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Homogenization based two-scale modelling of unilateral contact
in micropores of fluid saturated porous media
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1. Introduction
We consider fluid-saturated poroelastic structures characterized by unilateral self-contact at the
pore level of the periodic microstructure. The unilateral frictionless contact interaction is con-
sidered on matching pore surfaces of the elastic skeleton. Depending on the deformation due to
applied macroscopic loads, the self-contact interaction alters the one between the solid and fluid
phases. Both the disconnected and connected porosities are treated; in the latter case, quasistatic
fluid flow is described by the Stokes model. We derive two-scale models of the homogenized
porous media for the two types of porosities using the framework of the periodic unfolding ho-
mogenization [2, 4], cf. our previous paper [5] where only empty pores were considered. For the
closed pore microstructures, a nonlinear elastic model is obtained at the macroscopic scale. For
the connected porosity, a regularization is introduced, assuming the contact interaction never
close perfectly the pores, which prevents the pore connectivity. The macroscopic model attains
the form of a nonlinear Biot continuum, whereby the Darcy flow model governs the fluid re-
distribution. To respect that the permeability and other poroelastic coefficients depend on the
deformation, an approximation based on the sensitivity analysis is employed [6].

We propose and test new modifications of the original two-scale computational algorithm
reported [5] which is based alternating micro- and macro-level steps. As a novelty, a dual
formulation of the pore-level contact problems in the local representative cells provides actual
active contact sets which enables to compute consistent effective elastic coefficients at particular
macroscopic points. At the macroscopic level, a sequential linearization leads to an incremental
equilibrium problem which is constrained by a projection arising from the homogenized contact
constraint, such that the Uzawa algorithm can be used. At the local level, the finite element
discretized contact problem attains the form of a nonsmooth equation which which is solved
using the semi-smooth Newton method [3] without any regularization, or a problem relaxation.
Numerical examples of 2D deforming structures are presented.

2. Problem formulation
In the framework of the unfolding method of homogenization, using the asymptotic analysis
with respect to heterogeneity scale parameter ε → 0, we derived limit two-scale models of
the unilateral contact in porous structures with disconnected and connected porosity. Below
we present the variational formulations of the contact problems for heterogeneous structures
with disconnected, or connected pores. An open bounded domain Ω ⊂ IRd, with the dimension
d = 2, 3, is constituted by the solid elastic skeleton Ωε

s and by the fractures (fissures) Ωε
f which
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Fig. 1. Representative cells Y for the two types of porous structures. Closed pores (left), connected pores
allowing for flow (right). Contact surfaces Γ+/−

c , subparts on the pore surface Γfs

are saturated by a viscous fluid, so that

Ω = Ωε
s ∪ Ωε

f ∪ Γε , Ωε
s ∩ Ωε

f = ∅ , Ωε
f ⊂ Ω , (1)

where Γε = Ωε
s ∩ Ωε

f is the interface; the contact is possible on Γε
c ⊂ Γε. The pores Ωε

f and
the skeleton are constituted as periodic lattices using domains Yf and Ys, respectively, where
Y = Ys ∪ Yf ∪ Γ is the representative unit cell.

2.1 Disconnected pores – static problems

The problem is described by a variational inequality governing the displacements uε and pore
pressure pε which is defined by constants in each closed pore Ωk,ε ⊂ Ωε

f . The following sets are
employed:

kinematic constraint: Kε = {v ∈ H1(Ωε
s)| v = 0 on ∂uΩε

s , g
ε
c(v) ≤ 0 on Γε

c} ,
admissible pressure field: Qε = {q ∈ L2(Ω)| q is constant in each Ωk,ε , k ∈ Iεf} ,

where gεc is the contact gap function. The variational formulation reads: Find uε ∈ Kε and the
pressure pε ∈ Qε such that (given volume forces f ε)∫

Ωε
s

IDe(uε) : e(vε − uε) +

∫
∂Ωε

f

pεn[s] · (vε − uε) ≥
∫

Ωε
s

f ε · (vε − uε) , ∀vε ∈ Kε ,∫
∂Ωε

f

qεuε · n[s] − γ
∫

Ωε
f

pεqε = 0 ∀qε ∈ Qε ,

(2)

where e(v) = (eij(v)) is the small strain tensor, γ is the fluid compressibility, and ID = (Dijkl)
is the elasticity. n[s] designates the unit normal vector outward to Ωε

s.

2.2 Quasistatic flow in collapsible connected pores

We consider the Stokes slow flow of an incompressible fluid in collapsible pores Ω̃ε
f of a de-

formable porous structure. While the solid skeleton small deformations are described in the
fixed (initial) configuration Ωε

s, the flow in the deformed pores Ω̃ε
f (uε),

Ω̃ε
f (uε) = {z ∈ R3|z = x + uε(x), x ∈ Ωε

f} , (3)



must be respected to comply with the unilateral contact on Γε
c. The variational formulation

reads, as follows: Find (uε, pε,wε) ∈ Kε × L2(Ω̃ε
f )×W (Ω̃ε

f ) satisfying

aεΩ(uε, vε − uε) + Iε(σε
f , v

ε − uε) ≥
∫

Ωε
s

f ε · (vε − uε) , ∀vε ∈ Kε ,

ε2

∫
Ω̃ε

f

µ̄∇wε · ∇ϑε −
∫

Ω̃ε
f

(∇pε − f ε) · ϑε = 0 , ∀ϑε ∈ W (Ω̃ε
f ) ,

∇ · wε = 0 a. e. in Ω̃ε
f ,

(4)

where aεΩ(, ) is the elastic bilinear form and the interaction integral is established using the stress
in fluid σε

f = −pεI + ε22µ̄e(wε),

aεΩ(u, v) =

∫
Ωε

s

IDεe(u) : e(v) , Iε(σε
f , v

ε) =

∫
Γε
fs

n[s] · σε
f · vε . (5)

3. Homogenized porous medium with self-contact at pore level
For the structures with fluid saturated disconnected pores, the homogenized limit problem at-
tains the same form as the one derived for the structures without fluid (empty pores), although
the effective tangent stiffness modulus involved in the incremental formulation reflects the fluid
action. Henceforth, we focus on the model describing the quasistatic response of the homoge-
nized medium with connected pores. We denote by u0 and p0 the macroscopic displacement and
pressure fields, respectively, and by u1 and p1 the two scale counterparts of these fields, being
Y -periodic functions in the micro-variable y ∈ Y . These constitute the truncated asymptotic
expansions introduced using the unfolding operator Tε(), see [1], for x ∈ Ω and y ∈ Y ,

Tε(uε(x)) = u0(x) + εu1(x, y) + ε2(. . . ,

Tε(pε(x)) = p0(x) + εp1(x, y) + ε2(. . . ,

Tε(wε(x)) = ŵ(x, y) + ε(. . . , where ŵ(x, ·) = 0 in Ys .

Admissible two-scale displacements must satisfy u1 ∈ KY (∇ũ0) where the set KY is defined
using the gap function gYc (u1,∇u0) = [∇u0ŷ + u1 − ŷ]

Y
n ≤ 0 with ŷ ∈ Γc, where Γc ⊂ Γfs

is the contact surface, a part of the pore wall Γfs . The limit two-scale problem with quasistatic
flow is derived from Problem (3)-(4). It involves Local problems defined in Y for a.a. x ∈ Ω,
and the Global problem defined in Ω.

The Local problem describes the FSI problem with the unilateral contact and with the Stokes
flow in deformed pores Ỹf ,

∼
∫
Ys

aYS

(
u1 + Πijexij(u0), v− u1

)
+ p0 ∼

∫
Ys

∇y · (v− u1) ≥ 0 , ∀v ∈ KY (∇u0) ,

µ̄ ∼
∫
Ỹf

∇yŵ · ∇yv̂+ ∼
∫
Ỹ

(∇yp
1 +∇xp

0 − f f ) · v̂ = 0 , ∀v̂ ∈ H1
#0(Ỹf ) ,

∼
∫
Ỹf

q∇y · ŵ = 0 , ∀q ∈ L2(Ỹf ) ,

(6)

where ū = Πijexij(u0) is the displacement field in Ys produced by the homogeneous strain
ex(()u0) with Πij

k = δikyj and the Sobolev space H1
#0 contains Y -periodic functions with

zero traces on the pore wall Γfs . The elastic bilinear form aYS
(, ) is defined in analogy with



the one introduced in (5), but using strains ey( ) and domain Ys in the periodic cell Y . The
Global problem is constituted by the static equilibrium and by the Darcy flow involving the
permeability K̃, thus, ∫

Ω

K̃(∇xp
0 − f f ) · ∇q = 0 ,∀q ∈ Q0(Ω) ,∫

Ω

aYS

(
u1 + Πijexij(u0), ṽ(v0) + Πijexij(v0)

)
−
∫

Ω

p0

(
φf∇x · v0− ∼

∫
s

∇y · ṽ(v0)

)
=

∫
Ω

f̄ · v0 , ∀v0 ∈ U0(Ω) ,

(7)

whereby the test displacement field ṽ(v0) must satisfy gYc (ṽ,∇v0) = 0 on the actual contact set
Γ∗ defined a.e. in Ω.

The permeability tensor K̃ depends on the deformation by virtue of the deformed pores Ỹf
in the local reference cell Y (x). A regularization is considered to prevent a complete closing
of the pore at the vicinity of the active contact, i.e. where gYc = 0. This enables to preserve
the well posedness of the local flow problem (6)2,3 and, by the consequence, to rely on a strict
posive definiteness of K̃, though possibly very small. The permeability dependence on the
deformation of Yf is treated approximately using the sensitivity analysis approach [6], thus
K̃ ≈ K0 + δK = ∂pKδp0 +∂eK : ex(δu0) at x ∈ Ω. The two-scale algorithm proposed in [5] can
be adapted. The macroscopic increments (δu0, δp0) driven by the out of balance are computed
with the “fixed sliding contact” due to active contact sets (local true contact surfaces identified),
which modifies the effective macroscopic tangent stiffness.
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