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1. Introduction
In the paper, we recall the classical perturbation approach which enables to linearize the Navier-
Stokes (N-S) equations governing the barotropic viscous fluid dynamics in pores in a rigid peri-
odic structure. The obtained first and second order sub-problems are treated by the asymptotic
homogenization to derive the macroscopic model of the porous medium describing the acoustic
streaming (AS) phenomenon.

2. Successive approximations of the Navier-Stokes equations
The Acoustic Streaming (AS) appears due to inhomogeneities in viscous flow due to non-zero
divergence of the Reynolds stress (due to the kinetic energy of the velocity fluctuations), or
due to vibrating fluid-solid interface. It is observed at fluid boundary layers as the Rayleigh
streaming due thermal and viscous phenomena, or in the bulk fluid as the high-frequency Eckart
streaming.

To distinguish the phenomenon of the AS, pursuing the standard approach of the pertur-
bation analysis, see [4], cf. [3], we consider the following approximation of the flow field ex-
pressed in terms of different order with respect to the small parameter α ≈ v0/c0, where c0 is
the reference sound speed and v0 is a characteristic flow velocity, v0 � c0. The fluid velocity,
pressure, and density denoted by vf , pf and ρf are represented by expansions

vf = αv1 + α2v2 + . . . ,

pf = p0 + αp1 + α2p2 + . . . ,

ρf = ρ0 + αρ1 + α2ρ2 + . . . ,

(1)

where p0, ρ0 are positive constants and ak denotes k-th order in α approximation of the quantity
a. Moreover, we assume that ak quantity is T -periodic in time, such that the time average of the
time derivative vanishes, ∂ta = 0. Using (1) substituted in the N-S equations, the 1st and 2nd
order problems with respect to α can be distinguished. At the first order, o(α1),

∂

∂t
ρ1 + ρ0∇ · v1 = 0 ,

ρ0
∂

∂t
v1 +∇p1 = µ∇2v1 + (µ/3 + η)∇(∇ · v1) ,

p1 = c20ρ1 ,

(2)



Using the time average over period T of the second order terms, o(α2), we get
∂

∂t
ρ̄2 + ρ0∇ · v̄2 = −∇ · (ρ1v1) ,

ρ0
∂

∂t
v̄2 +∇p̄2 − µ∇2v̄2 + (µ/3 + η)∇(∇ · v̄2) = −ρ0

(
(v1 · ∇)v1 + v1(∇ · v1)

)
,

p̄2 = c20ρ̄2 + c0c
′
0(ρ1)

2 .

(3)

The right hand side terms in (3) defined by the time average of the acoustic T -periodic fluc-
tuations v1, i.e. the divergence of the Reynolds stress, present the driving force for the AS
phenomenon described by v̄2, the time average of the 2nd order velocity field. Different treat-
ment allowing for the acoustic modulation due to multiple time scales, thus, respecting the fast
and slow dynamics, was considered in [1].

3. AS in the homogenized medium
We consider the system (2) governing the acoustic waves in the fluid saturating periodic scaf-
folds represented by the fluid part Yf of the periodic unit cell, Yf ⊂]0, 1[2. The asymptotic
homogenization yields the macroscopic model which presents the Darcy flow. In the frequency
domain, amplitudes of the acoustic pressure waves

∼
p01 satisfying

iω
φf

c20 ∼
p01 −∇x · ( ∼K∇x

∼
p01) = 0 , (4)

where ∼K(iω) is the dynamic permeability and φf is the porosity. Since the associated velocity
v1(x, y) appears to be incompressible at the microscale, i.e. ∇y · v1 = 0, the acoustic stream-
ing force involved in the 2nd order system (3) is given by v1(∇ · v1). Homogenization of (3)
leads to a flow model describing the acoustic streaming phenomenon. The macroscopic flow is
described by solutions of

−K : ∇x ⊗∇xp
0
2 = ∇x · S(p01, ω) , W2 = −K∇xp

0
2 − S(p01, ω) , (5)

where the “steady” permeability K = ∼K(iω = 0) is given by ∼K obtained in the 1st order system
homogenization, and S(p01(x), ω) depends on the streaming force v1(∇ · v1) expressed using p01.

4. Example
To illustrate the acoustic streaming effect, we consider harmonic pressure waves in a 1D macro-
scopic domain Ω =]0, 1[. The microstructure is generated as a periodic lattice by representative
cell Y = Yf ∪ Y s whereby the solid obstacle is non-symmetric, see Fig. 3For boundary con-
ditions

∼
p0
1
(x = 0) = 0 and (

∼
p0
1
)′(x = 1) = 0, in Fig. 1 we display the analytic solution of (4)

which is expressed in terms of Fourier series, such that

∼
p0
1

= p̄

(
1 +

∑
k

Ak sin

(
(2k + 1)π

2

x

L

))
, p01(x, t) = <{

∼
p0
1
(x) exp(iωt)} , (6)

where Ak are the Fourier coefficients. The real response p01 is needed to define the acoustic
streaming vector S involved in (5). The second order macroscopic pressure distribution p̄02
is shown in Fig.2. Since no outflow condition at x = 1 is considered, the macro-streaming
vanishes W2 = 0 in the whole of Ω, see (5). Nevertheless, the micro-streaming v0

2(x,y) is
not zero; the permanent microscopic flow in the fluid domain Yf is shown in Fig. 3. Different
boundary conditions enable for the macroscopic acoustic jet, in general.



Fig. 1. The space-time distribution of the first
order acoustic pressure wave p01(x, t)

Fig. 2. The distribution of p02(x)

Fig. 3. Reconstruction of the harmonic velocity v1 at time t = 0 (left) and permanent v2 (right) in the
representative volume Yf located at the macroscopic position x = 0 of the periodic scaffolds
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