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A physical informed neural network (PINN) is the novel approach for solving a partial differ-
ential equation using a neural network. This concept was firstly introduced in the paper [3],
where the PINN was used for the solution of various partial differential equations. Since then,
many papers have been published dealing with the solution of a wide range of partial differential
equations [1,2].

The principle of this novel method is quite simple. It considers a solution of an equation
as a non-linear function defined by a neural network. In other words, the neural network is
used as the mapper from the space-time variables into unknowns. This contrasts sharply with
classical methods, where the solution is considered as a linear combination of basis functions.
The crucial part of the PINN approach lies in constructing a loose function, see Fig. 1. Firstly,
the automatic differentiation process is used to find the exact space and time derivatives of a
solution with arbitrary orders, see green layer. Then the solution, with its derivatives, is put
into the equations in the classical or weak form, see the red box. If we assume that the exact
solution satisfies the equations together with boundary conditions, we can think of the value
after substitution directly as the loss function.
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Fig. 1. Example of physical informed neural network for solution of Navier-Stokes equations



The training process starts by choosing points inside and on the boundary of the computa-
tional domain. The training algorithm tries to minimize the loss function evaluated for selected
points. Suppose the loss function is minimized to zero. In that case, the function described
by the neural network will be satisfying boundary conditions at the boundary points and the
equation at the inner points.

The methodology is demonstrated in the solution of the flow field of incompressible vis-

cid fluid in the channel for various Reynolds numbers. Figs. 2 and 3 show the comparison

between PINN predicted solution and solution computed by discontinuous Galerkin finite ele-
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Fig. 3. Comparison of PINN predicted solution (/eft) with a solution computed by DGFEM (middle) for

ment method (DGFEM).
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Reynolds number 100. The figure on the right shows the error between solutions

Fig. 2. Comparison of PINN predicted solution (leff) with a solution computed by DGFEM (middle) for
Reynolds number 10. The figure on the right shows the error between solutions
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