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Abstract— With autonomous driving, the system complexity
of vehicles will increase drastically. This requires new ap-
proaches to ensure system safety. Looking at standards like ISO
26262 or ISO/PAS 21448 and their suggested methodologies,
an increasing trend in the recent literature can be noticed to
incorporate uncertainty. Often this is done by using Bayesian
Networks as a framework to enable probabilistic reasoning.
These models can also be used to represent causal relationships.
Many publications claim to model cause-effect relations, yet
rarely give a formal introduction of the implications and
resulting possibilities such an approach may have. This paper
aims to link the domains of causal reasoning and automotive
system safety by investigating relations between causal models
and approaches like FMEA, FTA, or GSN. First, the famous
“Ladder of Causation” and its implications on causality are
reviewed. Next, we give an informal overview of common
hazard and reliability analysis techniques and associate them
with probabilistic models. Finally, we analyse a mixed-model
methodology called Hybrid Causal Logic, extend its idea, and
build the concept of a causal shell model of automotive system
safety.
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I. INTRODUCTION

Causality has become a trend to pursue in many fields.
When one thinks about relating different variables and their
interactions to each other, the famous phrase “correlation
does not imply causation” comes to mind. In the context
of functional safety (FS) and reliability of sociotechnical
systems, causality has played an inherent role as a guiding
paradigm. Standards like ISO 26262, which outlines and
defines FS in the automotive use-case [1], or ISO/PAS 21448
which deals with the Safety Of The Intended Functionality
(SOTIF) [2] formalize this. They do so by focusing on the
malfunctioning behaviour of items as causes of hazardous
events, which develop through causal mechanisms into haz-
ards and eventually lead to harm.

Bayesian Networks (BNs) can serve as an efficient and
flexible framework for probabilistic reasoning [3]. These
models are used throughout many domains, including FS and
reliability [4]-[7]. Many such publications claim (explicitly
or indirectly) that their models are causal, yet rarely give a
formal definition of causality or which implications a causal
model may have. Additionally, existing work primarily treats
automotive standards and their respective methodologies as
independent frameworks. By extending these approaches to
support reasoning under uncertainty, it becomes feasible
to harmonize and combine them. Yet, a formal discussion
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summarizing notable foundational work regarding causal
BNs and standard-compliant methodologies is missing. To
address this demand, this paper aims to link automotive
system safety with model-based causality. Its key contri-
butions are an overview of basic research in this area,
an investigation of causation, its individual implementation
in different methodologies, and a generic model that con-
ceptually merges standards and approaches. Moreover, the
following questions will be addressed:

RQ1 Can standard-encouraged methodologies be linked to
causal, probabilistic models?

RQ2 How can this be done?

RQ3 What advantages emerge by using causal models?

There are multiple frameworks for dealing with causality
like the Potential Outcome framework [8], graph-based ap-
proaches like Single World Intervention Graphs [9], and one
of the most common frameworks called Structural Causal
Model (SCM) [10].

SCMs and their constrained graphical representations (i.e.
BNs) will be used exemplary throughout this paper due
to their high degree of maturity, widespread usage across
various domains, and their accessibility when represented as
causal diagrams.

First, an informal overview of distinct levels of causal ex-
pressiveness is presented. After highlighting the relationship
between SCMs and BNs we will give pointers on how to
build these models.

Next, a variety of common, standard-encouraged method-
ologies like Fault Tree Analysis (FTA) or Generalized
Stochastic Petri-Nets (GSPNs), and their relations with
causality, are reviewed. Finally, the relatively new Hybrid
Causal Logic (HCL) framework is used as a baseline tech-
nique to show the potential of using causal models to bridge
multiple modelling scopes. While most of the standard-
encouraged approaches focus on a specific aspect of FS,
generating a joint view on system safety is usually out
of scope. We outline that by using causal models, high
flexibility as well as the ability to work with one universal
framework to address various areas of common standards
arises. The resulting, novel view on FS and reliability will be
called the causal shell model of automotive system safety.
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II. CAUSAL MODELS

The following section focuses exemplary on SCMs as
presented in [10].

A. Causal Bayesian Networks and Structural Causal Models

BNs model associational relationships between variables
as a graph, and are used to represent a joint probability
distribution in an efficient, factorized, and easily inferable
way [3]. One of the most important properties called the
local Markov condition [10, Theorem 1.2.7] states that the
represented joint distribution may be factorized as:

P(X) = HP(xi|pai) (1)

where the operator pa; is read as “parents of”’ the node
x;. A network built on this property encodes assumptions
about dependencies as well as (conditional) independencies
between variables, which can be formalized by the concept
of d-separation [11]. One of the main implications is the
so-called Markov Equivalence Classes (MECs) [12]. They
state that a joint distribution can (under certain constraints)
be represented by different BNs. If edges are interpreted as
cause-effect relations, the associated model is called a Causal
Bayesian Network (CBN).

Graph-based approaches to causality are well established
and their formalisms, as well as algorithms for inference
(computing probabilistic information), are based on proofed
theorems [9], [10]. They can be used to answer questions
like “what if I do”, “what would have happened if”’, and
“why”. A famous interpretation of three distinct levels of
causal expressiveness is given by [13] known as the “Lad-
der of Causation” and formally analysed as Pearl’s Causal
Hierarchy (PCH), for example by [14].

At the lowest level (£1) BNs can be used to encode asso-
ciational relationships. On the second level (L2) CBNs are
used as a framework to deal with interventional and counter-
factual distributions. Structural Causal Models (SCMs) are
suitable for the highest level (L3) of causative expressiveness
and allow in principle the representation of all causal rela-
tionships, as well as the ability to answer any causal query.
As [14] points out, higher-level representations usually entail
lower levels.

SCMs are a framework to model causal processes (e.g.
functional relationships) that assign probability distributions
to a variable based on its influences. These mechanisms
are independent of each other, can be locally replaced or
modified, and allow modularity.

A formal definition of SCMs following [10, p. 203]
and [14] can be given as:

Definition 1 (Structural Causal Model (SCM) [14]). A SCM
is a 4-tuple M = (U, V,F, P(u)) where
1) U is a set of background variables (also called exoge-
nous) that are determined by factors outside the model.
2) V={W1,...,V,} is a set of endogenous variables that
are determined by variables in the model, viz. variables
in UUV.
3) F is set of functions {f1, ..., fn} such that each f; is a
mapping from (the respective domains of) U; U PA; to

Vi, where U; C U and PA; C V\V; and the entire set
of F forms a mapping form U to V. In other words,
fi assigns a value to the corresponding V; € V, v; <
filpas, uy), for i =1, ...n.

4) P(u) is a probability function defined over the domain
of U.

In this paper, causal models are interpreted as frameworks
that allow causal reasoning [10]. Causal models formalize
how probability distributions change under observations or
external interventions.

B. Building Models

Approaches for building a model can be broadly catego-
rized as:

Model transformation: A causal model can be created
by adapting an existing model (domain adaption) or
by translating established methods like FTA, Failure
Mode and Effects Analysis (FMEA), and others into
a BN. Research in the field of FS and reliability mostly
focuses on model-to-model transformations.

Expert elicitation: Models can be built from human knowl-
edge by interviewing domain experts. How elicitations
can be conducted, or how deviating individual estimates
may be combined, is an active field of research [15].

Data-driven: If suitable data can be provided, algorithms
can be applied to learn networks up to their MEC [16].
There are also approaches for estimating the causal di-
rection between two variables, as well as learning a full
SCM [17]. Data-driven methods can be combined with
expert-based processes to form an iterative approach.

Algorithmically generated models typically face the prob-
lem of MECs. These models are nonetheless well suited
to answer associational queries on £; of PCH and are
commonly known as BNs. Using them as causal models
usually requires human experts to provide the necessary
causal directions of influence (i.e. specifying what is cause
and effect).

An emerging trend in the FS and reliability community
is to convert or link approaches like FTA, or Event Tree
Analysis (ETA) to BNs. This allows modelling of common
cause effects, incorporating environmental influences, and
improving the expressiveness of some established methods,
yielding additional modelling capabilities [4], [7]. These
approaches usually generate PCH £; and L2 models but
are almost always used to answer associational queries, even
though actual causal research could be conducted.

III. CAUSALITY AND MODERN SAFETY

Established standard-encouraged methods like Reliability
Block Diagram (RBD), FTA, ETA, or FMEA and their
many variations deal with cause-effect relationships. These
methods cast logical and causal dependencies into an ap-
propriate framework, and in many cases use probability
theory for a quantitative description of component behaviour.
Depending on the complexity, or the level of abstraction,
the dynamic evolution of a system is treated as well. Even
though causation is a key idea, there are still nuances as to
how causality is finally incorporated.
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A. Modelling Intentions of Common Approaches

As a graphical and logical method, ETA starts at a poten-
tial cause of various failure chains. Each event path between
a trigger and a final system state (i.e. consequence) describes
a logical failure propagation throughout the inspected sys-
tem. Branching probabilities are specified, which allow the
calculation of likelihoods for the different outcomes. Due
to the requirement of mutually exclusive individual events
and consideration of one trigger at a time, a stringent causal
analysis of a system, may be problematic. In contrast, FMEA
tries to systematically investigate single potential causes of
component failure and their direct effects on an analysed
system. Due to the focus on one failure at a time, an analysis
of complex interactions between multiple failures is not
readily available.

As a deductive method, FTA uses basic events that in
logical, boolean combinations lead to an undesired top-
level event (TLE). An FTA can serve as a qualitative and
a quantitative tool, which can consider the degradation of
components over time.

Markov-Models (MMs) allow specifying dynamic, proba-
bilistic system behaviour. They are a graphical representation
of memoryless systems consisting of different logically
connected states. Transitions between states are stochastic
and can be used to consider failure and repair intervals.
Similarly, Generalized Stochastic Petri-Nets (GSPNs) can be
used to model complex system behaviour on a quantitative
and qualitative level. Compared to MMs, GSPNs bind tran-
sitions to requirements (i.e. firing conditions). System state
configurations called markings can be used to configure an
initial situation, and throughout a system’s simulation may
be used to define reachability sets. Additionally, controlling
and logical actions can be used to provide further levels of
abstraction.

Based on the complexity and often times cross-domain
composition of systems (i.e. mix of hardware, software,
and machine learning (ML) methods) traditional techniques,
as listed above, may not be enough to describe correct
system performance. Instead, methods like Systems Theo-
retic Process Analysis (STPA) treat the intended behaviour
of a system as an additional requirement. STPA views a
sociotechnical system as a process and control problem.
Starting from unsafe control actions, triggering events and
scenarios are identified which may cause hazardous system
states and subsequently a loss (e.g. of human life) [18].

Traditional hazard analysis frameworks decompose a sys-
tem into logical elements, which individually or in a chain
of events contribute to failures. In the scope of ISO/PAS
21448 potential hazardous situations are a result of (in-
tended) unsafe interaction between working (i.e. within their
requirements) components.

System safety can also be viewed as a property that is
achieved by fulfilling e.g. functional, operational, or auton-
omy safety goals. Goals are usually the results of abstract,
technology-agnostic safety cases. They are the main aspect
of standards like UL 4600 [19] and are often modelled
by frameworks for managing argumentations like Claims
Arguments Evidence (CAE) or Goal Structuring Notation

(GSN). GSN provides rules and symbols to describe a series
of statements, forming a graphical notation called “goal
structure”. Claims about a system can be fulfilled by the
available evidence (solutions) [20].

As [21] outlines, many methodologies fail to address some
desired FS requirements individually and a combination
of techniques should be used instead. One relatively new
method is the Hybrid Causal Logic (HCL) framework [22].
HCL combines Event Sequence Diagram (ESD), FTA, and
BNs in a joint manner to create a holistic approach that can
address goals, FS, SOTIF aspects, and complex environmen-
tal influences in a quantitative and qualitative way. As [21],
[22], and others point out, one of the main advantages is
the usage of a Probabilistic Graphical Model (PGM) (here
a BN), that extends modelling capabilities like handling
common cause influences while remaining transparent and
computationally efficient.

B. Functional Safety Frameworks and Their Relationships
With Causal Models

In the last two decades, various attempts have been made
to enhance methods like ETA by relating or transforming
them into BNs. One of the most common transformations
applies to Fault Trees. While modelling common cause
failures is usually problematic, doing so in a BN becomes
trivial. In the case of FTA, using BNs can even be considered
an upgrade [4].

The main motivation to use these models, besides the tech-
nical advantages (e.g. efficient factorization and inference
of large models) is the ability to reason under uncertainty.
PGMs enable us to encode knowledge about how things
(causally) interact, summarize assumptions (e.g. technical
simplifications), and allow tractable, transparent, and quan-
tifiable judgment about a modelled system [3], [23].

Model transformations are common [24]-[28], and linking
PGMs to FS and reliability methods recently became an ac-
tive field of research. Connections between different variants
of BNs and FMEA [29], RBD [6], FTA [4], [30], ETA [7],
STPA [31], GSN [32], and others have been discussed. [33]
and [34] show, that Dynamic Bayesian Networks (DBNs)
can be used to represent some MMs. [35] shows how SCMs
can be related to ordinary differential equations.

Figure 1 provides an informal, exemplary overview of
conducted research on linking various standard-compliant
methods.

As mentioned in section I, many publications in FS
and reliability research use causal BNs, yet rarely give a
definition of what causal means in this context. One of
the implications of a non-causal network is MECs. As long
as associational £;-queries like P(X|Y, W) are concerned,
these networks may provide correct results - yet fail to give
correct answers for Lo-queries like P(X|do(Y), W).

The main advantage which, comes from using causal mod-
els, is that of causal reasoning and interventions (do(X)) in
particular. Interventions allow modifying causal mechanisms
and estimating these effects for relevant variables. Causal
questions (e.g. “did component X cause the failure?”) can
be phrased as interventions (do(X = not_working)). Given
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Fig. 1. Connections between various standard-encouraged analysis methods. Edge markings show exemplary work, linking the different approaches.

that such an (L5) query is identifiable [10, Definition 3.2.3],
the effects of interventions can be calculated based on
available knowledge that is encoded in the causal model.
This can be done without the need to generate or collect
new data, which is compliant with the modified system. On
top of this, counterfactual queries (e.g. “What would have
happened if component X did not fail”) can be estimated.

Interventions (“‘doing”) and counterfactuals (“imagining”)
are fundamentally different from observations (“seeing”).
Due to the modification of causal mechanisms, the prob-
ability distributions that are described and entailed by an
underlying SCM change. Compared to the associational case,
this affects the estimate of a query (if identifiable) based on
the causal structure of the model (see also [10], [14] for a
detailed discussion).

As mentioned in section III-A the scope of FS, decompo-
sition and logical (but not necessarily causal) combination of
sub-systems is a standard way to manage system complexity.
Related analysis techniques are rather linear, in the sense that
they treat chains of connected events or item interactions as
a causal chain. Decomposition and individual treatment of
components become gradually problematic when trying to
evaluate the intended functionality of a system (i.e. SOTIF).
Additionally, modelling and quantifying the effects of en-
vironmental conditions (as they are present in scenarios) is
outside the scope of most methodologies. Hybrid approaches
like HCL try to compensate for the increasing complexity
in parts by combining different, suitable frameworks. These
focus on distinct levels of abstraction (i.e. environmental
and technical aspects, dynamic aspects, or required goals).
Even though they are able to cover up many downsides
of the individual approaches used [21], causal reasoning as
mentioned above is hardly feasible.

As [21] points out, the high flexibility of HCL is in

large parts driven by the usage of a BN that can represent
environmental or common cause influences. Although HCL
distinguishes between three layers (i.e. BN, FTA, ESD),
these may in practice very well be modelled as one joint BN
or ideally as an SCM. This would allow using one unifying
framework to address a joint multi-model approach.

C. High-level View on System Safety

In the automotive industry, established standards like ISO
26262 and its relative ISO/PAS 21448 shape how system
safety is addressed. Due to the rapid development of ML-
based components, systems using such technologies are not
adequately covered by the above-mentioned standards any
more [36]. Therefore, new approaches like safety case argu-
mentations are required, which tend to be independent of a
specific system and instead goal-oriented. One relatively new
standardization approach is UL 4600 [19], which focuses on
the usage of methodologies like GSN, among others.

From the perspective of causal modelling, automotive
system safety can be split into different domains, where
each is covered by one of the above standards. An item
under test typically consists of multiple, interconnected, and
diverse components, that together constitute a system with
intended functionality. The environment (nature, scenarios,
or operational context) among others, may negatively influ-
ence such a system. Generic safety goals for item behaviour
can be defined alongside technical component specifications.
Designed item performance may be evaluated by scenario-
based testing (as outlined in ISO/PAS 21448), hazard and
reliability analysis approaches (ISO 26262), or by fulfilling
valid safety cases (UL 4600). In this context, the HCL
framework may be viewed as a methodology that tries to
tie the domains of these three standards together [21].
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Fig. 2. Causal models (e.g. SCMs) can be used to transform and link
established standard-encouraged methodologies. Causal knowledge in the
form of (abstract) environmental or situational influences, expert knowledge,
or data can be incorporated. Causal insights are generated and allow a joint
3+1 view of automotive system safety.

As mentioned in section III-B, many standard-encouraged
techniques can be transformed into causal models. This
allows causal reasoning, which can be applied to generate
causal insights. The underlying models serve as containers
for causal knowledge and may either be generated by
human experts, model transformation, (partly) from data
or as an iterative process combining the above. Instead
of treating aspects of decomposed components and events
individually, merged causal models allow to jointly consider
system safety. This can be achieved by connecting individual
approaches via adequate causal mechanisms serving as links.

It should be noted that a joint consideration is not always
necessary or feasible. Depending on the underlying method-
ologies used (e.g. FTA or ETA) some combinations may not
be reasonable and should therefore be treated independently.
Figure 2 shows a high-level view of these interactions, where
the combination of three domains (system, behaviour, and
goals) leads to an encompassing view of system safety based
on causal models.

Another perspective on viewing system safety is that
of avoiding accidents that are the results of unhandled
hazards. Common cause failures, environmental conditions,
situational effects like road accidents, or other causes like an
inattentive or stressed human driver, may serve as triggers
for hazardous events. If unhandled, they lead to harm or loss
as the result of distinct causal mechanisms.

Depending on which end an analysis starts (top-down or
bottom-up), different layers of abstraction can be identified.
At the core, potential hazards are considered. Based on the
required level of abstraction, triggering events can be de-
tailed on a social, technical, or physical level. By specifying
the causal processes that lead to an event, influencing factors
can directly or indirectly contribute to a hazardous system
state (e.g. basis events and their deterministic combination
via boolean gates). Each contributing factor and mechanism
may be identified by the approaches discussed above. To
achieve a comprehensive view of system safety, different
perspectives (i.e. scopes of the standards) can be combined

Bayesian Belief Layer

Fault Tree Layer

Event Sequence
Diagram Layer

Triggering

Influences
(abstract)

Influences
(phys./technical)

Fig. 3. The causal shell model consists of three intersecting layers that relate
to different perspectives of system safety. All layers may be connected using
causal models (e.g. CBNs). Exemplary, the layers of HCL (rectangles) are
included to show their modelling scopes.

end-to-end in a joint causal model.

Figure 3 shows the conceptual idea of our proposed causal
shell model. As an example of an appropriate combination
of analysis techniques, the layers of the HCL framework are
included, showing the coverage of all shell levels.

IV. CONCLUSION AND FUTURE WORK

Many established methods suggested by relevant automo-
tive safety standards can be adapted to allow reasoning under
uncertainty. This can be done by using CBNs (or ideally
SCMs) as a suitable framework to model all levels of PCH
(RQ1 & RQ2). The main contribution of this paper is that
of a 3+1 view of automotive system safety, consisting of
three relevant standards and causal models as a framework to
jointly consider them. Based on this premise, the conceptual
idea of a causal shell model is proposed. It builds on
the results of [21] and extends its idea of using different
but suitable analysis methodologies to cover the various
scopes of the above standards. Instead of resorting to diverse
frameworks like in HCL, using causal models as a domain-
independent, universal, and highly versatile approach should
be encouraged. This allows accessing data-driven methods
and expert knowledge to build models.

Causal frameworks allow connecting multi-domain mod-
els and different levels of abstraction. This renders causal
reasoning a central methodology that can address and com-
plement many desired FS and reliability requirements (RQ3).

In the context of scenario-based testing, the influence
of the environment is of central importance. To evaluate
the safety of a scenario, it is necessary to model and
work with the operational design domain of the system
under test. Although recent literature suggests using the
methods presented in this paper, no proper tool support
is available. To help investigate the implications of using
causal models, we plan to provide an Open-Source software
package called BayesianSafety'. It will allow evaluating
environmental influences on FTA and ETA, as well as

Uhttps://github.com/othr-las3/bayesiansafety
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researching the outlined approach for automotive system
safety. The main focus of future research will be on how to
create expressive causal models. Engineering them should be
possible in conjunction with established industrial processes.
Ideally, existing methodologies like FMEA can act as a
starting point to build models and evaluate insights derived
from them. Additionally, measures, metrics, and thresholds
need to be defined, as they are a necessary element for using
the causal shell model.
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