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1. Introduction
This paper is devoted to the interpolation between two computational finite element meshes.
Such interpolation of FE solution onto a new mesh is needed in many applications like mate-
rial cutting, casting, welding, etc., or in the numerical simulation of fluid-structure interaction
with large displacements, where a computational flow mesh quality can significantly deterio-
rate. In this talk we are interested in the interpolation with restrictions as introduced by authors
Pont & Codina [3]. They proposed to combine a computationally cheap interpolation method
together with constraints in the form of Lagrange multipliers which enforce conservation of de-
sired quantities, like e.g. total mass, kinetic energy or potential energy. This approach respects
physical laws and it is efficient, on the other hand its disadvantage is only a global conserva-
tion of physical quantities not the local one. The numerical results consist of comparison of
the Lagrange interpolation and the natural neighbour as representatives of cheap interpolation
methods on a few test cases.

2. Interpolation with restrictions
Let us assume for sake of simplicity a two-dimensional Ω of R2 which is covered by triangula-
tions T o and T n representing the old donor and the new target FE mesh, respectively. Further
we suppose that boundary vertices of T o and T n are identical. Generalizations of these assump-
tions are quite straightforward, see e.g. [3].

Next, we denote a FE function from FE space Vo
h built over the FE mesh T o by uo and

similarly FE function un(x) ∈ Vn
h connected with the given triangulation T n. Function uo can

be expressed as linear combination of FE basis functions ψo
j (x), i.e., uo(x) =

∑
j U

o
j ψ

o
j (x);

correspondingly for function un.
The interpolation with restrictions (IwR) as introduced in [3] consists of two steps. First,

the solution from the old mesh is projected on the new mesh. There are many possibilities,
the preferred one is Lagrange projection, see [3]. Our aim is to compare performance of the
Lagrange projection and the Natural neighbour (NN) interpolation as two different ingredients
of the IwR.

The second step consists of application of appropriate restrictions as a correction step. The
idea of imposing additional restrictions is a key how to improve some bad behaviour of pre-
sented interpolations. One of the biggest interpolation problems is the violation of physical
nature of interpolated variable. The advantage of using restrictions is a generality of the al-
gorithm which can be potentially used in many different scenarios. The disadvantage is that
restriction (i.e., conservation) is still valid only in global and not local sense.



Natural Neighbour. Natural neighbor (NN) interpolation, introduced in [4], is based on
Voronoi tessellation of given points, i.e., vertices of a considered mesh. The interpolant is a
continuously differentiable function everywhere except at locations of the donor vertices, nev-
ertheless values of the interpolant coincides with the input data here, see [1]. The computation
of interpolating function G at a query point X is following. Point X is added to the given
Voronoi tessellation leading to the creation of a new containing polygon (also called neighbor-
ing polygons) and it’s associated sample points xi are the natural neighbors of the point X .
Then G(X) is evaluated as

G(X) =
N∑
i=1

wi f(xi), (1)

where function f denotes known input data at N points xi. The weights wi are defined as
wi =

∑N
i=1

Si

S
, where Si are area of intersection of i-th original polygon and the newly inserted

polygon having total surface S =
∑N

i=1 Si, see [4].

3. Application to fluid flow problem
The previous general concept is now applied on incompressible flow velocity vo ∈ Vo

h =
Vo
h × Vo

h. By ṽn is denoted the result of projection P used in first step of IwR ṽn = P(vo)
and vn is the final result of the IwR on the target mesh T n. We require the conservation of
following quantities: 1) mass (more precisely only velocity divergence), 2) both linear momenta
and 3) kinetic energy. This leads to following problem: Find

[vn,λ] = arg inf
un∈Vn

h

sup
µ∈R4

L(un,µ), (2)

where µ are Lagrangian multipliers and L(un,µ) is Lagrangian function defined as

L(un,µ) =
1

2

∫
Ω

(∑
k

(Un
k − Ũn

k )ψn
k

)2

dx− µ1

∫
Ω

∇ ·

(∑
k

Un
k ψ

n
k −

∑
j

U o
j ψ

o
j

)
dx

−
2∑

l=1

µl

∫
Ω

(∑
k

Un
k,l ψ

n
k −

∑
j

U o
j,l ψ

o
j

)
dx− µ4

∫
Ω

(∑
k

Un
k ψ

n
k

)2

−

(∑
j

U o
j ψ

o
j

)2

dx.

(3)

The sought solution needs to have first derivatives with respect to all variables equal to zero.
Equations obtained by this differentiating can be written in matrix form as

Mn −RT
1 −RT

2:3 −2MnUn

R1 0 0 0
R2:3 0 0 0

(MnUn)T 0 0 0



Un

µ1

µ2:3

µ4

 =


MnŨn

Ro
1U

o

Ro
2:3U

o

(Uo)T MoUo

 , (4)

where Mn denotes mass matrix with components mn
ij =

∫
Ω
ψn

jψ
n
i dx, Mo is the mass matrix

defined on the old mesh T o and vectors R1, R2, R3 have components

(R1)i =

∫
Ω

∇ ·ψn
i dx, (R2)i =

∫
Ω

ψn
i,x dx, (R3)i =

∫
Ω

ψn
i,y dx. (5)

Vectors Ro
1:3 are defined similarly on the old mesh. Nonlinear problem (4) is solved with the

Newton-Rhapson method.



4. Numerical results
The Lagrange (Lag) and NN interpolations alone and also as part of the IwR are compared in
two tests. Further, by IwR are denoted the results based on the Lagrange interpolation.

First, academic interpolation test. The interpolation test of [2, 3] consists of 20 pairs of
interpolations between the donor and target triangular meshes covering domain 〈0, 1〉2. Both
unstructured meshes has characteristic length h = 0.025 and the inner vertices of target mesh
are shifted by h/2 to the right. The considered divergence-free velocity F(x, y) has given
components f1(x, y) = 2x2(x−1)2y(y−1)(2y−1), f2(x, y) = −2y2(y−1)2x(x−1)(2x−1).

Fig. 1 shows error distributions after all interpolations and Table 1 quantitatively summa-
rizes the results. The NN interpolation alone is even more diffusive and produces bigger error
than the Lagrange projection, e.g. compare kinetic energy Ekin. Nevertheless method IwR-NN
substantially improves the NN results and it even provides slightly lower error than the IwR
with approximately similar time of interpolation computations.

Table 1. Comparison of interpolation results of the first test

method max |F| Ekin L2 error L∞ error approx. time [s]

exact 1.200× 10−2 6.013× 10−5 − − −
Lag 1.142× 10−2 5.126× 10−5 5.760× 10−7 1.698× 10−3 2.5

IwR 1.237× 10−2 6.013× 10−5 2.405× 10−7 1.137× 10−3 215.8

NN 1.087× 10−2 4.748× 10−5 9.082× 10−7 1.869× 10−3 1.8

IwR-NN 1.223× 10−2 6.013× 10−5 1.823× 10−7 1.036× 10−3 247.2

Fig. 1. Error magnitude of interpolated vector field on structured FE mesh after 20 runs. Mind the
different scales of colorbars for each result

Second interpolation test – real data. The velocity field obtained during a simulation moti-
vated by human phonation is used in the second test, see [5]. The second test performs one pair
of interpolations from the donor to the target mesh and back where both meshes differ in the
middle part representing a channel constriction.

Fig. 2 illustrates relative error distributions after one pair of interpolation runs. The NN
results are again significantly worse than for Lag projection however in this case the application
of IwR-NN does not improve results substantially. This is obvious from quantitatively view-
point – see Table 2, as well as qualitatively from the extent of domain with relative maximal
error bigger than 1% (Fig. 2). The IwR results surpasses the Lag one here only slightly with a
considerable increase of computational time on the other hand the IwR conserves total kinetic
energy (and linear momenta and divergence) and, thus, its application once per ten time step is
still favourable.

Special attention should be paid also to the target mesh. A relative high interpolation error,
particularly in the boundary layer, is caused by a coarseness of the target mesh. In the case with



similarly dense target mesh the interpolation error would be significantly lower as in the first
test.

Table 2. Comparison of interpolation results of the second test

method max |F| Ekin L2 error L∞ error approx. time [s]

exact 114.200 9.644× 10−2 − − −
Lag 114.081 9.580× 10−2 9.914× 10−5 35.115 1.643

IwR 114.459 9.644× 10−2 9.838× 10−5 34.985 81.092

NN 114.039 9.473× 10−2 2.617× 10−4 55.723 0.242

IwR-NN 115.062 9.644× 10−2 2.564× 10−4 55.426 78.537

Fig. 2. Distributions of relative error magnitudes after one pair of interpolations. Results: a) Lag (top
left) (maxE∞ = 31.1%), b) IwR (top right) (maxE∞ = 31%), c) NN (bottom left) (maxE∞ = 49%)
and d) IwR-NN (bottom right) (maxE∞ = 48.8%). The maximal error (out of presented colorbar scale)
is located for all methods similarly in a few elements of boundary layer inside constriction

5. Conclusion
The paper describes method called interpolation with restrictions (IwR) based on [3]. This gen-
eral interpolation method between FE meshes improves performance of classical interpolation
techniques by additional requirement of conservation of arbitrary chosen (physical) quantities.
Such approach offers an interesting mix of a relatively computationally cheap method which
moreover conserves (total) physical key quantities of the given problem.

Here, the natural neighbour (NN) interpolation is described and used as the first step of the
IwR. The four different interpolations are compared in two tests. The NN interpolation pro-
vides surprisingly more diffusive results than the Lagrange interpolation though it theoretically
provides smoother results. In connection with IwR it performs better on a relatively dense mesh.
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