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1. Introduction 

The acoustics of the vocal tract are involved in the creation of vowel and the timbre of the voice. 

Bioacoustics and the creation of the human voice is an intensively researched field. Acoustic 

analyses of vocal tracts investigate the influence of geometry on the character of the voice. This 

is based on work [1]. According to this work, the vocal cords generate pressure or velocity 

pulses (source voice) that are independent of the phonated voice. The vocal tract is a dynamic 

system that modulates the frequency spectrum of the source voice. The transmission function 

of the vocal tract between the vocal cords and the mouth determines the vowel and timbre of 

the voice. 

Vocal tract analyses are most often performed using the finite element method (FEM) or 

experimentally. Other methods are less used. The vocal tract is geometrically complicated. Its 

shape is characteristic. It is a channel of variable cross-section. Frequencies below 4kHz are 

important for the human voice. At these frequencies, mainly longitudinal waveforms and the 

simplest transverse waveforms are existed. A conventional FEM model must have a fine mesh 

to describe complex geometry. Such a model is suitable for analyses in a wide spectrum of 

frequencies. It is unnecessarily complex for the frequencies of the human voice. A coarser 

model would not describe the geometry well. In this work, a new element for FEM is developed. 

This element is suitable for modelling vocal tracts. It has a minimum of degrees of freedom and 

yet it can describe the geometry of the vocal tract well. This will make it possible to build 

numerically more efficient models that are similarly accurate as classic FEM models. 

2. Formulation acoustic for FEM 

The propagation of acoustic waves in the environment is described by the wave equation. A 

wave equation of the form with losses in the medium is assumed 
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The FEM uses a weak formulation of the partial differential equation problem [2]. Multiply the 

equation by the test function and integrate over the solved volume 
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From the theory of potential flow, it is possible to determine the dependence between acoustic 

pressure and acoustic velocity 
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Then it applies 
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Acoustic velocity is eliminated by using acoustic impedance 
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The integration is over the entire volume (surface). Since integration is additive, it is possible 

to convert it to integration over individual elements and use shape functions 
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The equation will take the form 
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After dividing the equation by the square of the sound speed, it is possible to introduce the 

matrices defining the element 
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The integral of one element turns into the form 
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Since the integration is additive, the contributions of all elements must be added. This will 

create a global mass, stiffness and damping matrix 

𝛿𝑃𝑇(𝑀𝑃̈ + 𝐵𝑃̇ + 𝐾𝑃) = 0 . (15) 

The nodal sound pressure variation is any value satisfying the boundary conditions. Therefore, 

the form of the equilibrium equations is as follows 

𝑀𝑃̈ + 𝐵𝑃̇ + 𝐾𝑃 = 0 . (16) 

3. New element 

The purpose of the new element is to describe the complex shape of the cross-section of the 

geometry with a minimum of nodal points. Significant vibration shapes are longitudinal in 

nature. Transverse sound pressure gradients should be less significant. That is why we are 

looking for an element that ideally describes the entire cross-section. The elements are then 

stacked on top of each other, this makes it possible to change the cross-section along the length. 

Internal element nodes are not desirable. They increase the size of the model and the 

computational complexity. 



A separate element that would have the described properties was not created. The created 

element must be used at least 3 times in each section. The element used is shown in Fig. 1. The 

element is based on a triangular element in the η-ξ plane. It is an isoparametric element in the 

reference coordinate system [3]. This element is of the sixth order of accuracy. It has 28 nodes, 

these nodes have been eliminated at the shape function level. Only corner nodes and nodes on 

coordinates satisfying the equation η+ξ-1=0 are left. Such a planar element is swept out into 

3D space. In the third spatial direction, the element is linear. The resulting element is shown in 

Fig. 1. The nodes at coordinates (0,0,0) and (0,0,1) are located on the midline of the vocal tract. 

The other nodes form the surface of the vocal tract. In this work, 6 elements are used in one 

layer. There are 36 nodes in the section on the circuit.  

 

Fig. 1. Used element 

Numerical tests showed excellent conditionality of the element even with complex geometric 

configurations. Fig. 2 shows that for a circular cross-section the worst-case condition is 2.5 and 

for a strongly non-convex geometry it is 5.5. 

 
Fig. 2. Conditionality elements creating circle and nonconvex area 

4. Vocal tract modelling 

Vocal tract geometry was obtained using MRI. This is the geometry for the vowel /a:/. 

 
Fig. 3. MRI measurement with cross sections and FEM model 



The geometry is shown in Fig. 3. The green lines are the positions of the sections, and the 

resulting FEM model is on the right. The model was subjected to a modal analysis with velocity 

boundary condition at the inlet and acoustic impedance at the outlet. The impedance was set 

according to [4]. 

 

 
Fig. 4. First 4 eigenmodes 

The results of the analyses from Fig. 4 show a good agreement with the generally accepted 

data, as well as with other better models. 

5. Conclusion 

The designed element has ideal properties for modelling the acoustics of vocal tracts. The model 

of the vocal tract composed of 15 layers with 6 elements has only 592dof and in the frequency 

band 0-6kHz shows a deviation from analytical models of less than 5%. The FEM model with 

new elements can accelerate the analysis and research of the biomechanics of the human voice. 
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