
University of West Bohemia
Faculty of Applied Sciences

Department of Computer Science and Engineering

Bachelor’s thesis

Maven plugin for
identification of

incompatible changes in
product source code

Pilsen, 2022 Martin Brožek

ZÁPADOČESKÁ UNIVERZITA V PLZNI
Fakulta aplikovaných věd

Akademický rok: 2021/2022

ZADÁNÍ BAKALÁŘSKÉ PRÁCE
(projektu, uměleckého díla, uměleckého výkonu)

Jméno a příjmení: Martin BROŽEK
Osobní číslo: A18B0180P
Studijní program: B3902 Inženýrská informatika
Studijní obor: Informatika
Téma práce: Maven plugin pro identifikaci nekompatibilních změn v produktovém

zdrojovém kódu
Zadávající katedra: Katedra informatiky a výpočetní techniky

Zásady pro vypracování
1. Seznamte se s přístupy, jak se v zákaznických projektech rozšiřují produkty firmy Eurosoftware

s.r.o.
2. Seznamte se s programovacími jazyky a technologiemi použitými v produktech firmy Eurosoftware

s.r.o. (Java, XML, domain specific languages).
3. Prostudujte obecné přístupy, jazyky a nástroje vhodné pro analýzu kompatibility zdrojového kódu.
4. Dle předchozích bodů navrhněte a implementujte nástroj (Maven plugin) pro analýzu zdrojové-

ho kódu v produktu a jeho kompatibility s customizacemi pro jednotlivé zákazníky. Nástroj bude
identifikovat změněný zdrojový kód mezi dvěma verzemi produktu, který není kompatibilní s pro-
jektovým kódem.

5. Výsledné řešení otestujte a zhodnoťte.

Rozsah bakalářské práce: doporuč. 30 s. původního textu
Rozsah grafických prací: dle potřeby
Forma zpracování bakalářské práce: tištěná/elektronická
Jazyk zpracování: Angličtina

Seznam doporučené literatury:

Dodá vedoucí bakalářské práce.

Vedoucí bakalářské práce: Ing. Radek Hoštička
Eurosoftware s.r.o.

Konzultant bakalářské práce: Doc. Ing. Roman Mouček, Ph.D.
Katedra informatiky a výpočetní techniky

Datum zadání bakalářské práce: 4. října 2021
Termín odevzdání bakalářské práce: 5. května 2022

Doc. Ing. Miloš Železný, Ph.D.
děkan

L.S.

Doc. Ing. Přemysl Brada, MSc., Ph.D.
vedoucí katedry

V Plzni dne 14. října 2021

Declaration

I hereby declare that this bachelor’s thesis is completely my own work and
that I used only the cited sources.

Pilsen, 23rd June 2022

Martin Brožek

Abstract
The bachelor thesis is focused on designing and developing a new tool for the
company Eurosoftware s.r.o.. The tool described in the thesis will be able to
recognize code changes in the company’s main product source code, which
could affect project migration from one product version to another. The
tool is intended for ES’s project developers to save time during the project
version migration. The current migration process is done entirely manually
by the developers. The tool execution will be able to point out files on which
the developer should focus during the migration process.

Abstrakt
Bakalářská práce je zaměřena na návrh a vývoj nového nástroje pro společ-
nost Eurosoftware s.r.o.. Nástroj popsaný v práci bude schopen rozpoznat
změny ve zdrojovém kódu hlavního produktu společnosti, které by mohly
ovlivnit migraci projektu z jedné verze produktu do druhé. Nástroj je ur-
čen pro projektové vývojáře, aby ušetřili čas během migrace verze projektu.
Současný proces migrace je manuálně vykonáván vývojáři. Spuštění vytvo-
řeného nástroje ukáže na soubory, na které by se měl vývojář během procesu
migrace zaměřit.

Contents

1 Introduction 8

2 GK Software SE 9
2.1 About company . 9
2.2 Point of Sale . 9

2.2.1 Central . 10
2.2.2 POS - Client . 11

2.3 Company product vs. project 12

3 Technologies used in ES product development 14
3.1 Tools and frameworks . 14

3.1.1 Maven . 14
3.1.2 Nexus . 14
3.1.3 Jira . 14
3.1.4 Java Swing . 15
3.1.5 Jenkins . 15

3.2 Languages . 15
3.2.1 Java . 16
3.2.2 XML . 17
3.2.3 CSS . 17
3.2.4 Domain Specific Languages (DSL) 17

4 Version control 21
4.1 Version control in GK Software SE 21
4.2 Branches . 21

4.2.1 Master and develop branch 21
4.2.2 Feature branch . 22
4.2.3 Hotfix branch . 22
4.2.4 Release branch . 22

4.3 Commits . 24

5 Migration 25
5.1 Files comparison . 25
5.2 Migration steps . 26

5.2.1 Compare and migrate 26
5.2.2 The final steps after migration 28

6

5.3 Migration process summary 28

6 Analysis 29
6.1 File comparison . 29
6.2 Acquiring product source code 30
6.3 File parsing . 30
6.4 Findings presentation . 30
6.5 Integration into the development process 31
6.6 Chosen technology . 31

6.6.1 Maven plugin . 31

7 Application 33
7.1 Architecture . 33
7.2 Migration plugin’s common workflow 34

7.2.1 Loading artifacts . 34
7.2.2 File comparison . 35
7.2.3 Working with files . 35

7.3 Executions . 36
7.3.1 Check classes . 36
7.3.2 Check Promo and Promoj 37
7.3.3 Check XML layout 37
7.3.4 Check overwritten files 38
7.3.5 Check folder . 38

7.4 Launch . 41
7.4.1 Sample plugin execution 41

8 Testing 43
8.1 Unit testing . 43
8.2 Functional testing . 44

8.2.1 Mod-functions-client-cst module 44
8.2.2 Mod-config-client-cst module 45

8.3 Overall usability evaluation 46

9 Conclusion 48

List of Acronyms 49

Bibliography 51

7

1 Introduction

Eurosoftware s.r.o. is a subsidiary of a German company, GK Software
SE, offering a sophisticated retail solution called Omni-Chanell worldwide
to customers such as Coop, Lidl, Adidas, and many others. The solution,
among other things, provides functionality for selling items and supports
several payment types, handling discounts, and customer-oriented features.

After a customer purchases the product, it transfers to a project, which
personalizes the product for a customer based on their needs. After the new
product version is released, the project should migrate to the newer version.

The current version migration process is done manually by developers.
During the process, developers have to download all artifacts, including
product source code for both versions, then compare them together and with
the project to find all files, which would cause problems after migration. The
current comparison procedure does not consider inheritance, leaving it up to
a developer to go through all the files, potentially affecting the initial one.

The goal is to create a solution for identifying files that could cause
problems during migration. The solution must be capable of downloading
two versions of the product from the company’s repository and comparing
them with the selected project, producing reasonable output in the process.

The thesis provides the migration tool’s development process, including
an analysis of the company’s product, technologies used in the development,
versioning, and the current migration process leading to solution options
and reasoning behind the selected choice.

8

2 GK Software SE

The chapter provides basic information about the company and primarily
focuses on POS product with a succinct description of the product compon-
ents and their functionality. It also explains the difference between product
and project at the end, which is crucial for the thesis.

2.1 About company
GK Software SE is a worldwide German company founded in 1990, focusing
mainly on providing software and services to operate sizeable retail company
branches such as Lidl, Addidas, PGA TOUR Superstore, and many others.
GK Software SE’s primary mission is to provide the most innovative and
adaptable retail solution possible.

Its leading product is Omni-Channel, the primary product GK Software
SE offers to its customers. Omni-Channel is a sophisticated retail solution
providing Point of Sale Software to the end customer retail establishment
[1].

The company is also committed to developing an innovative solution
based on cloud technologies and artificial intelligence to become a leading
cloud solution provider.

GK Software SE is deeply involved in the research and development of
new technologies by trying to identify future trends in software develop-
ment in advance, currently developing applications using virtual reality and
Kinect.

This thesis was developed under the leadership of GK’s second-largest
subsidiary company Eurosoftware s.r.o. located in Pilsen, focusing on the
Point of Sale, the end of Omni-Channel, and its version migration [2].

2.2 Point of Sale
Point of Sale (POS), standardly referred to OmniPos, is software providing
functionality for selling items and supports several payment types. OmniPos
robust set of services gives a customer access to all functions, not just in the
store but across the entire enterprise. It also enables other features related to
this primary goal, such as handling discounts and customer-oriented features.

POS functionality requires several types of hardware (such as receipt

9

printers and terminals), depending on customer store policies. It handles
two databases master data (read-only) and transaction (read/write) [3].

Figure 2.1: Big picture diagram displaying Thin-POS variant [4].

2.2.1 Central
The central concept, occasionally mentioned in the thesis, is that it serves
as a wrapper for all the server-side services. Central consists of services such
as POS server, SDC, ECON, and others. Through the POS server and POS
service, it also handles the database.

POS server

The central application POS server’s primary purpose is transaction pro-
cessing through its portal functions for controlling financial movements, such
as loading, saving, and searching transactions. It also handles creating re-
ports and exports [5].

SDC

Purpose of Store Device Controller (SDC) is processing of the master data
and distributing it to other applications in the GK/Retail OmniPOS. The
distribution can be done with data replication or by services like SDC
API [5].

10

ECON

The Enterprise Connector, also known as Universal Connector, represents a
POS connector to an external world. ECON supplies communication with
other systems through imports and exports. Incoming data are identified
and mapped here to the internal format (XML), and outgoing data are
mapped to the required external format [5].

CIS

The Cluster Infrastructure Server is a central data distributor. CIS handles
all Java Message Service processing and distribution. It is also the first
central application that needs to run [5].

POS service

POS service is a connector between POS-Client and the rest of the Central,
persisting data to the services. In the Thin-POS variant, the client’s data
change must go through the service.

2.2.2 POS - Client
POS can be divided into three parts based on the database position. Thin-
POS, databases are accessed remotely [6]. Fat-POS, databases are embedded
within [7], and Smart-POS, a combination of both [8].

The POS-Client’s main functionality is interaction with user and data-
base data representation. It consists of a user interface, hardware, and client
libraries. The Thin-POS variant fetches all the data through the POS ser-
vice. This makes Thin-POS client highly dependent on network stability
[6].

11

Figure 2.2: Thin-POS variant Central connection [6].

Figure 2.3: POS-Client functionality overview [9].

2.3 Company product vs. project
The thesis focuses on GK Software SE’s product OmniPos and its migration
between product versions. After an unspecified company buys the product,
it transfers to a project. Project personalize product for a customer based on
their needs. After the new product version is released, the project should mi-
grate to the newer version, which is long and expensive. Project developers

12

must manually compare custom project files and every file potentially influ-
encing them during the migration.

13

3 Technologies used in ES
product development

At the begging of the chapter is a short description of tools and frameworks
used in ES’s product development, followed by languages on which the thesis
primarily concentrates. The development languages play a significant role
later in the file parsing section of the analysis (§6.3).

3.1 Tools and frameworks

3.1.1 Maven
Apache Maven is a project management and comprehension tool for software
projects. Maven can manage a project’s build, reporting, and documentation
from a single piece of information, thanks to the concept of a Project Object
Model [10].

POS is built as a multi-module Maven project, an aggregator POM,
usually located in the root directory that controls a group of sub-modules.
Sub-modules, which are regular Maven projects, are allowed to be built
separately or through the aggregator POM [11].

3.1.2 Nexus
Nexus a binary repository server, developed by Sonatype, used mainly for
centralizing, building, and storing software packages such as Java/Maven,
npm, NuGet, PyPI, RubyGems, CocoaPods, and more, improving a com-
pany’s security in the process [12].

3.1.3 Jira
Jira is a software tool for keeping bugs and issue records by the company At-
lassian. It helps to manage and simplify project workflow through a flexible
user interface for monitoring employees during work hours [13].

Developer logs their work hours on specific tasks in Jira. In ES, the
issue’s id is used in the company’s git workflow (Table 4.1).

14

3.1.4 Java Swing
Java Swing is a widget toolkit for creating a Graphical user interface (GUI) in
Java that includes many widgets. It comes with several packages for creating
Java desktop applications. Swing has built-in controls for displaying HTTP
or rich text format, such as trees, image buttons, tables, and many others.
Swing components are platform-independent because they are developed
entirely in Java [14].

3.1.5 Jenkins
Jenkins is a free, open-source server written in Java used for easing both
Continuous integration (CI) and Continuous deployment (CD) as well as
for process automatization of software tasks such as testing, building, and
deploying an application [15].

3.2 Languages
The Point of Sale (POS) product source code is mainly compiled from Do-
main Specific Languages (DSL) and Java. The layout definition of the pro-
ject is defined in XML files.

Due to the signed non-disclosure agreement with the company, the syntax
of the DSL languages is described only to the extent relevant to the thesis
and in accordance with the specification provided by the company (§5.3).

15

Figure 3.1: Diagram of languages used in POS [16].

3.2.1 Java
Java is an Object-oriented programming (OOP) language invented by Sun
Microsystems. Java is designed to be simple, robust, secure, and portable.
It is built to accommodate programs that will run in various network en-
vironments. Applications must be able to run on a range of hardware ar-
chitectures in such environments [17], making Java a preferable choice for a
primary programming language at ES.

16

package com . john . u t i l i t i e s ;

import java . u t i l . ArrayList ;

c l a s s Subc las s extends Supe r c l a s s {

}
Listing 3.1: Exmaple of Java syntax including inheritance, import and a
package [18].

3.2.2 XML
Extensible Markup Language (XML) is a markup language similar to HTML
but does not have any predefined tags. Instead, users can create tags tailored
to their needs. This is an effective method of storing data in a format that
can be searched, stored, and shared [19].

3.2.3 CSS
Cascading Style Sheets (CSS) is a stylesheet language for describing the
presentation of documents in HTML or XML and its dialects, such as SVG.
CSS specifies how elements should be displayed on a computer screen [20].
In ES’s development, it is used to help stylize UI and layouts.

3.2.4 Domain Specific Languages (DSL)
A Domain Specific Languages (DSL) is a programming language with a
higher level of abstraction that is customized to a particular set of issues.
The concepts and rules from the field or domain are used in a DSL [21].

It creates a way to describe and create program elements within an
application domain (mechanism allowing application/code isolation [22])
without knowing anything about programming. A DSL gives significant
productivity improvements and even allows end-user programming by offer-
ing notations appropriate to the application domain [23].

DSL used currently in ES’s development can be divided into four cat-
egories: DO-DSL, DO-DSL-Generators, ProMo-DSL, and Module-DSL.

17

DO-DSL

The Domain Object DSL plays a significant role across development phases
and software components. Its functionality is as specifiers that abstractly
define the structure of entities used in merchandise management functions.
Server developers provide entities as a database-independent representation
of persistent data, and function implementors use these entities as their data
layer [24].

The DO-DSL lets us use a technology-neutral specification of Domain
Object and entities as the common reference point for all roles and compon-
ents. It also allows us to perform Quality assurance validation at an abstract
level [24].

DO-DSL can be divided into four categories by their extension [25]:

.do - Domain Object

.doj - Domain Object Java mapping

.doin - Domain Object Instances

.dodoc - Domain Object Documentation

DO-DSL-Generators

Generators are crucial in compiling code. They generate Java code from
Domain Object and create properties configuration files from DOIN models
or layout XML/properties from DOIN models for Store Manager and many
others.

.do/.doj - Java classes (Pojos, Enums, Factories)

.doin - Property files (OPOS configuration)

18

Package com . gk_software . c on f i g . do_types . component . c l i e n t

Import com . gk_software . pos . ap i . model . app . s up e r c l a s s

domain ob j e c t object−name {

master en t i t y Subc las s extends Parent{

}
}
Listing 3.2: Exmaple of DO and DOIN syntax including inheritance, import
and a package.

ProMo-DSL

ProMo-DSL is a Domain Specific Languages for process modeling. It sets
common language for various stakeholders/roles. ProMo-DSL speaks
about the behavior of the system [25].

.promo - Process Models

.promoj - Process Models Java binding

ProMo-DSL is a language that eliminates ambiguity and misconceptions
in communication. All relevant stakeholders, such as a consultant, interac-
tion designer, product owner, tester, and developer, can communicate seam-
lessly with ProMo-DSL. Although the perspectives of these groups range
substantially, they are all attempting to construct and improve the same
system. Avoiding these misunderstandings can prevent problems while they
are still easy to fix [26].

The primary purpose of a common language is to capture essen-
tial elements precisely. In this language, each sentence must have a clear
meaning. The language encourages a usage in which each sentence makes a
relevant judgment by focusing on critical components. It is not enough to
have a language and the will to focus on the essentials and be precise. It is
necessary to develop a process that will guide each stakeholder in effectively
using the language and its tools [27].

19

Package processModels . tpos . s imple . r e g i s t r a t i o n

Import processModels . tpos . s imple . r e g i s t r a t i o n

Process Entity s p e c i a l i z e s Parent
Listing 3.3: Exmaple of Promo and Promoj syntax including inheritance
[28], import and a package. Unlike Java, DO or DOIN, promo and promoj
files do not use curly braces [28].

Module-DSL

The Module-DSL is intended to link the elements of other DSLs into Mod-
ules, with the application being the graph at the top of the module. As a
result, the Module-DSL connects the semantic levels of the DSLs, such as
DO-DSL and ProMo-DSL, with concerns of configuring and packaging mod-
ules and, eventually, the application. The module serves as a materials list.
It also allows for decomposition, nesting, and the capture of declarations
that influence many processes [29].

Module-DSL creates a structure of (empty) boxes. The module consists
of declarations, such as package/namespace, imports, name, lists of included
elements, lists of referenced elements, and list of contained nodes.

20

4 Version control

Version control is a class of systems responsible for managing changes to
computer programs, documents, large websites, or other information col-
lections. It falls into Software configuration management, which is task of
tracking and controlling software changes [30].

Versioning is storing histories of all changes made on source code. Ex-
amples of the current best versioning systems are Git, AWS CodeCommit
and Microsoft Team Foundation Server.

4.1 Version control in GK Software SE
GK Software SE uses git follows a Gitflow as a branching model primarily
for its tooling support, good documentation and to increase stability and
quality of the develop branch through continuous code reviews and merging
standards into develop.

Gitflow provides a robust framework for a larger project by defining a
rigid branching model devised around the release branch [31].

4.2 Branches

Branch Naming convention

Stable latest release master (main on new projects)
Development trunk develop
Release release/<version_number>
Feature or Bug-fix feature/<JiraID_ShortDescription>
Hotfix (HF) hotfix/<JiraID_ShortDescription>
Maintenance maintenance/<version_number>

Table 4.1: Branch naming conventions in GK Software SE. JiraID is an
identification of an issue located in Jira Software [32].

4.2.1 Master and develop branch
The Gitflow approach uses two branches to record the project’s history in-
stead of a single master branch. The master branch has the official release

21

history, while the develop branch acts as a feature integration branch.
The master branch includes shortened project history, and the develop

branch contains a complete version [33] [31].

4.2.2 Feature branch
The feature branches are used not only for developing new features for an
upcoming release but also for any changes connected to the develop branch,
such as bug fixes, technical or pom changes. The feature branch naming
convention remains the same on all the mentioned occasions (Table 4.1).

After completion, the branch is merged back into the develop branch.
The primary idea is that the feature branch exists as long as the feature is
in development or abandoned [34].

4.2.3 Hotfix branch
A development team may need to address bugs without disrupting the rest of
the development process or waiting for the next release cycle; that is where
the Hotfix branch comes in.

The Hotfix branch’s only purpose is for patching production releases. It
is the only allowed branch that has to fork off directly from the master.
After a fix completion, the branch should be merged into the master and
the develop [35].

4.2.4 Release branch
The release is done on two occasions when all required features are added
or the release date is looming. The release branch in the Gitflow approach
allows developers to perform last-minute changes by permitting minor bug
fixes and adding documentation directly to the release branch. This allows
the develop branch to receive new features for the next release in the mean-
time. New features should never be added to the release.

The release branch is created from the develop, and after all altercations
are made, it is merged into the master branch [36].

Release version name is set by pattern:
[mayor].[minor][HF_number]_b[build_number]

, where mayor stands for mayor number of the release version, minor
stands for minor number of the release version and HF for Hotfix, if needed
(e.g. 1.2.HF01-b01).

22

Figure 4.1: ES’s full git model based on Gitflow workflow [37].

23

4.3 Commits
In ES, the commit structure does not follow well-known commit structures,
such as semantic commits from semantic versioning. Commits on a project
usually vary from developer to developer, but they should follow the pattern:
<JiraID/NameOfTheIssue> - <message>.

Figure 4.2: Screenshot of commit from COP project, provided by ES project
developer [38].

24

5 Migration

In migration, a developer’s primary goal is to merge all the changes done
between the old product version and the project into a new product version if
there are differences (changes) between an old and a new product version. If
there are no changes between product versions, file migration is unnecessary
[39].

The developer’s goal is only to identify all the potential problems and
migrate them as quickly as possible. The final migrated project is not ne-
cessarily backward compatible; a hardware or software system that can suc-
cessfully use interfaces and data from previous system versions [40].

At the beginning of the migration, a project developer should check
the new product guideline provided by product developers. The guideline
provides all the most significant changes made in the last version, which
quickly gives into perspective where potential problems could lie. Next, a
project developer must acquire relevant data from old and new product ver-
sions, such as POS-Server, UCON, SDC from Central, and OmniPOS. These
parts can be found on the company’s SVN, Git, or maven repository.

5.1 Files comparison
A developer makes all the files comparison through Total Commander’s func-
tion dir-sync. The function produces changed files, which are checked manu-
ally. Dir-sync does not take inheritance as a factor. The developer has to
examine every parent file if there is some.

25

Suffix Explanation / usage

_EXT the suffix is used on files that are extending another file, such as java
classes or domain files using extends, or promo, promoj, module files
using specializes.

_CST in a case where no extension or specialization is implemented (e.g.,
implementation of an interceptor)

_CPY when a workaround is needed, and a class is copied from the current
product version and overridden. If functionality is available in the
newly migrated product version, files are deleted.

_BRY files usually extending _CPY file or overriding bean in Spring

Table 5.1: Project’s files naming convention [41].

5.2 Migration steps
At first, a developer must migrate Central (Database, master data). The fol-
lowing task is to increase a product version in the main POM.XML file to re-
spond with the intended new product version. The main pom file includes all
the version variables such as <version.dep.pos>, <version.dep.pos_server>
and<version.dep.project_central> inherited by minor project modules. After
that, each module’s clean phase must be completed before the module’s
install phase can begin by running mvn clean install command. A de-
veloper then refreshed each module in Eclipse and ran the project. Provided
steps should get Eclipse up and running with the recently migrated libraries
[39].

5.2.1 Compare and migrate
This subsection provides information about everything a developer must
focus on in a project migration. It is divided into three parts by the fact if
it is specific only for POS, Central or if it is for both [39].

Common

• Java classes - Check all the classes and merge the differences with
particular attention to files _EXT, _BRK, _CPY suffix. Files with _BRK
suffix usually extend product classes overriding bean in Spring; there-
fore, these changes are highly relevant and must be merged.

26

• Spring and other XML files - Overlapped XML files located under
resources such as web.xml, and bootstrap.xml need to be checked, as
well as each extended XML file in the project.

• Tests - After migration, it is vital to run all the unit tests and fix
those which fail.

• Database - DB structure needs to be updated by building/updat-
ing central and setting fitting connection settings in OPOS. It is also
required to update a master data database for OPOS by creating a
pump on OPOS.

• It also needed to merge changes from other parts of a program such as
version descriptor, templates and patches, installer and data contain-
ers.

Point of Sale (POS)

• Promo/promoj files - Extended promo/promoj files, primarily fo-
cusing on the files with the _EXT suffix.

• XML layouts - Check for any issues caused by XML layout hierarchy,
such as iFrames. Examine the differences in the product between ver-
sions.

• CSS - Examine wheater any CSS change is able to affect layouts.

• Modules - A developer must check if modules newly included in the
new product version are not overridden in a project.

• DOIN - Files with _EXT suffix must be replaced entirely from the new
product version since they may include attributes. Files with _CST
suffix must be checked for changes.

Central

• UI5 - Changing the versions in appropriate places is necessary since
there could error in a release build.

• Import mapping - Merge is required from new product import map-
ping.

27

5.2.2 The final steps after migration
After migration, a developer should check pending bugs in the project and
whether they have been resolved by migration in a new product version. As a
result of the migration, technical debt records can be resolved, resulting in a
smaller bundle size for the whole project. For example, a project workaround
is not needed anymore since its functionality was implemented in a newer
product version. Lastly, a developer should inform QA about any essential
changes done during migration that they need to consider, and a migrated
project is ready for release [39].

5.3 Migration process summary
Overall, project version migration is a very complex process, which is also
highly time-consuming for the developer performing it. The manual file
comparison with the use of Total Commander’s tools is inefficient. Since
it does not consider inheritance in both DSL and Java used in the devel-
opment, it leaves room for a developer to overlook the source of a problem
slowing down the migration in the procedure. The manual downloading of
the product artifact primary placed on the company’s maven repository is
another ineffective part of the migration process.

With the current technology merging changes and resolving all migra-
tion conflicts have to be done by a developer. However, apart from that,
downloading relevant data and identifying possibly damaged files have room
for improvement. Therefore, Eurosoftware s.r.o. requested a solution fa-
cilitating the current migration process. The solution needs to be cable of
performing the following tasks:

• Identifying all overwritten files in the project that was changed in the
product between the new and old version.

• Identifying all java, promo, and promoj files that can be influenced by
some change in the product.

• Checking layout XML files on specific paths.

• Identifying all product files that changed between versions.

28

6 Analysis

Compatibility is the ability of two systems to function together without
being modified. A product’s compatibility indicates that it satisfies some
or all of the requirements for a certain standard [42]. An operating system,
product, or technology’s ability to work with an earlier legacy system is
known as backward compatibility [40].

In the scope of the thesis, the project is compatible with the new product
version when it can run on the new version without any malfunction. When
the project can run on the newer version, it does not have to be compatible
with the previous version. Therefore it is not backward compatible.

The solution’s goal is primarily to point out product changes that could
cause the project to malfunction, such as a change in a product file that is
overwritten in the project or a change in a product file that is inherited in
the project.

The ES’s migration process optimization can be primarily divided into
two separate tasks: downloading product artifacts for comparison and file
comparison between a project and two product versions. Besides that, the
program must be capable of parsing requested data from different files (DSL,
Java) and reasonably present all program’s findings.

6.1 File comparison
The application’s primary task is to compare files. It has to be capable
of finding changes in product versions that are preferably relevant to the
project. For example, a project file inherits from a product file, which is
changed in-between versions.

Multiple tools can perform a simple file comparison, such as Total Com-
mander through the Dir-sync function, Beyond Compare Version 3 [43],
Kaleidoscope [44], and many others.

There are multiple technologies to choose from for comparing files. Pro-
gramming languages usually have solutions for comparing files available in
accessible libraries that are already optimized, such as FileUtils class in
Java with the contentEquals method [45]. Some languages have better per-
formance (e.g., C++), but the performance difference between these already
optimized processes is slight compared to the time spent downloading arti-
facts and, therefore, will not be considered a crucial factor for choosing the
technology.

29

6.2 Acquiring product source code
Almost all product artifacts are located on Nexus including not only artifact
binaries but also their source code.

A REST API is an application programming interface (API or web API)
that sticks to the REST architectural style’s rules allowing users to interact
with RESTful web services [46]. Most modern programming languages, such
as Java, C++, JavaScript, Bash script, and more, have a simple way to
interact with an API. Nexus has REST API available [47], allowing easy
artifact extraction. For example, a user can obtain artifacts using Bash
script and cURL, a tool for transferring data using popular protocols such
as HTTP [48], and then unpack the artifact with unzip.

As mentioned above, Nexus is working with Maven. Therefore, the most
straightforward way to obtain data would be to use the already created un-
pack execution from the maven dependency plugin by Apache. This
execution not only downloads, if necessary, selected artifacts but also un-
packs them [49].

6.3 File parsing
It is critical to check whether a file has a superclass and obtain the file’s
location from the file’s context to achieve the requirement of identifying all
the files that can influence Java, promo, and promoj files. Because ESs,
besides Java, uses their custom DSL in development, there is no available
solution for this problem. A custom parsing system needs to be created that
suits each of the used languages and is capable of finding a file’s superclass
and its location.

Searching and parsing text can be achieved by using regular expressions;
patterns used to match character combinations in strings [50]. Read a file
from top to bottom, save all the imports, and create the superclass’s file
path from the saved imports in the presence of a superclass.

6.4 Findings presentation
Presenting the program’s findings in a user-friendly way is one of the main
factors in terms of usability. A more sophisticated approach for logging
findings could be by generating a web-page, which would show all the find-
ings with a piece of more specific information upon expanding. This could
be achieved through generating HTML, coding that organizes a web page’s

30

structure and content [51], and CSS for styling.
A straightforward approach could be creating log files through selected

language available libraries and then log file paths of the potentially harmful
files.

6.5 Integration into the development process
The last issue that needs to be solved before building an application solution
is integrating the solution into the development process, which is highly
connected to solution usage. As mentioned in ES’s technologies chapter
(§3.1.1), POS is divided into sub-models. Therefore, solutions need to be
capable of working on separated sub-modules and the whole project.

The only reasonable way this can be achieved is through Maven.

6.6 Chosen technology
Presently, there is no tool capable of comparing files and finding changes
valid for the project migration. Due to the product’s extensive DSL usage,
it is impossible to use the already created application and customize it. The
only possible way is through a completely custom application. There are
many possible languages to use. The most suitable solution is the maven
plugin, which is easily integrated into the current ES’s development process.

6.6.1 Maven plugin
Maven is nothing but a plugin execution framework in which the usage of
plugins accomplishes every task.

Maven’s key feature is plugins, which allow common build logic to be
reused across different projects. They accomplish this by performing an
activity in the context of a project’s description - the Project Object Model
(POM). A set of unique parameters exposed by a description of each plugin
goal can be used to tailor plugin behavior (or Mojo). Maven, in a nutshell,
is nothing but a plugin execution framework in which the usage of plugins
accomplishes every task [52].

Maven plugins are primarily written in Java, allowing easy future devel-
opment of the plugin in ES, where Java is a primary programming language.

A plugin can be configured separately for each sub-module enabling its
execution for separate sub-modules and everywhere through parent POM.
The plugin can also be isolated from the development using profiles. Profiles

31

are defined using a subset of the POM’s elements (plus one extra section),
and they can be triggered in various ways. They alter the POM during the
build process and are intended to be used in pairs to provide equivalent-
but-different settings for diverse target environments. As a result, different
profiles can easily result in different construction results [53] letting ES’s
developers set the plugin in a profile and run only the plugin during the clean
install phase solving the integration into the development process problem.

Maven plugin is the only reasonable solution to solve all the problems
provided in the chapter above, and it is a recommended solution by ES
development team.

32

7 Application

For the reasons provided throughout the thesis, the maven plugin was cre-
ated. The plugin is created in java 1.8. to be responsive to the usage of the
current version in ES.

The main goal is to speed up the version migration process by pointing
out product changes that could lead to project malfunction or unwanted be-
havior. This is done by three-way scanning and comparing the two products
and the project.

The plugin can be executed on single or multiple modules at once based
on the project’s POM configuration. The correctness of the result is highly
dependent on the configuration set correctly. The plugin can work on already
downloaded files for comparison or download them by itself if they are not
provided.

The main functionality is broken into executions, each concentrating on
a different issue (§7.3). As a result, the plugin creates one log file for each
execution, consisting of the file paths of the project file, which is affected,
and the product file that is the cause.

7.1 Architecture
The source code is divided into three main packagesmojo, utils and parser.

Mojo is a plain old Java Object in Maven. In Maven, each Mojo is an
executable goal [54]. In the migration plugin, every Mojo is located in the
mojo package and extending AbstractExecution class, which deals with
all the product and project downloading, validating, and loading, making
the plugin easy for adding future extensions.

As mentioned in the technologies chapter, the migration plugin must
parse all ES languages correctly. The parser package includes all the parses
which are used in different mojos. The parses are Java objects with a file
as only constructor arguments, which can acquire via regular expression if a
file has a superclass and its potential location (§7.2.3).

The utils package incorporates all the helper functions and objects used
throughout the application. The most significant is ModificationHelper
class, which is responsible for all the string alterations such as excludes
from the configuration into regular expression format, the output string
modification, and others. The ModificationHelper is also accountable for

33

filtering files based on includes and excludes from the configuration and
filtering by suffixes.

Figure 7.1: Migration plugin UML diagram.

7.2 Migration plugin’s common workflow

7.2.1 Loading artifacts
The migration plugin can work with already downloaded files as well as
download files during the process. At the beginning of the execution, the
plugin checks if files are on oldVersionPath and newVersionPath; if not, the

34

plugin examines configuration for artifacts items, which are then downloaded
and unpacked using maven-dependency-plugin internally.

7.2.2 File comparison
Comparing files is a big part of the plugin. Since the project is using java as
a programming language, the plugin file-to-file comparison is made through
FileUtils class using the contentEquels method. Before comparing the con-
tents byte by byte, the method checks whether the two files are of different
lengths or if they point to the same file [55].

7.2.3 Working with files
The program loads single files using the Java stack class to avoid recursion,
which could easily overload JVM on loading more extensive data.

Files are reloaded for each execution, insignificantly slowing the plugin’s
performance. This can be solved with a carrier, which must implement logic
to remember current modules. In the case of running a plugin over multiple
modules, the plugin keeps data in the carrier unchanged.

Some executions (e.g., Check classes (§7.3.1)) must also analyze parts
of the code; in that case, a buffered reader is used for reading, and specific
regular expressions are implemented for parsing and validating lines.

Parsers

All custom parsers used in the plugin are working on the same principle.
During reading lines of a file, parsers save the package and all the imports
from the files. The reading continues until the main header, which poten-
tially contains information about the file’s superclass, is found (e.g., public
class extends superclass - in java). The path to a superclass is then created
based on imports and packages.

A warning is printed out to notify a user when a superclass is not located
in provided files.

Superclass is skipped during validation when it is still located in the pro-
ject; therefore cannot damage the project during product version migration.

Specific regular expressions are displayed under executions.

35

7.3 Executions
Maven lifecycle phases are executed progressively from validation to deploy-
ment [56]. Each execution is executed during the install lifecycle phase. The
install phase is second to last, ensuring all other plugins, which could poten-
tially modify the project files, were executed before the migration plugin.

7.3.1 Check classes
The execution checks all product java files enhanced by annotation in the
project or set in the configuration. The plugin also dynamically validates all
superclasses (parents) that may affect the appointed file. The configuration
also allows the user to set an excludes list of excluded java files separated
by a comma.

Process

The Mojo collects all the java files from the project folder and all between
versions changed product files. If there are no changed files, execution stops
with the appropriate console log. Elsewhere execution continues by scan-
ning already located product files for the reference annotation. Java files
from annotations together with files located in the configuration provide the
execution’s focus group.

The application’s custom parser parses selected files so that they would
provide information about their potential superclass and its location. The
superclasses are then validated in the same matter recursively.

The execution prints the number of possible errors found and the exe-
cution time into the console and creates an output file containing detailed
information about the changed classes and file paths affected by the change.
If any file in output was referenced using annotation, output also adds the
path to the file where the annotation occurs.

Regular expression used for parsing

(? : pub l i c c l a s s)\ s ([a−zA−Z0−9_\−.]+)\ s (? : extends)\ s ([a−zA−Z0−9_\−.]+)
Listing 7.1: Regex used for parsing and finding superclass in java files

(? : @ProductReference) ([a−zA−Z0−9_\ − . () , "]+)
Listing 7.2: Regex used for finding product reference annotation

36

(? : package) ([a−zA−Z0−9_\ − . , "]+)
Listing 7.3: Regex used for finding package

(? : import)\ s ([a−zA−Z0−9_\−.]+)
Listing 7.4: Regex used for finding imports

7.3.2 Check Promo and Promoj
Both promo and promoj currently have similar execution processes with
only minor differences. The execution checks all product promo (promoj)
files extended by any project promo (promoj) files and validates them among
their superclasses. The user can also create an excludes list of files to be
excluded, separated by a comma.

Process

The execution goes through all project files with the appropriate suffix
(promo, promoj) and selects the ones with superclass. The plugin goes
through the inheritance of the project promo (promoj) files, picking out all
the product files and checking if there are any changes in those files between
product versions, which could present possible errors in the initial file during
migration. A file’s superclasses are parsed from a file via the custom parser
using regexp. Logged output file presents a potentially problematic product
file with the name of the project file.

Regular expression used for parsing

(? : Process)\ s ([a−zA−Z0−9_\−.]+)\ s (? : s p e c i a l i z e s)\ s ([a−zA−Z0−9_\−.]+)
Listing 7.5: Regex used for finding and parsing superclass

(? : Package) ([a−zA−Z0−9_\ − . , "]+)
Listing 7.6: Regex used for finding package

(? : Import)\\ s ([a−zA−Z0−9_\\−.]+)
Listing 7.7: Regex used for finding imports

7.3.3 Check XML layout
Check XML layout is the most straightforward execution in the plugin. Ex-
ecution checks if XML files were changed in the products.

37

Process

The execution has a different configuration from the other files. By the
client’s requirements and since there are only a few XML files, it is not
worth going through all the product files to find them. Therefore, there
must be a full relative path to those files in configuration. The execution
loads these files in both product versions and compares them, resulting in
the output log file.

7.3.4 Check overwritten files
Sometimes, it is necessary to completely overwrite the original product file
during the project development to ensure intended behavior. These files
tend to be problematic during migration since the original file can change its
conduct or even be deleted altogether. The check overwritten files execution
locates these files and points out the questionable ones to the developer.

Process

In the beginning, the Mojo requires all project and old product files, filtering
them by set includes (e.g., it *.java, *.promo) and excludes from the config-
uration. By comparing the relative file paths, the execution finds all the files
that have been overwritten in the project. The plugin finds all the changed
files on these relative paths between product versions. In the output, the
plugin notifies a user which files have been altered during the migration or
are missing altogether. If showAllOverwritten is set to true in the configur-
ation plugin provides relative paths of all the overwritten files that have not
been modified in any way in the migration.

7.3.5 Check folder
The check folder Mojo has an easy process with the primary goal of com-
paring product files/folders. The execution loads all the products files based
on the includes (e.g., *.do, *.doin) and excludes from the configuration, and
compares them. The project files are not considered in this Mojo.

Process

The Mojo first obtains all the files from both product versions based on set
includes and excludes. Then the files are loaded into hashtable with the
relative path as a key and file object as a value. The execution iterates
through the hashtable with old files and checks if there is a file on the same

38

path in the new product version. The output of the execution consists of
three parts. Changed that changed, files that were added, and files that
were deleted in-between versions.

39

Figure 7.2: The migration plugin’s single execution flowchart.
40

7.4 Launch
The maven plugin was built in Java 1.8 using Apache Maven 3.6.3. The
application can be installed with the mvn clean install maven command
over the root migration plugin directory.

Figure 7.3: Screenshot of mvn clean install command execution over plu-
gin’s root directory.

Figure 7.4: Screenshot of added plugin in the maven repository after in-
stalling.

7.4.1 Sample plugin execution
Maven multi-module project with predefined profiles was added to the elec-
tronic appendencies to test plugin functionality. The plugin configuration is
filled in the POM of the project’s sub-modules. The execution is identical to
the execution in the ES using mvn clean install -Pmigration over the
parent module POM directory.

41

Figure 7.5: Screenshot of the plugin execution over the sample project.

42

8 Testing

Each plugin’s execution was tested to eliminate bugs during the development
process. The plugin was tested through the unit and functional testing. In
the begging mock data were used and gradually transferred to actual data
from OmniPos COP migration.

After extensive functional testing, ES’s developer also provided the plu-
gin’s functionality assessment.

8.1 Unit testing
Individual pieces of source code are tested as part of the software testing
process known as unit testing to see if they are ready for usage [57, p. 75]. A
unit in Object-oriented programming (OOP) is typically a whole interface,
a class, or a single method.

The application uses JUnit-5 [58] for unit testing. In the application,
unit tests were issued for the ModificationHelper class, which method is
used in every Mojo. Used parser classes, such as JavaFile, PromoFile, and
PromoJFile, were also tested. All the mentioned classes are crucial for the
application to run correctly.

Figure 8.1: Screenshot of the unit text execution through mvn test com-
mand on the plugin’s version 1.11.

43

8.2 Functional testing
Functional testing is a type of black-box testing that is part of the Qual-
ity assurance (QA) process and bases its test cases on the requirements of
the software component being tested. During functional testing, input is
provided, and the results are examined and validated [59, p. 42].

This section presents each execution example usage on actual data from
two COOP modules and a complete assessment of the migration plugin done
by ES’s project developer on OmniPos COP migration from product version
5.17.3-b01 to 5.19.6-b06.

8.2.1 Mod-functions-client-cst module
Mod-functions-client-cst module is part of POS-Client’s modules that test
the plugin’s internal download and unpacking ability, overwritten execution,
check-promo execution, check-promoj execution, check-xml-layout execution,
and check-classes execution.

The migration plugin’s findings are briefly summarized in the tables be-
low. Complete plugin execution, including defined profile and logs from
executions, is provided in the electronic appendencies.

Description Data

Located old product files 6195
Located new product files 6347
Number of changed files between product versions 561
Overwritten files influenced by product changes 2
Execution time 162069ms

Table 8.1: check-overwritten-files execution

Description Data

Located project promo files 336
Project promo files with superclass 209
Changed product files 49
Promo files influenced by product changes 110
Execution time 3653ms

Table 8.2: check-promo execution

44

Description Data

Located project promoj files 336
Project promo files with superclass 2059
Promoj files influenced by product changes 35
Execution time 3641ms

Table 8.3: check-promoj execution

Description Data

Java files selected for checking 15
Java files influenced by product changes 19
Execution time 4551ms

Table 8.4: check-classes execution

Description Data

Number of selected xml layouts for comparision 10
Number of xml layouts not found 1
Number of changed xml layouts 0
Execution time 7ms

Table 8.5: check-xml-layout execution

8.2.2 Mod-config-client-cst module
Mod-config-client-cst module is part of POS-Client’s modules that test the
plugin’s external download and unpacking ability throughmaven-dependency-
plugin unpack goal execution and check-folder execution.

The findings of the migrating plugin are summarized in the table be-
low. The appendices provide complete plugin execution, including a defined
profile and logs from executions.

45

Description Data

Includes set *.do,*.doj,*.doin
Located old product version files 694
Located new product version files 694
Number of deleted files between versions 0
Number of added files between versions 0
Number of changed files between versions 25
Execution time 18258ms

Table 8.6: check-folder execution

8.3 Overall usability evaluation
ES’s developer issued the following points after the plugin assessment [60].

1. Good usability

(a) check promo a promoj - very good (all changes marked and clear
what you should check)

(b) check-classes - very good - all annotated classes, which were changed
were marked (but necessary to maintain this annotations - eg.
during the review of new feature)

(c) overridden classes - OK - after new changed it should show only
changed overridden files

(d) data containers - quite ok after some configuration (include only
instances, which are used in project, exclude files, where changed
only version - eg. descriptors) - there will be new update of plugin,
which will determine also removed / added file

(e) layouts - not changed during our migration

2. Usable with minor issues

(a) installers - quite ok via check folder (mostly xml, properties), but
necessary to check for example also pom, which is not possible
via plugin

(b) db (sql scripts) - quite ok, filtered only used db, which are used
on given project, quite clear results

(c) do/doj/doins - via check folder - changed file mentioned in output,
but not so clear like - java/promo changes

46

3. Usable with bigger issues

(a) UI5 - check folder changes available, but is very complicated to
identified, what exactly relates to project changes - a lot of func-
tions could be not related (overridden in project etc) - not so
usable now

(b) templates - for now not so usable - it will be good to implement
new execution for example for check-patches, which will check
project patches against changed file in product

(c) beans - not sure if we want to use it here - currently not used

(d) import mapping - can be used to identified change in some mfg
file -> then has to be mapped in altova

4. Not usable now

(a) pom - not possible now

(b) app-container changes - theoretically it is possible to use check
folder here, but don’t know if it makes sense to solve it via mi-
gration tool. Mostly very specific changes. If we want to use it
we need to add plugin into app-container artifacts

5. Does not make sense

(a) tests - probably doesn’t make sense - it is identified by failed build

(b) technical debt - some workarounds because of GKRI, which should
be fixed on new version - has to be mentioned else - e.g., conflu-
ence page

47

9 Conclusion

The primary goal of the thesis was to design and develop a solution for
Eurosoftware s.r.o. that would simplify product version migration by point-
ing out product files, which could cause malfunction after the project is mi-
grated from the version on which the project was built to the newer product
version.

In the beginning, the thesis informs briefly about the company’s product
and present versioning system. However, the thesis primarily focuses on
technologies used in ES’s development and the current migration process.

In order to pick the most suitable solution, an analysis was made, examin-
ing available tools and popular programming languages such as Java, C++,
Bash, and others. The analysis was divided into five sub-problems (acquir-
ing product source code, file comparison, file parsing, findings presentation,
and integration into the development process). Each sub-problem was ex-
plained and solved in multiple ways, resulting in the custom maven plugin
as a chosen technology.

The final version of the migration plugin is easily expandable. The plugin
can download and unpack files or work with already downloaded directories.
It is capable of identifying overwritten files, checking XML layout, complete
folder comparison, and complex identification of all Java, promo, and promoj
files, which detects if files could be influenced by any change in product,
including inheritance. Findings are presented simply in log files created by
the plugin for each execution.

Unit testing and functional testing were issued to test application cor-
rectness. Functional testing was performed on mocked data as well as on
actual project migration by the ES’s developer.

The created application meets the ES’s specification (§5.3) and has already
been introduced in the company’s development practice. After submitting
the plugin in January, ES issued future development, which altered the
presentation of the findings from log files into a dynamic creation of HTML
files.

48

List of Acronyms

AWS Amazon Web Services. 21

CD Continuous deployment. 15

CI Continuous integration. 15

CIS Cluster Infrastructure Server. 11

CSS Cascading Style Sheets. 6, 17, 27, 31

DO Domain Object. 17–20

DOIN Domain Object Instances. 18–20, 27

DSL Domain Specific Languages. 6, 15, 17–20, 28–31

ECON Enterprise Connector. 10, 11

ES Eurosoftware s.r.o.. 5, 6, 9, 14, 16, 17, 23, 24, 28–33, 43, 48

GK GK Software SE. 6, 9, 10, 12, 21

GUI Graphical user interface. 15

HF Hotfix. 6, 21, 22

HTML Hypertext Markup Language. 17, 30, 48

HTTP Hypertext Transfer Protocol. 15

JMS Java Message Service. 11

JVM Java Virtual Machine. 35

Mojo Maven plain Old Java Object. 31, 33, 36, 38

OOP Object-oriented programming. 16, 43

POM Project Object Model. 14, 26, 31–33

POS Point of Sale. 6, 9–12, 14–16, 25–27, 31, 44, 45

49

QA Quality assurance. 18, 28, 44

SCM Software configuration management. 21

SDC Store Device Controller. 10, 25

UCON Universal Connector. 11, 25

UI User Interface. 17

XML Extensible Markup Language. 6, 7, 11, 15, 17, 27, 28, 37, 38, 48

50

Bibliography

[1] G. S. SE, “GK Software SE.” [Online]. Available: https://www.
gk-software.com/us/company/about-gk

[2] “Úvod.” [Online]. Available: https://www.eurosoftware.cz/#co-delame

[3] G. S. SE, “GK Software SE.” [Online]. Available: https://www.
gk-software.com/us/solutions/omnipos

[4] M. Štrobl, “Migration plugin assessment on cop – migration
plugin,” source placed in electronic appendencies. [Online]. Available:
confluence/Big-Picture.png

[5] M. Strobl and S. Schwarz, “Gk software se’s services description,” source
placed in electronic appendencies. [Online]. Available: confluence/
services.png

[6] M. Strobl, “Pos - thin-pos variant,” source placed in electronic
appendencies. [Online]. Available: confluence/thin-pos.png

[7] ——, “Pos - fat-pos variant,” source placed in electronic appendencies.
[Online]. Available: confluence/Fat-pos.png

[8] ——, “Pos - smart-pos variant,” source placed in electronic
appendencies. [Online]. Available: confluence/smart-pos.png

[9] ——, “Pos client functionality overview,” source placed in electronic
appendencies. [Online]. Available: confluence/pos-client-funcionality.
png

[10] “Maven – Welcome to Apache Maven.” [Online]. Available: https:
//maven.apache.org/

[11] D. Szczukocki, “Multi-Module Project with Maven | Bael-
dung,” Oct. 2018. [Online]. Available: https://www.baeldung.
com/maven-multi-module

[12] S. Inc, “Nexus Repository Manager | Sonatype.” [Online]. Available:
https://www.sonatype.com/products/nexus-repository

51

https://www.gk-software.com/us/company/about-gk
https://www.gk-software.com/us/company/about-gk
https://www.eurosoftware.cz/#co-delame
https://www.gk-software.com/us/solutions/omnipos
https://www.gk-software.com/us/solutions/omnipos
confluence/Big-Picture.png
confluence/services.png
confluence/services.png
confluence/thin-pos.png
confluence/Fat-pos.png
confluence/smart-pos.png
confluence/pos-client-funcionality.png
confluence/pos-client-funcionality.png
https://maven.apache.org/
https://maven.apache.org/
https://www.baeldung.com/maven-multi-module
https://www.baeldung.com/maven-multi-module
https://www.sonatype.com/products/nexus-repository

[13] Atlassian, “What is Jira Software used for?” [Online].
Available: https://www.atlassian.com/software/jira/guides/use-cases/
what-is-jira-used-for

[14] “What is Java Swing? - Definition from Techopedia.” [Online].
Available: http://www.techopedia.com/definition/26102/java-swing

[15] “Jenkins.” [Online]. Available: https://www.jenkins.io/

[16] M. Strobl, “Pos language diagram,” source placed in electronic
appendencies. [Online]. Available: confluence/language-diagram.png

[17] “The Java Language Environment.” [Online]. Available: https:
//www.oracle.com/java/technologies/introduction-to-java.html

[18] “Inheritance in Java,” Mar. 2017, section: Java. [Online]. Available:
https://www.geeksforgeeks.org/inheritance-in-java/

[19] “XML introduction - XML: Extensible Markup Language | MDN.”
[Online]. Available: https://developer.mozilla.org/en-US/docs/Web/
XML/XML_introduction

[20] “CSS: Cascading Style Sheets | MDN.” [Online]. Available: https:
//developer.mozilla.org/en-US/docs/Web/CSS

[21] “What are Domain-Specific Languages (DSL) | MPS by
JetBrains.” [Online]. Available: https://www.jetbrains.com/mps/
concepts/domain-specific-languages/

[22] cartermp, “.NET Framework technologies unavailable on .NET Core
and .NET 5+.” [Online]. Available: https://docs.microsoft.com/en-us/
dotnet/core/porting/net-framework-tech-unavailable

[23] T. Kosar, P. E. Martınez López, P. A. Barrientos, and M. Mernik,
“A preliminary study on various implementation approaches of
domain-specific language,” Information and Software Technology,
vol. 50, no. 5, pp. 390–405, Apr. 2008. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0950584907000419

[24] S. Herrmann and M. Mosconi, “Do dsl overview,”
source placed in electronic appendencies. [Online]. Available:
confluence/DO-DSL-overview.png

[25] M. Strobl, “Gk software se dsl overview,” source placed in electronic
appendencies. [Online]. Available: confluence/DSL-overview.png

52

https://www.atlassian.com/software/jira/guides/use-cases/what-is-jira-used-for
https://www.atlassian.com/software/jira/guides/use-cases/what-is-jira-used-for
http://www.techopedia.com/definition/26102/java-swing
https://www.jenkins.io/
confluence/language-diagram.png
https://www.oracle.com/java/technologies/introduction-to-java.html
https://www.oracle.com/java/technologies/introduction-to-java.html
https://www.geeksforgeeks.org/inheritance-in-java/
https://developer.mozilla.org/en-US/docs/Web/XML/XML_introduction
https://developer.mozilla.org/en-US/docs/Web/XML/XML_introduction
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://www.jetbrains.com/mps/concepts/domain-specific-languages/
https://www.jetbrains.com/mps/concepts/domain-specific-languages/
https://docs.microsoft.com/en-us/dotnet/core/porting/net-framework-tech-unavailable
https://docs.microsoft.com/en-us/dotnet/core/porting/net-framework-tech-unavailable
https://www.sciencedirect.com/science/article/pii/S0950584907000419
https://www.sciencedirect.com/science/article/pii/S0950584907000419
confluence/DO-DSL-overview.png
confluence/DSL-overview.png

[26] S. Herrmann, “Gk software se - stakeholders,” source placed in
electronic appendencies. [Online]. Available: confluence/stakeholders.
png

[27] ——, “Gk software se - common language,” source placed in electronic
appendencies. [Online]. Available: confluence/common-language.png

[28] ——, “Gk software se - promo and promoj inheritance syntax,” source
placed in electronic appendencies. [Online]. Available: confluence/
promo-promoj-inheritance.png

[29] ——, “Gk software se - module dsl introduction,” source placed in
electronic appendencies. [Online]. Available: confluence/module-dsl.
png

[30] R. S. Pressman, Software engineering: a practitioner’s approach, 7th ed.
New York: McGraw-Hill Higher Education, 2010, oCLC: ocn271105592.

[31] Atlassian, “Gitflow Workflow | Atlassian Git Tutorial.” [Online]. Avail-
able: https://www.atlassian.com/git/tutorials/comparing-workflows/
gitflow-workflow

[32] A. Grzesik, “GK Software SE’s git naming convention.s,” source
placed in electronic appendencies. [Online]. Available: confluence/
branch-naming-convention.png

[33] ——, “GK Software SE’s git workflow,” source placed in electronic
appendencies. [Online]. Available: confluence/workflow.png

[34] ——, “GK Software SE’s git feature branch,” source placed in
electronic appendencies. [Online]. Available: confluence/feature.png

[35] ——, “GK Software SE’s git hotfix branch,” source placed in electronic
appendencies. [Online]. Available: confluence/hotfix.png

[36] ——, “GK Software SE’s git release branch,” source placed in
electronic appendencies. [Online]. Available: confluence/release.png

[37] ——, “GK Software SE’s git model,” source placed in electronic
appendencies. [Online]. Available: confluence/Git-model.png

[38] P. Kopal, “Eurosoftware’s commit structure example from COP project
in IDEA,” source placed in electronic appendencies. [Online]. Available:
confluence/commit-msg.png

53

confluence/stakeholders.png
confluence/stakeholders.png
confluence/common-language.png
confluence/promo-promoj-inheritance.png
confluence/promo-promoj-inheritance.png
confluence/module-dsl.png
confluence/module-dsl.png
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
confluence/branch-naming-convention.png
confluence/branch-naming-convention.png
confluence/workflow.png
confluence/feature.png
confluence/hotfix.png
confluence/release.png
confluence/Git-model.png
confluence/commit-msg.png

[39] M. Štrobl, “Cop - coop (omnipos) – product migration,” source
placed in electronic appendencies. [Online]. Available: confluence/
Product-migration.pdf

[40] “What is Backward Compatible (Backward Compatibility)?”
[Online]. Available: https://www.techtarget.com/whatis/definition/
backward-compatible-backward-compatibility

[41] M. Štrobl, “Project naming conventions - GK project development
rules,” source placed in electronic appendencies. [Online]. Available:
confluence/extensions.png

[42] “What is Compatible?” [Online]. Available: https:
//www.computerhope.com/jargon/c/compatib.htm

[43] “Scooter Software: Home of Beyond Compare.” [Online]. Available:
https://www.scootersoftware.com/features.php

[44] “Kaleidoscope.” [Online]. Available: https://kaleidoscope.app

[45] “FileUtils (Plexus Common Utilities 3.4.0 API).” [Online]. Avail-
able: https://codehaus-plexus.github.io/plexus-utils/apidocs/org/
codehaus/plexus/util/FileUtils.html#contentEquals(java.io.File,java.
io.File)

[46] “What is a REST API?” [Online]. Available: https://www.redhat.
com/en/topics/api/what-is-a-rest-api

[47] “REST.” [Online]. Available: https://oss.sonatype.org/
nexus-restlet1x-plugin/default/docs/rest.html

[48] C. Sabato, “Using cURL in a Bash Script: Get the Response
Code from an API,” Mar. 2020. [Online]. Available: https:
//codefather.tech/blog/curl-bash-script/

[49] “Apache Maven Dependency Plugin – depend-
ency:unpack.” [Online]. Available: https://maven.apache.org/plugins/
maven-dependency-plugin/unpack-mojo.html

[50] “Regular expressions - JavaScript | MDN.” [Online]. Avail-
able: https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Guide/Regular_Expressions

54

confluence/Product-migration.pdf
confluence/Product-migration.pdf
https://www.techtarget.com/whatis/definition/backward-compatible-backward-compatibility
https://www.techtarget.com/whatis/definition/backward-compatible-backward-compatibility
confluence/extensions.png
https://www.computerhope.com/jargon/c/compatib.htm
https://www.computerhope.com/jargon/c/compatib.htm
https://www.scootersoftware.com/features.php
https://kaleidoscope.app
https://codehaus-plexus.github.io/plexus-utils/apidocs/org/codehaus/plexus/util/FileUtils.html#contentEquals(java.io.File,java.io.File)
https://codehaus-plexus.github.io/plexus-utils/apidocs/org/codehaus/plexus/util/FileUtils.html#contentEquals(java.io.File,java.io.File)
https://codehaus-plexus.github.io/plexus-utils/apidocs/org/codehaus/plexus/util/FileUtils.html#contentEquals(java.io.File,java.io.File)
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://oss.sonatype.org/nexus-restlet1x-plugin/default/docs/rest.html
https://oss.sonatype.org/nexus-restlet1x-plugin/default/docs/rest.html
https://codefather.tech/blog/curl-bash-script/
https://codefather.tech/blog/curl-bash-script/
https://maven.apache.org/plugins/maven-dependency-plugin/unpack-mojo.html
https://maven.apache.org/plugins/maven-dependency-plugin/unpack-mojo.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions

[51] “HTML basics - Learn web development | MDN.” [Online].
Available: https://developer.mozilla.org/en-US/docs/Learn/Getting_
started_with_the_web/HTML_basics

[52] “Maven – Introduction to Maven Plugin Development.” [On-
line]. Available: https://maven.apache.org/guides/introduction/
introduction-to-plugins.html

[53] “Maven – Introduction to build profiles.” [Online]. Available: https:
//maven.apache.org/guides/introduction/introduction-to-profiles.html

[54] “Maven – Plugin Developers Centre.” [Online]. Available: https:
//maven.apache.org/plugin-developers/

[55] “FileUtils (Apache Commons IO 2.11.0 API).” [Online]. Avail-
able: https://commons.apache.org/proper/commons-io/apidocs/org/
apache/commons/io/FileUtils.html#contentEquals-java.io.File-java.
io.File-

[56] “Maven – Introduction to the Build Lifecycle.” [On-
line]. Available: https://maven.apache.org/guides/introduction/
introduction-to-the-lifecycle.html

[57] A. Kolawa and D. Huizinga, Automated Defect Prevention: Best Prac-
tices in Software Management. Wiley-IEEE Computer Society Press,
2007.

[58] S. Bechtold, S. Brannen, J. Link, M. Merdes, M. Philipp,
J. Rancourt, and C. Stein, “JUnit 5 User Guide.” [Online]. Available:
https://junit.org/junit5/docs/current/user-guide/

[59] C. Kaner, J. Falk, and H. Q. Nguyen, Testing Computer Software,
2nd ed. Wiley Computer Publishing, 1999.

[60] P. Kopal, “Migration plugin assessment on cop – migration
plugin,” source placed in electronic appendencies. [Online]. Available:
confluence/COP-testing.png

55

https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/HTML_basics
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/HTML_basics
https://maven.apache.org/guides/introduction/introduction-to-plugins.html
https://maven.apache.org/guides/introduction/introduction-to-plugins.html
https://maven.apache.org/guides/introduction/introduction-to-profiles.html
https://maven.apache.org/guides/introduction/introduction-to-profiles.html
https://maven.apache.org/plugin-developers/
https://maven.apache.org/plugin-developers/
https://commons.apache.org/proper/commons-io/apidocs/org/apache/commons/io/FileUtils.html#contentEquals-java.io.File-java.io.File-
https://commons.apache.org/proper/commons-io/apidocs/org/apache/commons/io/FileUtils.html#contentEquals-java.io.File-java.io.File-
https://commons.apache.org/proper/commons-io/apidocs/org/apache/commons/io/FileUtils.html#contentEquals-java.io.File-java.io.File-
https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
https://junit.org/junit5/docs/current/user-guide/
confluence/COP-testing.png

	Introduction
	GK Software SE
	About company
	POS
	Central
	POS - Client

	Company product vs. project

	Technologies used in ES product development
	Tools and frameworks
	Maven
	Nexus
	Jira
	Java Swing
	Jenkins

	Languages
	Java
	XML
	CSS
	DSL

	Version control
	Version control in GK
	Branches
	Master and develop branch
	Feature branch
	HF branch
	Release branch

	Commits

	Migration
	Files comparison
	Migration steps
	Compare and migrate
	The final steps after migration

	Migration process summary

	Analysis
	File comparison
	Acquiring product source code
	File parsing
	Findings presentation
	Integration into the development process
	Chosen technology
	Maven plugin

	Application
	Architecture
	Migration plugin's common workflow
	Loading artifacts
	File comparison
	Working with files

	Executions
	Check classes
	Check Promo and Promoj
	Check XML layout
	Check overwritten files
	Check folder

	Launch
	Sample plugin execution

	Testing
	Unit testing
	Functional testing
	Mod-functions-client-cst module
	Mod-config-client-cst module

	Overall usability evaluation

	Conclusion
	List of Acronyms
	Bibliography

