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1. Introduction
In this paper we shall focus on numerical discretization of a general hyperbolic system written
for the vector of conservative variables u = u(x, t) in the form

∂u

∂t
+∇ · f(u) = 0 in Ω× IT , (1)

where f = f(u) denotes the array of the inviscid fluxes. Eq. (1) is equipped with the initial
condition u(x, 0) = u0(x) for x ∈ Ω.

For the hyperbolic system (1) the aspects of spatial discretization by the finite element
method is discussed. For such a systems there are several physical constraints for the solu-
tion as boundedness of physical quantities (e.g., positive density) which needs to be guaranteed
also for the numerical solution. Moreover, the solution of such system needs to satisfy the en-
tropy inequality, see, e.g., [1, 6]. The numerical analysis of the approximate method usually
focus on the consistency, stability and convergence. The mostly used techniques as finite vol-
umes or discontinuous-Galerkin finite elements moreover satisfy the conservativity naturally
by the construction of the scheme. However, for the higher-order finite element method the
conservativity needs to be discussed, see, e.g., [2].

Moreover, the construction of the numerical scheme should also avoid the occurrence of
nonphysical states. To this end many modern high-resolution schemes use limiters to ensure
preservation of local bounds or at least positivity for scalar quantities of interest. In the con-
text of finite element approximations, such schemes can be constructed using the framework of
algebraic flux correction (AFC) and its extensions to hyperbolic systems, see, e.g., [2,3]. How-
ever, the bound-preserving schemes for nonlinear hyperbolic problems are usually not entropy
stable and vice versa, the entropy stable schemes are usually not bound-preserving. In [4], the
AFC scheme is extended for continuous finite element discretization of a scalar conservation
law using a bound-preserving flux limiter and a semi-discrete entropy fix based on Tadmor’s
condition.

In this paper the construction of the AFC for continuous linear finite element method is
discussed, its application realized on a simple linear scalar problem. The attention is paid on
the realization of the Dirichlet boundary conditions. Numerical results are shown.



2. FE discretization and its properties
We consider a scalar transport equation in the form

∂u

∂t
+∇ · f(u) = s (2)

equipped with a suitable initial and boundary conditions. We consider the fluxes in the form
f = vu− ε∇u, where v is the velocity and ε ≥ 0 denotes the diffusion.

2.1 Linear FE method

For the purpose of the application of FE method, the weak formulation of (2) is derived in the
form ∫

Ω

w
∂u

∂t
+ w∇ · (vu) +∇w · (ε∇u)dx =

∫
Ω

wsdx+

∫
ΓN

w(ε∇u) · ndS. (3)

Consider the FE space Vh with base φj and approximate the solution u and the velocity v
by the FE approximations uh and vh as u ≈ uh(x, t) =

∑
j uj(t)φj(x), v ≈ vh =

∑
j vjφj .

For the multiplication uv the approximation the group FE formulation is used vu ≈ (vu)h =∑
j(ujvj)φj. This leads to system of ODE written as∑

j

(
mij

dui
dt

)
+
∑
j

((cij + dij)uj) = ri (4)

where M = (mij) is the mass matrix, C = (cij) represents the convective terms, D = (dij)
corresponds to the diffusion terms (proportional to ε) and (ri) are the source terms. For the
inviscid limit ε → 0+ with zero source terms we get the system in the form M~̇u = K~u with
K = −C, or in the discrete form ∑

j

(
mij

duj
dt

)
=
∑
j

kijuj. (5)

2.2 Discrete operator properties

For the discrete operators the partition of unity(PU) valid for finite elements is important. Tak-
ing the partition of unity propery, i.e.,

∑
j φj = 1, we by differentiation get

∑
j∇φj = 0.

This has direct influence on the properties of the discrete (e.g., mass, Laplace) operators. The
mass matrix is symmetric, positive definite and with the PU we have

∑
i

∑
j mij = |Ω|. The

diffusion matrix D = (dij) is symmetric with zero row and column sums. The discrete gradi-
ent/divergence operator C = (cij) is nonsymmetric with zero row sums whereas the column
sums does not have to be always zero as it is influenced by the mesh properties and boundary
fluxes. For the interior nodes cii = 0 and cij = −cji.

2.3 Algebraic flux limiting technique

The description of the main idea is shown for the finite element approximation of the problem
with zero viscosity and zero sources, which leads to the discrete equations in the form M~̇u =
K~u, where ~u = (ui) is vector of the nodal values, M is the consistent mass matrix and K is
the discrete transport operator. In order to obtain scheme both without undershoots/overshoots
as well as not too diffusive, we need to switch between linear “upwind-like” approximations
and the original scheme. In the finite element context the idea of algebraic flux corrections
reads: replace the consistent mass matrix MC by lumped mass matrix ML, and add an artificial
diffusion operator D to operator K to eliminate all negative off-diagonal coefficients of K. The



linear local extremum diminishing scheme then reads ML~̇u = L~u, L = K + D. The artificial
diffusion operator D can be rewritten as

(D~u)i = −
∑
j 6=i

fd
ij, f

d
ij = dij(ui − uj) = −fd

ji.

The original scheme can be then recovered ML~̇u = L~u − D~u + (ML −MC)~u, or component
by component

miu̇i =
∑
j

lijUj +
∑
j 6=i

fij, fij = fd
ij +mij(u̇i − u̇j) = −fji, (6)

where mi are coefficients of the lumped mass matrix. In order to prevent the oscillations of the
solution, the fluxes fij are multiplied by suitable correction factors

f ∗ij = αijfij, where 0 ≤ αij ≤ 1.

Inserting these fluxes into (6) we get the nonlinear combination of the low order scheme (αij =
0) and the original higher order scheme (αij = 1). Following the detailed description from [2]
the positive and negative edge contribution to fluxes are accounted for separately

Pi = P+
i + P−i , P±i =

∑
j 6=i min{0, kij}minmax{0, uj − ui},

Qi = Q+
i +Q−i , Q±i =

∑
j 6=i min{0, kij}maxmin{0, uj − ui}

and use in order to limit positive or negative antidiffusive fluxes. The nodal corrections factors
are computed by R±i = min{1, Q±i /P±i } which determine the percentage of P±i that can be
accepted to node i without violating the LED constraint for row i of the modified transport
operator Kmod. The corrections αij are then computed using a suitable limiter, see [2], by

αij =

{
R+

i dij(ui − uj) if ui ≥ uj,
R−i dij(ui − uj) if ui < uj.

(7)

3. Algebraic flux corrections for hyperbolic systems
As an example we can consider Euler equations in the conservative form ∂W

∂t
+∇ · F(W ) = 0

where W = (ρ, ρu, E)T and flux is given as F(W ) = (ρu, ρu⊗ u + pI, Eu + pu)T Here, the
total energy E is given as sum of internal energy and kinetic energy, i.e. as E = ρe + 1

2
ρ|u|2

and the pressure is then computed using additional equation of state, for ideal gas expressed as
p = (γ − 1)ρe. In this case the application of AFC needs to take into account the properties of
the hyperbolic system, see [3].

4. Numerical results
First, the developed flux corrected transport scheme was tested for finite element implemen-
tation in 1d and 2d (see Figs. 1–2). The exact solution in this case is just transported with a
constant velocity v and no diffusive fluxes are used, i.e., ε = 0. In Fig. 1 the convection of rect-
angle (left) and semiellipse (right) is shown, where the dashed line shows the initial condition,
the dotted line shows the exact solution, and the solid line shows the numerical approximation.
In this case the transport velocity for 1D case was chosen as v = 1 (1D vector) and the compu-
tations was performed for time period of T = 0.5. For the two dimensional case, the convection
of the block with the rotational flow velocity v(x, y) = (−(y − 1/2), (x − 1/2)) around the
origin is approximated. Here, the time period of T = 2π, so that the initial condition is the
exact solution at time instant t = T . Fig. 2 shows the exact solution (left) and the numerical
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Fig. 1. Algebraic flux corrections (1d)
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Fig. 2. Algebraic flux corrections (2d)

solution(right). Although the solution is slightly smeared, no undershoots or overshoots were
detected.
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[3] Kuzmin, D., Möller, M., Algebraic flux correction II. Compressible Euler equations, In: Flux-
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