ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes

CSRN 3201 WSCG 2022 Proceedings

Feature based CAVE software factory

Jacek Lebiedz

Faculty of ETI
Gdansk University of Technology
ul. Gabriela Narutowicza 11/12
80-233 Gdansk, Poland

jacekl@eti.pg.edu.pl

Bogdan Wiszniewski

Faculty of ETI
Gdansk University of Technology
ul. Gabriela Narutowicza 11/12
80-233 Gdansk, Poland

bowisz@eti.pg.edu.pl

ABSTRACT

In the paper we convey the lessons learned along the path we have gone through several years since establishing
aroom-sized CAVE installation at our university, from craft manufacturing and ad-hoc software reuse of VR soft-
ware products to the robust feature driven software product line (SPL) implementing the Product Line Engineering
(PLE) factory paradigm. With that we can serve all our departments and other entities from the region by rapidly
instantiating different VR products based on a standard set of core assets and driven by a set of common features
of VR applications destined to be deployed in the same target CAVE system — with the minimal budget and time
to market requirements. A comprehensive survey of the most representative CAVE applications created in Gdansk
Tech Immersive 3D Visualization Lab (I3DVL) according to PLE paradigm presented in the paper provides evi-

dence supporting this claim.

Keywords

CAVE product portfolio, VR feature tree, Software Product Line

1 INTRODUCTION

Since its premiere in 1992, the stereoscopic video
theater known since then for its recursive acronym
CAVE (Cave Automatic Virtual Environment) has
found many followers at universities and engineering
companies reapplying the concept in a variety of fields.

Costs of a CAVE can reach a few million dollar level,
especially when rear-projection is used and a signifi-
cant amount of additional space for the equipment is re-
quired. All this severely limits the deployment of such
installations in everyday workspaces and usually goes
beyond the financial resources of typical educational in-
stitutions and small or moderate size businesses. For
this reason, the total number of room-sized CAVEs ex-
ploited in the world today is low and serving a rather
narrow niche market. In consequence, development
of software applications dedicated for the particular
CAVE would involve a different set of schematics, not
necessarily making the overall software process cost-
effective and of sufficient quality to justify the high in-
vestment and maintenance costs of the installation.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

https://www.doi.org/10.24132/CSRN.3201.27

The motivation for writing this paper was to summarize
our experience in manufacturing custom-made CAVE
applications for research, education and training, com-
missioned by our university departments or SMEs from
the region. Since 2014, we have been systematically ex-
panding our infrastructure to its present form, including
three CAVEs of different sizes integrated with large-
size haptic devices, a theatre for 100+ viewers and a
supercomputer, as characterized in Section 2.

Although I3DVL is basically a non-profit entity oper-
ating on a very specific market of recipients of CAVE
products, all its related activities must meet the ba-
sic criteria of the commercial software process, in-
cluding product assurance, cost effectiveness, time to
market, productivity, quality and agility. In the paper
we describe the path we have gone through all these
years, from craft manufacturing and ad-hoc software
reuse to the robust feature driven Software Product Line
(SPL) [Norl2a] and convey the lessons learned in the
process. Today, by reusing core assets described in Sec-
tion 3 of a common set we can develop new CAVE ap-
plications based on a proven concept involving optional
and variable features within the tight schedule, staffing
and budgetary constraints. Their overview is given in
Section 4. The existing core assets that evolve out of
product development into new assets provide in turn a
strong feedback loop for further development of the for-
mer keeping the product line up-to-date and reactive to
the evolution of the underlying feature model.



ISSN 2464-4617 (print)

ISSN 2464-4625 (DVD) CSRN 3201

2 THE CAVE INFRASTRUCTURE

Below we present briefly basic technical characteris-
tics of the principal components of the infrastructure of
our CAVEs and classify immersion levels its users may
experience. We will refer to this classification further
in the paper, when presenting the VR software factory
paradigm implemented on them.

Graphics workstation onlooker experience

Four workstations, each one equipped with a graphics
card driving a 27" stereo 3D display of the 2560 x 1440
resolution, can provide viewers wearing shutter glasses
with the sense of depth when viewing images of the
dynamic scene generated in real time. No immersion
can be sensed for the lack of tracking devices.

The miniCAVE low-relief experience

A miniature open CAVE consisting of four displays as
above and arranged as the floor and three surround-
ing walls allows for a miniature scale immersion of the
viewer’s face only, as shown in Fig. 1. Displays are
driven by separate computers interconnected with the
1 Gb/s Ethernet or 40 Gb/s InfiniBand. The audio sys-
tem consists of four speakers arranged above the wall
displays and a subwoofer below the floor display. Shut-
ter glasses of the viewer are equipped with the IR smart
tracking system, whereas navigation is enabled by the
flystick. One computer is a master for the other three
slaves. The master reads data from the flystick and the
tracking glasses, generates images for the central screen
and broadcasts the relevant data to the slaves. Their task
is to generate images synchronized with a central view.

Figure 1: MiniCAVE for low-relief experience

The midiCAVE high-relief experience

A full scale immersion of the viewer in the straight-
up (standing) position is provided by an open CAVE
consisting of the square 2.12mx2.12m front screen
wall, two side 2.12mx 1.34m screen walls and the floor
screen of the same size, as shown in Fig. 2. The stereo-
scopic image is displayed on each wall by a pair of pro-
jectors (1920 1200 for each eye) in passive technology
with spectrum selection. Rear projection is used for
the vertical screens, and front projection for the floor

https://www.doi.org/10.24132/CSRN.3201.27

218

Computer Science Research Notes

WSCG 2022 Proceedings

screen. Rectangular screens are operated by individ-
ual pairs of projectors, while the square front screen by
two such pairs. Each pair of projectors is controlled by
a single computer, interconnected alternatively with the
1 Gb/s Ethernet or 40 Gb/s InfiniBand. The audio sys-
tem consists of four speakers in four upper corners of
vertical screens and a subwoofer outside of the screens.
The viewer is tracked in midiCAVE by eight IR cam-
eras placed in all its corners and is enriched with a full
body motion tracking system. For navigation a flystick
is used.

=

Figure 2: MidiCAVE for high-relief experience

The bigCAVE monument experience

Complete immersion is provided by the bigCAVE’s
six square 3.4mx3.4m walls surrounding the person
inside the cube, creating impression of an unlimited
space, beyond the reach of his/her arms, as shown in
Fig. 3. Stereoscopic images are displayed on each
screen by two 1920x 1200 projectors in a rear projec-
tion mode, which gives after using the blending tech-
nique the 1920x 1920 resolution of one screen in to-
tal. Stereoscopy is obtained by two alternative tech-
nologies: active Nvidia 3D Vision Pro or passive with
spectrum selection. Each projector is driven by a sep-
arate server providing a rate of 60 fps for each eye.
This performance level is well above the minimum re-
quirements for a single viewer controlling the dynamic
scene view reacting to his/her head movements. A fully
successful attempt was therefore made to duplicate the
number of images displayed on each of the six big-
CAVE walls to allow two observers to control the scene
view simultaneously without changing the number of
projectors [Leb21a]. As aresult, the 60 fps rate for each
eye of each observer was reduced to 30 fps to allow
for generating four frames instead of two; for most of
the implemented application scenarios outlined in Sec-
tion 4, these values turned out to be perfectly sufficient.
Twelve computers plus two more for synchronizing the
former, tracking the viewer inside and generating full
dimensional sound constitute a server farm of 14 units,
interconnected with 1Gb/s Ethernet and 40Gb/s Infini-
Band. The audio system consists of eight speakers, two



ISSN 2464-4617 (print)

ISSN 2464-4625 (DVD) CSRN 3201

of them in each upper corner of the bigCAVE’s cube
and a subwoofer outside of it. The viewer is tracked
by four IR cameras placed in the upper corners of the
cube. One of the servers in the farm can also generate
a stereo image perceived by the user inside to be trans-
mitted (if needed) to the projector in the external large
(100+ seats) 3D theatre.

Figure 3: BigCAVE and the VirtuSphere

Large scale haptic devices

In addition to immersion perceived by the sense of sight
and hearing, two haptic devices are currently being in-
troduced in I3DVL to broaden the experience of immer-
sion by affecting the participant’s sense of balance:

e CyberSphere with force-feedback, founded on eight
drive and measurement (DME) rolls with linear ac-
tuators driving the actual VirtuSphere with the user
placed inside. Whereas the VirtuSphere is mounted
on eight passive rollers evenly spaced on a round
base and driven only by the body movements of
user walking inside it, the actuators can measure
angular velocity and adjust downforce (pressing the
roller against the sphere) to provide additional feed-
back from the generated virtual worlds [Kow18a].
The sphere in either configuration fit in the big-
CAVE cube and can be used to further extend the
monument-like immersion perceived by the user, as
shown in Fig. 4.

Figure 4: Virtu/CyberSphere in the bigCAVE

o Stewart (4 DoF) platform enabling simultaneous
simulation of yaw, pitch, roll and lift with four ac-
tuators setting the platform in a sliding and rotating

https://www.doi.org/10.24132/CSRN.3201.27

219

Computer Science Research Notes

WSCG 2022 Proceedings

motion. One or more persons standing on its top can
feel realistic movements of a deck of a simulated
vessel (open sea experience) or the undercarriage of
a land vehicle (off-road experience) [Laz94a].

HPC support

A cluster-based supercomputer composed of over 1600
computing server nodes provides nearly 1.5 PFLOPS
of computational power of jointly 38500 cores and 48
GPUs. All nodes of the cluster are connected with In-
finiBand FDR 56 Gb/s. Three 40Gb/s links between the
supercomputer and the farm of computers driving our
bigCAVE allow for sending data from it for processing
as well as sending back to it voluminous data streams
in real time. So far the HPC support was experimen-
tally used by us for simulating complex weather phe-
nomena (precipitation) and internal fires (flashover and
backdraft). However, it is still the experimental facility
planned for our future products.

3 THE CAVE PRODUCT PORTFOLIO

The requirements baseline for CAVE applications is
typically focused on three basic attributes:

e immersion — high fidelity of images in terms of res-
olution as well as the sense of depth combined with
the spatial sound should give viewers the impression
of the fullest possible immersion in the generated

dynamic scene of the virtual world;

interaction — the generated dynamic scene views
must exhibit an appropriate level of realism when
reacting to the movement of viewers navigating in
the related 3D space and respond promptly to any
changes in their position;

performance — calculation of the outcomes of view-
ers’ actions affecting the dynamic scene content
must be performed by the computing system in
real-time, adequately to the dynamics of viewers.

Given the above a multitude of similar but separate VR
software products could be considered — with the va-
riety of optional features to be implemented to satisfy
the end user needs. With the traditional approach to
handling that developers would reuse pieces of code
(small-grained reuse) [Mor02a] or larger parts of an-
other product to build a new one (clone and own ap-
proach) [Ghal8a]. However, it may be considered in-
effective for CAVE products, as two applications built
from the same base would be deployed and maintained
in the same CAVE separately, with high duplication of
effort to fix possible errors in multiple products mul-
tiple times and often implementing independently the
same enhancement in different ways in similar prod-
ucts. If no systematic reuse of artifacts from previ-
ously implemented products is considered, or worse, no



ISSN 2464-4617 (print)

ISSN 2464-4625 (DVD) CSRN 3201

such artifacts have been collected yet, one extreme al-
ternative would be craft manufacturing [McB02a]. This
cut-and-try approach involving writing and modifying
the application code by skilled programmers to make
it fit in the CAVE system would dangerously reduce
the latter to the role of an expensive toy for a small
group of enthusiasts — unacceptable alternative to en-
tities obliged to strictly follow the rules of financial dis-
cipline, such as our university.

When setting up the infrastructure described in Sec-
tion 2 we took a closer look at common features
that constitute requirements baseline for our CAVE
products and the assets that constitute the core of
its technical specification. Based on that our SPL
adopts the underlying Product Line Engineering (PLE)
factory paradigm and allows for optimizing effort, time
and quality in product assurance of VR applications
intended for use in our CAVEs. Further below we
present this approach, which may provide a template
solution to other universities struggling with the
problem of maintaining such an expensive installation
as room-sized CAVEs and its cost-effective use in
everyday educational activities.

Requirements baseline — features, options

The basic tool for describing the desired product line
functionality is the feature model [Fer0O2a], which can
define the relationship of features in a family of prod-
ucts. It may be represented by a tree, which each vertex
corresponds to one of many possible features, whereas
different edges represent specific relationships of these
features. In Fig. 5 we specify a tree of features of CAVE
applications which can be derived from the three basic
attributes listed before. There are four types of relation-
ships between its nodes:

e mandatory features define the minimum functional-
ity of a target CAVE application, i.e. each vertex,
whose edge from the parent is marked with the &
symbol must be selected. It may be seen that such an
application should be able to provide simultaneously
immersion fidelity, interaction realism and real-time
performance, in terms of the dynamic scene graph-
ics as well as simulation of its relevant phenom-
ena. Moreover, graphics performance should con-
cern both static and dynamic objects.

e optional features represent at least one option to be
selected. It is assumed that from among all sibling
vertices of a given parent node with the respective
edges marked with the © symbol, the leftmost one
must be selected first, and next the other ones in the
order of diminishing preference from left to right.

e alternative features concern exclusive choice from
a set of equally preferred options. In other words,

https://www.doi.org/10.24132/CSRN.3201.27 220

Computer Science Research Notes

WSCG 2022 Proceedings

from among all sibling vertices of a given parent
node with the respective edges marked with the ®
symbol, exactly one vertex must be selected.

e prospective features are planned for future applica-
tions, as new hardware and software assets will be
available. Their respective edges are marked with
the @ symbol. In the future they will be merged
with the @ symbols marking the respective edges of
their sibling vertices into the © symbol, since their
vertices will introduce new optional features.

Each our CAVE application allows viewers to expe-
rience immersion by attracting their senses with the
spatial audio system and stereoscopic video solutions
suitable for either a single viewer or multiple viewers.
They enable simple navigation with a flystick (or al-
ternatively with the inserted VirtuSphere) and tracking
of a viewer’s head based on IR with the additional op-
tion for tracing other body movements involving body
markers. Real-time performance of the graphics is pro-
vided for both static objects (handling dynamic changes
of each static object appearance due to the observer’s
head movements) and dynamic objects (moving inde-
pendently across the wall screens). Simulation of the
latter is supported by one computer of the CAVE farm
with the option of additional support provided by the
locally available HPC platform. Interesting extensions
planned by us for future CAVE applications indicated in
Fig. 5 concern the aspects of immersion which are not
directly related to sensual impressions. Several appli-
cations in our product line already concentrate on emo-
tions evoked by the content and meaning of the dynamic
scene rather than its appearance only. Based on the re-
search in affective computing and automatic monitor-
ing of human emotions [Lanl6a] we plan to introduce
the feedback feature, to make applications more respon-
sive and further deepen the immersion experience of
viewers. Various combinations of the features in Fig. 5
specify the requirements baseline for our CAVE prod-
uct portfolio and drives development of their respective
code and technical specification. The latter constitutes
a set of core assets that capture the underlying feature
model and each new product is supposed to be built
from that set in a prescribed way.

Technical specification — core assets

As mentioned before the primary capability of the soft-
ware product line is instantiation of a final product de-
rived from the common set of shared assets rather than
crafting its code manually from scratch or reusing com-
ponents of other products. The term "development" in
this context means that not only the product code is be-
ing built, but many other assets that further support the
overall engineering process toward the final product are
also instantiated. They constitute a common platform



ISSN 2464-4617 (print)

ISSN 2464-4625 (DVD) CSRN 3201

emotions

CAVE application
immersion (fidelity) interaction (realism) mee)
S B e—_ graphics

Computer Science Research Notes

WSCG 2022 Proceedings

senses reactive proactive simulation
audio video - —®—— tracking &, static objects /i 3
5‘{\ spatial (?\ flat feedback monitoring  navigation IR S camera haptics dynamic objects
i distributed

headphones stereoxscoplc ' simple mulimodal sticks oc

. ) . ) flystick body markers gloves
single viewer  multiple viewers i " actuators server ’f’)

IRIRF remote control 7 110 O ST N speech HPC 7 simulated objects
37 P gestures physical objects

Legend: @ mandatory (each one) (X alternative (only one of) (©) optional (at least one of) (=) prospective (future)

Figure 5: Feature model of CAVE applications

upon which many different products may be developed.
The core assets that are shared across our SPL imple-
mentation for CAVE applications include the following
categories [Norl2a]:

Requirements; incremental refinements of the basic
feature model addressing technical details of its
individual features (parameters and their variability,
characteristics and attributes appropriate for the
given software product instance, its target audience).

Architecture; a basic scheme for assembling the prod-
uct from software components in the core asset base
instantiated for each individual product.

Software components; basic building blocks for each
individual product, reused without alteration or al-
tered using inheritance or parametrized templates.

Performance models; hard and soft real time con-
straints, qualitative characteristics and methods
for determining them, including image rendering,
synchronization and switching.

Cost/schedule; generic framework for work schedule
development and time and effort estimates for the
entire product line.

Tools/processes; support for software product devel-
opment and making changes, appropriate for the en-
tire product line and production stages.

Test cases/data; generic testing artifacts suitable for
all products in the product line and extensible to ac-
commodate variation among them.

People/skills; evolving from programming toward rel-
evant domain expertise and technology forecasting.

The key assets in the architecture and tools and pro-
cesses categories of our SPL are the CAVE infrastruc-
ture specified in Section 2 and any modern game engine
(GE) satisfying the criteria defined in [Pet12a]. Each
such GE provides an IDE and resources enabling rapid
development of high-fidelity virtual worlds by handling
in the uniform way complex computations related to
rendering of the dynamic scene, simulating physics of

https://www.doi.org/10.24132/CSRN.3201.27 221

dynamic objects, detecting collisions, etc. Thanks to
their modular structure, they can be repeatedly reused
to instantiate a variety of VR products, very similar to
what SPL provides. Currently our principal GE asset is
Unity and Unreal Engine [Pet12a]. The initial content
of the assets listed above are the following:

Requirements; Features selected from the baseline set
(limited to the single 3D flat-screen display view,
keyboard and mouse). Additional target domain-
related requirements (external asset) added.

Architecture; Reference architecture selected (Unity
or Unreal Engine). Development framework set
up (non-stereoscopic 3D graphics display, keyboard
and mouse).

Software components; The candidate application
code and documentation (external asset) added.

Performance models; Scene rendering complexity
(graphics performance, navigation reactivity) and
dynamics of simulation objects assessed.

Cost/schedule; Additional candidate application cost
and schedule (external asset) added.

Tools/processes; Toolset specific to the selected plat-
form acquired (Unity, Unreal Engine or other).

Test cases/data; Preliminary acceptance criteria de-
fined. The candidate application formally qualified
as the product line asset (regular graphics work-
station, single flat-screen display, keyboard and
mouse).

People/skills; Candidate application domain specific
skills (external asset) added.

Note that the core set is extended by external assets
brought to the project by a candidate application that
will be finally instantiated and deployed in the big-
CAVE system as the stereoscopic 3D one. Besides
this application’s code and documentation other exter-
nal assets include such domain-specific artifacts as the
additional target domain requirements, specific perfor-
mance characteristics and staff skills. The baseline re-
quirements at this stage are defined by the feature model



ISSN 2464-4617 (print)

ISSN 2464-4625 (DVD) CSRN 3201

limited to the standard 2D user interface (display, key-
board and mouse). In the following production stages
they are gradually refined, respective to the capabili-
ties of the target CAVE system. The internal techni-
cal staff that can be assigned to any production activity
in I3DVL varies from one to three persons, one more
team leader person and a couple of external target do-
main experts. The internal staff roles and responsibili-
ties require the skills of a graphics designer, program-
mer, tester and instructor — one person may simultane-
ously play several roles at various stages of the produc-
tion process.

Production stages and product decisions

Although PLE can capitalize on commonality of final
product instances destined for the same target system,
the preliminary set of core assets listed before may ex-
hibit variation due to inherent variability of the under-
lying feature model specified in Fig. 5. Note that de-
pending on the particular application purpose and be-
havior individual products may be instantiated in dif-
ferent ways. Managing this variation in the production
process requires a clear definition of internal variation
points where appropriate product decisions are made.
The point in the production timeline at which the deci-
sions for a variation point are bound is referred to as the
binding time [Ros11a]. Our SPL utilizes multiple bind-
ing times determining four production stages outlined
in Fig. 6.

features features features features

assets > assets & assets K assets & product
v v i |
onlooker low relief full relief monument
Figure 6: CAVE application SPL production stages

The respective production stages are marked with
rounded rectangles and their relevant binding decisions
are marked with diamonds. By starting with the
preliminary set of assets listed before the product
outputs from binding decisions at one production stage
become partially instantiated asset inputs for binding
decisions at the next production stage. The progress
of instantiation of assets toward the final product is
symbolically marked by darkening gray.

Workstations of the onlooker stage mimic configuration
of the computers controlling projection on a single wall
of bigCAVE. Owing to that developers can assess the
quality of the depth and the overall design and logic of
the content of stereoscopic images that the prospective
application is supposed to deliver to each screen at its
target installation. Low-relief stage utilizes the mini-
CAVE system for testing synchronization of images in
side and floor screens with the central (front screen)
view in the master-slave fashion, in particular simulta-
neous changes of views on all displays, joining adjacent

https://www.doi.org/10.24132/CSRN.3201.27

Computer Science Research Notes

WSCG 2022 Proceedings

screen views and verifying correctness of virtual cam-
eras definitions on the master and slaves. High-relief
stage utilizes midiCAVE to test synchronization of im-
ages in the application under development and verify-
ing correctness of all virtual cameras definitions and as-
sessment of blending of images on the central (front)
screen generated by two slaves. Moreover, scenarios in-
volving body motion capture may be implemented and
multiple viewers may be involved if needed. Monument
stage is the final one, as the bigCAVE system is the tar-
get environment for our VR applications. Blending of
images on each screen wall is tested to qualify the ap-
plication to the final acceptance testing of image syn-
chronization.

For brevity we skip detailed description of the evolu-
tion of each core asset of the set into the final one, but
remarks on some of them are in place (see Fig. 6): the
application architecture asset evolves from a standard
flat screen through a single stereoscopic 3D form up
to the master-slave form of multiple screens, the soft-
ware components asset expands from the initial appli-
cation code to the form augmented with synchroniza-
tion and interaction objects from our own CAVE library
developed for that purpose, and the performance mod-
els asset expands from the basic quality (graphics per-
formance, navigation reactivity and dynamics of simu-
lation objects) characteristics to multiple screens syn-
chronization quality characteristics, such as geometric
continuity, 3D image stitching and consistency of ad-
jacent images. Besides a GE platform for going from
flat screen display to the 3D stereoscopy we use popu-
lar tools for unwrapping mono or stereo audio sources
to surround formats [ThoO7a].

The reason why our primary preliminary software com-
ponent asset is mostly a regular non-stereoscopic 3D
graphics flat-screen application with the mono or stereo
sound is quite simple: most of the interesting domain
applications are created in various departments of our
university on ordinary flat-screen workstations and not
necessarily with the intention of their subsequent im-
plementation in CAVEs. The current ease of devel-
oping them thanks to the widely available and popu-
lar GE platforms (Unity in particular) means that sev-
eral dozen of them are created at our university every
year. They are systemically delivered by students as
part of class projects or built by our faculty as ’proof
of concept’ in various R&D projects. Some the best of
them are deployed over time in the university’s didac-
tics and become qualified candidates to convert them to
the fully immersive, interactive and high-performance
CAVE applications. There are also individual cases of
building dedicated applications for research in the field
of computer graphics, such as ray tracing in heteroge-
neous environments for example [Kacz2la]. I3DVL
also receives ocassionally a small number of candidate
applications developed by the third parties (mostly co-

222



ISSN 2464-4617 (print)

ISSN 2464-4625 (DVD) CSRN 3201

operating SMEs) with a request to deploy them in the
bigCAVE.

Such a clear separation of the two phases of the big-
CAVE application life cycle promotes agility and sig-
nificantly reduces costs: for the initial flat-screen ver-
sion phase the primary focus is on the semantic correct-
ness of the scene content, its logic and realism, whereas
for the phase described in the paper the proper develop-
ment of the CAVE application takes place.

Assets of a bigCAVE product instantiated in the monu-
ment stage finally take the following form:

Requirements; synchronization of six screens and fly-
stick functionality.

Architecture; multiplication of a single screen appli-
cation to the master-slave (front vs. side, floor and
ceiling screens) configuration.

Software components; master-slave synchronization
and interaction objects (the own CAVE library).

Performance models; navigation/synchronization
quality characteristics (geometric continuity, 3D
image stitching, consistency of graphical effects in
adjacent images).

Cost/schedule; fixed cost model (master-slave paral-
lelization of six screens, two person-days, linking
the single screen application to the bigCAVE inter-
face one person-day).

Tools/processes; configuration and deployment of
master-slave synchronization objects and interaction
objects from the CAVE library with .tools from the
relevant development framework.

Test cases/data; acceptance testing of the final appli-
cation wrt. the feature model baseline requirements
(immersion, interactivity, real-time performance).

People/skills; one person (tester and programmer).

4 CAVE APPLICATIONS OVERVIEW

Each CAVE application in our SPL has been instan-
tiated in the production stages outlined in Fig. 6 out
of some initial flat-screen application and the prelim-
inary set of core assets mentioned before. For the sake
of brevity, we will not place a complete bibliographic
record for each of the applications discussed below, and
only highlight their basic effort and time characteristics.
Their purpose varied from teaching or training, through
prototyping (devices, buildings, structures) or treatment
of patients, up to pure or applied research.

For example, the Old Town application (Fig. 7) was
aimed to synthesize visually new planned buildings in

https://www.doi.org/10.24132/CSRN.3201.27 223

Computer Science Research Notes

WSCG 2022 Proceedings

the existing architecture under variable day/night light-
ing and weather conditions (prototyping), but also in-
volved teaching (objects can be designed by students).
Viewers interact with the dynamic scene by selecting
time of the day and weather conditions and navigate
with a flystick along a predefined path or teleport to
selected places [Lebl6b]. Total instantiation time of
this application was three months and involved two pro-
grammers or testers, supported by three teams of archi-
tects (nine persons in total).

Figure 7: Old Town interactive visualization (drizzle)

The purpose of the interactive small UAV simulation
application (Fig. 8) was also prototyping — a virtual
drone may be reconfigured and reequipped with various
simulated on-board devices like cameras or sensors. It
can be controlled with a specialized controller in three
different views: from the ground, from the cockpit, and
from behind the drone’s tail. Additionally, to enable
monitoring of the UAVs in-flight state a standard instru-
ment panel may be displayed on demand on the CAVE’s
wall currently pointed by the controller. Total develop-
ment time of this application was three months and in-
volved just one programmer/tester, supported by a sin-
gle domain expert (pilot).

Figure 8: A small drone platform tester and trainer

These two applications are similar in the aspect of sim-
ulating weather phenomena, but totally different with
regard to the dynamics of the simulation objects in-
volved. Nevertheless, they both were instantiated out
of the same set of core assets and, as indicated before,
within the similar staffing and time-to-market limits.

Another applications in our SPL involving simulation
of basically the same physical phenomena (gas flows),
are the small fire simulator (Fig. 9) and a sail-boat in



ISSN 2464-4617 (print)

ISSN 2464-4625 (DVD) CSRN 3201

the virtual wind-tunnel (Fig. 10). The former may be
used to train people how to operate a jet from a hand-
held fire extinguisher to quickly suppress a small fire
in an office room, whereas the latter to make them un-
derstand settings of the sail for different courses of the
boat in relation to the wind direction; individual bands
and their colors show the direction and speed of the
airflow [Lebl6a]. Owing to the more complex simu-
lation of the hot (flame) gases the instantiation time of
the first application was four months, whereas for the
latter it was just one month. In both cases only one pro-
grammer/tester was needed, supported by the relevant
domain expert (respectively a fireman and a sailor).

Figure 10: Simulation of an airflow around the sailboat

Another segment of our products are CAVE applica-
tions developed by our students in cooperation with
the Polish Space Agency. The average instantiation
time of each application in this segment was three
months, with one programmer/tester and one domain
expert (astronomer) involved.  These applications
address various issues related to understanding the
Solar System [Mar22a], exploration of celestial bodies,
detection of black holes with gravitational lensing,
and visualization of constellations from various places
on Earth, among others. They all take advantage
of the possibility to directly immerse viewers in the
visualized phenomena to help them understand its
essence and course and are intended for primary and
secondary school students. These applications use our
bigCAVE with a few individuals inside, and a larger
audience in the connected video theater outside. For
example the application shown in Fig. 11 helps viewers
to understand distances between planets of the Solar

https://www.doi.org/10.24132/CSRN.3201.27

Computer Science Research Notes

WSCG 2022 Proceedings

System, types of its celestial bodies (the Sun, planets,
asteroids) and mechanics of their orbits. Users can
navigate using teleportation and observe them from
various places of the Solar System.

Figure 11: Interplanetary travel in the Solar System

Another application of the space segment in our port-
folio is the Moon/Mars rover simulator (Fig. 12). The
rovers are simulated according to the gravity of the re-
spective celestial body and real hypsometric data of the
explored terrain (Apollo LEM and Curiosity rovers).

Figure 12: LEM lunar rover simulator

An important segment of our SPL are biomedical appli-
cations developed for research into therapies of various
kinds based on immersion. One example is shown in
Fig. 13; this application is intended to treat acrophobia
(height anxiety) with the implosive therapy augmented
with gamification. The task of the patient is to move
from a safe room to various levels of a tall building
and navigate along narrow gangways, suspended high
between various buildings and collecting coins of dif-
ferent value along the way. A psychologist supervising
the exercise can give advice to the patient inside, com-
ment on decisions of the latter and encourage him/her
to choose specific optional segments of the path. The
instantiation time of this application was three months
and involved three programmers/testers, including de-
velopment of its initial version, as the preliminary soft-
ware component asset. The supporting team of domain
experts included five psychologists.

A biomedical application shown in Fig. 14 was devel-
oped for research into the diagnosis of dizziness. A
patient is immersed in an unstable space of a tunnel
built of rotating rings and with accompanying unpleas-
ant sounds. Reactions of the patient can be measured in

224



ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

CSRN 3201

Figure 13: Acrophobia treatment game

a couple of ways: by recording the pressure exerted by
each patient’s foot on the ground, or recording electri-
cal activity of the brain with a portable EEG, or both.
The instantiation time of this product was three months,
involved one programmer/tester and one domain expert
(a biomedical engineer).

Figure 14: Stimulation for dizziness measurements

An interesting use of the bigCAVE in I3DVL is a vir-
tual escape room in which puzzles play an educational
role. The player’s task is to guess the codes that open
the door to leave the virtual room shown in Fig. 15. The
codes to open individual locks can be obtained by solv-
ing chemical puzzles, assembling molecule models or
performing virtual chemical reactions. The application
was prepared by a team of three in two months, sup-
ported by a specialist chemist.

Figure 15: Chemical escape room

https://www.doi.org/10.24132/CSRN.3201.27

225

Computer Science Research Notes

WSCG 2022 Proceedings

S CONCLUSION

The survey of just a small fraction of our SPL portfo-
lio of well over one hundred CAVE applications instan-
tiated so far was intended to prove the point on PLE,
which when based on a well defined set of core assets
can make it possible to optimize development of CAVE
applications in terms of both time and staffing require-
ments. The product delivery time (or so to speak time-
to-market, although still within the university) for any
of our applications rarely exceeded three months with
at most three programmers/testers required to instanti-
ate the product for the target bigCAVE system. We have
demonstrated that the SPL paradigm can provide a cost-
effective solution for rapid instantiation of CAVE appli-
cations. Thanks to the fact that it can exploit a common,
managed set of features of software products destined
to be deployed in the same target CAVE system, the
otherwise different products can be developed as one.
By defining the feature model for our product line, gen-
erating core assets from our first products (at that time
crafted for bigCAVE) and setting up next the appropri-
ate production stages supported by the specialized hard-
ware, we were able to keep the delivery time within the
limits imposed by the academic schedule and optimize
development time and effort while keeping the size of
the development team small. Adoption of the SPL ap-
proach also contributed greatly to improving quality of
each new final product instance released, as functional
and performance testing of the latter in various produc-
tion stages helped a lot in fixing potential problems of
the shared assets (adding a new variation point, refining
the performance model, adding new test cases, etc.),
thus improving the entire family of products and not
just that one product instance.

6 REFERENCES

[Fer02a] Ferber, S. et al. Feature interaction and de-
pendencies: Modeling features for reengineering a
legacy product line, in Proc. 2nd Int. Conf. Software
Product Lines SPLC 2, pp.235-256, San Diego, CA,
USA, 2002.

[Ghal8a] Ghabach, E. et al. Clone-and-Own soft-
ware product derivation based on developer pref-
erences and cost estimation, in Proc. 12th Int.
Conf. on Research Challenges in Information Sci-
ence RCIS 2018, pp.1-6, Nantes, France, 2018.

[Kacz21a] Kaczmarek, A., LebiedzZ, J., Jaroszewicz,
L., and Swi@szkowski, W. (2021). 3D scanning of
semitransparent amber with and without inclusions.
In Proc. 29th Int. Conf. on Computer Graphics,
Visualization and Computer Vision (WSCG 2021),
pages 145-154, Plzen, Czech Republic, May 17-20
(on-line).

[Kowl18a] Kowalczuk, Z. and Tatara, M. Sphere drive
and control system for haptic interaction with phys-



ISSN 2464-4617 (print) Computer Science Research Notes
ISSN 2464-4625 (DVD) CSRN 3201

ical, virtual, and augmented reality, IEEE Trans.
Control Syst. Technol. 27, No.2, pp.588-602, 2018.

[Lan16a] Landowska, A., Szwoch, M., and Szwoch,
W. Methodology of affective intervention design for
intelligent systems, Interacting with Computers 28,
No.6, pp.737-759, 2016.

[Laz94a] Lazard, D. and Merlet, J. The (true) Stewart
platform has 12 configurations, in Proc. 1994 IEEE
Int. Conf. on Robotics and Automation, pp.2160-
2165, San Diego, CA, USA, 1994.

[Leb21a] Lebiedz, J. and Mazikowski, A. (2021). Mul-
tiuser stereoscopic projection techniques for CAVE-
type virtual reality systems. IEEE Trans. Human-
Mach. Syst., 51(5):535-543.

[Lebl6a] Lebiedz, J. and Redlarski, J. (2016). Appli-
cations of Immersive 3D Visualization Lab. In Proc.
24th Int. Conf. on Computer Graphics, Visualization
and Computer Vision (WSCG 2016), pages 6974,
PlZen, Czech Republic, May 30-June 3.

[Lebl6b] Lebiedz, J. and Szwoch, M. (2016). Virtual
sightseeing in Immersive 3D Visualization Lab. In
Proc. Fed. Conf. on Computer Science and Infor-
mation Systems (FedCSIS 2016), pages 1641-1645,
Gdansk, Poland, Sept. 11-14.

[Mar22a] Martinez, K., Lebiedz, J., and Bustillo, A.
(2022). Graphical interface adaption for children
to explain astronomy proportions and distances. In
Proc. 30th Int. Conf. on Computer Graphics, Visu-
alization and Computer Vision (WSCG 2022), pages
1-8, PlZen, Czech Republic, May 17-19 (on-line).

[McB02a] McBreen, P. Software craftsmanship: the
new imperative, Addison-Wesley, 2002.

[Mor02a] Morisio, M., Ezran, M., and Tully, C. Suc-
cess and failure factors in software reuse, IEEE
Trans. on Soft. Eng. 28, No.4, pp.340-357, 2002.

[Norl2a] Northrop, L. and Clements, P. A framework
for software product line practice, version 5.0, white
paper REV-03.18.2016.0, Software Engineering In-
stitute, Carnegie Mellon University, 2012.

[Pet12a] Petridis, P. et al. (2012). Game engines se-
lection framework for high-fidelity serious applica-
tions, Int. J. of Interactive Worlds, art. ID 418638.

[Roslla] Rosenmiiller, M. et al. Flexible feature bind-
ing in software product lines, Automated Software
Engineering 18, No.2, pp.163-197, 2011.

[ThoO7a] Thorton, M. (2007). Surround
sound from stereo. Upmixing plug-ins
for Pro Tools. Sound on Sound,
https://www.soundonsound.com/reviews/surround-
sound-stereo.

https://www.doi.org/10.24132/CSRN.3201.27 226

WSCG 2022 Proceedings





