dividing it by length of hypotenuse triangle. By 

using multiple neighborhood scales, TAR descriptor 

highlights both local and global details, making thus 

higher the discrimination power of shapes. Inspired 

by DTW, authors use a similar technique, called 

Dynamic Space Warping to match starting points of 

two shapes, before measuring similarity. To 

emphasize intuition behind matching, distance 

measurement is divided by a complexity term, which 

is the mean of absolute differences between highest 

and lowest signatures, through all points and all 

scales. Considering global features such as 

circularity, eccentricity and aspect ratio to increase 

discrimination shapes. In [Tho09], authors improve 
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works done in [Seb03], by using barycentric points 

coordinates, instead of original points coordinates of 

the boundary shape, to generate several shapes of the 

contour: making a multi-scale representation. To 

ensure invariance to reflection and starting point, a 

phase normalization of descriptor is realized on 

spectral domain, giving a matrix N*M, where N 

represent points number and M represent scales 

number. Then, a linear discriminant analysis is 

processed on Fisher matrix to reach final descriptor. 

The remainder of this paper is organized as follow: in 

Section II, we introduce convolutional neural 

networks architecture, their components, and some of 

the most famous ones in literature, mainly works 

dealing with contours. In Section III, we describe 

datasets used in this work, and how we preprocessed 

their contents. Section IV contains proposed 

architecture, hyper parameters settings and details of 

learning. Results and discussion will be in Section V 

and VI, and we conclude with some future works in 

Section VII. 

2. RELATED WORKS 
Since 2012, and with the advent of deep learning, as 

well as the impressive results it achieves, we thought 

about applying these solutions to the classification of 

plane contours. Convolutional neural networks have 

proved their capability to solve complex tasks such as 

segmentation, detection and clustering and labeling. 

A CNN is an artificial neural network with several 

hidden layers. To overcome the huge number of 

parameters included, and who increases dramatically 

each time a layer is added, convolution has been 

used. Unlike fully connected layers, where each 

neuron in layer j is connected to all neurons in the 

previous layer j-1, convolutional layers take the form 

of a stack of small-scale filters. Therefore, the input 

of a neuron is no longer equal to the weighted sum of 

all neurons in the previous layer, but it is equal to the 

weighted sum of a narrow neighborhood surrounding 

the affected neuron. In addition, the sharing of 

parameters results in a modest number of them. As 

cited above, these models can fit linear functions with 

millions of parameters, but it remains inefficient 

when applied to complex data. Therefore, non-

linearity was introduced to expand functions space 

covered by CNN approximations. Moreover, it makes 

sense to go through depth. From layer to layer, CNNs 

learn more and more complex discriminant features, 

leading to better results in classification. Activations 

functions used to introduce non linearity in CNNs are 

of two types, saturating functions and non-saturating 

functions. The former translate neuron’s information 

inside a bounded interval and the latter inside 

unbounded one. To further reduce number of 

parameters, a pooling operation is convenient. It 

replaces each bloc of neurons with fixed size, by one 

neuron containing value extracted from the others. 

Applied inside a convolutional layer, it reduces 

output parameters number by a scale factor of four, at 

least. The first deep architecture proposed was 

AlexNet [Kri12]: an eight-layer neural network 

alternating convolution, pooling, and fully connected 

layers. AlexNet was used to label over than one 

million marked images and reach better performances 

of the time. Many improvements of accuracy were 

proposed within ZFNet [Zei14], VGG [Sim14], 

GoogLeNet [Sze15], etc. 

Using CNN to classify 2D forms datasets, such as 

MPEG-7, Animal or Leaf, focusing on boundary 

information, and ignoring color and texture 

information, was first introduced in [Ata16]. This 

work uses binary images to learn BSCNN, composed 

of three convolutional layers and one fully connected 

layer, leading to a Softmax layer for final 

classification. Many data augmentation ways were 

used to improve its accuracy rate, which achieve on 

MPEG-7 dataset, 98.99 on TOP-1 metric, and 99.76 

on TOP-5 metric. 

In [Zha21], another architecture of CNN was 

introduced and called SCN, aiming to be more 

general by classifying forms from different datasets. 

SCN is composed of four convolutional layers, and a 

fully connected layer. After the third convolutional 

layer, one de-convolution layer was inserted. To 

overcome changes of data distribution within 

network, and speed up learning, a batch 

normalization layers were added to SCN. To increase 

data amount and improve learning process, data 

augmentation was used. Accuracy rate achieved by 

SCN, according to TOP-1 metric is 90.99 % on 

MPEG-7 dataset. 

The first CNN used to classify boundary data shapes 

[Dro20] is called ContourCNN. Authors consider 

both Cartesian and polar representations for training 

their system. They combined circular convolution 

layers and priority pooling layers with two dimension 

space representation. Circular convolution help 

system to highlight circularity of contour points 

regardless of abstract representation of these points. 

Priority pooling layers do not remove points in a 

regular manner, but iterates on them until having a 

fixed size. ContourCNN is composed of three circular 

convolution layers, three priority pooling layers, and 

one global average pooling layers, connected to two 

fully connected layers used for classification. 

Because of poorness of datasets like MPEG-7 and 

Animal, authors have tested ContourCNN on 

EMNIST dataset, and achieve an accuracy rate less 

than 97%. However, considerations made by authors 

does not seem to be contribution in contour 

classification for these reasons: 1) Circular 
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convolution layer can simply be replaced by padding, 

2) priority pooling do not make improvements with 

contour data since quantity of data is weak, 3) 

benchmark used to test robustness is EMNIST 

dataset, and we do not know performances on famous 

datasets, such as MPEG-7, Kimia, etc. 

3. DATASET, COORDINATE SYSTEM 

AND CNN 
In this paper, we aim to design a CNN to classify 

MPEG-7 CE-SHAPE-1 part B objects. This dataset is 

one of the most used benchmarks to compare 

performances of classification techniques. It contains 

images of seventy class of shapes, each class has 

twenty different objects, resulting in 1400 images. An 

overview of all these classes, and a sample of objects 

of some classes are illustrated in figures Fig.1 and 

Fig.2. 

 

Fig. 1 : MPEG-7 class objects. 

 

Fig. 2 : MPEG-7: some forms of some classes. 

As we are concerned with system coordinates, we 

extract boundary from image object, and apply a 

natural normalized arc-length parameterization to get 

coordinates of N points forming contour. To preserve 

details of all shapes, we use a value of N=100. Then, 

each contour is represented by N*3 matrix: first 

column is x-coordinate, second column is y-

coordinate, and third column is curvature estimated 

on this point. On one point of the curve, curvature 

describes how much curve direction varies over a 

small distance. It was used to construct invariant 

descriptors such as CSS [Mok03], CED [Seb03], 

BAS [Ari03], etc. So we add curvature information to 

improve discriminating power of our recognition 

system. 

To see how CNN can perform a classification task on 

MPEG-7 dataset, we begin with the simplest way 

considerations. We design a CNN with only one 

convolutional layer, and three fully-connected layers. 

Experiments show that 256 filters in the first layer 

lead to better accuracy rates, compared to other filter 

numbers. 

To overcome the small number of objects used for 

training, we use data augmentation. It is a label-

preserving technique, allowing generation of new 

objects, obtained from initial ones, by applying 

rotations using angles of /4, /2, 3/4, , 5/4, 3/2 

and 7/4. This technique improve robustness of CNN 

and let it learn objects in different positions and 

orientation. Finally, our dataset is composed of 11200 

contours of seventy class object, each class have 160 

contours. We split then dataset to train set and test set 

using proportions of 70% and 30%.  

Training CNN with various learning rates until 30 

epochs show that optimal learning rate is 5 10-3, 

according to Fig. 3. 

 

Fig. 3 : Choosing appropriate learning rate according 

to TOP-1 metric. 

Recognition rate obtained with this CNN according 

to TOP-1 (resp. TOP-5) is very low: 10.71% (resp. 

26.79%) after six epochs of training, and remain the 

same even with 30 epochs. To perform this rates, we 

added a batch normalization layer, after the 
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convolutional layer of our CNN. Theoretically, this 

layer attenuates effects of gradient instability, by 

standardizing and normalizing output of the previous 

convolutional layer. By adding batch normalization, 

Top-1 accuracy rate increases by 3.28%, Top-5 

accuracy rate increases by 5.56%, both on test set. 

 

Fig. 4 : Impact of BN use on our CNN. 

Figure Fig. 4 compares accuracy rates Top-1 and 

Top-5 for CNN with and without BN layer. 

Despite slightly improving Top-1 and Top-5 accuracy 

rates, batch normalization negatively affects CNN 

stability. In fact, comparing accuracy rates of our 

CNN without and with BN, on noisy data generated 

from initial data by adding a Gaussian noise, show 

that CNN without BN learn better than CNN with 

BN. 

With obtained results, it seems that CNN with one 

convolutional layer are very weak to classify contours 

of MPEG-7 images, and it is recommended to use 

more deep architectures. The problem arising with 

this idea is the shallowness of data representation. In 

fact, with convolution filters of size 3*3 in the first 

layer, its output is a one-dimensional vector, on 

which we cannot apply more convolutions. To defeat 

this drawback, we use curve evolution [6, 18]. 

4. CONTOURNET 

Curve Evolution & Data Representation 

Curve evolution is a technique allowing generation of 

several new curves, obtained from original one, by 

smoothing it with Gaussian function. Evolving a 

given curve with Gaussian function with  parameter, 

try to smooth it by eliminating some salient point. 

Applying successive evolutions to a curve lead finally 

to a convex curve without salient points. 

Mathematically, it consists of convolving initial curve 

with a Gaussian function. Evolution process example 

is shown in Fig. 5. 

The problem of choosing appropriate  values is far 

from being resolved. At the beginning, Mokhtarian 

and Bober [Mok03] chose a regular range to evolve a 

curve and stop when curve become completely 

convex. Ben Khlifa and Ghorbel [7,8] introduce 

different discretization of  value space. 

By experiments, we find that using a regular range 

from 1 to max = 60, leads to convex curves for all 

shapes we study. Using curve evolution process, a 

contour from MPEG-7 dataset will be represented by 

initial contour, concatenated to evolved versions of it. 

So, input to our CNN will be a 100*(3*61) matrix. 

Preprocessing process in mentioned in Fig.6. Such 

representation is very more dense and appropriate for 

applying convolution, and allowing us to go deeper 

with CNN. 

 

    

    

 

    

   
 

Fig. 5 : Evolution process with  = 1, 2, 3, 4, 10, 20, 

30, 40. 

ContourNet 

To design a CNN architecture, we need to decide 

about all of its hyper parameters: number of layers, 

number of filters in each layer, learning rate, etc. We 

used cross validation to define optimal number of 

layers of our CNN. Since CNN with one 

convolutional layer don’t lead to good performances, 

we studied architectures with two convolutional 

layers. The table in Fig. 7 illustrates mean validation 

error with different number of filters. This table 

shows that architecture with 256 filters in the first 

layer and 96 filters in the second layer has the best 

qualification, regarding all studied architectures, to 

learn features from our dataset. 

ContourNet Architecture 

ContourNet is composed of two convolutional layers 

with respectively 256 and 96 filters, and three fully-

connected layers. Besides convolution, the two first 

layers are using a ReLU function to introduce a non-

linearity on data, and followed by a Max-Pooling 

operation, to keep important information while 

reducing data volume. 
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Fig. 6 : Preprocessing data for training. 

 64 96 128 160 192 224 256 

64 25.24 28.24 31.25 43.18 50.83 78.78 74.49 

96 22.42 24.75 26.53 29.92 37.79 71.88 67.90 

128 21.12 21.89 22.64 26.96 32.17 38.15 48.61 

160 18.90 19.43 21.30 22.26 24.25 28.11 29.11 

192 19.30 20.14 19.22 21.12 22.05 28.20 30.48 

224 19.12 20.78 20.94 19.31 20.80 22.42 25.87 

256 18.66 18.13 19.32 19.72 19.77 21.06 27.58 

Fig. 7 : Mean validation error Top-1 on two 

convolutional layers architectures. 

Our goal is to find discriminant features in initial 

contour or in one of its evolved version, that’s why 

we set a filter size of 3*3. In the first layer of 

ContourNet, filters have size of 3*3, with a stride of 

3. According to this configuration, each filter tries to 

learn discriminant features in the initial contour or in 

smoothed versions of it. On the convolution result, 

we apply a ReLU function and a max pooling using a 

bloc size of 2*2. Output of the layer is introduced to 

the second layer. In the second layer, filters have a 

size of 3*3, with unitary stride. This layer attempt to 

learn nonlinear combinations of features learned in 

the first layer. Output is then reshaped and delivered 

to the classification part of our network. 

Classification part of ContourNet contain three fully 

connected layers with respective size of 192, 128 and 

70. Figure Fig. 8 shows ContourNet architecture. To 

guarantee circularity of contour data, we use  padding 

by adding the last point to the beginning, and the first 

point to the end, that’s why number of lines of an 

input is 102. 

 

Fig. 8 : ContourNet architecture. 

 

Learning Details 

To train ContourNet, we use stochastic gradient 

descent with various learning rate within several 

epochs. Weights in all layers were initialized from a 

normal distribution. Training and tests were carried 

out on an i7-7700 processor machine, with an 

NVIDIA GeForce GT 730. 

5. EXPERIMENTS 
To evaluate ContourNet performances, we use a test 

set containing 3360 contours, extracted randomly 

from MPEG-7 dataset. To evaluate generalization of 

ContourNet, we use Kimia216 shapes, as all of them 

exist in MPEG-7 dataset. To evaluate stability of 

ContourNet, we also use a set of 1400 contours, 

obtained by adding a normal Gaussian noise to 

original dataset. We use Top-1 and Top-5 metrics to 

measure error rate. 

Among learning rate values tested, a learning rate of 

10-3 has best effect on learning process. It is shown in 

figure Fig. 9 that with this rate, ContourNet needs 

only two epochs to achieve 100% of recognition. 

 

Fig. 9 : Top-1 recognition rate with different learning 

rates. 

Using 5*10-4 as learning rate, performances achieved 

are not far from those obtained with 10-3. It took four 

epochs before achieving 100% of recognition.  

Except for these two rates mentioned above, learning 

process is not monotone and show fluctuations when 

epochs increases. With learning rate of 10-2, 

recognition rate of ContourNet exceed 96%, decrease 

to 92% and then reach 100% of recognition after four 

epochs. With learning rate of 5*10-3, recognition rate 

of ContourNet exceed 99.5%, decrease to 98% and 

then reach 100% of recognition after seven epochs. 

As we can see, performances gap between learning 

rates is not large enough, that’s why we need to study 

generalization of ContourNet. 

Kimia216 is a dataset containing eighteen object 

classes, each class has twelve images. All classes in 

Kimia216 are also part of MPEG-7 dataset. With data 

augmentation, we create a dataset containing common 
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classes in MPEG-7 and Kimia, composed of 1728 

shapes, each class is represented by 96 shapes. Using 

labels of MPEG-7 classes, we tested these shapes on 

ContourNet. Results shows that training ContourNet 

with 10-2 learning rate, for six epochs, only through 

7840 inputs, lead to an architecture with 100 % 

recognition rate on MPEG-7 test set, and 92.53 % 

recognition rate on Kimia classes object (129 

misclassified shapes among 1728). Using 5 10-3 

(resp. 10-3 and 5 10-4) as learning rate, the best 

recognition rate reached is 83.56 % (resp 59.60 % 

and 55.28 %). Fig. 10 illustrates these results. 

 

Fig. 10 : ContourNet Tests on Kimia dataset. 

On noised dataset we use, we notice that using 10-2 as 

learning rate, give the most stable architecture, 

compared with others ones. Fig. 11 shows that this 

architecture achieves a recognition rate of 97.5% on 

noisy data, while a learning rate of 5*10-3 (resp. 10-3 

and 5*10-4) cannot exceed 86% (resp. 65% and 60%). 

 

Fig. 11 : ContourNet stability. 

Experiments above show that with a CNN with two 

convolutional layers, containing 256 and 96 filters, 

followed by three full-connected layers, and using a 

learning rate of 10-2 for five epochs, is an architecture 

who outperforms the stat-of-the-art on MPEG-7 CE-

SHAPE-1 part B object classification. In Fig. 12 we 

dress a comparative results of ContourNet, with other 

works from state of the art on MPEG-7 dataset 

classification. 

6. DISCUSSIONS 
To understand more what ContourNet was learning, 

we study shapes from Kimia with which our 

architecture fails. We notice that all 96 shapes from 

bone, glass, heart, misk, camel, car, children, face, 

fountain and ray classes are wholly recognized. Bird 

class has 28 misclassified shapes, classic car class has 

8 misclassified shapes, elephant class has 5 

misclassified shapes, fork class has 40 misclassified 

shapes, hammer class has 8 misclassified shapes, key 

class has 32 misclassified shapes and turtle class has 

8 misclassified shapes. The eight misclassified classic 

cars were all predicted as jar, corresponding objects 

have some similarity in their shapes. The five 

misclassified elephants were all predicted as turtle, 

corresponding objects have also some similarity in 

their shapes. The thirty-two misclassified keys were 

all predicted as guitar, and corresponding shapes are 

also similar. The eight misclassified turtles were 

predicted as beetles but corresponding shapes are not 

similar (see Fig. 16). For the remaining classes, 

prediction was various for each class. For the twenty-

eight misclassified birds, eight were predicted as frog, 

eight were predicted as chicken, eight were predicted 

as fork, and four shapes were predicted as elephant 

(see Fig.13). For the eight misclassified hammers, 

three shapes were predicted as carriage, and five 

shapes were predicted as rat (see Fig 14). The worst 

class in prediction was the fork class, with forty 

misclassified shapes. One shape was seen as a bone, 

one other shape was seen as an lm fish, three shapes 

were predicted as misk, four shapes were seen as cup, 

five shapes were seen as hammers, seven shapes were 

predicted as shoppers, eight shapes were seen as 

spring and eleven shapes were considered as a lizard 

(see Fig.15) . We illustrate in Fig. 13, Fig. 14, Fig. 15 

and Fig. 16 some misclassified shapes from 

Kimia216, and their corresponding prediction. 

Approach Retrieval Accuracy Rate (%) 

WARP [Bar05] 58.50 

VP [Lat00] 76.45 

CED [Seb03] 78.17 

CSS [Mok03] 81.12 

BAS [Ari03] 82.37 

MCC [Ada04] 84.93 

IDSC [Lin07] 85.40 

SCN [Zha21] 90.99 

FBcC [Tho09] 95.50 

ContourNet 100.00 

Fig. 12 : ContourNet Performances comparison. 

 We observe also that in most cases, the number of 

misclassified shapes for one class, represent the same 

shape with multiple rotations applied. For the bird 

ISSN 2464-4617 (print) 
ISSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3201 WSCG 2022 Proceedings

https://www.doi.org/10.24132/CSRN.3201.15 125



class for example, the misclassified shapes were 

composed of three original shapes and their rotated 

objects for seven rotation angles, which is equal to 24 

shapes. The remaining four shapes were predicted as 

belonging to elephant class. 

Shape to 
predict (bird) 

Sample from predicted class frog (1st row) + chicken (2nd row) 

 

 

  

    

Fig. 13 : ContourNet misclassified prediction on bird 

objects. 

Shape to 
predict 

(hammer) 

Sample from predicted class carriage (1st row) + personal car (2nd 
row) 

    

    

Fig. 14 : ContourNet misclassified prediction on 

hammer objects. 

Shape to predict (fork) 

    
Shape prediction 

    

lizzard chopper spring hammer 

Fig 15 : ContourNet misclassified prediction on fork 

objects. 

7. CONCLUSION & FUTURE WORKS 
In this paper, we presented a new convolutional 

neural network, called ContourNet, to label contours 

of MPEG-7 dataset. To be convenient with 

convolution, we apply a curve evolution on initial 

contours to generate other versions of same objects. 

A data augmentation technique was used to enrich 

dataset, based on height angle rotations. A validation 

step was used to specify optimal hyper parameters to 

conceive ContourNet. We tested our architecture on 

both MPEG-7 test set and a noisy version dataset and 

Kimia dataset, and shows that it performs models 

used in the state of the art. 

Personal car elephant key turtle 

    
Shape prediction 

   
 

lizzard chopper spring hammer 

Fig. 16 : ContourNet misclassified prediction with 

only one class objects. 

As a future work, we are thinking about extending 

this approach to 3D shapes, and how to overcome the 

fact that R3 is unordered space. Using auto-encoders 

to label contours is another track to explore, by 

avoiding supervisor need. More attention will be paid 

on how to choose scales for curve evolution. 
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