
Estimation of mitral valve hinge point coordinates - 
deep neural net for echocardiogram segmentation 

 

Christian Schmidt 

Westfälische Hochschule – 
University of Applied Sciences 

Medical Engineering Laboratory 

Neidenburger Str. 43 
45897 Gelsenkirchen, Germany 

christian.schmidt@w-hs.de 

Heinrich Martin Overhoff 

Westfälische Hochschule – 
University of Applied Sciences 

Medical Engineering Laboratory 

Neidenburger Str. 43 
45897 Gelsenkirchen, Germany 

heinrich-martin.overhoff@w-hs.de 

 

ABSTRACT 

Cardiac image segmentation is a powerful tool in regard to diagnostics and treatment of cardiovascular diseases. 
Purely feature-based detection of anatomical structures like the mitral valve is a laborious task due to specifically 
required feature engineering and is especially challenging in echocardiograms, because of their inherently low 
contrast and blurry boundaries between some anatomical structures. With the publication of further annotated 
medical datasets and the increase in GPU processing power, deep learning-based methods in medical image 
segmentation became more feasible in the past years. We propose a fully automatic detection method for mitral 
valve hinge points, which uses a U-Net based deep neural net to segment cardiac chambers in echocardiograms in 
a first step, and subsequently extracts the mitral valve hinge points from the resulting segmentations in a second 
step. Results measured with this automatic detection method were compared to reference coordinate values, which 
with median absolute hinge point coordinate errors of 1.35 mm for the x-  (15-85 percentile range: [0.3 mm; 
3.15  mm]) and 0.75 mm for the y- coordinate (15-85 percentile range: [0.15 mm; 1.88 mm]). 
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1. INTRODUCTION 

According to the World Health Organization (WHO), 
17.9 million people died from cardiovascular diseases 
(CVDs) in 2019, which is 32% of all global deaths. 
Advances in medical imaging significantly improved 
the process of diagnostics and treatment of CVDs over 
the past years, with cardiac image segmentation 
playing an important role.  

Cardiac image segmentation is the process of 
partitioning an image by assigning a label to each pixel 
of the image in such a way, that pixels of a certain 
anatomical structure share the same label. Anatomical 
and functional parameters such as left ventricle (LV) 
volume, left atrium (LA) volume, ejection fraction and 
mitral valve (MV) dimensions can be determined 
using segmented images.  

Direct segmentation of the two mitral valve leaflets 
(MVLs) with purely feature-based algorithms often 
fails, because of low contrast in echocardiograms or 
lack of visualization of both MVLs at the same time, 
which is common in clinical settings. Therefore, we 
propose to assess MV hinge point coordinates by 
using deep learning (DL) segmentations of the LV and 
LA. In 2019 Leclerc et al. [Lec19] published the 
Cardiac Acquisitions for Multi-structure Ultrasound 
Segmentation (CAMUS) dataset in conjunction with 
an image segmentation challenge 
https://www.creatis.insa-lyon.fr/Challenge/camus/. 
This is to our knowledge the first large-scale, publicly 
available transthoracic echocardiography (TTE) 
dataset, which includes ground truth segmentations of 
the LV and LA.  

In this paper, we use the CAMUS dataset (Fig. 1, 
Fig.  2) to segment the LV and LA in apical four (a4c) 
and two-chamber views (a2c) in a first step, and in a 
second step extract the mitral valve diameter and 
hinge point coordinates from the resulting 
segmentation.  

To the best of our knowledge, this is the first attempt 
of DL-based mitral valve measurement in 
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transthoracic four- and two-chamber view 
echocardiograms.  

2. RELATED WORKS 

Conventional machine learning techniques, e.g., 
active shape and atlas-based models [Okt14; Tav13], 
showed good performance in cardiac image 
segmentation, but rely on user-based, manual feature 
extraction.  

In recent years, with the increased availability of high-
performance GPUs and more access to image training 
data, deep learning (DL) models, which automatically 
learn features from image data, have outperformed 
conventional machine learning techniques.  

These DL segmentation approaches mainly consist of 
encoder-decoder convolutional neural networks 
(CNN), in particular fully convolutional networks 
[Lon15] and the U-Net architecture [Ron15], using 
ResNet [HeK16], Inception [Sze15] or VGG [Sim15] 

as popular encoder backbones, as these have 
performed best in the field of medical image 
segmentation.  

TTE is the most commonly performed imaging 
examination in cardiology, due to the fact that it is 
non-invasive, has low cost and high accessibility, yet 
up to 80% of annual publications between 2016 and 
2019 [Che20] on DL-based cardiac image 
segmentation worked with magnetic resonance 
imaging (MRI) data [YuL17; Wol17], mainly because 
of larger dataset availability. Computer tomography 
(CT) [Zre15; Ton17] and echocardiography [Zha18; 
Smi17], despite their clinical importance, only played 
a subordinate role due to the lack of annotated 
datasets. 

As for MV measurement in particular, in clinical 
practice, MV dimensions are either manually obtained 
by a user manually selecting points on frozen frames 
throughout the cardiac cycle [Gar15; Dwi14] or by 
semi-automatic segmentation. E.g., [Pou12] proposes 
an MV morphometry method, which requires user 
initialized selection of a region of interest and 
anatomical landmarks followed by feature-based 
contour segmentation. 

Further feature-based (semi)-automatic methods for 
MV assessment often require vendor-specific 
software for analysis. In addition, they have high 
computational run times and have only been assessed 
in single-center studies with small patient numbers 
and little variety in MV conditions [Nol19]. 

Figure 2. Ground truth annotation of the LV and 
LA in a4c image (left), overlay of the annotation 
on the original echocardiogram (right). 

Figure 1. Exemplary labelled TTE of the CAMUS dataset in a4c (left) and a2c view (right), showing the 
ventricles (LV and RV), atria (LA and RA) and the mitral valve (MV).   
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3. PROPOSED SOLUTION 
3.1 Dataset 
The CAMUS dataset includes 450 annotated patient 
sub-datasets consisting of TTE apical four- and two-
chamber views. Each patient sub-dataset consists of 
one cardiac cycle per view, but ground truth 
segmentations are only provided at the image frames 
at end-diastole (ED) and end-systole (ES). Image sizes 
vary, in a range between 400 x 700 pixels and 
700 x 1000 pixels, with a spatial grid resolution of 
0.3 mm along the x- and 0.15 mm along the y-axis. 
The dataset includes images of various acquisition 
settings, e.g., resolution, image contrast and 
transducer angle. Furthermore, some images are not 
properly centered, therefore certain anatomical 
structures (ventricles, atria) are potentially not fully 
visible on them. No further data selection or 
preprocessing has been performed. This results in a 
heterogeneous dataset, which is a realistic 
representation of data acquired in clinical practice. 

Manual delineation of the LV, LA, and epicardium 
was performed by a cardiologist using a defined 
segmentation protocol. In particular, the LV 
delineation contour was to be terminated at the points 
where the MVLs are hinging. Epicardium annotation 
is not relevant to mitral valve measurement and is 
therefore not considered in this work.  

3.2 Training the segmentation model 

We introduce a two–step method for estimating MV 
hinge point coordinates. This method uses a deep 
learning algorithm for segmentation of the left 
ventricle and left atrium and subsequent feature-based 
image processing for the estimation of MV hinge point 
coordinates. 

Step 1: deep learning segmentation algorithm 

Since [Lec19] demonstrated that the U-Net 
architecture showed slightly better segmentation 
accuracy on the CAMUS dataset than more 
sophisticated encoder-decoder networks, a U-Net with 
the VGG16 backbone was used to train our model. 
Model training was implemented in Python version 
3.7.7 using Tensorflow 2.0.0 in conjunction with the 
Keras API. The Adam optimizer [Kin14], a learning 
rate of 10-3 and the categorical cross-entropy loss 
function were used for training. No data augmentation 
was performed on the dataset.  

450 patient sub-datasets were divided into three 
groups, 350 for training, 50 for validation, and 50 for 
testing, a roughly 80%/10%/10% split. Model training 
and validation were performed on an NVIDIA 
GeForce RTX 2060 and ran for 50 epochs, after which 
the validation accuracy stagnated or dropped, and 
training was terminated to avoid overfitting (Fig. 3). 
As a result of this first step, image pixels are assigned 

to the left ventricle (LV), left atrium (LA), and 
background.  

3.3 Extraction of mitral valve hinge points 
Step 2: feature-based hinge point extraction 

A purely feature-based algorithm for mitral valve 
detection, which uses e.g., thresholding, edge-
detection, or histogram methods, is likely to perform 
insufficiently in regions of low pixel grayscale 
gradients, and thus does not detect both MVLs 
reliably.  

In numerous clinical cases, anatomical structures are 
not clearly visible on echocardiograms, due to low 
image contrast and blurry boundaries between 
anatomical structures.  

Figure 3. Dice coefficient of the left ventricle and 
left atrium for the validation dataset, training was 
stopped after 50 epochs. 

Figure 4. Apical four-chamber view (a4c) at end 
diastole (ED). The intersecting line between image 
plane and anterior mitral valve leaflet (aMVL) is 
clearly visible, whereas the posterior leaflet 
(pMVL) is barely visible.  
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In particular, MVLs are hardly distinguishable from 
the background in many cases (Fig. 4).  

Therefore, we use the DL-generated segmentations of 
a4c- and a2c echocardiograms (see section 3.2) to 
estimate MV hinge point coordinates. Figure 5 gives 
an overview of the individual steps in our proposed 
method. 

According to the contouring protocol in [Lec19], the 
LV contour was to be terminated in the MV plane, at 
the MV hinge points. Using the resulting contact line 
between LV and LA segmentation (Fig. 5c), we define 
the anteriormost point of the contact line as the 
anterior mitral valve leaflet (aMVL) and the 
posteriormost point of the contact line as the posterior 
mitral valve leaflet  (pMVL).  

This second step results in x- and y-coordinates for the 
aMVL and pMVL.  

3.4 Evaluation Metrics 
The segmentation CNN in combination with the 
following MV hinge point extraction, is to be 
considered as a measurement tool for the pixel-
coordinates of the MV hinge points. In this method, 
each measurement �̂� is determined by  

�̂� = 𝑧 + ∆�̂� = 𝑧 + ൫∆𝑧̂(ୠ୧ୟୱ) + 𝑒(௭̂)൯ 

where 𝑧 is the true value, ∆�̂�(ୠ୧ୟୱ) the systematic error 
and 𝑒(௭̂) the random error (DIN 1319-1/ISO 11843-1). 
Typically, a normal distribution of errors ∆𝑧̂ is 
assumed and characterized by its mean µ and standard 
deviation σ. To assess the normality of our error 
distributions, we performed Shapiro-Wilk tests for ∆�̂� 
data series of each subgroup (∆𝑥ොୟ୑୚୐, ∆𝑦ොୟ୑୚୐, 
∆𝑥ො୮୑୚୐, ∆𝑦ො୮୑୚୐).  

Figure 5. Overview of the proposed method: The original echocardiogram (a) is first segmented, using the 
CNN. The resulting contact line (c) between the segments of left ventricle and left atrium (b) is then used to 
extract the mitral valve hinge points (d). 

Figure 6. Sorted hinge point coordinate errors [px] before (left) and after (right) calibration of the systematic 

error ∆𝒛ො(𝐛𝐢𝐚𝐬) = ቄ∆𝒙ෝ𝐩𝐌𝐕𝐋
(𝐛𝐢𝐚𝐬)

, ∆𝒚ෝ𝐩𝐌𝐕𝐋
(𝐛𝐢𝐚𝐬)

, ∆𝒙ෝ𝐚𝐌𝐕𝐋
(𝐛𝐢𝐚𝐬)

, ∆𝒚ෝ𝐚𝐌𝐕𝐋
(𝐛𝐢𝐚𝐬)

ቅ. The blue vertical lines in the right diagram show the 

15th and 85th percentiles, which are evaluated in the results section. 
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These tests resulted in p-values of p < 0.05 for all but 
one data series, thus the assumption of normal 
distribution is rejected.  

Therefore, we characterize the distributions by their 
15-, 50- (median), and 85-percentiles instead, as 
equivalents to µ  σ, µ and µ  σ. 

To account for systematic errors ∆𝑧̂(ୠ୧ୟୱ) and 
subsequently only evaluate random errors 𝑒(௭̂), 

median deviations ∆𝑧̂(ୠ୧ୟୱ) (∆𝑥ොୟ୑୚୐
(ୠ୧ୟୱ), ∆𝑦ොୟ୑୚୐

(ୠ୧ୟୱ), 

∆𝑥ො୮୑୚୐
(ୠ୧ୟୱ), ∆𝑦ො୮୑୚୐

(ୠ୧ୟୱ)) are subtracted from measured 
values �̂� (calibration). We then evaluate the 15-85 
percentile range of calibrated values. (Fig. 
6).Calibrated, random x- and y- coordinate errors of 

the aMVL and the pMVL 

(𝑒ୟ୑୚୐
௫ො , 𝑒ୟ୑୚୐

௬ො
, 𝑒୮୑୚୐

௫ො , 𝑒୮୑୚୐
௬ො ) will be evaluated 

individually.  

In addidition, the segmentation accuracy of the CNN 
as well as the resulting MV diameters will be 
evaluated.  

4. RESULTS 

4.1 Chamber segmentation accuracy 
To evaluate the segmentation accuracy of our 
network, we use the Dice Coefficient (D).  

Table 1. Dice Coefficients of LV U-Net 
segmentation. 
 

The combined Dice Coefficient of all LVs (at ED and 

ES) is DLV = 0.923, with segmentations at ED 
performing slightly better than at ES (DLV_ED = 0.931, 
DLV_ES = 0.915). Unlike the procedure described in 
[Lec19], we did not perform any post-processing (e.g. 
connected component analysis) on the segmentation 
result, yet are still in line with their best U-Net 

 DLV_ED DLV_ES 

proposed 0.931 0.915 

[Lec19] 0.939 0.916 

Figure 7. Sorted ground truth and predicted MV diameters (mm) before (left) and after (right) calibration
of the systematic error ∆𝒛ො(𝐛𝐢𝐚𝐬). The predicted MV diameters were systematically underestimated by 13.8%.

Figure 8. Boxplot diagrams of hinge point coordinate errors ∆𝒙ෝ𝐚𝐌𝐕𝐋, ∆𝒚ෝ𝐚𝐌𝐕𝐋, ∆𝒙ෝ𝐩𝐌𝐕𝐋, ∆𝒚ෝ𝐩𝐌𝐕𝐋 [px] of a4c, 
a2c images at ES and ED before calibration. 
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segmentation accuracy (DLV_ED = 0.939,  DLV_ES = 
0.916).  

4.2 Mitral valve annulus diameter 
Our experimental measurements of the MV annulus 
diameters (Table 1) lie well within the range of 
empiric MV measurement data. E.g., in [Dwi14], 5-95 
percentile ranges for the mitral annulus diameter of 
22-38 mm are stated for women and 25-41 mm for 
men. 

While median diameter estimations for a2c images 
and a4c images (Table 2) at ED conformed well with 
ground truth values, a significant systematic 
estimation bias was observed in a4c images at ES. 
Here, the median diameter was underestimated by 
13.8% (Fig. 7). This systematic error can also be seen 
in the individual hinge point coordinates in section 
4.3. 
 

 predicted ground truth 

a4c-ED 27.9 mm 28.8 mm 

a4c-ES 24.4 mm 28.3 mm 

a2c-ED 31.3 mm 31.7 mm 

a2c-ES 26.3 mm 26.1 mm 

Table 2. Predicted and ground truth median MV 
annulus diameter values a2c and a4c views at ES 
and ED. 
 

4.3 MV hinge point coordinates 
Evaluation of individual hinge point coordinate errors 
(Fig. 8) shows further systematic estimation errors 
∆𝑧̂(ୠ୧ୟୱ). Since both the anterior and posterior hinge 
points are estimated too far inwardly (medial) in a4c 
view at ES, the corresponding underestimation in 
diameters (see section 4.2) is explained. 

Figure 9 displays the individual systematic errors 
∆𝑧̂(ୠ୧ୟୱ) for the aMVL- and pMVL hinge point of each 
view type. The coordinate estimation is, on average, 
biased towards the bottom (0.5 mm) and the right (0.3 
mm). The estimation accuracy in terms of absolute 
coordinate error distance in mm was much lower for 
the x- compared to the y-coordinate, as can be seen in 
Table 3.  

This is almost fully explained by the spatial resolution 
of the images, which is 0.3 mm along the x- and 0.15 
mm along the y- axis, as described in section 3.1.  

This results in absolute median coordinate errors of 
1.35 mm for all x-coordinates and 0.75 mm for all y- 
coordinates. When comparing the median of absolute 
error distances median൫ห𝑒(௭̂)ห൯ of the different views 
(a4c-ED, a4c-ES, a2c-ED, a2c-ES), estimation 
accuracy was approximately equal in the four 
subgroups. 

4.4 Impact of off-center images 
Looking at the correlation plot (Fig. 10) between 
predicted and ground truth xaMVL, xpMVL coordinates of 
the MV hinge points in a4c views, a subdivision of 
data points into two groups can be observed. We 
suspect this is likely due inaccurate centering of the 
displayed portion of the a4c view. Since most of the 
misaligned, atypical a4c images are heavily centered 
on the LV (Fig. 11), the LA is not properly displayed, 
which leads to lower segmentation accuracy and thus 
higher estimation errors of the MV hinge point 
coordinates. No similar phenomenon of data 
subdivision was observed in hinge point coordinates 
in a2c view. 

Figure 9. Systematic errors ∆𝒛ො(𝐛𝐢𝐚𝐬) [px] of each 
individual subgroup (a4c-ED, a4c-ES, a2c-ED, 
a2c-ES). On average (marked by blue x) hinge 
points are estimated about 0.3 mm too far posterior 
(in the image: right) and about 0.5 mm too far 
cranial (in the image: down). 

Table 3. Results of hinge point estimations [mm]. In addition to the signed 15-85 percentile ranges of 

𝒆(𝒛ො) (𝒆𝐚𝐌𝐕𝐋
𝒙ෝ , 𝒆𝐚𝐌𝐕𝐋

𝒚ෝ
, 𝒆𝐩𝐌𝐕𝐋

𝒙ෝ , 𝒆𝐩𝐌𝐕𝐋
𝒚ෝ

), the median of absolute error distances median൫ห𝒆(𝒛ො)ห൯  is stated. 
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5. CONCLUSION 

We demonstrated a two–step method for estimating 
MV hinge point coordinates using deep learning 
segmentations of the left ventricle and left atrium and 
subsequent feature based image processing. With 15-
85 percentile ranges of random coordinate estimation 
errors 𝑒(௭̂) between [0.9 mm; 0.75 mm] and 
[2.55 mm; 2.3 mm] and absolute median coordinate 
errors of 1.35 mm and 0.75 mm respectively, the 
resulting estimations are satisfactory, but further 
improvements can be made. 

If the LV and LA can be adequately segmented by the 
neural net, the resulting segmentation mask can be 

used to reliably determine the MV hinge point 
coordinates. 

We used the CAMUS dataset in this work, which is 
quite heterogeneous and, as such, close to clinical 
practice, as described above. This is beneficial for the 
generalizability of the network. On the other hand, the 
heterogeneity (e.g., low-quality images, edge cases 
described in section 4.4) is detrimental to estimation 
accuracy. Depending on the use case, adjustments to 
the training data set can be made. If generalizability is 
the highest priority, further low-quality and off-
centered images should be added to adequately 
represent them in the training data. Otherwise, if 
estimation accuracy is the priority, low-quality images 
can be removed from the dataset with instructions to 
the physician to record more appropriate images. 
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