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Abstrakt

Tato disertačńı práce je zaměřena na studium Fuč́ıkova spektra pro diskrétńı operátory. Vzhle-
dem k tomu, že obecné vyšetřeńı Fuč́ıkova spektra diskrétńıch operátor̊u je v dnešńı době stále
těžce uchopitelnou výzvou, studium v této práci je zaměřené na konkrétńı operátor – Dirichlet̊uv
diskrétńı operátor.

Tento operátor odpov́ıdá diferenčńı rovnici druhého řádu s Dirichletovými okrajovými pod-
mı́nkami. V disertačńı práci je dopodrobna vyšetřena odpov́ıdaj́ıćı semilineárńı úloha, zaveden
pojem spojitého rozš́ı̌reńı diskrétńıho řešeńı úlohy a hlavně je zde uveden kompletńı implicitńı popis
Fuč́ıkova spektra Dirichletova diskrétńıho operátoru. Na závěr práce jsou popsány tři typy odhad̊u
pro Fuč́ıkovy větve, které umožňuj́ı lokalizovat Fuč́ıkovy větve i pro velký rozměr odpov́ıdaj́ıćı
matice.

Celý text disertačńı práce se oṕırá o dva autorčiny články (v př́ıloze práce) – [25], [31]. Samotný
text disertačńı práce je koncipován jako shrnut́ı kĺıčových výsledk̊u odkázaných článk̊u a obsahuje
podrobná vysvětleńı jednotlivých nově zavedených koncept̊u pro práci s Fuč́ıkovým spektrem pro
vybraný diskrétńı operátor.

Kĺıčová slova: Fuč́ıkovo spektrum, diferenčńı operátor, Dirichlet̊uv diskrétńı operátor, Cheby-
shev̊uv polynom druhého druhu, asymetrické nelinearity
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Abstract

This dissertation thesis is devoted to the study of Fuč́ık spectrum for discrete operators. Consid-
ering the fact, that the problem of exploring Fuč́ık spectrum for general discrete operators is still
a significant challenge, in this thesis we focus on analyses in regards of a particular operator –
Dirichlet discrete operator.

This operator corresponds to the second order difference equation with Dirichlet boundary
conditions. In the thesis, we explore corresponding semi-linear problem, we define a continuous
extension of a discrete solution and finally, we provide a complete implicit description of the
Fuč́ık spectrum of Dirichlet discrete operator. Last but not least, three bounds for Fuč́ık curves
are described. This allows for a localization of Fuč́ık curves even for large size of a corresponding
matrix.

The whole text of the thesis is based on two articles of the author [25], [31]. The main goal
is to summarise key results introduced in cited articles and to explain in detail new concepts of
working with Fuč́ık spectrum for the chosen discrete operator.

Key words: Fuč́ık spectrum, difference operator, Dirichlet discrete operator, Chebyshev poly-
nomial of the second kind, asymmetric nonlinearities
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Zusammenfassung

Diese Dissertation widmet sich dem Studium des Fuč́ık Spektrum für diskrete Operatoren. An-
gesichts der Tatsache, dass das Problem der Untersuchung des Fuč́ık Spektrums für allgemeine
diskrete Operatoren immer noch eine große Herausforderung darstellt, konzentrieren wir uns in
dieser Arbeit auf Analysen in Bezug auf einen bestimmten Operator – den diskreten Dirichlet-
Operator.

Dieser Operator entspricht der Differenzengleichung zweiter Ordnung mit Dirichlet-Randbe-
dingungen. In der Dissertation untersuchen wir ein entsprechendes semilineares Problem, definieren
eine kontinuierliche Erweiterung einer diskreten Lösung und liefern schließlich eine vollständige
implizite Beschreibung des Fuč́ık Spektrums des diskreten Dirichlet-Operatoren. Nächst werden
drei Bounds von Fuč́ık Kurven beschrieben. Diese Bounds ermöglichen eine Lokalisierung von
Fuč́ık Kurven auch bei großen Dimensionen einer entsprechenden Matrix.

Der gesamte Text der Dissertation basiert auf zwei Artikeln der Autorin: [25], [31]. Das
Hauptziel besteht darin, wichtige Ergebnisse aus zitierten Artikeln zu veranschaulichen und neue
Konzepte der Arbeit mit Fuč́ık spectrum für den gewählten diskreten Operator im Detail zu
erklären.

Schlüsselwörter: Fuč́ık Spektrum, Differenzenoperator, diskrete Dirichlet-Operator, Tsche-
byschow-Polynome zweiter Art, asymmetrische Nichtlinearitäten.
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5.1 Description of Fuč́ık spectrum – Theory from Part I . . . . . . . . . . . . . . . . . 44
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Chapter 1

Introduction

Svatopluk Fuč́ık and other mathematicians studied solvability of a problem

−u′′(x) = f(x, u(x)),

on some interval with various boundary conditions. Solvability of such problem with

f(·, s) ∼ λs for s→ ±∞

is dependent on the fact whether λ is (or is not) an eigenvalue of the corresponding operator.
Main results are due to S. Fuč́ık [11] and E.N. Dancer [5] who considered a different asymptotic
behaviour of f , in particular

f(·, s) ∼ µs for s→ +∞, f(·, s) ∼ νs for s→ −∞.

Solvability of the problem can be answered using information about all pairs (µ, ν) ∈ R2 such that
the following problem (together with corresponding boundary conditions)

−u′′(x)− µu+(x) + νu−(x) = 0

has a non-trivial solution. Traditionally, a set of all such pairs is called the Fuč́ık spectrum. For
more information, see [8].

Fuč́ık spectrum for discrete operators was investigated by R. Švarc (see e.g. [38], [40]). In
[40], R. Švarc considered two particular square matrices of size 4 and gave a description of their
Fuč́ık spectra. These matrices were chosen in such a way that their Fuč́ık spectra (even for small
matrices of size four) exhibit rather strange behaviour.

Authors G. Holubová and P. Nečesal [17] discussed similarities of structures in Fuč́ık spectra for
continuous and discrete operators. They also suggested an algorithm for numerical reconstruction
of the Fuč́ık spectrum for reasonably small matrices. They focused on the case of all general
real square matrices of size 2 and shown all feasible structures in their Fuč́ık spectrum. They
also suggested that there are more than 300 qualitatively different patterns of the Fuč́ık spectrum
even for matrices of size 3. This illustrates that the problem of finding Fuč́ık spectra for general
matrices is a significant challenge that has not been solved yet.

Various physical phenomena are represented by continuous initial or boundary value problems.
Moreover, the theory of Fuč́ık spectrum for these problems is applied in practice for analyses of
(mechanical) systems with pronounced asymmetry / asymmetric structure. One of the typical
examples are suspension bridges – explored in [22, 9, 15] and the book [13] with a focus on models
with asymmetric nonlinearities. Also, asymmetric nonlinearities appear in the study of competing
systems of species with large interactions in biology (see [4, 6, 27]) and the Fuč́ık spectrum of the
Dirichlet Laplacian (the Laplace operator u 7→ −∆u with zero Dirichlet boundary conditions) is
needed (see [6] for details).
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1.1 Main definitions – Problems (P1), (P2), (P3), (P4) and matrix AD

Hence we contemplate that the exploration of discrete problems might be useful for practical
applications. Sometimes, even though the problem is naturally discrete, researchers tend to make
a simplification and look at this as a continuous problem (such examples can be found e.g. in the
area of mathematical finance). On the other hand, sometimes, due to complexity of the physical
phenomena, researchers tend to use a discretization of the studied continuous problem. This
way, one might obtain superior analytical results or a more suitable numerical solution. Thus,
we conclude that discrete problems might be relevant for both continuous and discreet natural
phenomena. We note that sometimes the discrete problem can be solved in a simpler way, but
quite often the discrete structure of such problems can lead to specific difficulties which pose
further challenges.

We are going to make a brief comparison of the Fuč́ık spectrum for continuous and discrete
operators. We will illustrate that discrete domain brings extra challenges in finding the Fuč́ık spec-
trum and we will solve several challenges for a particular problem within this thesis and in the
referenced articles of the author.

Let us also mention some other articles where the structure of Fuč́ık spectrum is studied –
[1, 2, 3, 7, 10, 16, 19, 20, 21, 23, 28, 30, 34, 35, 36].

In the following paragraph, we will recall a well known result for the Fuč́ık spectrum of the
continuous second order boundary value problem.

The Fuč́ık spectrum Σ for the continuous second order boundary value problem with Dirichlet
boundary conditions, i.e.

{
u′′(x) + αu+(x)− βu−(x) = 0, x ∈ (0, 1),

u(0) = u(1) = 0,
(1.1)

is defined as the set

Σ :=
{
(α, β) ∈ R2 : the problem (1.1) has a nontrivial solution u

}
.

The description of the set Σ is well known. In fact, as shown in [11, 12], the Fuč́ık spectrum Σ
consists of two lines C±

0 : (α− π2)(β − π2) = 0 and countably many curves C±
l given by (j ∈ N)

C±
2j−1 : jπ√

α
+ jπ√

β
= 1, C+

2j : (j + 1)π√
α

+ jπ√
β

= 1, C-
2j : jπ√

α
+ (j + 1)π√

β
= 1.

On the other hand, investigating the Fuč́ık spectrum for the corresponding discrete problem is
a much more elaborate process to which we will devote remaining parts of the thesis.

1.1 Main definitions – Problems (P1), (P2), (P3), (P4) and
matrix AD

In this section, we will introduce main problems of our interest and several concepts associated
with the studied problems.

Studied problems:

i. linear initial value problem
{

∆2u(k − 1) + λu(k) = 0, k ∈ Z,

u(0) = C0, u(1) = C1,
(P1)

ii. linear boundary value problem
{

∆2u(k − 1) + λu(k) = 0, k ∈ T,

u(0) = u(n+ 1) = 0,
(P2)

2



1.1 Main definitions – Problems (P1), (P2), (P3), (P4) and matrix AD

iii. semi-linear initial value problem
{

∆2u(k − 1) + αu+(k)− βu−(k) = 0, k ∈ Z,

u(0) = 0, u(1) = C1,
(P3)

iv. semi-linear boundary value problem
{

∆2u(k − 1) + αu+(k)− βu−(k) = 0, k ∈ T,

u(0) = u(n+ 1) = 0,
(P4)

where n ∈ N, n ≥ 2, T = {1, . . . , n}, T̂ = {0, . . . , n + 1}, u : T̂ → R, u+, u− stand for the
positive and negative parts of u, i.e. u+(k) := max{+u(k), 0}, u−(k) := max{−u(k), 0} and
α, β, λ ∈ R. In case of problem (P1), C0, C1 ∈ R are constants such that C2

0 + C2
1 ̸= 0. In

case of problem (P3), C1 ∈ R \ {0}. The second order forward difference operator is given by
∆2u(k − 1) := u(k − 1)− 2u(k) + u(k + 1).

In case of problem (P3), we consider (α, β) ∈ D = ((0, 4) × (0,+∞)) ∪ ((0,+∞) × (0, 4)) for
Part I (Chapter 3) and (α, β) ∈ D = (0, 4)× (0,+∞) for Part II (Chapter 4).

1. Sign property of a vector
Let us define a sign property of a vector u = [u1, u2, . . . , un]T of size n as

signu = [sign(u1), sign(u2), . . . , sign(un)]T

and simplify the notation. For x ∈ R

instead of sign(x) =





1 for x > 0,
−1 for x < 0,
0 for x = 0,

we denote sign(x) =





+ for x > 0,
− for x < 0,
0 for x = 0.

2. Positive and negative part of a vector
For vector u of size n, n ∈ N, u = [u(1), . . . , u(n)]T , we define its positive part u+ :=
[u+(1), . . . , u+(n)]T , and its negative part u− := [u−(1), . . . , u−(n)]T (see Figure 1.1).

u2 u2 u2 u2

u1 u1 u1 u1

u = u+

u− = 0

u u+

u−

u

u+ = 0

u−

u

u+

u−

Figure 1.1: Illustration of positive u+ (red) and negative u− (blue) part of vector u = [u1, u2]T .
In this particular case, we assume n = 2.

3. The Fuč́ık spectrum of a matrix
The Fuč́ık spectrum of a real square matrix B of size n× n, n ∈ N, n ≥ 2, is the set:

Σ (B) =
{
(α, β) ∈ R2 : the problem Bu = αu+ − βu− has a non-trivial solution u

}
.

(1.2)
The pair (α, β) ∈ Σ(B) is called the Fuč́ık eigenpair and the non-trivial solution u is called
the Fuč́ık eigenvector for the matrix B.

3



1.2 Typical challenges while investigating the Fuč́ık spectrum for matrices

4. The Dirichlet matrix
Matrix AD is called the Dirichlet matrix and will be used throughout the thesis:

AD =




2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2



. (1.3)

5. Fuč́ık curves
For Fuč́ık spectrum Σ(AD), where Dirichlet matrix AD is of size n× n (we are going to see
the relationship between matrix AD and semi-linear boundary value problem (P4) further in
the text), we define Fuč́ık curves C+l , C-l , l = 0, . . . , n− 1 as (the term of generalized zero is
defined in Definition 5)

C+l :=
{
(α, β) ∈ R2 : the problem (P4) has a non-trivial solution u

with exactly l generalized zeros on T and u(1) > 0} ,

C-l :=
{
(α, β) ∈ R2 : the problem (P4) has a non-trivial solution u

with exactly l generalized zeros on T and u(1) < 0} ,

which we jointly denote by the following simplified notation:

C±l := C+l ∪ C-l .

1.2 Typical challenges while investigating the Fuč́ık spec-
trum for matrices

Having in mind that investigating the Fuč́ık spetrum for general matrices is at this time unsolved
as far as we know, we specify a particular matrix which comes from the discretization of the
continuous problem (1.1) (which has also practical applications, see [25] and [31]). We consider
the following discrete problem with Dirichlet boundary conditions (P4)

{
∆2u(k − 1) + αu+(k)− βu−(k) = 0, k ∈ T,

u(0) = u(n+ 1) = 0,

where n ∈ N, n ≥ 2 and α, β ∈ R.
Equivalently, the problem (P4) can be rephrased using a matrix notation

ADu = αu+ − βu−,

where matrix AD is the Dirichlet matrix (1.3) and u = [u(1), . . . , u(n)]T , u+ = [u+(1), . . . , u+(n)]T ,
u− = [u−(1), . . . , u−(n)]T .

In particular, studying the set of all pairs (α, β) ∈ R2 such that the problem (P4) has a
non-trivial solution u, is equivalent to the investigation of the set Σ (AD)

Σ
(
AD) =

{
(α, β) ∈ R2 : the problem ADu = αu+ − βu− has a non-trivial solution u

}
,

and similarly to the general notation within this thesis, Σ(AD) is called the Fuč́ık spectrum of
matrix AD. To find the set Σ(AD) will be the main purpose of our investigation.

Let us point out that Fuč́ık spectrum is symmetric with respect to the line α = β, i.e. (α, β) ∈
Σ(AD) with Fuč́ık eigenvector v if and only if (β, α) ∈ Σ(AD) with Fuč́ık eigenvector −v (see

4



1.2 Typical challenges while investigating the Fuč́ık spectrum for matrices

0 4

4

λD
0 λD

1 λD
2 λD

3 λD
4

λD
0

λD
1

λD
2

λD
3

λD
4

S0

S1

S2

S3

S4

S5

α

β

0 4

4

C-
0

C+
0

C±
1

C+
2

C-
2

C±
3

C±
4

α

β

Figure 1.2: Inadmissible areas (defined in [18]) for the Fuč́ık spectrum Σ (AD) (left, n = 5) and
the particular Fuč́ık curves C±k (black curves) of the Fuč́ık spectrum Σ (AD) (right, n = 5).

Figures 1.4 and 1.5). Before diving into particular challenges, let us recall some known results
about Σ(AD) (for more details, see [25] and [31]). The eigenvalues of AD are of the form

λDj = 4 sin2 (j + 1)π
2(n+ 1) , j = 0, . . . , n− 1

and λDj ∈ (0, 4). Note that the eigenvalues λDj of matrix AD belong to the Fuč́ık spectrum in the
sense (λDj , λDj) ∈ Σ(AD), i.e. (λDj , λDj) is the Fuč́ık eigenpair for matrix AD. For the Fuč́ık spectrum
of AD we have

Σ
(
AD) =

n−1⋃

l=0
C±l ,

where C+l and C-l are Fuč́ık curves (see Section 1.1 – point 5).
In [18], authors were exploring inadmissible areas of Fuč́ık spectrum (i.e. Fuč́ık spectrum has

empty intersection with these areas in (α, β) plane – see [18] for proper definition of an inadmissible
area). Since λD0 is a principal eigenvalue of AD, it implies that

{
(α, β) ∈ R2 :

(
α− λD0

) (
β − λD0

)
< 0
}
∩ Σ

(
AD) = ∅,

i.e. both shifted quadrants are inadmissible areas for the Fuč́ık spectrum Σ (AD). For illustration,
see Figure 1.2 where we can see inadmissible areas for the Fuč́ık spectrum Σ (AD). Thus, it is
enough to investigate the Fuč́ık spectrum Σ (AD) only on the set D = ((0, 4)×(0,+∞))∪((0,+∞)×
(0, 4)).

Also, it is enough to investigate only all Fuč́ık curves C+l (l = 1, . . . , n− 1), since

C-l = {(α, β) ∈ D : (β, α) ∈ C+l } .

Authors Ma, Xu and Gao introduced the matching-extension method for solutions of the
Fuč́ık spectrum problem for matrix AD in [26]. P. Stehĺık studied the qualitative properties of the
first non-trivial Fuč́ık curve of the matrix AD in [37]. Although this topic was studied by several
authors, corresponding analytic description was not introduced prior to author’s articles [25] and
[31] (as far as we know).

Before looking into individual results, we contemplate what possible challenges can appear
while investigating the Fuč́ık spectrum for matrix AD, using illustrative examples. In Example 1
we will investigate the Fuč́ık spectrum of matrix AD of size n = 2.

5



1.2 Typical challenges while investigating the Fuč́ık spectrum for matrices

Example 1. Let n = 2, thus let us deal with the Dirichlet matrix in the form

AD =
[

2 −1
−1 2

]
.

Eigenvalues and corresponding eigenvectors are of the form

λD0 = 1, v0 = [1, 1]T , λD1 = 3, v1 = [1,−1]T .

All possible sign properties for Fuč́ık eigenvectors are

[+,+]T , [+,−]T , [+, 0]T , [−,+]T , [−,−]T , [−, 0]T , [0,+]T , [0,−]T , [0, 0]T .

Similar to the case of eigenvalue problems, the sign properties [+,+]T and [−,−]T lead to the
Fuč́ık eigenvectors where we have opposite signs of the entries. The same works for couples [+,−]T
and [−,+]T , for [+, 0]T and [−, 0]T and for [0,+]T and [0,−]T . Thus, it is enough to consider only
[+,+]T , [+,−]T , [+, 0]T , [0,+]T and [0, 0]T .

1. Case [0, 0]T : Such case cannot happen since the Fuč́ık eigenvector cannot be trivial.

2. Case [0,+]T : The first entry of the Fuč́ık eigenvector is zero, thus the solution of problem
(P4) is zero in two consequential points (due to the zero boundary conditions). The difference
equation in (P4) can be written as

u(k + 1) = 2u(k)− u(k − 1)− αu+(k) + βu−(k),

thus if the solution u is zero in two consequential points, it has to be zero everywhere. That
is a contradiction with the sign property [0,+]T .

3. Case [+, 0]T : There is the same issue as in the previous case.

4. Case [+,+]T : In this case the Fuč́ık eigenvector does not change sign thus it is equivalent
to the eigenvalue problem for λD0. We have (α, β) ∈ Σ(AD) : α = λD0 = 1, β ∈ R with
Fuč́ık eigenvector [1, 1]T and (α, β) ∈ Σ(AD) : β = λD0 = 1, α ∈ R with Fuč́ık eigenvector
[−1,−1]T . The Fuč́ık curves C±0 are trivial ones

C+0 =
{
(α, β) : α = λD0, β ∈ R

}
, C-0 =

{
(α, β) : β = λD0, α ∈ R

}
.

5. Case [+,−]T : From the sign property of vector u = [u1, u2]T we have u+ = [u1, 0]T and
u− = [0,−u2]T , where

u1 > 0 and u2 < 0. (1.4)

We can rewrite the problem ADu = αu+ − βu− as
[

2 −1
−1 2

][
u1
u2

]
= α

[
u1
0

]
− β

[
0
−u2

]
. (1.5)

Matrix equation in (1.5) is equivalent to
[

2− α −1
−1 2− β

][
u1
u2

]
=
[

0
0

]
⇔ det

[
2− α −1
−1 2− β

]
= 0. (1.6)

The determinant in (1.6) is zero if

(2− α)(2− β)− 1 = 0. (1.7)

This leads to

β = 2− 1
2− α

, u =
[
− 1

2− α
,−1

]T
.

6



1.2 Typical challenges while investigating the Fuč́ık spectrum for matrices

Let us go back to the sign property in (1.4). It is satisfied when

− 1
2− α

> 0 ⇔ α > 2.

If we would consider sign property signu = [−,+]T we would get the same result, thus the
Fuč́ık curves C±1 are

C+1 = C-1 =
{

(α, β) : β = 2− 1
2− α

, α > 2
}
.

While going through all possible sign properties for the Fuč́ık eigenvectors we were able to find
complete description of the Fuč́ık spectrum of matrix AD of size n = 2 as

Σ(AD) = C±0 ∪ C±1,

where C±0 and C±1 are given as above. See Figure 1.3 for illustration of this example.

2 4

2

4

2 4

2

4

2 3 4-1

2

3

4

-1

α α α

β β β

β = 2 − 1
2−α

β = 2 − 1
2−α

C±
1 C±

1C+
0

C-
0

Σ(AD)

Figure 1.3: Graph of the function β = 2− 1
2−α (left), Fuč́ık curves C±1 (black) as part of the graph

of the function β = 2− 1
2−α (middle) and the Fuč́ık spectrum Σ(AD) of matrix AD for n = 2.

In the following example we will consider n = 6, to illustrate a dimension complexity of the
problem.

Example 2. In this example we will consider matrix AD of size n = 6. We will show all the
possible sign properties for the Fuč́ık eigenvectors. It is enough to investigate sign properties with
positive first entries (since the Fuč́ık spectrum is symmetric with respect to the line α = β and
the Fuč́ık eigenvectors have opposite signs). Also, for the sake of simplicity, we can investigate
sign properties sign(u(k)) = 0 and sign(u(k)) = 1 (for some k ∈ {1, 2, . . . , n}) together. After this
simplification, we need to investigate 2n−1 different sign properties.

All sign properties which we need to investigate are written in Table 1.1. Each column has 6
entries and represents one sign property for vector. Those sign properties which are in blue color
are sign properties which at least one of the Fuč́ık eigenvectors has (in this thesis it will be shown
how to select the right ones).

To illustrate a curse of dimensionality of the studied problems, let us compare two cases of
matrix AD dimension: n1 = 2 and n2 = 6. Within Example 1, we have shown that we need to
investigate only 2 cases or more generally 2n1−1 cases. However, in this example we are solving
2n2−1 = 25 = 32 different sign properties, each leads towards investigation of a different eigenvalue
/ eigenvector problem.

In particular, let us take one of the sign properties: [+,+,+,−,+,−]T . For this sign property

7



1.2 Typical challenges while investigating the Fuč́ık spectrum for matrices

+ + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + +
+ + + + + + + + − − − − − − − −
+ + + + − − − − + + + + − − − −
+ + − − + + − − + + − − + + − −
+ − + − + − + − + − + − + − + −

+ + + + + + + + + + + + + + + +
− − − − − − − − − − − − − − − −
+ + + + + + + + − − − − − − − −
+ + + + − − − − + + + + − − − −
+ + − − + + − − + + − − + + − −
+ − + − + − + − + − + − + − + −

Table 1.1: Considered sign properties for n = 6. The blue sign properties are sign properties
satisfied by some Fuč́ık eigenvectors.

we need to solve



2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 2







u1
u2
u3
u4
u5
u6




= α




u1
u2
u3
0
u5
0



− β




0
0
0
−u4
0
−u6



.

This leads to the determinant equation

det(AD−Λ) = det







2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 2



−




α 0 0 0 0 0
0 α 0 0 0 0
0 0 α 0 0 0
0 0 0 β 0 0
0 0 0 0 α 0
0 0 0 0 0 β







= 0, (1.8)

i.e.

det




2− α −1 0 0 0 0
−1 2− α −1 0 0 0
0 −1 2− α −1 0 0
0 0 −1 2− β −1 0
0 0 0 −1 2− α −1
0 0 0 0 −1 2− β




= 0.

Since we are dealing with tridiagonal matrix, we can easily calculate its determinant and the
determinant equation is a polynomial equation

α4β2 − 4α4β + 4α4 − 8α3β2 + 29α3β − 26α3 + 22α2β2 − 70α2β + 53α2 − 24αβ2

+65αβ − 38α+ 8β2 − 18β + 7 = 0.

By comparing this with (1.7) (for n = 2), we can see that the dimension of the problem brings
a lot of difficulties. We can find two values of β (dependent of the value of α as it was done in
Example 1) for which we can derive that neither one of them has a corresponding eigenvector with
the sign property [+,+,+,−,+,−]T . That means that there does not exist Fuč́ık eigenvector for
matrix AD of size n = 6 with such sign property.

Since this problem depends highly on the dimension of the matrix AD (we are dealing with
2n−1 different eigenvalue / eigenvector problems based on the number of possible sign properties),

8



1.2 Typical challenges while investigating the Fuč́ık spectrum for matrices

our computational possibilities might be limiting for practical applications using the illustrated
approach 1.

Let us summarize some of the challenges which appear in the investigation of the Fuč́ık spec-
trum Σ(AD) of matrix AD of size n:

• Number of possible sign properties is 2n−1 (after the simplification which was done in Ex-
ample 2).

• Only some of them are sign properties satisfied by Fuč́ık eigenvectors of Σ(AD).

• We note that for a general matrix, one might struggle with computation of the matrix
determinant. Whereas for the Dirichlet matrix, det(AD − Λ) (see (1.8) in Example 2) can
be calculated recurrently (due to having a tridiagonal symmetric matrix).

• For each sign property we need to verify which parts (if any) of the solution (curve) of
det(AD −Λ) = 0 are actually in the Fuč́ık spectrum Σ(AD).

On Figure 1.4 we can see the Fuč́ık spectrum Σ(AD) of size n = 9. In this thesis, we will
introduce how to deal with the curse of dimensionality and other challenges mentioned above.

0 4

4

2

2C+0

C-0
C±1

C+2

C-2

C±3

C-4

C+4
C±5

C+6

C-6
C±7

C±8

α

β

Figure 1.4: The Fuč́ık spectrum Σ (AD) of the Dirichlet matrix AD of size n = 9 and its
Fuč́ık curves C±l , l = 0, 1, . . . , 8.

1E.g. in a relatively reasonable time we might be able to find (numerically) Fuč́ık spectrum up to n = 16.
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1.3 Structure of the thesis

1 2 3 4 5

1

2

3

4

5

α

β Σ (AD) , n = 6

Figure 1.5: The Fuč́ık spectrum Σ (AD) of the Dirichlet matrix AD of size n = 6.

1.3 Structure of the thesis
First of all, we would like to note that this thesis is mainly based on research articles of the author:
[25] and [31]. The aim of the thesis is not to provide in-depth technical details for all newly
introduced concepts in [25] and [31], but rather to provide a comprehensive overview, illustrate
the concepts on particular examples and to explain connections between individual concepts.

We note that in order to provide such comprehensive text, we also extend the results in
aforementioned articles by supporting lemmas / theorems, new illustrations / examples and other
new results. However, for most of the proofs of original theorems and lemmas we refer the reader
to the articles which are attached to the thesis. If there is no citation (excluding citation to
[25] and [31] – articles of the author) in the definitions, lemmas and theorems, then the results
presented there are original and (as far as we know) not published anywhere else. We note that
results in Section 5.5 are completely new and not published anywhere yet. The thesis is organized
as follows.

Chapter 1 provides an introduction to the problems and showcases possible issues which may
appear while investigating discrete Fuč́ık spectrum. In the following chapters, we are going to
investigate in detail four problems, introduced in Section 1.1:

i. linear initial value problem (P1);

ii. linear boundary value problem (P2);

iii. semi-linear initial value problem (P3);

iv. semi-linear boundary value problem (P4).

Chapter 2 is devoted to the study of linear problems (P1) and (P2). We are going to define one
of the most important tool-kits in this thesis – the continuous extension of respective solutions.
Exploring such continuous extension will allow us to explore nodal properties of the solution.
A generalization of this result will be very valuable in the analysis of semi-linear problems. Let us
note that even though we are spending a substantial part of this thesis (and likewise a substantial
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1.4 Abstracts of published research articles of the author

part of research articles [25] and [31]) studying simple linear problems (P1) and (P2), the results
in this chapter are new and (as far as we know) not published anywhere. We need to construct a
robust theory for the linear case in order to explore semi-linear case.

In Chapters 3 and 4, we are solving and investigating semi-linear initial value problem (P3).
Generalizing the theory from the linear case (such as continuous extension) will allow us to “an-
chor” positive and negative semi-waves. This will lead to the detailed investigation of zeros of
a continuous extension of the solution. Chapter 3 leverages the main results from [25] and Chap-
ter 4 references results from [31].

Finally, Chapter 5 is devoted to the investigation of the Fuč́ık spectrum of matrix AD (i.e. the
corresponding semi-linear boundary value problem (P4)) – which is our main goal in this thesis
(and in the research articles [25] and [31]). Several descriptions of the Fuč́ık spectrum (analytical
and implicit) are introduced. As far as we know, this is the first time anyone was able to find an
analytical (and implicit) description of Fuč́ık spectrum of matrix (excluding trivial cases) for any
dimension n. In Chapter 5, we also introduce bounds of the Fuč́ık spectrum. Such bounds can be
used for efficient numerical estimations as illustrated therein.

Last but not least, we provide published articles [25] and [31]. Introduction sections in both
articles describe historical references related to the Fuč́ık spectrum and also our motivation for
studying this topic in detail (including more details about practical applications).

1.4 Abstracts of published research articles of the author
Research articles in impacted journals:

Abstract of [25]:
I. Looseová (Sobotková), P. Nečesal, The Fuč́ık spectrum of the discrete Dirichlet operator, Linear
Algebra Appl. 553 (2018) 58–103

In this paper, we deal with the discrete Dirichlet operator of the second order and we investigate
its Fuč́ık spectrum, which consists of a finite number of algebraic curves. For each non-trivial
Fuč́ık curve, we are able to detect a finite number of its points, which are given explicitely.
We provide the exact implicit description of all non-trivial Fuč́ık curves in terms of Chebyshev
polynomials of the second kind. Moreover, for each non-trivial Fuč́ık curve, we give several
different implicit descriptions, which differ in the level of depth of used nested functions. Our
approach is based on the Möbius transformation and on the appropriate continuous extension
of solutions of the discrete problem. Let us note that all presented descriptions of Fuč́ık curves
have the form of necessary and sufficient conditions. Finally, our approach can be also directly
used in the case of difference operators of the second order with other local boundary conditions.

This article was published in Linear Algebra and Its Applications (Elsevier). For 2020, it has
impact factor 1.401, cite score 2.1 and it belongs to Q1 in “Algebra and Number Theory” and
“Discrete Mathematics and Combinatorics” fields of Mathematics.
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1.4 Abstracts of published research articles of the author

Abstract of [31]:
P. Nečesal, I. Sobotková, Localization of Fuč́ık curves for the second order discrete Dirichlet op-
erator, Bulletin des Sciences Mathématiques 171 (2021) 103014

In this paper, we deal with the second order difference equation with asymmetric nonlinearities on
the integer lattice and we investigate the distribution of zeros of continuous extensions of positive
semi-waves. The distance between two consecutive zeros of two different positive semi-waves
depends not only on the parameters of the problem but also on the position of one of these zeros
with respect to the integer lattice. We provide an explicit formula for this distance, which allows
us to obtain a new simple implicit description of all non-trivial Fuč́ık curves for the discrete
Dirichlet operator. Moreover, for fixed parameters of the problem, we show that this distance
is bounded and attains its global extrema that are explicitly described in terms of Chebyshev
polynomials of the second kind. Finally, for each non-trivial Fuč́ık curve, we provide suitable
bounds by two curves with a simple description similar to the description of the first non-trivial
Fuč́ık curve.

This article was published in Bulletin des Sciences Mathématiques (Elsevier). For 2020, it has
impact factor 1.118, cite score 1.6 and it belongs to Q1 in “Mathematics (miscellaneous)” field.

Other activities:
Abstract of [24] in Proceedings:
I. Looseová (Sobotková), Conjecture on Fuč́ık curve asymptotes for a particular discrete operator,
in: S. Pinelas, T. Caraballo, P. Kloeden, J. R. Graef (eds.), Differential and Difference Equations
with Applications, Springer International Publishing, Cham, 2018

In this paper we study properties of the Neumann discrete problem. We investigate so called polar
Pareto spectrum of a specific matrix which represents the Neumann discrete operator. There is a
known relation between polar Pareto spectrum of any discrete operator and its Fuč́ık spectrum.
We also state a conjecture about asymptotes of Fuč́ık curves with respect to the matrix and we
illustrate a variety of polar Pareto eigenvectors corresponding to a fixed polar Pareto eigenvalue.

Conferences:
1. Equadiff 13, Praha, 26.-30.8.2013, The asymptotes of Fuč́ık curves for asymmetric difference

operator

2. XXIX Seminar in Differential Equations, Mońınec, 14.-18.4.2014, Properties of the Fuč́ık spec-
trum for difference operator

3. Setkáńı student̊u matematické analýzy a diferenciálńıch rovnic, Praha 2016, The Fuč́ık spec-
trum of the Neumann discrete operator

4. XXX Seminar in Differential Equations, Ostrov u Tisé, 30. 5. – 3. 6. 2016, The Fuč́ık spec-
trum of the second order discrete operators

5. International Conference on Differential & Difference Equations and Applications 2017,
Amadora, Portugal, 5. 6. – 9. 6. 2017, The Fuč́ık spectrum of the discrete Dirichlet
operator
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Chapter 2

Linear problems (P1) and (P2)

Let us consider the linear initial value problem (P1)
{

∆2u(k − 1) + λu(k) = 0, k ∈ Z,
u(0) = C0, u(1) = C1,

where λ ∈ R and C0, C1 ∈ R are constants such that C2
0 + C2

1 ̸= 0.
This problem is the easiest one to solve (considering all problems (P1), (P2), (P3) and (P4)).

Yet, a complete understanding of how one can get the solution and what are the properties of such
a solution, leads to valuable knowledge and tools for further study of more difficult problems such
as linear boundary value problem (P2), semi-linear initial value problem (P3) and even semi-linear
boundary value problem (P4).

0 4

y = ωλ

λ

y

π

Figure 2.1: The graph of ωλ as a function of λ.

The following lemma is used to find a solution of linear initial value problem (P1) which will
be also utilized later on for more complex problems.

Lemma 3. ([25], Lemma 1, p. 66)
For given λ ∈ R and C0, C1 ∈ R, the linear initial value problem (P1) has a unique solution of

the form
u(k) = C0F

λ(1− k) + C1F
λ(k), k ∈ Z,

where the function Fλ : R→ R is defined as

Fλ(t) :=





sinh(ωλt)/ sinhωλ for λ < 0,
t for λ = 0,
sin(ωλt)/ sinωλ for λ ∈ (0, 4),

−t cos(πt) for λ = 4,
− cos(πt) sinh(ωλt)/ sinhωλ for λ > 4,

ωλ :=





arcosh 2−λ
2 for λ ≤ 0,

arccos 2−λ
2 for λ ∈ (0, 4),

arcosh λ−2
2 for λ ≥ 4.
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2.1 The continuous extension and its first non-negative zero

2.1 The continuous extension and its first non-negative zero
For the solution u of the discrete problem (P1), let us define its continuous extension uc on R as

uc(t) := C0F
λ(1− t) + C1F

λ(t), t ∈ R.

The continuous extension uc builds on Lemma 3, but this time we extend the variable to the whole
real axis. Continuous extension is the main tool which we will use while investigating properties
of solution u of initial value problem (P1). On Figures 2.2, 2.4, 2.5 and 2.6 we can see continuous
extensions uc of solutions u of initial value problem (P1) for four different values of λ (solution
has a different form based on the value of λ – see Lemma 3 in which we distinguish between λ < 0,
λ = 0, λ ∈ (0, 4), λ = 4 and λ ≥ 4). And on the Figure 2.3, we can see which role the length π

ωλ
has with regards to the continuous extension uc of a solution u for special case when λ ∈ (0, 4).

−1 0

C1

C0

y

1
t1 = Tλ(q1)

2 3 4 5 6 k

y = uc(k)

Figure 2.2: Continuous extension uc of solution u of the initial value problem (P1) for λ ∈ (0, 4),
λ = 1.3 and the first non-negative zero t1 of uc; q1 = C1

C0
(defined in Definition 4).

0 < λ < 4
C1

C0

y

k
π
ωλ

π
ωλ

π
ωλ

y = uc(k)

Figure 2.3: Continuous extension uc of solution u of the initial value problem (P1) for λ ∈ (0, 4),
λ = 1.3 and meaning of value π

ωλ
as the length of continuous extension’s “half-wave”.

−1
C1

q1 = C1
C0

C0

y

1t1 = Tλ(q1) 2
3

4 5 6 k

y = uc(k)

Figure 2.4: Continuous extension uc of solution u of the initial value problem (P1) for λ ∈ (0, 4),
λ = 3.9 and the first non-negative zero t1 of uc.

One of the properties which we are interested in is first non-negative zero of the continuous
extension uc of solution u of the initial value problem (P1). First of all, we define the bi-infinite
sequence (qk)k∈Z of ratios of values of u in two consecutive integers:
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2.1 The continuous extension and its first non-negative zero

C1

C0

y

−1
1

2 3 4 5 6

t̂
− 1

2
1
2

3
2

5
2

7
2

9
2

11
2

13
2

k

y = uc(k)

Figure 2.5: Continuous extension uc of solution u of the initial value problem (P1) for λ > 4,
λ = 4.2 and the determining zero point t̂ of uc (the concept of determining zero point t̂ is explained
in Remark 6).
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2

11
2

13
2

k

y = uc(k)

Figure 2.6: Continuous extension uc of solution u of the initial value problem (P1) for λ < 0,
λ = −0.2 and the determining zero point t̂ of uc (the concept of determining zero point t̂ is
explained in Remark 6).

Definition 4. ([25], p. 67)
Let us define the sequence (qk)k∈Z as a mapping from Z to R∗ := R ∪ {∞} (the one-point

compactification of R) as

qk := u(k)
u(k − 1) , k ∈ Z.

The sequence (qk) is defined correctly since value of u in two consecutive integers cannot be
zero. If u(0) = C0 = 0, then q1 = C1

C0
= C1

0 = ∞ independent of the sign of C1. Sequence (qk) will
be very important in the investigation of initial value problems and the properties of the solution.
In the following text, we are not going to focus on the values of u themselves but on these ratios
(qk). Using such approach will allow us to study the problem in detail, find zeros of solution u
and describe any term of such sequence (qk) (all will be explained later in the text).

Let us also define a generalized zero of the solution of the discrete problem (P1) (for the original
definition of a generalized zero see [14]).

Definition 5. Solution u of the discrete problem (P1) has a generalized zero at k ∈ Z if

u(k) = 0 or u(k)u(k − 1) < 0.

From the definition of (qk) we have that u has a generalized zero at k ∈ Z if and only if qk ≤ 0
and qk ̸= ∞.

Remark 6. We can distinguish between three different cases dependent on the value of λ and
find the number of generalized zeros – see Lemma 7. For λ ≤ 0, if there exists a generalized zero
(conditions when such generalized zero exists are in the lemma), we denote the corresponding zero
point of the continuous extension as the determining zero t̂. Similarly, in the case of λ ≥ 4, there
also might exist a determining zero t̂ (see lemma for details). In general, we can say that the
determining zero point t̂ is a zero point of uc (and it does not have to always exist). For λ ≤ 0,
the solution has at most one zero point (compare to other cases), thus the continuous extension
changes sign at most once (at the determining zero) – see Figure 2.6. For λ ≥ 4, the continuous
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2.1 The continuous extension and its first non-negative zero

extension has infinitely many zero points, but one of them stands out – the determining zero point
(if it exists). Such solution changes sign at every integer; except for two integers which are defined
as k1 = ⌊t̂⌋ and k2 = ⌈t̂⌉, thus we have sign(u(k1)) = sign(u(k2)) (for illustration see Figure 2.5).
For λ ∈ (0, 4), the determining zero always exists and it is the same as the first non-negative zero
of a continuous extension uc (we will explain this in the text following Definition 8).

Lemma 7. The number of generalized zeros of solution u of linear initial value problem (P1) is:

1. For λ ≤ 0, the solution u of (P1) has no generalized zero if q1 = C1
C0
∈ [e−ωλ , eωλ ] and has

exactly one generalized zero for q1 /∈ [e−ωλ , eωλ ].

2. For λ ≥ 4, the solution u of (P1) has infinitely many generalized zeros. For continuous
extension uc, we distinguish between zero points tk = 1

2 + k, k ∈ Z and between determining
zero point t̂ which exists if q1 = C1

C0
/∈ [− eωλ ,− e−ωλ ].

3. For λ ∈ (0, 4), the solution u of (P1) has infinitely many generalized zeros. In this case,
0 < ωλ < π and the continuous extension uc is 2π

ωλ
-periodic function.

Proof. (a) For λ = 0, we have ωλ = 0 and uc(t) = C0 + t(C1 −C0). Thus uc is a linear function
and has no generalized zero if C1 = C0 (i.e. q1 = 1), and one generalized zero if q1 ̸= 1.

(b) For λ < 0 the situation is as following. The continuous extension uc can be written as

uc(t) =
(
C0
2 − coshωλC0−C1

2 sinhωλ

) (
cosh(ωλt) + sinh(ωλt)

)

+
(
C0
2 + coshωλC0−C1

2 sinhωλ

) (
cosh(ωλt)− sinh(ωλt)

)

= C0 cosh(ωλt)− C0 coshωλ−C1
sinhωλ sinh(ωλt).

Such function has no zero points if and only if

|C0| ≥
∣∣∣∣
C0 coshωλ − C1

sinhωλ

∣∣∣∣ . (2.1)

For C0 > 0 the inequality in (2.1) is satisfied if

C1 ≤ C0(coshωλ + sinhωλ) = C0 eωλ ∧ C0(coshωλ − sinhωλ) = C0 e−ωλ ≤ C1,

i.e. e−ωλ ≤ q1 ≤ eωλ . For C0 < 0 we will get the same condition.

(c) For λ = 4, we have ωλ = 0 and

uc(t) = −C0 cos
(
π(1− t)

)
(1− t)− C1 cos(πt)t = cos(πt)

(
C0 + t(−C1 − C0)

)
.

Such function has zero points if cos(πt) = 0 or if C0 + t(−C1−C0) = 0. First condition gives
us infinitely many zero points tk = 1

2 + k, k ∈ Z. Second condition leads to an existence of
determining zero point t̂. Determining zero point t̂ does not exist if C0 = −C1.

(d) For λ > 4, the continuous extension uc can be written in the form

uc(t) = cos(πt)
(
C0 cosh(ωλt) + −C0 coshωλ − C1

sinhωλ
sinh(ωλt)

)
.

Such function has infinitely many zero points if cos(πt) = 0. Determining zero point does
not exist if

|C0| ≥
∣∣∣∣
−C0 coshωλ − C1

sinhωλ

∣∣∣∣ .

Such inequality is satisfied if − eωλ ≤ q1 ≤ − e−ωλ . See Figure 2.5 for zero points tk =
1
2 + k, k ∈ Z and for determining zero point t̂.
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2.1 The continuous extension and its first non-negative zero

0−1 12−λ
2

1
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π
2ωλ

1

1
2 + π

2ωλ

π
ωλ

y = Tλ(q)

y

q

Figure 2.7: The graph of Tλ as a function of q, case λ ∈ (0, 4).

(e) For λ ∈ (0, 4), the continuous extension uc can be written as

uc(t) = C0 cos(ωλt)−
C0 cosωλ − C1

sinωλ
sin(ωλt),

which is a sum of two 2π
ωλ

-periodic functions and has infinitely many zeros.
We note that (a) – (b) prove assertion 1. in the lemma, (c) – (d) are connected to assertion 3.

and finally (e) is a proof of assertion 2. of the lemma.

Furthermore, we define function Tλ which gives us an answer to our question about the first
non-negative zero of continuous extension uc of solution u to (P1). See Figures 2.7, 2.8 and 2.9
for graphs of Tλ. In [25], function Tλ is defined only for λ ∈ (0, 4) (see [25], Definition 2, p. 68)
but we can define function Tλ for λ ∈ R and use such definition for finding the first non-negative
zero of continuous extension uc (and the determining zero t̂ ).

Definition 8. For λ ∈ R, let us define the function Tλ : R∗ → R, R∗ := R ∪ {∞}, as

Dom(Tλ) :=





R∗ \ [e−ωλ , eωλ ] for λ ≤ 0,
R∗ for λ ∈ (0, 4),
R∗ \ [− eωλ ,− e−ωλ ] for λ ≥ 4,

Tλ(∞) := 0,

Tλ(q) :=





1
ωλ

arcoth
(

coshωλ−q
sinhωλ

)
for λ < 0,

1
1−q for λ = 0,

1
ωλ

arccot
(

cosωλ−q
sinωλ

)
for λ ∈ (0, 4),

1
1+q for λ = 4,

1
ωλ

arcoth
(

coshωλ+q
sinhωλ

)
for λ > 4.

In this thesis, we are going to use that inverse cotangent (arccotangent) has the usual principal
values, thus it is defined for all real numbers and its range is interval (0, π).

Let us explain the role the function Tλ has for the continuous extension uc of solution u of
the initial value problem (P1). We denote t1 the first non-negative zero of uc (if it exits). We
will show the relationship between t1 and t̂ (the determining zero) for different values of λ. Let
us note that uc(t̂) = 0 and t̂ = Tλ(q1) = Tλ(C1

C0
) (if it exists) (details in the text below).
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2.1 The continuous extension and its first non-negative zero

0−1 e−ωλ 1 eωλ

1
2

1

q

y

y = Tλ(q)
λ < 0

01
2−λ− e−ωλ

− eωλ2− λ

1

1
2

1

2

−1
q

y

y = Tλ(q)
λ > 4

Figure 2.8: The graph of Tλ as a function of q, case λ < 0 (λ = −1, left) and λ > 4 (λ = 4.3,
right).

0−1

1
2

1

y

q

y = Tλ(q)

λ = 0.001

λ = 1.7
λ = 3.6

λ = 3.999

Figure 2.9: Graphs of Tλ for λ ∈ {0.001, 1.7, 3.6, 3.999}.

Firstly, let us summarise. Let u be a solution of (P1) and uc its continuous extension. Then
we have:

1. For λ ≤ 0 the continuous extension uc has exactly one zero Tλ(q1) if q1 ∈ Dom(Tλ) and no
zero if q1 /∈ Dom(Tλ).

2. For λ ≥ 4 the continuous extension uc has infinitely many zeros k+ 1
2 , k ∈ Z. The determining

zero Tλ(q1) exists if and only if q1 ∈ Dom(Tλ).

3. For λ ∈ (0, 4) the continuous extension uc has infinitely many zeros and the first non-negative
zero is Tλ(q1).

Let λ = 0. In this case we will distinguish between C0 = 0 and C0 ̸= 0.

(a) If C0 = 0, then uc(t) = C1t and t1 = 0, q1 = ∞. And so, t̂ = Tλ(q1) = Tλ(∞) = 0 = t1.

(b) If C0 ̸= 0, we have C0(1 − t̂) + C1t̂ = 0. From Lemma 7 we have that t̂ exists exactly one
for q1 ∈ R∗ \ {1} and does not exist otherwise. Thus for C1 ̸= C0 we have

t̂ = 1
1− C1

C0

= 1
1− q1

= Tλ(q1).

Because of the fact, that t̂ can be negative, we have t1 ̸= t̂ in general and the first non-
negative zero point t1 does not have to exist.

Let λ ∈ (0, 4). In this case, 0 < ωλ < π, the continuous extension uc is 2π
ωλ

-periodic function
and all zeros of uc are tk = t1 + (k − 1) π

ωλ
, k ∈ Z.

(a) If C0 = 0, then uc(t) = C1
sin(ωλt)
sinωλ and q1 = ∞, t1 = 0. And we have Tλ(∞) = 0.
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2.1 The continuous extension and its first non-negative zero

(b) If C0 ̸= 0, then for t1, we have that

sin(ωλ(1− t1)) + q1 sin(ωλt1) = 0, 0 < t1 <
π

ωλ
,

which gives us

q1 = − sinωλ cos(ωλt1)+cosωλ sin(ωλt1)
sin(ωλt1) = cosωλ − sinωλ · cot(ωλt1),

t1 = 1
ωλ

arccot
(

cosωλ−q1
sinωλ

)
.

Therefore, t1 = t̂ = Tλ(q1) = Tλ
(
C1
C0

)
. See Figures 2.2 and 2.4, where we can see the first

non-negative zero of uc for two different values of λ ∈ (0, 4).
Let λ < 0. In this case, the situation is similar to λ = 0. Zero point t̂ of uc exists (exactly one

and can be negative) if q1 = C1
C0

/∈ [e−ωλ , eωλ ] and does not exist otherwise. Therefore, existence
of t1 is not guaranteed. The derivation of zero point t̂ is similar to the case λ ∈ (0, 4). See Figure
2.6, where zero t̂ exists.

Let λ = 4. From Lemma 7 we have that the solution u of (P1) has infinitely many generalized
zeros. For continuous extension uc, we distinguish between zero points tk = 1

2 + k, k ∈ Z and
between determining zero point t̂ which exists if q1 = C1

C0
∈ R∗ \ {−1}. This determining zero

point t̂ is given as t̂ = Tλ(q1), which we can verify by calculation:
(a) For C0 = 0, we have −C1 cos(πt1)t1 = 0, therefore t1 = 0 and q1 = ∞.

(b) For C0 ̸= 0, we have

t̂ = cos(π(1− t̂))
cos(π(1− t̂))− q1 cos(πt̂)

= − cos(πt̂)
− cos(πt̂)− q1 cos(πt̂)

= 1
1 + q1

= Tλ(q1).

Let λ > 4. From Lemma 7, we have that the solution u of (P1) has infinitely many generalized
zeros. In this case, for continuous extension uc, we distinguish between zero points tk = 1

2 +k, k ∈
Z and between determining zero point t̂ which exists if q1 = C1

C0
/∈ [− eωλ ,− e−ωλ ] and can be

negative. As in the case λ = 4, this determining zero point t̂ is given as t̂ = Tλ(q1), which we
can verify by calculation similar to derivation in the case λ ∈ (0, 4). See Figure 2.5, where point
t̂ exists and see the difference between zero points tk = 1

2 + k, k ∈ Z and the determining zero
point t̂.

We are also going to define function Qλ, which is an inverse function to Tλ (in [31], p. 17, we
defined function Qλ for λ ∈ (0, 4)).
Definition 9. For λ ∈ R, let us define the function Qλ : R→ R∗, R∗ := R ∪ {∞}, as

Dom(Qλ) :=





[
0, π
ωλ

)
for λ ∈ (0, 4),

R for λ ∈ R \ (0, 4),

Qλ(0) := ∞,

Qλ(t) :=





− sinh(ωλ(1− t))
sinh(ωλt)

for λ < 0,

−1− t

t
for λ = 0,

− sin(ωλ(1− t))
sin(ωλt)

for λ ∈ (0, 4),

1− t

t
for λ = 4,

sinh(ωλ(1− t))
sinh(ωλt)

for λ > 4.
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2.1 The continuous extension and its first non-negative zero

As it was illustrated above, it makes sense to talk about first non-negative zero point t1 of
uc mainly in the case λ ∈ (0, 4). In the following text, we will limit ourselves only to the case
λ ∈ (0, 4).

y

−2 −1
1 2 3 4

5 6 k

y = uc(k)

t1

t0

q0

q1
q2 q3

q4

q5

T λ(q0)
T λ(q1)

T λ(q2)
T λ(q3)

T λ(q4)
T λ(q5)

Figure 2.10: The bi-infinite sequence (qk)k∈Z of ratios of values of u as the solution of the initial
value problem (P1) and its relation to the first non-negative zero point t1 using function Tλ (case
λ ∈ (0, 4)).

Let us note that for λ ∈ (0, 4), Tλ is a strictly increasing function on R and maps R∗ onto[
0, π

ωλ

)
. We can calculate few values (see Figure 2.7) of function Tλ:

Tλ(0) = 1
ωλ

arccot
(

cosωλ
sinωλ

)
= 1

ωλ
arccot(cotωλ) = 1,

Tλ(−1) = 1
ωλ

arccot
(

cosωλ+1
sinωλ

)
= 1

ωλ
arccot

(
2 cos2 ωλ

2
sin(ωλ2 +ωλ

2 )

)
= 1

ωλ
arccot

(
2 cos2 ωλ

2
2 sin ωλ

2 cos ωλ2

)

= 1
ωλ

ωλ
2 = 1

2 ,

Tλ(1) = 1
ωλ

arccot
(

cosωλ−1
sinωλ

)
= 1

ωλ
arccot

(
−2 sin2 ωλ

2
2 sin ωλ

2 cos ωλ2

)
= 1

ωλ
arccot

(
− tan ωλ

2
)

= 1
ωλ

arccot
(
cot
(
ωλ
2 + π

2
))

= 1
2 + π

2ωλ ,

Tλ( 2−λ
2 ) = 1

ωλ
arccot

(
cosωλ− 2−λ

2
sinωλ

)
= 1

ωλ
arccot

(
cosωλ−cosωλ

sinωλ

)
= π

2ωλ .

(2.2)
If we take into account that the difference equation in (P1) is autonomous, we realize that the

first non-negative zero t1 can be calculated as (for λ ∈ (0, 4))

t1 = j + Tλ(q1+j), j = ⌈t0⌉, . . . , 0, . . . , ⌊t1⌋,

where t0 is the previous zero of continuous extension uc of solution u. For illustration, see Figure
2.10, where is ⌈t0⌉ = −1, ⌊t1⌋ = 4. For such example, there are 6 possible ways how to get t1
using sequence (qk)k∈Z. We have

t1 = −1 + Tλ(q0), t1 = Tλ(q1), t1 = 1 + Tλ(q2),

t1 = 2 + Tλ(q3), t1 = 3 + Tλ(q4), t1 = 4 + Tλ(q5).

Finally, in the following lemma, we will introduce a useful formula for Tλ (which will be used
in Chapter 5 in the part where we introduce bounds of Fuč́ık curves which are referred to as the
“delta bounds” in this thesis).
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2.2 Chebyshev polynomials of the second kind

Lemma 10. ([25], Lemma 3, p. 69)
Let λ ∈ (0, 4). For q = ∞ and q ≤ 0, we have

Tλ(q) + Tλ
(

1
q

)
= 1.

2.2 Chebyshev polynomials of the second kind
In this section, we will give more detailed information about Chebyshev polynomials of the second
kind (for more details see [29]), which we will use in Section 2.3.

Definition 11. Chebyshev polynomials Uk of the second kind of degree k ∈ Z at the point x ∈ R
are defined by the recurrence formula

Uk+1(x) = 2xUk(x)− Uk−1(x)

with initial conditions U0(x) = 1, U1(x) = 2x.

2.2.1 Relationship to the linear initial value problem (P1)
For all λ ∈ R and k ∈ Z, let us denote

V λ
k := Uk

( 2−λ
2
)
. (2.3)

For all λ ∈ R, polynomials V λ
k satisfy the three terms recurrence formula

V λ
k−1 − (2− λ)V λ

k + V λ
k+1 = 0, k ∈ Z, (2.4)

with initial conditions V λ
0 = 1, V λ

1 = 2 − λ. Initial value problem (P1) has solution in the
recurrence form

u(k − 1)− (2− λ)u(k) + u(k + 1) = 0

with initial conditions u(0) = C0 and u(1) = C1. Therefore, V λ
k is the solution of the initial value

problem (P1) with C0 = V λ
0 = 1 and C1 = V λ

1 = 2− λ.
Moreover, for all λ ∈ R and k ∈ Z we have

Fλ(k) = V λ
k−1,

where function F is used in Lemma 3. Such property allows us to get the solution u of (P1) as

u(k) = −C0V
λ
k−2 + C1V

λ
k−1.

For illustration, see Figure 2.11, where first few Chebyshev polynomials V λ
k (for k = 0, . . . , 4) are

shown. We chose C0 and C1 in such a way, that it corresponds with solution u from Figure 2.2.
Then, these values can be displayed as points of Chebyshev polynomials V λ

k for fixed value λ = 1.3.

2.2.2 Properties of the Chebyshev polynomials of the second kind
Let us list several useful properties of Chebyshev polynomials of the second kind Uk and polyno-
mials V λ

k .

1. Zeros of Uk are
x = cos mπ

k + 1 , m = 1, . . . , k,

and thus zeros of V λ
k are

λ = 2− 2 cos mπ

k + 1 = 4 sin2 mπ

2(k + 1) , m = 1, . . . , k.
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2.2 Chebyshev polynomials of the second kind

λ

y
u(0)

u(1)
u(4)

u(2)
u(3)

V λ
0

V λ
1

V λ
2

V λ
3

V λ
4

λ = 1.3

Figure 2.11: Chebyshev polynomials V λ
k for k = 0, 1, . . . , 4, λ = 1.3. Marked points on the dashed

line λ = 1.3 are values of solution u of initial value problem (P1) with C0 = 1, C1 = 2− λ = 0.7
displayed on the Figure 2.2. Chebyshev polynomial V λ

0 is black, V λ
1 is light green, V λ

2 is dark
blue, V λ

3 is light blue and V λ
4 is dark green.

2. We have that V λ
−k = −V λ

k−2 for all k ∈ Z. For λ ∈ (0, 4) and all k ∈ Z, we have

V λ
−k = U−k

( 2−λ
2
)

= sin ((−k + 1)ωλ)
sinωλ

= − sin ((k − 1)ωλ)
sinωλ

= − sin (((k − 2) + 1)ωλ)
sinωλ

= −V λ
k−2.

For |λ| > 4, the derivation is very similar.

3. We have

. . . , V λ
−3 = −2 + λ, V λ

−2 = −1, V λ
−1 = 0, V λ

0 = 1, V λ
1 = 2− λ,

V λ
2 = −λ3 + 6λ2 − 10λ+ 4, V λ

3 = λ4 − 8λ3 + 21λ2 − 20λ+ 5, . . .

4. We have V λ
k = det(Bλ), where Bλ is a square matrix of size k defined as

Bλ =




2− λ 1
1 2− λ 1

. . . . . . . . .
1 2− λ 1

1 2− λ



.

For Chebyshev polynomials of the second kind Uk exits an inequality (also known as Turán
inequality) – see [39] :

U2
k (x)− Uk−1(x)Uk+1(x) > 0 for − 1 < x < 1.

For Chebyshev polynomials V λ
k , the Turán inequality has a special form of identity (in [25], we

have proved this lemma using properties of functions V λ
k ).

Lemma 12. ([25], Lemma 4, p. 69)
For all λ ∈ R and k ∈ Z, we have the following identity

(
V λ
k

)2 − V λ
k+1V

λ
k−1 = 1.

Let us note a few other interesting properties of Chebyshev polynomials (for reference, see
[33]).

Chebyshev polynomials of the first kind Tk are given by

Tk(cos(θ)) = cos(kθ).

Both Chebyshev polynomials form a sequence of orthogonal polynomials. Polynomials Tk are
orthogonal with respect to the weight function 1√

1−x2 on the interval [−1, 1] and polynomials Uk
are orthogonal with respect to the weight function

√
1− x2 on the interval [−1, 1].
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2.3 Properties of function Wλ
k

The Chebyshev polynomials have a lot of applications, but one stands out – numerical analy-
sis. Functions can be expanded to a series of Chebyshev polynomials. The effectiveness of such
expansion (partial sums of a Chebyshev expansion) can be found studied e.g. here [41].

Quoting [32] for a historical remark on orthogonal polynomials:

“Chebyshev was probably the first mathematician to recognise the general concept of orthogonal
polynomials. A few particular orthogonal polynomials were known before his work. Legendre and
Laplace had encountered the Legendre polynomials in their work on celestial mechanics in the
late eighteenth century. Laplace had found and studied the Hermite polynomials in the course of
his discoveries in probability theory during the early nineteenth century. Other isolated instances
of orthogonal polynomials occurring in the work of various mathematicians are mentioned later.
It was Chebyshev who saw the possibility of a general theory and its applications. His work
arose out of the theory of least squares approximation and probability; he applied his results to
interpolation, approximate quadrature and other areas. He discovered the discrete analogue of
the Jacobi polynomials but their importance was not recognized until this century. They were
rediscovered by Hahn and named after him upon their rediscovery. Geronimus has pointed out
that in his first paper on orthogonal polynomials, Chebyshev already had the Christoffel-Darboux
formula.”

2.3 Properties of function W λ
k

The reason we have devoted previous pages to the introduction of Chebyshev polynomials of the
second kind follows in this section. It is convenient to use them for the definition of function Wλ

k .
This function determines the value of k-th element qk defined in Definition 4 by the value of q0
(this property comes from Lemma 15).
Definition 13. ([25], Definition 5, p. 70)
For all λ ∈ R and k ∈ Z, let us define the function Wλ

k : R∗ → R∗ in the following way

Wλ
k (q) :=





q · V λ
k − V λ

k−1
q · V λ

k−1 − V λ
k−2

for q ∈ R,

V λ
k

V λ
k−1

for q = ∞.

Let us recall that a Möbius transformation is given by (a, b, c, d ∈ C, ad− bc ̸= 0)

f : C∗ → C∗ : z 7→ a · z + b

c · z + d
.

The function Wλ
k is the restriction of a Möbius transformation on R∗. Indeed, we have that (using

Lemma 12)
(V λ

k−1)2 − V λ
k V

λ
k−2 = 1 ̸= 0, k ∈ Z.

For V λ
k−1 = 0, we have that V λ

k−2 ̸= 0 and V λ
k ̸= 0, thus

Wλ
k (q) =





− V λ
k

V λ
k−2

q for q ∈ R,

∞ for q = ∞.

The following equality for function Wλ
k allows us to generate functions Wλ

k (for k ∈ Z) easily
– using recurrence.
Lemma 14. For all λ ∈ R and k ∈ Z, we have

Wλ
k+1(q) = 2− λ− 1

Wλ
k (q)

, q ∈ R∗.
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2.3 Properties of function Wλ
k

Proof. Proving this is a part of the proof of ([25], Lemma 6, p. 70).

Using Lemma 14, for k ∈ N, the value of function Wλ
k at q can be written in a form which

reminds a finite continued fraction (yet, it is not a finite continued fraction, since terms 2−λ and
λ− 2 are not generally positive integers). For q ̸= ∞, we have

Wλ
1 (q) = 2− λ+ 1

−q

Wλ
2 (q) = 2− λ+ 1

λ−2+ 1
q

Wλ
3 (q) = 2− λ+ 1

λ−2+ 1
2−λ+ 1

−q
...

And finally, each ratio of bi-infinite sequence (qk)k∈Z can be calculated from ratio q0 using the
function Wλ

k . Thus, Lemma 15 allows us to calculate any ratio qk if we know q0.

Lemma 15. ([25], Lemma 6, p. 70)
For all λ ∈ R and k ∈ Z, we have

qk = Wλ
k (q0). (2.5)

2.3.1 Relationship to the linear initial value problem (P1)
Let u be the solution of the initial value problem (P1) and (qk) the bi-infinite sequence of ratios
of value u in two consecutive integers as it was defined in Definition 4.

Remark 16. ([25], Remark 10, p. 73)
Let us assume that we have some element of bi-infinite sequence (qk) (for example q1 = C1/C0

given by the initial conditions). If we want to get any other element of such sequence or the first
non-negative zero t1 of uc, we can use the following formulas.

1. For λ ∈ R and i, j, k ∈ Z such that i+ j = k, we have that

qk = Wλ
j (qi). (2.6)

This can be used for calculation of any term of sequence (qk)k∈Z from the initial condition.
Let our initial condition be C0 = 0, C1 ∈ R \ {0}. Then we have q1 = u(1)

u(0) = C1
0 = ∞. And

for any k ∈ Z, we have qk = Wλ
k−1(q1) = Wλ

k−1(∞).

2. For λ ∈ (0, 4), we have for the first non-negative zero t1 of uc that

t1 = j + Tλ(Wλ
j (q1)), j = ⌈t0⌉, . . . , 0, . . . , ⌊t1⌋. (2.7)

In the last part of this section, let us consider the following linear problem which we explored
in detail in ([25], p. 74) (detailed inspection of this problem will help us to understand better the
semi-linear initial value problem, which we will explore in Chapter 3):

{
∆2u(k − 1) + ak · u(k) = 0, k ∈ N,

u(0) = 0, u(1) = C1,
(2.8)

where C1 ∈ R, C1 ̸= 0 and the sequence (ak)k∈N is given by

(ak)k∈N = (λ1, . . . , λ1︸ ︷︷ ︸
k1–times

, λ2, . . . , λ2︸ ︷︷ ︸
k2–times

, . . . , λm, . . . , λm︸ ︷︷ ︸
km–times

, . . . ),

where (kj)j∈N is a sequence of natural numbers, λj ∈ R, j ∈ N.
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2.3 Properties of function Wλ
k

Let us look more closely on the linear initial value problem (2.8). Let us denote uk := u(k), k ∈
N ∪ {0}. Such problem can be written in the form of infinite matrix equation




2− a1 −1
−1 2− a2 −1

−1 2− a3 −1
. . . . . . . . .


 ·




C1
u2
u3
...


 =




0
0
0
...


 ,

which has a solution

u0 = 0, u1 = C1, u2 = (2− a1)C1, u3 = −C1 + (2− a2)u2, u4 = −u2 + (2− a3)u3, . . .

written in the recurrence form

u0 = 0,
u1 = C1,
uk = −uk−2 + (2− ak−1)uk−1, k ∈ N \ {1}.

We have that

q1 = C1
0 = ∞,

qk+1 = Wλ1
k (q1) for 1 ≤ k ≤ k1,

qk+k1+1 = Wλ2
k (qk1+1) for 1 ≤ k ≤ k2,

...
qk+km−1+···+k1+1 = Wλm

k (qkm−1+···+k1+1) for 1 ≤ k ≤ km, m ≥ 3,
...

Thus, for all m ∈ N, we obtain qkm+···+k2+k1+1 =
(
Wλm

km
◦ · · · ◦Wλ2

k2
◦Wλ1

k1

)
(q1).

Example 17. Let us consider linear initial value problem (2.8) with (ak)k∈Z = (−1,−1, 2, 2, 2, 3, . . . ),
C1 = 1. Then λ1 = −1, k1 = 2, λ2 = 2, k2 = 3, λ3 = 3, k3 ≥ 1, . . . . Solution u has values
u(0) = 0, u(1) = 1, u(2) = 3, u(3) = 8, u(4) = −3, u(5) = −8, u(6) = 3, u(7) = 5, . . . . We have

q1 = 1
0 = ∞ = u(1)

u(0) ,

q2 = W−1
1 (∞) = 3 = u(2)

u(1) , k1 = 2,

q3 = W−1
2 (∞) = 8

3 = u(3)
u(2) , k1 = 2,

q4 = W 2
1 (q3) = − 3

8 = u(4)
u(3) , k2 = 3,

q5 = W 2
2 (q3) = 8

3 = u(5)
u(4) , k2 = 3,

q6 = W 2
3 (q3) = − 8

3 = u(6)
u(5) , k2 = 3,

q7 = W 3
1 (q6) = 5

3 = u(7)
u(6) , k3 ≥ 1,

...

Or, we can write q7 =
(
W 3

1 ◦W 2
3 ◦W−1

2
)
(∞).
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2.4 Linear boundary value problem (P2)

2.4 Linear boundary value problem (P2)
In this section, we will briefly inspect linear boundary value problem with Dirichlet boundary
conditions (P2) {

∆2u(k − 1) + λu(k) = 0, k ∈ T,

u(0) = u(n+ 1) = 0,

where n ∈ N, n ≥ 2, T = {1, . . . , n}, T̂ = {0, . . . , n+ 1}, u : T̂→ R and λ ∈ R.
Problem (P2) can be rephrased using a matrix notation as

ADu = λu

where matrix AD is the Dirichlet matrix (1.3)

AD =




2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2




and u = [u(1), . . . , u(n)]T . Thus, to find all values λ ∈ R for which the linear boundary value
problem (P2) has a non-trivial solution is the same as to find all eigenvalues and corresponding
eigenvectors of matrix AD.

Problem (P2) is closely related to Chebyshev polynomials of the second kind (see Section 2.2).
We can write

det(AD − λI) = Un

(
2− λ

2

)
= V λ

n .

Thus, eigenvalues of AD are zero points of polynomial V λ
n (see Section 2.2.2) and are of the form

λDj = 4 sin2 (j + 1)π
2(n+ 1) , j = 0, . . . , n− 1,

λDj ∈ (0, 4) and λD0 < λD1 < · · · < λDn−1. And eigenvectors are of the form

uDj(k) =
√

2
n+ 1 sin

(
k(j + 1)π
n+ 1

)
, k ∈ {1, 2, . . . , n},

where j represents the eigenvalue of the corresponding eigenvector and k ∈ {1, 2, . . . , n} the entry
of the vector. See Figure 2.12 where some (not all of them) non-trivial solutions of the problem
(P2) are shown for n = 13.
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2.4 Linear boundary value problem (P2)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 k

u λD2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 k

u λD3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 k

u λD4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 k

u λD5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 k

u λD6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 k

u λD7

Figure 2.12: Some of the non-trivial solutions of the problem (P2) for n = 13 and (from top to
bottom) λD2

.= 0.436337, λD3
.= 0.75302, λD4

.= 1.13223, λD5
.= 1.55496, λD6 = 2, λD7

.= 2.44504. Orange
dots represent positive points, blue dots represent negative points and black dots represent zero
points.
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Chapter 3

Semi-linear initial value problem
(P3) – Part I

In this chapter, we deal with the semi-linear initial value problem (P3)
{

∆2u(k − 1) + αu+(k)− βu−(k) = 0, k ∈ Z,

u(0) = 0, u(1) = C1,

where u±(k) = max{±u(k), 0}, C1 ∈ R, C1 ̸= 0 and (α, β) ∈ D,

D := ((0, 4)× (0,+∞)) ∪ ((0,+∞)× (0, 4)).

Remark 18. ([25], p. 76)
Let u be a solution of semi-linear initial value problem (P3). Then u is also the solution of initial
problem (2.8) if we take (ak)k∈N in the following form

ak =
{

α for u(k) ≥ 0,

β for u(k) < 0.

3.1 Positive and negative semi-waves
In this section, we are going to describe a continuous extension of a solution u of semi-linear initial
value problem (P3) by defining a continuous extension uci,j of u on the interval [i− 1, j+1], where
i ∈ Z is a generalized zero (similarly as we have defined a generalized zero in Definition 5 for
problem (P1), we can define it for different problems such as (P3)) and j ∈ Z : j > i is such that
for all k = i, . . . , j, u(k) is non-negative (or non-positive) and

u(j)u(j + 1) < 0 or u(j) = 0.

See Figure 3.1 and Figure 3.2 (left). This means that i and (j+1) are two consecutive generalized
zeros of u if u(j) ̸= 0. In the case of u(j) = 0, i and j are two consecutive generalized zeros of u.

On such interval, we construct a continuous extension in the same way as we have done it
for the linear case (see Section 2.1). We define the continuous extension uci,j of u (see Figure 3.2
(right)) on the interval [i− 1, j + 1] as (see ([25], p. 77))

uci,j(t) :=
{

u(i− 1)Fα(1− (t− i+ 1)) + u(i)Fα(t− i+ 1) for u(i− 1) < 0,

u(i− 1)F β(1− (t− i+ 1)) + u(i)F β(t− i+ 1) for u(i− 1) > 0,

where functions Fα and F β are given by Fλ (see Lemma 3) for λ = α and λ = β, respectively.
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3.2 Relationship between function Wλ
k and solution of a semi-linear problem (P3)

i− 1 i i+ 1 i− 1 i i+ 1 i− 1 i i− 1 i

Figure 3.1: Generalized zeros at point i in four possible cases: 1) u(i) = 0, u(i − 1) > 0, 2)
u(i) = 0, u(i− 1) < 0, 3) u(i− 1)u(i) < 0, u(i− 1) > 0, 4) u(i− 1)u(i) < 0, u(i− 1) < 0.

i j

j + 1

i j

j + 1

uci,j

Figure 3.2: Consecutive generalized zeros i, j + 1 and the continuous extension uci,j of u.

Positive semi-wave is a continuous extension uci,j of u such that u(k) is non-negative for all
k = i, . . . , j. Negative semi-wave is continuous extension uci,j of u such that u(k) is non-positive for
all k = i, . . . , j. See Figure 3.4 where positive semi-waves are in orange color and negative semi-
waves are in blue color. We say that positive and negative semi-waves are “anchored” together.

3.2 Relationship between function W λ
k and solution of a semi-

linear problem (P3)
Now that we have defined what is the continuous extension of a solution of the problem (P3), we
can use the theory from the linear case here.

Assuming that we would know where all generalized zeros (or anchorings of all positive /
negative semi-waves) are (for solution u), we would quickly find all ratios (qk)k∈Z using function
Wλ

k , where λ = α for positive semi-wave and λ = β for negative semi-wave. Let us demonstrate
such construction on the following example.

Example 19. Let us take the semi-linear initial value problem (P3) with α = 0.8, β = 3.94,
C1 = 1. Let us assume that we know that solution u has the following sign properties:

u(0) = 0, u(1) = 1 > 0, u(2) > 0, u(3) > 0, u(4) < 0, u(5) > 0, u(6) > 0, u(7) > 0, u(8) < 0,

u(9) < 0, u(10) > 0, u(11) > 0, u(12) > 0, u(13) < 0, . . .

Since all values u(k), k ∈ Z, can be calculated directly from the difference equation, we can show
the solution u on Figure 3.3. Our goal is to calculate values of sequence (qk)k∈Z (let us recall
definition of sequence (qk): qk = u(k)

u(k−1) ) using functions Wα
k , W β

k .
Firstly, let us construct continuous extension of the solution u. Since we know the sign

properties of solution u, we know that we have positive semi-waves uc0,3, uc5,7, uc10,12, . . . And
negative semi-waves uc4,4, uc8,9, . . . See Figure 3.4 for such construction.

Finally, let us demonstrate that we have several ways how to calculate values of sequence
(qk)k∈Z. Since q1 is defined by the initial conditions, we have

q1 = 1
0 = ∞.
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3.2 Relationship between function Wλ
k and solution of a semi-linear problem (P3)

1 2 3 4 5 6 7 8 9 10 11 12 13 k

y

Figure 3.3: Solution u of semi-linear initial value problem (P3) for α = 0.8, β = 3.94, C1 = 1.
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y

uc0,3

uc4,4

uc5,7

uc8,9

uc10,12

Figure 3.4: Continuous extension of solution u from Figure 3.3.

We are going to use q1 in the calculations of all other terms of sequence (qk). Values u(1) and
u(2) which define q2 are part of the positive semi-wave uc0,3, thus for the calculation of q2 we use
Wα

k (thus λ = α). Starting at q1, we need to make “one jump” in the sequence qk (on the positive
semi-wave) in order to get q2, thus k = 1 and we have

q2 = u(2)
u(1) = u(2)

1 = u(2) = Wα
1 (q1) = Wα

1 (∞) = 1.2.

Since q3 and q4 are also “part” of positive semi-wave uc0,3, we can calculate them in a similar way.
Value q3 is “one jump” away from q2 (thus k = 1) on the positive semi-wave and “two jumps”
away from q1 (thus k = 2) on the positive semi-wave. And in the same way, value q4 is “three
jumps” away from the q1 (on the positive semi-wave), thus k = 3.

q3 = u(3)
u(2) = Wα

1 (q2) = Wα
2 (q1) = Wα

2 (∞) .= 0.367
q4 = u(4)

u(3) = Wα
1 (q3) = Wα

2 (q2) = Wα
3 (q1) = Wα

3 (∞) .= −1.527

Value q5 is calculated a little differently, because it is part of the negative semi-wave uc4,4 (value
u(5) is not part of the positive semi-wave uc0,3). In order to get value q5, we need to make “one
jump” on the negative-semi wave from q4, thus q5 = W β

1 (q4). If we want to start with the value
q3, we need to make firstly “one jump” on the positive semi-wave to the value q4 and then “one
jump” on the negative semi-wave, thus q5 = W β

1 (Wα
1 (q3)). If we want to start with the value
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3.3 Sequences (pk) and (ϑk)

q1 = ∞, we can easily calculate the number of particular “jumps”:

q5 = u(5)
u(4) = W β

1 (q4) = W β
1 (Wα

1 (q3)) = W β
1 (Wα

2 (q2)) = W β
1 (Wα

3 (q1))
= W β

1 (Wα
3 (∞)) .= −1.282

Values q6, q7, q8 are part of positive semi-wave uc5,7, thus we calculate them as:

q6 = Wα
1 (W β

1 (Wα
3 (∞))) .= 1.98

q7 = Wα
2 (W β

1 (Wα
3 (∞))) .= 0.695

q8 = Wα
3 (W β

1 (Wα
3 (∞))) .= −0.239

Values q9, q10 are parts of negative semi-wave uc8,9:

q9 = W β
1 (Wα

3 (W β
1 (Wα

3 (∞)))) .= 2.247
q10 = W β

2 (Wα
3 (W β

1 (Wα
3 (∞)))) .= −2.382

And finally, we have:

q11 = Wα
1 (W β

2 (Wα
3 (W β

1 (Wα
3 (∞))))) .= 1.62

q12 = Wα
2 (W β

2 (Wα
3 (W β

1 (Wα
3 (∞))))) .= 0.583

q13 = Wα
3 (W β

2 (Wα
3 (W β

1 (Wα
3 (∞))))) .= −0.516

3.3 Sequences (pk) and (ϑk)
In Example 19, we have shown how to use functions Wα

k and W β
k in calculations of sequence

(qk)k∈Z of the semi-linear problem (P3). The assumption we have used there was that we knew
sign properties of the solution u. Without it, we wouldn’t know when to “switch” between positive
and negative semi-waves. Thus our main goal in this section is to find out how to calculate these
sign properties.

In the following definition, we define (recurrently given) sequences (pk)k∈Z, (Pk)k∈Z, (ϑk)k∈Z,
(W+

k)k∈Z and (W-
k)k∈Z. In the text following this definition, we will explain for the simplest case

0 < α, β < 4 what these sequences represent.
Definition 20. ([25], Definition 17, p. 82)
For all j ∈ Z, let us denote

ϕj :=
{

α for j odd,
β for j even.

On the domain D = ((0, 4) × (0,+∞)) ∪ ((0,+∞) × (0, 4)), let us define sequences of functions
(pi) and (ϑi), which are given recurrently for i ∈ N in the following way

ϑ0(α, β) := ∞,

pi(α, β) :=





⌊
Tϕi(ϑi−1(α, β)) + π

ωϕi

⌋
for ϕi < 4,

⌊
Tϕi+1(ϑi−1(α, β)) + Tϕi+1 (2− ϕi) + 1

⌋
for ϕi ≥ 4,

ϑi(α, β) := Wϕi
pi(α,β)(ϑi−1(α, β)).

Moreover, for all k ∈ N, let us define function Pk : D → N and composite functions W±
k : R∗ →

R∗ as

Pk(α, β) :=
k∑

i=1
pi(α, β), W+

k := Wϕk
pk(α,β) ◦ · · · ◦W

ϕ2
p2(α,β) ◦W

ϕ1
p1(α,β),

W-
k := W

ϕk+1
pk(β,α) ◦ · · · ◦W

ϕ3
p2(β,α) ◦W

ϕ2
p1(β,α).
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3.3 Sequences (pk) and (ϑk)

We are going to illustrate what sequences in Definiton 20 mean for special case 0 < α, β < 4
and C1 > 0. Let u be a solution of the semi-linear initial value problem (P3). Since we are looking
for description of the sign properties of the solution u, we are interested in all positive generalized
zeros of u.

For our restriction (0 < α, β < 4), first few terms in the sequences (pj)j∈Z and (ϑj)j∈Z defined
in Definition 20 are:

p1(α, β) :=
⌊
π
ωα

⌋
, ϑ1(α, β) := Wα

p1(α,β)(∞),

p2(α, β) :=
⌊
T β(ϑ1(α, β)) + π

ωβ

⌋
, ϑ2(α, β) := W β

p2(α,β)(ϑ1(α, β)),

p3(α, β) :=
⌊
Tα(ϑ2(α, β)) + π

ωα

⌋
, ϑ3(α, β) := Wα

p3(α,β)(ϑ2(α, β)),

p4(α, β) :=
⌊
T β(ϑ3(α, β)) + π

ωβ

⌋
, ϑ4(α, β) := W β

p4(α,β)(ϑ3(α, β)),
...

...

k0 1 4 8 12

y
π
ωα

π
ωα

π
ωβ

π
ωβ

uc0,4 uc5,7 uc8,12 uc13,14

s0 t0 t1 s1 s2 t2 t3s3 t4 s4

Figure 3.5: Positive and negative semi-waves of a solution of the semi-linear initial value problem
(P3) for 0 < α, β < 4 and C1 > 0 (0 = s0 = t0 < t1 < s1 < s2 < t2 < s3 < t3 < t4 < s4).

In this part of the text, for simplification, we are going to write p1 instead of p1(α, β) and
similarly for other terms of all sequences defined in Definition 20. For easier understanding of the
following text, see Figure 3.5.

(a) First positive semi-wave: The first positive semi-wave of u (we have C1 > 0) is uc0,p1 , thus p1
represents the length which we need to add to t = 0 in order to find interval where positive
semi-wave is anchored with negative semi-wave.
Positive semi-wave uc0,p1 is defined on [−1, p1 + 1] and has two zeros t0 = 0 and t1 = π

ωα
.

For zero t1 we have (remember, that function Tα(qp1+1) returns position of zero of positive
semi-wave calculated from p1, since qp1+1 = ϑ1 is the ratio u(p1+1)

u(p1) – see Example 19 to
compare how we calculated ratios (qk))

t1 = p1 + Tα(qp1+1) = p1 + Tα(ϑ1).

The first positive generalized zero of u is z1 = p1 + 1 if ϑ1 < 0 or z1 = p1 = t1 if ϑ1 = ∞.

(b) First negative semi-wave: The next semi-wave of u is negative. It has two zeros s1 and s2
and is defined on [⌈s1⌉ − 1, ⌊s2⌋+ 1]. Its first zero s1 can be calculated as

s1 = ⌊t1⌋+ T β
(
q⌊t1⌋+1

)
= p1 + T β (ϑ1) .

And its second zero s2 is
s2 = s1 + π

ωβ
,

since we are just adding length of negative wave π
ωβ

to the first zero s1. For s2 we have

⌊s2⌋ = p1 + p2
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3.3 Sequences (pk) and (ϑk)

which implies

qp2+p1+1 = W β
p2(p1 + 1) = W β

p2(ϑ1) = W β
p2(W

α
p1(∞)) = ϑ2

and
s2 = p1 + p2 + T β (ϑ2) .

The second positive generalized zero of u is z2 = p1 + p2 + 1 if ϑ2 < 0 or z2 = p1 + p2 = s2
if ϑ2 = ∞.

(c) Second positive semi-wave: The next semi-wave of u is the positive semi-wave uc⌈t2⌉,⌊t3⌋,
which has two zeros t2 and t3 and is defined on [⌈t2⌉−1, ⌊t3⌋+1]. We have that t3− t2 = π

ωα
and

t2 = ⌊s2⌋+ Tα
(
q⌊s2⌋+1

)
= p1 + p2 + Tα (ϑ2) ,

ϑ3 = qp3+p2+p1+1 = Wα
p3(W

β
p2(W

α
p1(∞))),

t3 = ⌊t3⌋+ Tα
(
q⌊t3⌋+1

)
= p1 + p2 + p3 + Tα(ϑ3).

The third positive generalized zero of u is z3 = p1+p2+p3+1 if ϑ3 < 0 or z3 = p1+p2+p3 = t3
if ϑ3 = ∞.

Example 21. Let us go back to our problem from Example 19, thus let us take the semi-linear
initial value problem (P3) with α = 0.8, β .= 3.94, C1 = 1. In the Example 19, sign properties
were known, but this time, we are going to calculate them.

Sequences (pk)k∈Z and (ϑk)k∈Z from Definition 20 are (the reader is advised to compare these
values with Example 19)

p1 = 3, ϑ1
.= −1.527,

p2 = 1, ϑ2
.= −1.282,

p3 = 3, ϑ3
.= −0.239,

p4 = 2, ϑ4
.= −2.382,

p5 = 3, ϑ5
.= −0.516,

...
...

From sequence (pk) we have all positive and negative semi-waves. From p1 = 3, we have that the
first positive semi-wave is

uc0,p1 = uc0,3.

First negative semi-wave is
ucp1+1,p1+p2 = uc4,4.

Second positive semi-wave is
ucp1+p2+1,p1+p2+p3 = uc5,7.

Second negative semi-wave is

ucp1+p2+p3+1,p1+p2+p3+p4 = uc8,9.

Third positive semi-wave is

ucp1+p2+p3+p4+1,p1+p2+p3+p4+p5 = uc10,12.

The following lemma uses sequences from Definition 20 and shows how to calculate all gener-
alized zeros of solution u of a semi-linear initial value problem (P3) in a general case.
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3.3 Sequences (pk) and (ϑk)

Lemma 22. ([25], Lemma 19, p. 82)
Let (α, β) ∈ D and let u be a solution of the initial value problem (P3) with C1 > 0. All generalized
zeros of u form a sequence (zm)m∈Z, where

z−i = −Pi(β, α), zi =
{

Pi(α, β) + 1 if ϑi(α, β) ̸= ∞,

Pi(α, β) if ϑi(α, β) = ∞,
i ∈ N.

Moreover, the solution u consists of infinitely many positive and negative semi-waves.
For 0 < α < 4 and β > 0, all zero points of all positive semi-waves form a sequence (tm)m∈Z,

where

t−i = −Pi(β, α)− Tα(ϑi(β, α)), t0 = 0, ti = Pi(α, β) + Tα(ϑi(α, β)), i ∈ N.

The m-th semi-wave, m ∈ Z \ {0}, is positive one if and only if m > 0 is odd or m < 0 is even
and it has exactly two zero points tm−1 and tm for 0 < α < 4 and β > 0.

For α > 0 and 0 < β < 4, all zero points of all negative semi-waves form a sequence (sm)m∈Z,
where

s−i = −Pi(β, α)− T β(ϑi(β, α)), s0 = 0, si = Pi(α, β) + T β(ϑi(α, β)), i ∈ N.

The m-th semi-wave, m ∈ Z \ {0}, is negative one if and only if m > 0 is even or m < 0 is odd
and it has exactly two zero points sm−1 and sm for α > 0 and 0 < β < 4.

The main goal of this thesis (and articles [25], [31]) is to study Fuč́ık spectrum of matrix AD –
thus values (α, β) ∈ R2 such that the semi-linear boundary value problem (P4) has a non-trivial
solution. Understanding how all generalized zeros of such solution can be retrieved (see Lemma
22), is crucial to an implicit description of Fuč́ık curves C±k, k = 1, . . . , n − 1. In Section 5.1, we
will use sequences from Definition 20 in Theorem 32.
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Chapter 4

Semi-linear initial value problem
(P3) – Part II

In this chapter, we are going to investigate problem (P3) from a different angle. A continuous
extension of solution u of (P3) will be constructed in a manner considering positive semi-waves
only. We will calculate the distance between every two consecutive zeros of two different (consec-
utive) positive semi-waves. This will allow us not only to study nodal properties of solution u of
(P3) in more detail, it will also allow us to find different implicit description of all Fuč́ık curves
C±k, k = 1, . . . , n− 1 (which can be found in Chapter 5).

Let us recall problem (P3):
{

∆2u(k − 1) + αu+(k)− βu−(k) = 0, k ∈ Z,

u(0) = 0, u(1) = C1,

where u±(k) = max{±u(k), 0}, C1 ∈ R, C1 ̸= 0.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

k

y

Figure 4.1: Continuous extension of only positive semi-waves for solution u of problem (P3) for
α = 0.8, β = 0.33 and C1 = 1 > 0.

Continuous extension – positive semi-waves only – can be seen on the Figure 4.1. If we would
have 0 < α < 4 only, then the length of all positive semi-waves is the same and is equal to π

ωα
. This

way, localization of intervals where positive semi-waves are anchored can be rephrased to – “what is
the distance between every two consecutive zeros of two different consecutive positive semi-waves.”
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4.1 Length of a semi-wave

κβ

κβ + 1 κβ + 2

y

k
ρα,β(s)

s

Figure 4.2: The distance ρα,β – the distance between two consecutive zeros (last and first) of two
different positive semi-waves (orange color). Continuous extension for β < 4 (α = 3.5, β = 0.53).

We denote such distance as ρα,β (we will define such function later in the text in Definition 28) –
see Figure 4.2 for better understanding of the distance ρα,β . Let us define half-strip D as

D := (0, 4)× (0,+∞).

In the following text, without any loss of generality, we are going to assume that (α, β) ∈ D (it is
enough to investigate (α, β) ∈ D due to the symmetry of the Fuč́ık spectrum). We note that it is
easier to deal with zeros of positive semi-waves when α ∈ (0, 4).

4.1 Length of a semi-wave
Let us define map κβ : (0,+∞) → N0, where N0 := N ∪ {0}, as (see [31], p. 9)

κβ :=





⌊
π
ωβ

⌋
− 1 for 0 < β < 4,

0 for β ≥ 4.

Such map divides half-strip D into “rectangles” by κβ = k, k ∈ N0 (see Figure 4.3), thus we have

D =
(
(0, 4)× (ξ2,+∞]

)
∪
(
(0, 4)× (ξ3, ξ2]

)
∪ · · · ∪

(
(0, 4)× (ξk+2, ξk+1]

)
∪ . . . ,

where ξk is given by the formula:

ξk := 4 sin2 π

2k , k ∈ N \ {1}.

In the Table 4.1, we can see approximate numerical values of ξk.

ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9 ξ10
2 1 0.586 0.382 0.268 0.198 0.152 0.121 0.098

Table 4.1: Approximate numerical values of ξk, k = 2, 3, . . . , 10.

Values ξk play important role in Chebyshev polynomials V λ
k of the second kind (for definition of

V λ
k , see (2.3) in Section 2.2). By comparison of definition of ξk and zeros of Chebyshev polynomials

V λ
k (refer to Section 2.2.2), we can see that the first positive zero of V λ

k is ξk+1 and similarly, the
first positive zero of V λ

k+1 is ξk+2. This is illustrated on Figure 4.4.
Function κλ allows us to determine the length of a semi-wave (as continuous extension) –

see the following lemma which describes semi-wave uci,j . The semi-wave is defined on an interval
[i− 1, j + 1]. Knowing i and using the ratio qi = u(i)

u(i−1) , we can (using the value κλ) determine j
(for illustration, see Figure 4.5).
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4.2 The distance ρα,β
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Figure 4.3: The graph of the piecewise constant function β 7→ κβ .
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y = V β

k

y = V β
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Figure 4.4: Graphs of functions β 7→ V β
k (black curve) and β 7→ V β

k+1 (grey curve).

Lemma 23. ([31], Lemma 10, p. 24)
Let (α, β) ∈ D and u be the solution of the initial value problem (P3). Moreover, let i, j ∈ Z be
such that i ≤ j and

u(i− 1) < 0, u(k) ≥ 0 for k = i, . . . , j, u(j + 1) < 0, (4.1)

or
u(i− 1) > 0, u(k) ≤ 0 for k = i, . . . , j, u(j + 1) > 0. (4.2)

Then we have

j =
{

i+ κλ for Wλ
κλ+1 (qi) < 0,

i+ κλ + 1 for Wλ
κλ+1 (qi) ≥ 0,

where we denoted qi := u(i)
u(i−1) ≤ 0 and λ = α if (4.1) holds or λ = β if (4.2) holds. Moreover, we

have u(k) ̸= 0 for k ∈ Z such that i < k < j, and u(j) = 0 if and only if Wλ
κλ+1 (qi) = 0.

4.2 The distance ρα,β

Function κβ plays important role when finding the distance ρα,β . We will use it as an order k (κβ
is a piece-wise linear function) for Chebyshev polynomials V λ

k . In the following definition, we will
define three functions ηα,β , τα,β and µα,β . These functions (for fixed α, β) represent important
values for distance ρα,β – see Theorem 46.

Definition 24. ([31], Definition 1, p. 10)
For 0 < α < 4 and β > 0, let us define

ηα,β := Tα

(
V β
κβ+1 − 1
V β
κβ

)
, τα,β := Tα

(
V β
κβ+1

V β
κβ

)
, µα,β := Tα

(
V β
κβ+1

V β
κβ + 1

)
.

Using τα,β , we can formulate an implicit description of the first non-trivial Fuč́ık curve C±1 –
see ([31], p. 6).
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ki− 1
i i+ κβ

uci,j

qi < 0

W β
κβ+1(qi) > 0

j

j + 1

ki− 1
i i+ κβ

uci,j

qi < 0

W β
κβ+1(qi) = 0
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W β
κβ+1(qi) < 0
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Figure 4.5: The length of the interval [i − 1, j + 1] for a negative semi-wave uci,j of the solution
u of (P3) for fixed (α, β) ∈ D according to the sign of W β

κβ+1(qi): j = i + κβ + 1 and u(j) < 0
(bottom), j = i+ κβ + 1 and u(j) = 0 (middle) and j = i+ κβ and u(j) < 0 (top).

Let us have two consecutive continuous positive semi-waves uc1 and uc2 of u with zeros: the
second zero of uc1 is t1 ∈ (i− 1, i] and the first zero of uc2 is t2 ∈ [j, j + 1). In the following lemma,
we show how to reconstruct the zero t2 according to values of t1, α and β. For this reconstruction,
we use τα,β to distinguish between two disjoint cases

j = i+ κβ and j = i+ κβ + 1.

Lemma 25. ([31], Lemma 14, p. 30)
Let u be the solution of the initial value problem (P3) for 0 < α < 4 and β > 0 and let uc1 and uc2
be two consecutive continuous positive semi-waves of u. Moreover, let t1 be the second zero of uc1
and let t2 be the first zero of uc2. If we denote

s = ⌈t1⌉ − t1,

then we have

t2 =





t1 + s+ κβ + Tα
(
W β

κβ+1 (Qα(1− s))
)

for s > τα,β ,

t1 + s+ κβ + 1 + Tα
(
W β

κβ+2 (Qα(1− s))
)

for s ≤ τα,β .
(4.3)

Remark 26. In Lemma 25, we have denoted

s = ⌈t1⌉ − t1.

Such length represents the distance between t1 and the nearest larger integer. Thus, we can
reformulate this as the following. Let us have a positive semi-wave which has its second zero in
the interval [i − 1, i]. Then, we denote s the length between that zero and the nearest larger
integer. Such length can be retrieved from the ratio qi as qi = Qα(1− s), i.e. s = 1− Tα(qi). See
Figure 4.10 for visual idea of how to retrieve s.
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0 ηα,β τα,βµα,β 1 1 + ηα,β 1 + τα,β s

ηα,β

τα,β

µα,β
1

1 + ηα,β

1 + τα,β

y

y = Nα,β(s)

Figure 4.6: Function Nα,β for α > β (α = 3.2, β = 1.2).

Definition 27. ([31], Definition 17, p. 32)
For 0 < α < 4 and β > 0, let us define

Dom(Nα,β) := [0, 1 + τα,β ], Nα,β(s) :=





¯̄Mα,β(s) + 1 for s ∈ [0, τα,β ],
M̄α,β(s) for s ∈ (τα,β , 1),
¯̄Mα,β(s− 1) for s ∈ [1, 1 + τα,β ],

where
M̄α,β(s) := Tα

(
W β

κβ+1 (Qα(1− s))
)
, s ∈ [τα,β , 1],

¯̄Mα,β(s) := Tα
(
W β

κβ+2 (Qα(1− s))
)
, s ∈ [0, τα,β ].

On Figure 4.6 we can see function Nα,β in the case of α > β, on Figure 6.1 we can see function
Nα,β in the case of α < β and finally on Figure 6.2 we can see three different shapes of graph
of function Nα,β when the values α are fixed and values of β are changed (the reader is asked to
notice convexity versus concavity in all of these cases).

In [31], we have investigated function Nα,β in a lot of detail. In ([31], Lemma 20, p. 34) we
have proved that function Nα,β is a continuous involution, i.e.

∀s ∈ [0, 1 + τα,β ] : Nα,β(Nα,β(s)) = s.

Moreover, we have Nα,β(0) = 1 + τα,β and Nα,β(τα,β) = 1 (proved in the same lemma). Next, we
have proved (in [31], Lemma 21, p. 35) that points ηα,β and µα,β are fixed points of ¯̄Mα,β and
M̄α,β , respectively. And that

Nα,β(ηα,β) = ηα,β + 1, Nα,β(µα,β) = µα,β .

But mainly, all of this leads towards definition of function ρα,β – the distance between two
consecutive zeros (second and first) of two different consecutive positive semi-waves.
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κβ + 2µα,β

κβ + 1 + τα,β

κβ + 1 + 2ηα,β

y

0 ηα,β τα,β µα,β 1 1 + ηα,β 1 + τα,β s

y = ρα,β(s)

Figure 4.7: The graph of the function ρα,β for α > β (α = 3.9, β = 3.1).

Definition 28. ([31], Definition 19, p. 33)
Let 0 < α < 4 and β > 0. Let us define

ρα,β(s) := s+ κβ +Nα,β(s), 0 ≤ s ≤ 1 + τα,β .

See Figures 4.7 and 6.6 to see examples of graphs of function ρα,β for different α and β. The
property of function ρα,β (what it measures) can be rephrased as the following. For zeros t1 and
t2 in Lemma 25, we have that

t2 = t1 + ρα,β(⌈t1⌉ − t1) (4.4)

(we have denoted s = ⌈t1⌉− t1). Since this equality holds for all possible two consecutive positive
semi-waves (0 < α < 4), we can show how to find a sequence of these zeroes (of positive semi-
waves) in Example 29.

4.3 Examples
Let us denote (t+k)k∈N a sequence of positive zeros of all positive semi-waves (as continuous ex-
tension) for a solution u of (P3) with the property, that u(1) > 0 (thus the first semi-wave is
positive). Similarly, let us denote (t-k)k∈N a sequence of positive zeros of all positive semi-waves
(as continuous extension) for a solution u of (P3) with the property, that u(1) < 0 (thus the first
semi-wave is negative).

Example 29. Let us take the semi-linear initial value problem (P3) with α = 2.462, β .= 1.37,
C1 = 1 > 0. Its solution u is displayed on the Figure 4.8. We are going to show how to calculate
positive zeros of positive semi-waves using distances ρα,β .

Firstly, zero t+1 is calculated simply as

t+1 = π

ωα

.= 1.742.

The length s can be calculated either as s = ⌈t+1⌉ − t+1
.= 2− 1.742 = 0.258 or as (see Remark 26)

1−Tα(q2) = 1−Tα(−0.462) .= 0.258. For s we have s ∈ [0, τα,β ] (τα,β
.= 0.521). Thus the second

positive zero t+2 (which can be obtained using function ρα,β) is

t+2 = t+1 + ρα,β(⌈t+1⌉ − t+1)
.= 4.189.
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t+1 t+2 t+3 t+4 t+5 t+6 t+7

Figure 4.8: Solution u from Example 29, continuous extension of positive semi-waves and zeros
(t+k)k∈N.

Another zero t+3 is
t+3 = t+2 + π

ωα

.= 5.931

Next, we have ⌈t+3⌉ − t+3
.= 0.069 and zero t+4 is

t+4 = t+3 + ρα,β(⌈t+3⌉ − t+3)
.= 8.41.

Zero t+5 is
t+5 = t+4 + π

ωα

.= 10.152.

For t+6 we have ⌈t+5⌉ − t+5
.= 0.848 (notice that (⌈t+5⌉ − t+5) ∈ [τα,β , 1] and there is a different number

of negative values between t+5 and t+6 with comparison to previous cases – there will be one less
negative point than in the previous case)

t+6 = t+5 + ρα,β(⌈t+5⌉ − t+5)
.= 12.737.

And finally, zero t+7 is
t+7 = t+6 + π

ωα

.= 14.48.

Example 30. Let us take the semi-linear initial value problem (P3) with α = 1.2, β .= 6.959,
C1 = −1 < 0. Its solution u is displayed on Figure 4.9. As in the previous example, we are going
to show how to calculate positive zeros of positive semi-waves using distances ρα,β .

The first zero t-1 is the first zero of the first positive semi-wave. It can be retrieved using
function ρα,β . The length s is in this case equal to s = 0 (if we would extended the solution to
negative values of k, the previous positive semi-wave would end at the point k = 0). Thus, we
have

t-1 = ρα,β(0) .= 1.146.
For the next value of a sequence (t-k) we have

t-2 = t-1 + π

ωα

.= 3.856.

For t-3, the value s is equal to s = ⌈t-2⌉ − t-2
.= 0.144. Since τα,β

.= 0.1461, we have (⌈t-2⌉ − t-2) ∈
[0, τα,β ] (which means that there will be more negative points between two positive semi-waves
than in the other case) and

t-3 = t-2 + ρα,β(⌈t-2⌉ − t-2)
.= 5.045.
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t-1 t-2 t-3 t-4 t-5

Figure 4.9: Solution u from Example 30, continuous extension of positive semi-waves and zeros
(t-k)k∈N.

Value t-4 is
t-4 = t-3 + π

ωα

.= 7.755.

And finally, for t-5 we have ⌈t-4⌉ − t-4
.= 0.245, thus (⌈t-4⌉ − t-4) ∈ [τα,β , 1] (which means that there

will be one less negative point between two positive semi-waves than in the previous case) and

t-5 = t-4 + ρα,β(⌈t-4⌉ − t-4)
.= 8.29.

Example 31. This example shows how differently the solution can behave when changing a few
parameters.

1. Let us assume 0 < β < 4 and anchoring of two consecutive positive semi-waves. The length
ρα,β depends not only on s and Nα,β , but also on κβ , since κβ is not equal to zero in general
(for β ≤ 2). On Figures 4.10 and 4.11 we illustrated examples of two such anchorings. In
these two cases, we have selected solution in a way that the value s is the same in both
cases. They differ by value of β (β = 0.53 vs. β = 0.39). This itself is enough for the length
between positive semi-waves to differ by one – notice that the second positive semi-wave
starts in the interval [κβ , κβ + 1] for Figure 4.10 and starts in the interval [κβ + 1, κβ + 2]
for Figure 4.11.

2. On the other hand, in Figures 4.12 and 4.13 we have fixed α and β on the same values
(α = 2.1, β = 4.1) but we have changed the value s so that for these two solutions the second
positive semi-wave starts in the different interval. In Figure 4.13, we can see the determining
zero t̂ (see Section 2.1 for more details about determining zero of a continuous extension) of
negative semi-wave which is in the interval [0, 1].
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κβ κβ + 1 κβ + 2
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ρα,β(s)
s Nα,β(s)

Figure 4.10: Continuous extension for β < 4 (α = 3.5, β = 0.53) – the distance ρα,β which depends
on s, κβ and Nα,β . The second positive semi-wave starts in the interval [κβ , κβ + 1].

κβ κβ + 1 κβ + 2

y

k

ρα,β(s)
s Nα,β(s)

Figure 4.11: Continuous extension for β < 4 (α = 3.5, β = 0.39) – the distance ρα,β which depends
on s, κβ and Nα,β . The second positive semi-wave starts in the interval [κβ + 1, κβ + 2].

y

k

ρα,β(s)
Nα,β(s)s

Figure 4.12: Continuous extension for β > 4 (α = 2.1, β = 4.1) – the distance ρα,β which depends
on s and Nα,β (κβ = 0 for β > 2). There is just one negative value between two consecutive
positive semi-waves.
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Figure 4.13: Continuous extension for β > 4 (α = 2.1, β = 4.1) – the distance ρα,β which depends
on s and Nα,β (κβ = 0 for β > 2). There are two negative values between two consecutive positive
semi-waves.
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Chapter 5

Investigation of Fuč́ık spectrum of
matrix AD – Semi-linear BVP (P4)

This chapter is devoted to the investigation of semi-linear boundary value problem (P4)
{

∆2u(k − 1) + αu+(k)− βu−(k) = 0, k ∈ T,

u(0) = u(n+ 1) = 0,

where n ∈ N, n ≥ 2, u±(k) = max{±u(k), 0} and α, β ∈ R.
Equivalently, the problem (P4) can be rephrased using a matrix notation

ADu = αu+ − βu−,

where matrix AD is the Dirichlet matrix defined in (1.3). Thus, our main goal is to investigate
Fuč́ık spectrum Σ (AD). Some known results were already discussed in Section 1.2.

In this chapter, we will focus on the description of Fuč́ık spectrum Σ (AD) using our two
approaches described in Chapters 3 (Part I) and 4 (Part II).

5.1 Description of Fuč́ık spectrum – Theory from Part I
In Chapter 3, we have studied semi-linear initial value problem (P3) in detail. Obtained sequences
of functions (pk)k∈Z, (Pk)k∈Z, (ϑk)k∈Z, (W+

k)k∈Z and (W-
k)k∈Z from Definition 20 allow us to

give the description of Fuč́ık spectrum Σ (AD) – see Theorem 32 (remember that it is enough to
investigate Fuč́ık curves C+k, k = 1, . . . , n− 1).

Theorem 32. ([25], Theorem 22, p. 87)
For k = 1, . . . , n− 1, we have that

C+k = {(α, β) ∈ (0, 4)× (0,+∞) : Pk+1(α, β) + Tα(ϑk+1(α, β)) = n+ 1} ∪
{
(α, β) ∈ (0,+∞)× (0, 4) : Pk+1(α, β) + T β(ϑk+1(α, β)) = n+ 1

}
.

Moreover, if we denote

Ω+
k := {(α, β) ∈ D : Pk+1(α, β) = n+ 1} , k = 1, . . . , n− 1,

then we have that
C+k =

{
(α, β) ∈ Ω+

k : W+
k+1(∞) = ∞

}
.

An example of sets Ω+
k for n = 4 can be seen on Figure 5.1. Also, see Figure 5.3 for the

complete Fuč́ık spectrum of matrix AD for n = 4 and n = 7 (including Fuč́ık curves C-k).
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Figure 5.1: The sets Ω+
k as grey regions for n = 4 (left) and the Fuč́ık curves C+k as black curves

(right) due to Theorem 32.

Remark 33. Theorem 32 basically says that (α, β) belongs to the Fuč́ık curve C+k if the cor-
responding solution u satisfies the following. It needs to start with a positive semi-wave (i.e.
u(1) > 0), it needs to have k generalized zeros on T (that is why we are using function Pk+1) and
the ratio qn+1 needs to be zero.

k

y

π
ωα

π
ωα

π
ωα

π
ωα

0

t0 t1 t2 t3 t4 = t̃−3 t̃−2 t̃−1

z1

z2

z3 z4

z̃−3

z̃−2

z̃−1

t̃0

n

Figure 5.2: The non-trivial solution u of (P4) for (α, β) ∈ C+6 (parameters from Theorem 34 are:
n = 16, i = 4, j = 3, k = 6) with six generalized zeros of u on T (z1 < z2 < z3 < z4 = z̃−3 <
z̃−2 < z̃−1) and six zeros of positive semi-waves strictly between 0 and n+ 1 (t1 < t2 < t3 < t4 =
t̃−3 < t̃−2 < t̃−1).

We can also provide a different description when we will “glue” together solutions from both
end points – from k = 0 to the right and from k = n + 1 to the left. Thus, we consider solutions
of two initial value problems starting at k = 0 and at k = n+ 1 and we require that their selected
zero points of positive (or negative) semi-waves coincide (see Figure 5.2 and note that t4 = t̃−3).

Theorem 34. ([25], Theorem 26, p. 91)
Let k, n ∈ N be such that k ≤ n− 1, n ≥ 2. Moreover, let i, j ∈ N be such that i+ j = k + 1.

1. If k is odd then

C+k = {(α, β) ∈ (0, 4)× (0,+∞) : Pi(α, β) + Pj(β, α) + Tα(ϑi(α, β)) + Tα(ϑj(β, α)) = n+ 1} ∪
{
(α, β) ∈ (0,+∞)× (0, 4) : Pi(α, β) + Pj(β, α) + T β(ϑi(α, β)) + T β(ϑj(β, α)) = n+ 1

}
.

2. If k is even then

C+k = {(α, β) ∈ (0, 4)× (0,+∞) : Pi(α, β) + Pj(α, β) + Tα(ϑi(α, β)) + Tα(ϑj(α, β)) = n+ 1} ∪
{
(α, β) ∈ (0,+∞)× (0, 4) : Pi(α, β) + Pj(α, β) + T β(ϑi(α, β)) + T β(ϑj(α, β)) = n+ 1

}
.

45
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Figure 5.3: Fuč́ık spectrum Σ (AD) for n = 4 (left) and n = 7 (right).

See Figure 6.3 for example of solutions u for (α, β) ∈ C±5 for Σ(AD) of n = 9. In this figure,
each of the smaller figures has a bit different set of (α, β) ∈ C±5 – we are “moving” alongside the
Fuč́ık curve C±5 and we can see how the corresponding solutions change (they even change the sign
property of the solutions).

5.2 Description of Fuč́ık spectrum – Theory from Part II
Chapter 4 was devoted to the investigation of zeros of all positive semi-waves. We have been
dealing with ρα,β which is a function that measures the length between two consecutive zeros of
every two different consecutive positive semi-waves.
Theorem 35. ([31], Theorem 5, p. 14)
In the domain D = (0, 4) × (0,+∞), we have the following description of Fuč́ık curves C±l , l =
1, . . . , n− 1,

C±2j−1 ∩ D =
{
(α, β) ∈ D : t+j(α, β) + t-j(α, β) = n+ 1

}
,

C+2j ∩ D =
{
(α, β) ∈ D : t+j+1(α, β) + t+j(α, β) = n+ 1

}
,

C-2j ∩ D =
{
(α, β) ∈ D : t-j+1(α, β) + t-j(α, β) = n+ 1

}
,

where

t+1 := π

ωα
, t+j :=

{
t+j−1 + ρα,β

(
⌈t+j−1⌉ − t+j−1

)
for j even,

t+j−1 + π
ωα

for j odd,

t-1 := ρα,β(0), t-j :=
{

t-j−1 + π
ωα

for j even,

t-j−1 + ρα,β
(
⌈t-j−1⌉ − t-j−1

)
for j odd.

Remark 36. In Examples 4.8 and 4.9 we have explored in detail semi-linear initial value problem
(P3) for two cases – one for the solution that starts with a positive semi-wave and has first positive
zero denoted as t+1 (Example 4.8) and the second for the solution that starts with a negative semi-
wave and has first positive zero denoted as t-1 (Example 4.9). Notice, that in Theorem 35, we are
defining sequences (t+k) and (t-k) exactly in the same way as we did in those two examples. The
way that Fuč́ık spectrum is retrieved is based on an idea of “anchoring the solution from both
ends” – thus for the Fuč́ık curves with solutions with 2j generalized zeros on T, we need only (at
maximum) (j + 1)th terms of sequences (t-k) and (t+k).
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5.3 Comparison of descriptions of Fuč́ık spectrum
Natural question at this point is why to have more descriptions of Fuč́ık spectrum Σ(AD) using
different functions (function sequences (pk), (ϑk) versus distance ρα,β) and which description is
better. In all approaches, the description is implicit and recurrent but the second approach (using
function ρα,β) is more suitable for numerical calculations because it is easier to implement.
Example 37. In this example, we are going to showcase both different approaches of description
of Fuč́ık spectrum Σ(AD). In order to use the same level of nested functions, we are going to
compare Theorems 34 and 35. In both cases, we are going to take the Fuč́ık curve C+3. Solution
for one (α, β) ∈ C+3 is shown in Figure 5.4. For simplicity, we are going to assume 0 < α, β < 4 in
both cases. We will take the description of the Fuč́ık curve C+3 and specify it in extended (detailed)
form for the purpose of showcasing how to work with defined functions and how complicated the
description is – thus numerical implementation is needed.

1. Using Theorem 34 we have that (α, β) ∈ C+3 has to satisfy
P2(α, β) + P2(β, α) + Tα(ϑ2(α, β)) + Tα(ϑ2(β, α)) = n+ 1. (5.1)

Sequences (Pk) and (ϑk) are recurrent. Equality in (5.1) is
p1(α, β) + p2(α, β) + p1(β, α) + p2(β, α) + Tα(ϑ2(α, β)) + Tα(ϑ2(β, α)) = n+ 1.

We know p1(α, β) =
⌊
π
ωα

⌋
and p1(β, α) =

⌊
π
ωβ

⌋
. We have

ϑ1(α, β) = Wα
p1(α,β)(∞),

ϑ1(β, α) = W β
p1(β,α)(∞).

Next:
p2(α, β) =

⌊
T β
(
ϑ1(α, β)

)
+ π

ωβ

⌋
=

⌊
T β
(
Wα

p1(α,β)(∞)
)

+ π
ωβ

⌋
,

p2(β, α) =
⌊
Tα
(
ϑ1(β, α)

)
+ π

ωα

⌋
=

⌊
Tα
(
W β

p1(β,α)(∞)
)

+ π
ωα

⌋
.

And finally:
ϑ2(α, β) = W β

p2(α,β)(ϑ1(α, β))

= W β⌊
Tβ
(
Wα
p1(α,β)(∞)

)
+ π
ωβ

⌋
(
Wα

p1(α,β)(∞)
)
,

ϑ2(β, α) = Wα
p2(β,α)(ϑ1(β, α))

= Wα⌊
Tα
(
Wβ

p1(β,α)(∞)
)
+ π
ωα

⌋
(
W β

p1(β,α)(∞)
)
.

That means that we are looking for (α, β) ∈ ((0, 4)× (0, 4)) such that the following equation
is satisfied:

⌊
π
ωα

⌋
+
⌊
T β
(
Wα

⌊ π
ωα
⌋(∞)

)
+ π

ωβ

⌋
+
⌊
π
ωβ

⌋
+

Tα
(
W β⌊

π
ωβ

⌋(∞)
)

+ π
ωα



+Tα


W

β⌊
Tβ
(
Wα

⌊ π
ωα ⌋

(∞)
)
+ π
ωβ

⌋
(
Wα

⌊ π
ωα
⌋(∞)

)



+T β



Wα⌊

Tα
(
Wβ⌊

π
ωβ

⌋(∞)
)
+ π
ωα

⌋

W β⌊

π
ωβ

⌋(∞)







= n+ 1.
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Figure 5.4: Solution u for α = 2.7, β .= 0.4, (α, β) ∈ C+3 of Σ(AD) for n = 12.

2. On the other hand, using Theorem 35 we are solving

t+2(α, β) + t-2(α, β) = n+ 1. (5.2)

Since t-1(α, β) = ρα,β(0) we have

t-2(α, β) = t-1(α, β) + π

ωα
= ρα,β(0) + π

ωα
.

Term ρα,β(0) can be written as

ρα,β(0) = κβ + 1 + τα,β = κβ + 1 + Tα

(
V β
κβ+1

V β
κβ

)
=
⌊
π

ωβ

⌋
+ Tα




V β⌊
π
ωβ

⌋

V β⌊
π
ωβ

⌋
−1


 .

Similarly, since t+1(α, β) = π

ωα
, term t+2(α, β) is

t+2(α, β) = t+1(α, β) + ρα,β (⌈t+1(α, β)⌉ − t+1(α, β)) = π

ωα
+ ρα,β

(⌈
π

ωα

⌉
− π

ωα

)
.

For term ρα,β

(⌈
π
ωα

⌉
− π

ωα

)
we have

ρα,β

(⌈
π

ωα

⌉
− π

ωα

)
=

⌈
π

ωα

⌉
− π

ωα
+ κβ +Nα,β

(⌈
π

ωα

⌉
− π

ωα

)

=
⌈
π

ωα

⌉
− π

ωα
+
⌊
π

ωβ

⌋
− 1 +Nα,β

(⌈
π

ωα

⌉
− π

ωα

)
.

FunctionNα,β is a piecewise function which we can write as the following. Since
(⌈

π
ωα

⌉
− π

ωα

)
∈

[0, 1), we will assume only two distinct cases (first and second term in the definition of Nα,β):
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Nα,β

(⌈
π

ωα

⌉
− π

ωα

)
=





Tα


W β⌊

π
ωβ

⌋
+1

(
Qα
(
1−

(⌈
π
ωα

⌉
− π

ωα

)))

+ 1

for
(⌈

π
ωα

⌉
− π

ωα

)
∈


0, Tα




V β⌊
π
ωβ

⌋

V β⌊
π
ωβ

⌋
−1




 ,

Tα


W β⌊

π
ωβ

⌋
(
Qα
(
1−

(⌈
π
ωα

⌉
− π

ωα

)))



for
(⌈

π
ωα

⌉
− π

ωα

)
∈


Tα




V β⌊
π
ωβ

⌋

V β⌊
π
ωβ

⌋
−1


 , 1


 .

That means that we are looking for (α, β) ∈ ((0, 4)×(0, 4)) such that the following is satisfied
(we are going to write equation in (5.2) also piecewise):

For
(⌈

π
ωα

⌉
− π

ωα

)
∈


0, Tα




V β⌊
π
ωβ

⌋

V β⌊
π
ωβ

⌋
−1




 :

⌈
π
ωα

⌉
+ 2
⌊
π
ωβ

⌋
+ Tα


W β⌊

π
ωβ

⌋
+1

(
Qα
(
1−

(⌈
π
ωα

⌉
− π

ωα

)))

+ Tα




V β⌊
π
ωβ

⌋

V β⌊
π
ωβ

⌋
−1


 = n+ 1,

for
(⌈

π
ωα

⌉
− π

ωα

)
∈


Tα




V β⌊
π
ωβ

⌋

V β⌊
π
ωβ

⌋
−1


 , 1


 :

⌈
π
ωα

⌉
+ 2
⌊
π
ωβ

⌋
− 1 + Tα


W β⌊

π
ωβ

⌋
(
Qα
(
1−

(⌈
π
ωα

⌉
− π

ωα

)))

+ Tα




V β⌊
π
ωβ

⌋

V β⌊
π
ωβ

⌋
−1


 = n+ 1.

Let us note, that calculating Fuč́ık curves is actually a little easier using function ρα,β (using
numerical implementation). The reason is that all functions ρα,β ,Nα,β , τα,β , κβ are not recurrent.

Example 38. In this example, we are going to briefly discuss computational complexity of nu-
merical localization of Fuč́ık curves.

1. In the approach described in Chapter 1 (mainly in Example 2), we are solving 2n−1 sub-
problems (2n−1 comes from the number of all possible sign properties of vectors). For every
candidate for sign property of the Fuč́ık eigenvector, we calculate the following:
We calculate det(AD − Λ), where matrix Λ has values α and β on the diagonal and their
position depends on the chosen sign property. Then we find zeros of such determinant (for
example in β). This gives us candidates for Fuč́ık eigenpairs. Then for each of this candidate,
we need to calculate the eigenvector. When we have candidates for Fuč́ık eigenvectors, we
have to check whether the sign property is satisfied or not.
That means that we are solving our problem in an exponential time.

2. Now, let us describe how we can numerically show Fuč́ık spectrum of AD using the knowledge
from Theorems 32, 34 and 35. We need to fix Fuč́ık curve C±l (l ∈ {0, 1, . . . , n−1}). Since all
descriptions are implicit (recurrent and non-trivial), firstly we need to find implicit function
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which describes such Fuč́ık curve (using recurrence in descriptions). After that, we are
looking for zero contour of that implicit function (if there is a problem of looking for zero
contour of implicit function, we can always fix α ∈ R and calculate β from that implicit
function; or the other way around).
That means that were able to convert our problem to the problem of finding a zero contour
of an implicit function (in contrast to the exponential time in the original algorithm).

Let us note that even though our descriptions of the Fuč́ık spectrum are for a particular
matrix AD (Dirichlet matrix), theory in this thesis (and both research articles [25] and [31])
can be extended. The theory was constructed for a difference equation in (P4). In order to
describe the Fuč́ık spectrum for a problem with the same difference equation but with different
boundary conditions, one would use the same theory only changing aspects related to the boundary
conditions. Thus, our results can be generalized also for different boundary conditions (one would
need to explore the inadmissible areas for such matrices, since our theory does not include cases
(α > 4 and β > 4) and (α < 0 or β < 0)).

In the next three sections, we will introduce three possible ways how to localize Fuč́ık curves
of Σ(AD) in such a way, that the description of these bounds is simpler than the description of the
Fuč́ık curves themselves – mainly, the description of bounds will not be recurrent and it will not
become more complicated when dimension n increases.

5.4 Basic bounds of Fuč́ık curves and their consequence
First bounds we are going to discuss are referred to as the “basic bounds”. Probably the simplest
way how to get bounds of Fuč́ık curves is to use properties of κβ and κα. The following theorem
gives us the basic bounds for the Fuč́ık curves of Σ(AD).

Theorem 39. ([31], Theorem 13, p. 28)
In the domain D, we have the following bounds for Fuč́ık curves C±l ⊂ Θ±

l , l = 1, . . . , n− 1, where

Θ±
2j−1 := {(α, β) ∈ D : 0 ≤ n+ 1− j(κα + 1)− j(κβ + 1) ≤ 2j − 1} ,
Θ+

2j := {(α, β) ∈ D : 0 ≤ n+ 1− (j + 1)(κα + 1)− j(κβ + 1) ≤ 2j} ,
Θ-

2j := {(α, β) ∈ D : 0 ≤ n+ 1− j(κα + 1)− (j + 1)(κβ + 1) ≤ 2j} .

These basic bounds can be used for the first localization of Fuč́ık curves. Thus when we
calculate points of the Fuč́ık spectrum numerically, they can give us estimates of areas where to
look. This way, the numerical method can output better results in a shorter time. For illustration
of basic bounds see Figure 5.5.

Region D =
(
(0, 4)× (0,+∞)

)
∪
(
(0,+∞)× (0, 4)

)
can be split into subregions by κβ and κα

(for illustration, see Figure 5.6). Basic bounds in Theorem 39 are sets of these subregions where
Fuč́ık curves are localized.

Let us have a fixed Fuč́ık curve. Such Fuč́ık curve belongs to some basic bound, thus we have
a set of subregions where to (numerically) look for values (α, β) belonging to the Fuč́ık curve
(see again Figure 5.5). Even numerically faster (yet not exact) way is to look for the lowest such
subregion (a maximal κβ for which the basic bound is still satisfied). We are going to denote such
value as κmaxβ (since it is a maximal κβ for which the basic bound is still satisfied). While knowing
κmaxβ , we can numerically look for points from Fuč́ık curves in the upper part of D – i.e. in the
region α ∈ (0,+∞), β > ξk (and (α, β) ∈ D), where k = κmaxβ + 2. E.g., for κmaxβ = 0 we are
assuming β > ξ2, for κmaxβ = 1 we are assuming β > ξ3 and so on. Let us derive these values κmaxβ :

1. Let us assume bound Θ±
2j−1 from Theorem 39. For a fixed Fuč́ık curve (thus n, j fixed), κβ

needs to satisfy
2− 4j + n− jκα

j
≤ κβ ≤

1− 2j + n− jκα
j

.
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α

β

40 ξ2ξ3ξ4ξ5

4

ξ2

ξ3

ξ4

α = β

n = 10

C+3

Θ+
3

α

β

40 ξ2ξ3ξ4

4

ξ2

ξ3

ξ4

α = β

n = 11

C+3

Θ+
3

Figure 5.5: The set Θ+
3 (grey region) as the basic bound for the third non-trivial Fuč́ık curve

C+3 ⊂ Θ+
3 (black curve) for n = 10 (left) and for n = 11 (right).

Maximal κβ is attained when

κβ =
⌊

1− 2j + n− jκα
j

⌋
,

thus (taking κα = 0 in order to maximize the fraction)

Θ±
2j−1 : κmaxβ =

⌊
1− 2j + n

j

⌋
.

2. Let us assume bound Θ+
2j from Theorem 39. For a fixed Fuč́ık curve (thus n, j fixed), κβ

needs to satisfy
−4j + n− κα − jκα

j
≤ κβ ≤

−2j + n− κα − jκα
j

.

Using the same logic as in the first case, we have

Θ+
2j : κmaxβ =

⌊−2j + n

j

⌋
.

3. Finally, let us assume bound Θ-
2j from Theorem 39. For a fixed Fuč́ık curve (thus n, j fixed),

κβ needs to satisfy
−4j + n− jκα

1 + j
≤ κβ ≤

−2j + n− jκα
1 + j

.

Using the same logic as previously, we have

Θ-
2j : κmaxβ =

⌊−2j + n

1 + j

⌋
.

In Table 5.1, we can see values of κmaxβ for different Fuč́ık curves (first column), fixed j (second
column) and fixed n (headers of all other columns). For example, for n = 3, there exist Fuč́ık curves
C±1, C+2 and C-2 and we have:

• The “lowest subregion” where C±1 is located is κβ = 2, thus we are looking for values of
(α, β) ∈ C±1 in the region β > ξ4, α ∈ (0,+∞) (and (α, β) ∈ D);

• The “lowest subregion” where C+2 is located is κβ = 1, thus we are looking for values of
(α, β) ∈ C+2 in the region β > ξ3, α ∈ (0,+∞) (and (α, β) ∈ D);
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1 2 3 4

1

2

3

4

α

β

D

κβ = 0
κα = 0

κβ = 1
κα = 0

κβ = 2
κα = 0

...

κβ = 0
κα = 1

κβ = 1
κα = 1

κβ = 2
κα = 1

...

κβ = 0
κα = 2

κβ = 1
κα = 2

κβ = 2
κα = 2

...
...

. . .

. . .

. . .

Figure 5.6: Region D =
(
(0, 4) × (0,+∞)

)
∪
(
(0,+∞) × (0, 4)

)
(grey) split into regions by κβ

and κα. We did not include boundaries in the figure – for example, region κβ = 2, κα = 1 is
(ξ3, ξ2]× (ξ4, ξ3].

• The “lowest subregion” where C-2 is located is κβ = 0, thus we are looking for values of
(α, β) ∈ C-2 in the region β > ξ2, α ∈ (0,+∞) (and (α, β) ∈ D).
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Fuč́ık curve j Value of κmaxβ for a particular Fuč́ık curve C±l for fixed n

n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10 n=11 n=12
C±1 1 2 3 4 5 6 7 8 9 10 11
C+2 1 1 2 3 4 5 6 7 8 9 10
C-2 1 0 1 1 2 2 3 3 4 4 5
C±3 2 0 1 1 2 2 3 3 4 4
C+4 2 0 1 1 2 2 3 3 4
C-4 2 0 0 1 1 1 2 2 2
C±5 3 0 0 1 1 1 2 2
C+6 3 0 0 1 1 1 2
C-6 3 0 0 0 1 1 1
C±7 4 0 0 0 1 1
C+8 4 0 0 0 1
C-8 4 0 0 0 0
C±9 5 0 0 0
C+10 5 0 0
C-10 5 0 0
C±11 6 0

n=13 n=14 n=15 n=16 n=17 n=18 n=19 n=20 n=21 n=22
C±1 1 12 13 14 15 16 17 18 19 20 21
C+2 1 11 12 13 14 15 16 17 18 19 20
C-2 1 5 6 6 7 7 8 8 9 9 10
C±3 2 5 5 6 6 7 7 8 8 9 9
C+4 2 4 5 5 6 6 7 7 8 8 9
C-4 2 3 3 3 4 4 4 5 5 5 6
C±5 3 2 3 3 3 4 4 4 5 5 5
C+6 3 2 2 3 3 3 4 4 4 5 5
C-6 3 1 2 2 2 2 3 3 3 3 4
C±7 4 1 1 2 2 2 2 3 3 3 3
C+8 4 1 1 1 2 2 2 2 3 3 3
C-8 4 1 1 1 1 1 2 2 2 2 2
C±9 5 0 1 1 1 1 1 2 2 2 2
C+10 5 0 0 1 1 1 1 1 2 2 2
C-10 5 0 0 0 1 1 1 1 1 1 2
C±11 6 0 0 0 0 1 1 1 1 1 1
C+12 6 0 0 0 0 0 1 1 1 1 1
C-12 6 0 0 0 0 0 0 1 1 1 1
C±13 7 0 0 0 0 0 0 1 1 1
C+14 7 0 0 0 0 0 0 1 1
C-14 7 0 0 0 0 0 0 0 1
C±15 8 0 0 0 0 0 0 0
C+16 8 0 0 0 0 0 0
C-16 8 0 0 0 0 0 0
C±17 9 0 0 0 0 0
C+18 9 0 0 0 0
C-18 9 0 0 0 0
C±19 10 0 0 0
C+20 10 0 0
C-20 10 0 0
C±21 11 0

Table 5.1: The value of κmaxβ (thus the lowest part of D split into subregions by κβ based on basic
bounds in Theorem 39).
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5.5 Delta bounds of Fuč́ık curves
Second bounds we are going to discuss are referred to as the “delta bounds”. In this part we will
restrict ourselves only to 0 < α < 4 and 0 < β < 4 and denote

D0,4 := (0, 4)× (0, 4).

Let us investigate in detail the “gaps” between positive and negative semi-waves – the difference
between zero points of two consecutive positive and negative semi-waves. Knowing minimal and
maximal such difference allows us to find regions (bounds) for Fuč́ık curves. In the following
definition, we define function δα,β which represents such difference (the length of such “gap” is
then equal to the absolute value of function δα,β) – see Figure 5.7.

Definition 40. For 0 < α, β < 4, let us define

δα,β(q) := Tα(q)− T β(q), q < 0.

y

0
1

k

Tα(q)
T β(q) |δα,β(q)|

C0

C1

Figure 5.7: The distance between zero point of positive semi-wave (black) and zero point of
negative semi-wave (grey) – the distance |δα,β | for α = 1.9, β = 3.9.

Since function δα,β is a difference of functions Tα and T β , firstly we will investigate function
Tλ for λ ∈ (0, 4) in detail. We will assume only q < 0 because otherwise there would not be an
anchoring of two consecutive semi-waves. In this section, for the purpose of easy reading, we are
going to work with a function T defined as

T (q, λ) := Tλ(q), λ ∈ (0, 4), q < 0. (5.3)

Lemma 41. Let λ ∈ (0, 4), q < 0. Then we have (for function T defined in (5.3))

∂T (q, λ)
∂q

> 0

and

∂T (q, λ)
∂λ





< 0 for q < −1,
= 0 for q = −1,
> 0 for q ∈ (−1, 0).

Proof. In the first part of this proof, we will focus only on the derivative of function T with respect
to q, i.e.

∂T (q, λ)
∂q

= sinωλ
(q2 − 2q cosωλ + 1)ωλ

.

Functions ωλ > 0, sinωλ > 0 are both positive. Quadratic term is also positive, since its discrim-
inant is negative

D = 4 cos2 ωλ − 4 = (2− λ)2 − 4 = λ(λ− 4) < 0.
This leads towards

∂T (q, λ)
∂q

> 0.
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In the rest of this proof, we will derive a sign of derivative of function T with respect to λ.
Such derivative can be written in the form

∂T (q, λ)
∂λ

= ∂

∂ωλ

(
1
ωλ

arccot
(

cosωλ − q

sinωλ

))
∂ωλ
∂λ

. (5.4)

Last term in (5.4) is positive since for λ ∈ (0, 4) we have

∂ωλ
∂λ

= 1√
λ(λ− 4)

> 0.

Next, we have

∂

∂ωλ

(
1
ωλ

arccot
(

cosωλ − q

sinωλ

))

= 1
ω2
λ


 −1

1 +
(

cosωλ−q
sinωλ

)2
− sin2 ωλ − (cosωλ − q) cosωλ

sin2 ωλ
− arccot

(
cosωλ − q

sinωλ

)



= 1
ω2
λ

( − sin2 ωλ

sin2 ωλ + (cosωλ − q)2
q cosωλ − 1

sin2 ωλ
ωλ − arccot

(
cosωλ − q

sinωλ

))

= 1
ω2
λ

(
ωλq cosωλ − ωλ

sin2 ωλ + (cosωλ − q)2
− arccot

(
cosωλ − q

sinωλ

))
.

The derivative in (5.4) can be written as

∂T (q, λ)
∂λ

= 1
ω2
λ

F (ωλ, q)
1√

λ(λ− 4)
,

where

F (ωλ, q) := ωλq cosωλ − ωλ

sin2 ωλ + (cosωλ − q)2
− arccot

(
cosωλ − q

sinωλ

)
, ωλ ∈ (0, π), q < 0. (5.5)

Thus, the sign of ∂T (q,λ)
∂λ depends on the sign of function F defined in (5.5) (other terms in (5.4)

are positive). Firstly, the right-hand limit of F near zero is

lim
ωλ→0+

F (ωλ, q) = 0.

The derivative of F with respect to ωλ can be simplified as

∂F (ωλ, q)
∂ωλ

= q(q2 − 1)(ωλ sinωλ)
(1 + q2 − 2q cosωλ)2

,

thus the term (q2−1) is responsible for the sign of such derivative. For the simplest case of q = −1,
the derivative of F with respect to ωλ is zero, thus function F is constant. Since the right-hand
limit near zero is zero, then

F (ωλ,−1) ≡ 0, ωλ ∈ (0, π).
For q ∈ (−1, 0), the derivative of F with respect to ωλ is positive, thus function F is increasing.
And having in mind the right-hand limit near zero, we have

F (ωλ, q) > 0, ωλ ∈ (0, π), q ∈ (−1, 0).

Similarly, we have
F (ωλ, q) < 0, ωλ ∈ (0, π), q < −1.

Knowing the signs of function F leads directly to the signs of ∂T (q, λ)
∂λ

.
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In the proof of the following theorem we will find stationary points of function δα,β with respect
to q and we will prove when these points are global minima and global maxima of function δα,β .

Theorem 42. Let 0 < α, β < 4. Function δα,β has one global minimum and one global maximum
(for q < 0):

min
q<0

δα,β(q) =





δα,β(qα,β1 ) for α > β,

0 for α = β,

δα,β(qα,β2 ) for α < β,

max
q<0

δα,β(q) =





δα,β(qα,β2 ) for α > β,

0 for α = β,

δα,β(qα,β1 ) for α < β,

where

qα,β1,2 := Jα,β ∓
√

(Jα,β)2 − 1, Jα,β := ωα sinωβ cosωα − ωβ sinωα cosωβ
ωα sinωβ − ωβ sinωα

. (5.6)

Also,
max
q<0

δα,β(q) = −min
q<0

δα,β(q).

Proof. Let 0 < α, β < 4. Function δα,β can be written as

δα,β(q) = 1
ωα

(
π

2 − arctan
(

cosωα − q

sinωα

))
− 1
ωβ

(
π

2 − arctan
(

cosωβ − q

sinωβ

))
.

For α = β, we have
δα,β(q) ≡ 0.

In the rest of the proof, we will assume α ̸= β. Regarding the boundary points, we have

δα,β(0) = 0, lim
q→−∞

δα,β(q) = 0.

The first derivative of δα,β (with respect to q) is

∂δα,β(q)
∂q

= sinωα
(1 + q2 − 2q cosωα)ωα

− sinωβ
(1 + q2 − 2q cosωβ)ωβ

.

Zero points of such derivative have to satisfy

(ωα sinωβ − ωβ sinωα)q2 − 2(ωα sinωβ cosωα − ωβ sinωα cosωβ)q + ωα sinωβ − ωβ sinωα = 0.

Since α ̸= β, we have

q2 − 2ωα sinωβ cosωα − ωβ sinωα cosωβ
ωα sinωβ − ωβ sinωα

q + 1 = 0.

Using definition of Jα,β in (5.6), we can write

q2 − 2Jα,βq + 1 = 0,

which is a quadratic equation in q with a discriminant

D = 4(Jα,β)2 − 4 = 4((Jα,β)2 − 1)

= −
4 sinωα sinωβ

((
ω2
α + ω2

β

)
sinωα sinωβ + 2ωαωβ(cosωα cosωβ − 1)

)

(ωβ sinωα − ωα sinωβ)2 .

(5.7)

The discriminant in (5.7) is positive when function g is negative, where function g is defined as
(since α, β ∈ (0, 4), we have ωα, ωβ ∈ (0, π) and we can denote a := ωα, b := ωβ)

g(a, b) :=
(
a2 + b2

)
sin a sin b+ 2ab(cos a cos b− 1), (a, b) ∈ (0, π)× (0, π), a ̸= b. (5.8)
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For the investigation of stationary points, we will take function g in [0, π] × [0, π]. Function g
has stationary points for a = b, where g(a, a) = 0. There are no other stationary points. For the
boundary, we have g(0, .) ≡ 0, g(., 0) ≡ 0, g(π, .) ≤ 0 and g(., π) ≤ 0. That means that function g
in (5.8) is negative, thus the discriminant in (5.7) is positive.

Thus such quadratic equation has two zero points qα,β1,2 – they are defined in (5.6).
Using Vieta’s formula qα,β1 qα,β2 = 1, we have

qα,β2 = 1
qα,β1

.

Since Jα,β < 0, we also have qα,β1 < 0. Thus qα,β2 = 1
qα,β1

< 0. Moreover, qα,β1 < −1 and

qα,β2 ∈ (−1, 0). Using properties of function Tλ in Lemma 10, we can derive

δα,β(qα,β2 ) = Tα(qα,β2 )− T β(qα,β2 ) = Tα

(
1

qα,β1

)
− T β

(
1

qα,β1

)

= 1− Tα(qα,β1 )−
(
1− T β(qα,β1 )

)
= −

(
Tα(qα,β1 )− T β(qα,β1 )

)

= −δα,β(qα,β1 ).

0−1−2−3

1
2

1

q

y

Figure 5.8: Function Tλ as a function of q for fixed λ ∈ {1.2, 2.5, 3.5, 3.9, 3.98} – the darker shade
of grey, the larger parameter λ.
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1
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1

λ

y

Figure 5.9: Function Tλ as a function of λ for fixed q ∈ {−5.5,−2.5,−1.2,−1,−0.8,−0.5,−0.2} –
the darker shade of grey, the larger parameter q.

Since function δα,β is a difference of Tα and T β , we will investigate function Tλ = Tλ(q),
λ ∈ (0, 4) in detail in order to clarify, that points qα,β1,2 are points of global extrema for function
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δα,β and also to distinguish for which parameters α and β the points are points of global maximum
/ minimum.

Let us look at the limits on the boundary of our set (for q):

lim
q→0−

Tλ(q) = Tλ(0) = 1, lim
q→−∞

Tλ(q) = Tλ(∞) = 0.

Function Tλ is increasing with respect to q, since its first derivative is positive – see Lemma
41. On Figure 5.8, we can see function Tλ as a function of q for several fixed values of λ.

Function Tλ is (with respect to λ) decreasing when q < −1, constant for q = −1, T (−1, λ) = 1/2
and increasing for q ∈ (−1, 0) – see Lemma 41. On Figure 5.9, we have illustrated function Tλ as
a function of λ for several fixed values of q.

0−1qα,β1

qα,β2

y = δα,β(q)

q

y

max
q<0

δα,β(q)

min
q<0

δα,β(q)

α < β

0−1−2−3

1
2

1

q

y

y = Tα(q)

y = T β(q)

Figure 5.10: Maximum and minimum for δα,β (on the left) and functions Tα, T β (on the right)
for α < β (α = 1.9, β = 3.9).
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max
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δα,β(q)

α > β

0−1−2−3

1
2

1

q

y

y = T β(q)

y = Tα(q)

Figure 5.11: Maximum and minimum for δα,β (on the left) and functions Tα, T β (on the right)
for α > β (α = 3.9, β = 1.9).

From (2.2) we know that Tλ(−1) = 1/2, thus this value does not depend of the value of λ.
Since function δα,β is a difference of Tα and T β , the location of its minimum and maximum

will depend on the inequality between α and β.
Let us assume α < β. Such case is illustrated on Figure 5.10. We have two stationary points

of δα,β (points qα,β1 and qα,β2 ) with the property qα,β1 < −1 < qα,β2 < 0. Limits of function δα,β
are δα,β(0) = 0, lim

q→−∞
δα,β(q) = 0. Value of δα,β for q = −1 is δα,β(−1) = 0 − 0 = 0. From

the investigation of monotonicity of function Tλ with respect to q and with respect to λ, we can
conclude, that

Tα(q) > T β(q) for all q ∈ (−∞,−1).

That means that there has to be a local maximum for q = qα,β1 and δα,β(qα,β1 ) > 0. On the other
hand,

Tα(q) < T β(q) for all q ∈ (−1, 0),

thus there has to be a local minimum at qα,β2 and δα,β(qα,β2 ) < 0. The absence of other stationary
points leads to that both local extrema are global extrema.
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5.5 Delta bounds of Fuč́ık curves

For α > β, the situation is very similar, we have min
q<0

δα,β(q) = δα,β(qα,β1 ) and max
q<0

δα,β(q) = δα,β(qα,β2 )
– see illustration on Figure 5.11.

Since δα,β(qα,β2 ) = −δα,β(qα,β1 ), we have

max
q<0

δα,β(q) = −min
q<0

δα,β(q).

Definition 43. For 0 < α, β < 4, let us define

δminα,β := −|δα,β(qα,β1 )|,

δmaxα,β := +|δα,β(qα,β1 )|,

where qα,β1 is defined in (5.6).

Remark 44. In Definition 43, we have denoted δminα,β and δmaxα,β the minimum and maximum length
that we need to add in the intervals of anchoring in order to get upper and lower bounds.
We have used the “symmetry” of global extrema of function δα,β derived in Theorem 42, i.e.
max
q<0

δα,β(q) = −min
q<0

δα,β(q).

In the following theorem, we derive bounds for Fuč́ık curves C±l , l = 1, . . . , n−1 using extrema
points from the Theorem 42 (and values δminα,β and δmaxα,β) – for illustration of such bounds, see Figure
5.12.
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α
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n = 5 n = 6

Figure 5.12: Delta bounds for Σ(AD) for n = 5 (left) and n = 6 (right).

Theorem 45. In the domain D0,4 = (0, 4)×(0, 4), we have the following “delta bounds” for Fuč́ık
curves C±l , l = 1, . . . , n− 1,

(
C±2j−1 ∩D0,4

)
⊂ Ψj,j =: Ψ±

2j−1,(
C+2j ∩D0,4

)
⊂ Ψj+1,j =: Ψ+

2j ,(
C-2j ∩D0,4

)
⊂ Ψj,j+1 =: Ψ-

2j ,
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5.5 Delta bounds of Fuč́ık curves

j ∈ N, where for k, s ∈ N, sets Ψk,s are given by

Ψk,s := {(α, β) ∈ D0,4 : Fk,s(α, β) ≤ n+ 1 ≤ Gk,s(α, β)}

and

Fk,s(α, β) := k
π

ωα
+ s

π

ωβ
+ (k + s− 1)δminα,β , Gk,s(α, β) := k

π

ωα
+ s

π

ωβ
+ (k + s− 1)δmaxα,β .

2 4 6 8 10 12 14

- 4

- 2

2

4

k

π
ωα

π
ωα

π
ωα

π
ωβ

π
ωβ

π
ωβ

|δα,β(q4)| |δα,β(q5)| |δα,β(q8)| |δα,β(q10)| |δα,β(q13)|

n + 1

u

Figure 5.13: Solution u ∈ C+5, n = 13, α = 0.8, β .= 3.9369177). Positive semi-waves are in dark
grey color (their length is equal to π

ωα
), negative semi-waves are in light grey color (their length

is equal to π
ωβ

). This solution consists of 5 anchorings (it has 5 generalized zeros on T) and the
“gaps” between zero points of positive and negative semi-waves are given by functions |δα,β(qi)|,
where i ∈ (4, 5, 8, 10, 13).

Proof. Fuč́ık curves C±l consist of points (α, β) such that their corresponding Fuč́ık eigenvectors
have certain sign properties. For Fuč́ık curve C+l , l = 1, . . . , n − 1, we have u(1) > 0 and the
solution u has l generalized zeros on T. Since we are assuming (α, β) ∈ D0,4 = (0, 4) × (0, 4),
the length of all semi-waves can be expressed as π

ωα
for positive semi-waves and π

ωβ
for negative

semi-waves. In the linear case (α = β), if we sum appropriate number of lengths of positive and
negative semi-waves, such number has to be equal to the length of the solution plus the boundary
points, i.e. n+1. In our case (α ̸= β in general), we have to “correct” this length by the differences
between every anchoring of two consecutive semi-waves. For a fixed anchoring, such difference is
given by the function δα,β (either +δα,β or −δα,β .) If we estimate this difference by δmaxα,β , we have
an upper bound of the length n + 1. And if we estimate this difference by δminα,β , we have a lower
bound of the length n+ 1.

See Figure 5.13 for a particular solution u for which (α, β) ∈ C+5 (n = 13). We can construct
both boundaries of delta bounds for this fixed solution. The upper boundary is given as (n+1 = 14)

3 π

ωα
+ 3 π

ωβ
+ 5δmaxα,β = n+ 1

and the lower boundary in given as

3 π

ωα
+ 3 π

ωβ
+ 5δminα,β = n+ 1.

See Figures 6.4 and 6.5 for detailed illustration how delta bounds for each Fuč́ık curve may
look like – shown for Σ(AD), n = 6.
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5.6 Rho bounds of Fuč́ık curves

5.6 Rho bounds of Fuč́ık curves
Finally, third bounds we are going to discuss are referred here as “rho bounds” (originally intro-
duced as “improved bounds” in [31], see Figure 5.14 for illustration). The main idea is based on
using extrema of function ρα,β . In [31], Section 6, we have explored properties of function ρα,β in
detail. We were able to find its minimum and maximum – see Figures 4.7 and 6.6.

α

β

n = 4

0 4

4

α

β

n = 7

0 4

4

Figure 5.14: Rho bounds Υ±
l (l = 1, . . . , n− 1) for the Fuč́ık spectrum Σ (AD) for n = 4 (left) and

n = 7 (right).

Theorem 46. ([31], Theorem 31, p. 47)
Let 0 < α < 4 and β > 0. Then the function ρα,β attains its global extrema at ηα,β and µα,β.
More precisely, we have that

min
s∈[0,1+τα,β ]

ρα,β(s) =
{

ρα,β(µα,β) = 2µα,β + κβ for α ≤ β,

ρα,β(ηα,β) = 2ηα,β + κβ + 1 for α > β,

max
s∈[0,1+τα,β ]

ρα,β(s) =
{

ρα,β(ηα,β) = 2ηα,β + κβ + 1 for α ≤ β,

ρα,β(µα,β) = 2µα,β + κβ for α > β.

In order to have an easily readable text, we denote maximum and minimum of function ρα,β
as follows:
Definition 47. ([31], Definition 2, p. 11)
For 0 < α < 4 and β > 0, let us define

ρminα,β :=
{

2µα,β + κβ α ≤ β,

2ηα,β + κβ + 1 α > β,

ρmaxα,β :=
{

2ηα,β + κβ + 1 α ≤ β,

2µα,β + κβ α > β.
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5.7 Comparison between delta and rho bounds

Finally, rho bounds are such bounds, that we take ρminα,β and ρmaxα,β instead of function ρα,β in
the description of Fuč́ık spectrum Σ(AD) in Theorem 35.

Theorem 48. ([31], Theorem 3, p. 11)
In the domain D = (0, 4) × (0,+∞), we have the following “rho bounds” for Fuč́ık curves C±l ,
l = 1, . . . , n− 1, (

C±2j−1 ∩ D
)
⊂ Υj,j =: Υ±

2j−1,(
C+2j ∩ D

)
⊂ Υj+1,j =: Υ+

2j ,(
C-2j ∩ D

)
⊂ Υj,j+1 =: Υ-

2j ,

j ∈ N, where for k, s ∈ N, sets Υk,s are given by

Υk,s :=
{

(α, β) ∈ D : ρminα,β ≤ 1
s

(
n+ 1− k π

ωα

)
≤ ρmaxα,β

}
.

5.7 Comparison between delta and rho bounds
In this section, we want to show that delta bounds from Theorem 45 and rho bounds from Theo-
rem 48 are distinct from each other and also, we want to show when which bounds are better to
use. From the construction of delta and rho bounds, we can decide which bounds are better in
which cases. For illustration of delta and rho bounds of Σ(AD) for n = 5, see Figure 5.20.

1. In delta bounds, firstly, we are assuming that all semi-waves are anchored in zero points,
thus the total length is equal to the sum of π

ωα
and π

ωβ
(the correct amount of such lengths).

Then, we add negative value δminα,β or positive value δmaxα,β – that represents the “correction” of
anchorings. It is possible to construct delta bounds only in D0,4.

2. In rho bounds, we have fixed positive semi-waves (and their length π
ωα

) and we are taking
maximal value of distance function ρα,β and minimal value of ρα,β in order to substitute for
negative semi-waves. We have constructed rho bounds in D.

Firstly, since rho bounds are constructed even for β > 4, they are better when we need estimate
for such β. In general, it is better to estimate the whole negative semi-wave in total (rho bounds).
Thus, in most of the cases, rho bounds give us better estimates. It is evident in the case of bounds
of higher order Fuč́ık curves (we are making a lot of anchorings, thus we are estimating many
times) – see Figure 5.16. On the other hand, when we are estimating lower order Fuč́ık curves
with first and last semi-wave negative (C-l ), delta bounds give us often better results – see Figure
5.17. Starting with negative semi-wave means that the first semi-wave is calculated exactly in case
of delta bounds, but is estimated in case of rho bounds. And when we are starting (and ending)
with positive semi-wave, rho bounds are usually better – see Figure 5.18. We can compare delta
and rho bounds for C+4 and C-4 in Figure 5.19.

In the following example, we are going to select three points from D0,4 = (0, 4) × (0, 4) close
to each other and show which point belongs to which bound.

Example 49. Let n = 5. We are going to take Fuč́ık curve C-2 and find description of delta and
rho bounds using Theorems 45 and 48.

For delta bounds Ψ−2 of C-2 we have

Ψ−2 =
{

(α, β) ∈ D0,4 : π

ωα
+ 2 π

ωβ
+ 2δminα,β ≤ n+ 1 ≤ π

ωα
+ 2 π

ωβ
+ 2δmaxα,β

}
. (5.9)

And for rho bounds Υ-
2 of C-2 we have

Υ-
2 =

{
(α, β) ∈ D : ρminα,β ≤

1
2

(
n+ 1− π

ωα

)
≤ ρmaxα,β

}
. (5.10)
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1 2 3 4 5 6 k

y

(α, β) ∈ C-2

Figure 5.15: Solution u of (P4) for α .= 0.8366, β = 0.8. Since (α, β) ∈ C-2, solution u has two
anchorings – two generalized zeros on T; and it starts with a negative semi-wave.

We have chosen three points X1 = (0.6, 3.8), X2 = (0.73, 3.8) and X3 = (0.92, 3.8) and we are
going to calculate if these points belong to delta and rho bounds of C-2. In Table 49 we can see
that point X2 is in both delta bounds Ψ-

2 and rho bounds Υ-
2. On the other hand, X1 is only in

delta bounds Ψ-
2 and X3 is only in rho bounds Υ-

2.

(5.9) for Ψ-
2 Xi ∈ Ψ-

2 (5.10) for Υ-
2 Xi ∈ Υ-

2

X1 = (0.60, 3.8) 5.915 ≤ 6 ≤ 6.655 YES 1.056 ≤ 1.025 ≤ 1.506 NO
X2 = (0.73, 3.8) 5.528 ≤ 6 ≤ 6.26 YES 1.056 ≤ 1.221 ≤ 1.501 YES
X3 = (0.92, 3.8) 5.116 ≤ 6 ≤ 5.835 NO 1.057 ≤ 1.430 ≤ 1.494 YES

Table 5.2: Delta bounds Ψ-
2, rho bounds Υ-

2 and a decision whether points X1, X2 and X3 belong
to either Ψ-

2 or Υ-
2.

Moreover, if we fix β = 3.8, then using either Theorem 32 or Theorem 35, we can calculate
approximate value of α in a way, that (α, β) ∈ C-2. Such value is α .= 0.8366. See Figure 5.15
for corresponding solution u. And see Figure 5.17 to see a detail of Fuč́ık curve C-2 within both
bounds.

Remark 50. One of the possible ways how to make rho bounds better, is to deal with first and
last semi-wave differently. Instead of using ρmaxα,β and ρminα,β as estimates of the the distance ρα,β , we
calculate these lengths (for the first and last semi-wave) precisely using boundary conditions. For
example, when starting with negative semi-wave, we calculate t-1 precisely, i.e. we use t-1 = ρα,β(0)
instead of ρmaxα,β or ρminα,β .

Remark 51. Diagram of Fuč́ık spectrum is symmetric along the line α = β. Thus, we can also
“mirror” all bounds. This leads to better results but it is more complicated to calculate as a final
bounds for all Fuč́ık curves of Σ(AD).
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Figure 5.16: Delta bound Ψ+
24 (green – its boundary) and rho bound Υ+

24 (red – its boundary) for
C+24 (left) and delta bound Ψ+

30 (green – its boundary) and rho bound Υ+
30 (red – its boundary) for

C+30 (right) of Σ(AD) for n = 42.
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Figure 5.17: Delta bound Ψ-
2 (green – its boundary) and rho bound Υ-

2 (red – its boundary) for
C-2 (black) of Σ(AD) for n = 5.
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Figure 5.18: Delta bound Ψ+
2 (green – its boundary) and rho bound Υ+

2 (red – its boundary) for
C+2 (black) of Σ(AD) for n = 5.
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Figure 5.19: Delta bound Ψ+
4 (green – its boundary) and rho bound Υ+

4 (red – its boundary) for
C+4 (left) and delta bound Ψ-

4 (green – its boundary) and rho bound Υ-
4 (red – its boundary) for

C-4 (right) of Σ(AD) for n = 9.
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Figure 5.20: Delta bounds Ψ±
l (left) and rho bounds Υ±

l (right) (l = 1, . . . , n−1) for the Fuč́ık spec-
trum Σ (AD), n = 5.
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Chapter 6

Conclusion

In this thesis, we provided a complementary text that would be recommended to be read alongside
research articles of the author: [25] and [31]. The main purpose of this thesis was to give the reader
a more comprehensive understanding and background on the Fuč́ık spectrum for discrete operators.

We studied Fuč́ık spectrum of matrix AD, i.e. Fuč́ık spectrum for the semi-linear boundary
value problem (P4). In order to do that, we explored a linear initial value problem (P1), found
its solution (Lemma 3) and defined a continuous extension of the solution.

We also investigated how to retrieve the first non-negative zero of such continuous extension
(for λ ∈ (0, 4) it is determined by function Tλ defined in Definition 8) and explored in detail
sequence (qk)k∈Z of ratios of values of the solution u in two consecutive integers using Chebyshev
polynomials of the second kind. We used function Wλ

k (Definition 13) to find any term of sequence
(qk)k∈Z (Lemma 15 and Remark 16).

This led to a generalized approach suitable for a semi-linear initial value problem (P3). Another
generalization described in the thesis relates to the concept of positive and negative semi-waves
introduced in Section 3.1. Therein, we showed a relationship between function Wλ

k and a solution
of a semi-linear problem (P3) – i.e. functions Wα

k and W β
k allow us to get any term of (qk)k∈Z

even for semi-linear problem where the role of a continuous extension have positive and negative
semi-waves which are “anchored” together.

We introduced sequences of recurrently defined functions (pk)k∈Z and (ϑk)k∈Z in Definition 20.
These sequences allowed us to calculate generalized zeros of solution u – Lemma 22. Using such
calculation together with the boundary conditions leads to an implicit and recurrent description
of the Fuč́ık spectrum of matrix AD – see Theorem 32 and Theorem 34 (these theorems differ by
the logic of “anchoring” the solutions).

Moreover, we extended our theory of semi-linear initial value problem to the study of the
distance function ρα,β – the distance between two consecutive zeros of two different consecutive
positive semi-waves. For the definition of function ρα,β (defined in Definition 28) we have explored
what is the role of piece-wise linear function κβ and how it can be used in order to measure the
distance function ρα,β . This lead to a new (and different) description of the Fuč́ık spectrum of
matrix AD in Theorem 35.

Finally, we also investigated in detail three different bounds of Fuč́ık curves – basic, delta and
rho bounds which are practical applications of the previously introduced theory. Basic bounds
were provided in Theorem 39, delta bounds in Theorem 45 and rho bounds in Theorem 48,
respectively. Any of these bounds can be used for a numerical localization of Fuč́ık curves even
for high dimension matrices AD, since these bounds will not become more complicated when n is
increased.

Even though our descriptions of the Fuč́ık spectrum are for a particular matrix AD (Dirichlet
matrix), theory in this thesis (and both research articles [25] and [31]) can be extended. The
theory was constructed for a difference equation in (P4). In order to describe the Fuč́ık spectrum
for a problem with the same difference equation but with a different boundary conditions, one
would use the same theory only changing aspects related to the boundary conditions. Thus, our
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6 Conclusion

results can be generalized also for different boundary conditions.
We note the newly introduced theory was well received by the academic community – both

research articles were published in impacted journals ranked within the first quartile in their
respective fields. The main aim of the thesis was to provide a comprehensive overview of the
theory, illustrative examples and to make the discrete Fuč́ık spectrum analysis more accessible to
a general mathematical audience. Last but not least, we contemplated on further applications of
the newly introduced theory – either to generalise results to other boundary conditions or to apply
the results on a practical problem (e.g. involving high dimension AD matrices). These aspects,
among others, are out of scope of the thesis and are left for future research activities.
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Figure 6.1: Function Nα,β for α < β (α = 1.2, β = 3.2).
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Figure 6.2: Three different shapes of graph of function Nα,β when the values α are fixed and
values of β are changed.
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Figure 6.3: Corresponding solutions u for (α, β) ∈ C±5 for Σ(AD) of n = 9. Notice, that these
solutions have different sign properties – for α > 2 we have u(2) < 0, for α = 2 we have u(2) = 0
and for α < 2 we have u(2) > 0. Also, compare the continuous extensions for α = 1.75 versus
α = 1.74 (for the first one β < 4 and for the second one β > 4).
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Linear Algebra and its Applications 553 (2018) 58–103

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

The Fučík spectrum of the discrete Dirichlet 

operator

Iveta Looseová, Petr Nečesal ∗

Department of Mathematics and NTIS, University of West Bohemia, Univerzitní 8, 
301 00 Plzeň, Czech Republic

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 December 2017
Accepted 16 April 2018
Available online 30 May 2018
Submitted by P. Semrl

MSC:
39A10
39A12
39A70
34B15

Keywords:
Asymmetric nonlinearities
Chebyshev polynomials of the 
second kind
Difference operators
Fučík spectrum
Möbius transformation
Möbius matrix
Homogeneous coordinates

In this paper, we deal with the discrete Dirichlet operator 
of the second order and we investigate its Fučík spectrum, 
which consists of a finite number of algebraic curves. For 
each non-trivial Fučík curve, we are able to detect a finite 
number of its points, which are given explicitely. We provide 
the exact implicit description of all non-trivial Fučík curves in 
terms of Chebyshev polynomials of the second kind. Moreover, 
for each non-trivial Fučík curve, we give several different 
implicit descriptions, which differ in the level of depth of 
used nested functions. Our approach is based on the Möbius 
transformation and on the appropriate continuous extension 
of solutions of the discrete problem. Let us note that all 
presented descriptions of Fučík curves have the form of 
necessary and sufficient conditions. Finally, our approach can 
be also directly used in the case of difference operators of the 
second order with other local boundary conditions.

© 2018 Elsevier Inc. All rights reserved.

* Corresponding author.
E-mail addresses: looseova @kma .zcu .cz (I. Looseová), pnecesal @kma .zcu .cz (P. Nečesal).

https://doi.org/10.1016/j.laa.2018.04.017
0024-3795/© 2018 Elsevier Inc. All rights reserved.



I. Looseová, P. Nečesal / Linear Algebra and its Applications 553 (2018) 58–103 59

1. Introduction

In this paper, we deal with the following discrete problem with Dirichlet boundary 
conditions

{
Δ2u(k − 1) + αu+(k) − βu−(k) = 0, k ∈ T,

u(0) = u(n + 1) = 0,
(1)

where u : T̂ → R, T̂ := {0, 1, . . . , n, n + 1}, T := {1, . . . , n}, n ∈ N, u+ and u− stand for 
the positive and the negative parts of u, respectively, i.e.

u+, u− : T̂ → R, u±(k) := max{±u(k), 0},

α, β ∈ R and the second order forward difference Δ2u(k − 1) is given by

Δ2u(k − 1) := u(k − 1) − 2u(k) + u(k + 1).

The purpose of this paper is to study the set of all pairs (α, β) ∈ R2 such that the problem 
(1) has a non-trivial solution u, which is equivalent to investigate the set

Σ (AD) :=
{
(α, β) ∈ R2 : the problem ADu = αu+ − βu−

has a non-trivial solution u
}
,

where u, u+ and u− are column vectors with n elements u(k), u+(k) and u−(k), respec-
tively, i.e.

u := [u(1), . . . , u(n)]t, u± := [u±(1), . . . , u±(n)]t,

and AD is the n-by-n Dirichlet matrix

AD :=

⎡
⎢⎢⎢⎢⎢⎢⎣

2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The set Σ (AD) is called the Fučík spectrum of the matrix AD and its structure has been 
studied in [5], [6] and [8]. Let us note that all eigenvalues of AD are real eigenvalues and 
thus, each eigenvalue λ of AD determines a pair (λ, λ), which belongs to Σ(AD). Indeed, 
for α = β = λ, the problem ADu = αu+ − βu− is reduced to the linear eigenvalue 
problem ADu = λu.

Before we recall some known results concerning the set Σ (AD), let us introduce the 
following notation. Let us denote by C+

k (C-
k) the set of all pairs (α, β) ∈ Σ (AD) such 
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Fig. 1. Due to results in [5], it is possible to obtain the numerical approximation of those parts of non-trivial 
Fučík curves C±

k of Σ 
(
AD), which are located in the square (0, 4) × (0, 4) (right) and also corresponding 

non-trivial solutions u of (1) for different pairs (α, β) ∈ Σ 
(
AD) ∩ (0, 4) × (0, 4) (left).

that the corresponding non-trivial solution u of (1) changes its sign k times on T and the 
value u(1) is a positive (negative) one. The sets C+

0 and C-
0 are lines, which are parallel 

to β and α axes, respectively, since corresponding non-trivial solutions u do not change 
sign on T. We call both curves C+

0 and C-
0 as trivial Fučík curves.

Firstly, C. Margulies and W. Margulies studied the solvability of mildly nonlinear 
matrix equations with a general n-by-n self-adjoint matrix and recognized the importance 
of the corresponding Fučík spectrum as a resonance set. Using their general results 
published in [6] in 1999, we conclude that the Fučík spectrum Σ(AD) is a closed subset 
of R2, which does not contain an open set and is made of finitely many algebraic curves. 
Moreover, in the case of the 2-by-2 Dirichlet matrix, the structure of the Fučík spectrum 
Σ(AD) is trivial one and is mentioned in [6] as an example.

Secondly, R. Ma, Y. Xu and Ch. Gao published their paper [5] in 2010, where the 
matching-extension method is introduced to obtain an expression of Σ(AD) similar to 
the well-known description of the Fučík spectrum in the case of the continuous Dirichlet 
problem (see [1] or [2])

{
v′′(t) + αv+(t) − βv−(t) = 0, t ∈ (0, π),

v(0) = v(π) = 0.

Theorem 3.1. in [5] provides an important description of parts of all non-trivial 
Fučík curves C±

k, which are located in the square (0, 4) ×(0, 4) (see Fig. 1, right). Namely, 
for the first non-trivial Fučík curve C±

1, we have that (α, β) ∈ C±
1 ∩ (0, 4) × (0, 4) if and 

only if α, β ∈ (2 − 2 cos π
n , 4) are such that
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sin
(
ωα

[
π

ωα

])
sin
(
ωβ

([
π

ωα

]
+ 1 − s

))
= sin

(
ωα

([
π

ωα

]
+ 1
))

sin
(
ωβ

([
π

ωα

]
− s
))

,

(2)

where

s + π
ωβ

= n + 1,
[

π
ωα

]
≤ s <

[
π

ωα

]
+ 1. (3)

In the previous assertion, we denoted ωα := arccos 2−α
2 and ωβ := arccos 2−β

2 and [·]
means the integer part function. The corresponding non-trivial solution u of (1) changes 
its sign exactly ones in T, thus, it consists of one positive and one negative semi-waves 
(see Fig. 1, left). The positive (negative) semi-wave has its continuous extension with the 
frequency ωα (ωβ) and the distance of two consecutive zeros of its continuous extension 
is exactly π

ωα
( π

ωβ
). The equality in (3) can be rephrased as

π

ωα
+ π

ωβ
+ δ1 = n + 1,

where δ1 = s − π
ωα

∈ (−1, 1) is the difference of zeros of the continuous extensions of 
negative and positive semi-waves. For the higher non-trivial Fučík curves, we have the 
following description

C±
2j−1 : j

π

ωα
+ j

π

ωβ
+

2j−1∑

i=1
δi = n + 1, (4)

and

C+
2j : (j +1) π

ωα
+ j

π

ωβ
+

2j∑

i=1
δi = n+1, C-

2j : j
π

ωα
+(j +1) π

ωβ
+

2j∑

i=1
δi = n+1, (5)

where δi ∈ (−1, 1) depends on α and β and is given implicitly by a transcendent equation 
similar to (2). Thus, (4) and (5) represent the particular Fučík curves C±

k as level sets 
F ±

k (α, β) = n + 1, where F ±
k are given implicitly.

Thirdly, P. Stehlík published his paper [8] in 2013, where he studied the qualitative 
properties of the first non-trivial Fučík curve C±

1. He proved that the first non-trivial 
Fučík curve is decomposable in the following way (see Fig. 2)

C±
1 = AC±

1 ∪ PC±
1 ∪ BC±

1 ∪ CC±
1,

where two continuous curves AC±
1 and CC±

1 and the set PC±
1 of finite number of points are 

given explicitly as
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Fig. 2. The first non-trivial Fučík curve C±
1 and its decomposition C±

1 = AC±
1 ∪ PC±

1 ∪ BC±
1 ∪ CC±

1 due to results 
in [8] (black points represents the set PC±

1).

AC±
1 =

{
(α, β) : α = 4 sin2 π

2(n + 1 − t) , β = 2 −
sin (n−1)π

n+1−t

sin nπ
n+1−t

, t ∈ (1, 2)
}

,

PC±
1 =

{
(α, β) : α = 4 sin2 π

2(n + 1 − k) , β = 4 sin2 π

2k , k = 2, . . . , n − 1
}

,

CC±
1 =

{
(α, β) : α = 2 − sin (n−1)π

t

sin nπ
t

, β = 4 sin2 π

2t , t ∈ (n − 1, n)
}

.

(6)

The set BC±
1 is the part of C±

1, which belongs to the square (0, 2) × (0, 2) and has empty 
intersection with the set PC±

1. Moreover, in [8] is proved the following necessary condition: 
if (α, β) ∈ BC±

1 then

sin
(
ωα

⌊
π

ωα

⌋)
sin
(
ωβ

⌊
π

ωβ

⌋)
= sin

(
ωα

⌈
π

ωα

⌉)
sin
(
ωβ

⌈
π

ωβ

⌉)
,

where �·� and 	·
 denote floor and ceiling functions, respectively. Finally, the last part 
of [8] is devoted to the elementariness of BC±

1. A conjecture is stated that BC±
1 has no 

elementary parametrization and also possible ways how to prove it are discussed.

In this paper, we prove the following main results.

1. Theorem 22 provides the complete description of the Fučík spectrum Σ (AD), the 
particular Fučík curves are described as level sets F ±

k (α, β) = n + 1, where the 
functions F ±

k are given explicitly. In addition, Theorem 22 contains the description 
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of all Fučík curves as algebraic curves in terms of Chebyshev polynomials of the 
second kind in prescribed regions (see Figs. 15, 16 and Example 24).

2. In Theorem 26, we have another description of all Fučík curves as level curves 
F ±

i,j(α, β) = n + 1, where functions F ±
i,j are given explicitly and differ in the level 

of depth of used nested functions. Moreover, using this description, we proved The-
orem 27 containing the representation of all Fučík curves as algebraic curves in 
prescribed regions, which are different from regions given by Theorem 22 (see Figs. 18
to 24 and Example 29).

3. In Corollary 25, we provide finite number of points (ξi, ξj), which belong to particular 
Fučík curves and contain all points of PC±

1 given by (6).
4. In Corollary 30, we give the implicit description of the first non-trivial Fučík curve C±

1
in terms of Chebyshev polynomials of the second kind. More precisely, we show that 
the first non-trivial Fučík curve C±

1 consist of parts of algebraic curves in prescribed 
rectangles. As a consequence of Corollary 30, it is straightforward to verify that the 
part BC±

1 of the first non-trivial Fučík curve C±
1 has an elementary parametrization 

for n = 4, 5, 6, 7 (note that BC±
1 is the empty set for n = 1, 2, 3).

We show that the first non-trivial Fučík curve C±
1 of the Fučík spectrum consists of parts 

of algebraic curves (see Corollary 30)

Un−i

( 2−α
2
)
Ui

(
2−β

2

)
− Un−i−1

( 2−α
2
)
Ui−1

(
2−β

2

)
= 0, i = 1, . . . , n − 1, (7)

where Uk = Uk(x) are the Chebyshev polynomials of the second kind of degree k. Let us 
note that for α = β = λ, each equation in (7) simplifies in polynomial equation

Un

( 2−λ
2
)

= 0,

which has roots made of eigenvalues λD
0 < λD

1 < · · · < λD
n−1 of AD since Un

( 2−λ
2
)

=
det (AD − λI). The Fučík spectrum Σ (AD) consists of particular Fučík curves C±

k, k =
0, . . . , n − 1, which emanate from points (λD

k, λ
D
k) on the diagonal α = β (see Fig. 3). 

We have the following description of the Fučík curves C±
k. For k odd, the Fučík curve C+

k

coincides with the curve C-
k and consists of parts of algebraic curves (see Theorem 22)

[
1 0

]
·
[
W β

pk+1

]
·
[
Wα

pk

]
· · ·
[
W β

p2

]
·
[
Wα

p1

]
·
[

1
0

]
= 0, (8)

where 
[
Wλ

j

]
is 2 × 2 matrix given by

[
Wλ

j

]
=
[

Uj

( 2−λ
2
)

−Uj−1
( 2−λ

2
)

Uj−1
( 2−λ

2
)

−Uj−2
( 2−λ

2
)
]
, j ∈ Z, λ ∈ R,

and p1, . . . , pk+1 are integers, which depend on α and β, and are given by explicit 
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Fig. 3. The Fučík spectrum Σ 
(
AD) of the Dirichlet matrix AD of order n = 9, the particular Fučík curves C±

k

are described as level sets F ±
k(α, β) = n + 1 due to Theorem 22.

analytic formulas (see Definition 17). Moreover, algebraic curves (8) are of the form 
det (AD − Λ) = 0, where Λ is the diagonal matrix

Λ = diag(α, . . . , α︸ ︷︷ ︸
p1–times

, β, . . . , β︸ ︷︷ ︸
p2–times

, . . . , α, . . . , α︸ ︷︷ ︸
pk–times

, β, . . . , β︸ ︷︷ ︸
pk+1–times

).

Integers p1, . . . , pk+1 determine, which components of the corresponding non-trivial so-
lution u of the problem ADu = αu+ −βu− are non-negative and which are non-positive, 
i.e.

u+ = (
p1–times︷ ︸︸ ︷
�, . . . , � ,

p2–times︷ ︸︸ ︷
0, . . . , 0, . . . ,

pk–times︷ ︸︸ ︷
�, . . . , � ,

pk+1–times︷ ︸︸ ︷
0, . . . , 0 ),

u− = (0, . . . , 0︸ ︷︷ ︸
p1–times

, �, . . . , �︸ ︷︷ ︸
p2–times

, . . . , 0, . . . , 0︸ ︷︷ ︸
pk–times

, �, . . . , �︸ ︷︷ ︸
pk+1–times

).

Let us note that for k = 1, algebraic curves (8) can be rewritten in the form of (7). For 
k even, the Fučík curve C+

k consists of parts of algebraic curves

[
1 0

]
·
[
Wα

pk+1

]
·
[
W β

pk

]
· · ·
[
W β

p2

]
·
[
Wα

p1

]
·
[

1
0

]
= 0,

and finally, the Fučík curve C-
k consists of parts of algebraic curves
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[
1 0

]
·
[
W β

pk+1

]
·
[
Wα

pk

]
· · ·
[
Wα

p2

]
·
[
W β

p1

]
·
[

1
0

]
= 0.

This paper is organized in the following way. Firstly, we review some standard facts 
on linear initial value problem (9) and discuss properties of its solution in Section 2. 
We look more closely at continuous extension and zero points of such extension. We 
introduce Möbius transformation Wλ

k (see Definition 5) which allows us to get ratio of 
any consecutive elements of the solution. At the end of this section, we discuss the case 
of linear problem (24) and the developed theory will be useful in the following parts of 
this paper. In Section 3, we investigate in detail continuous extension of a solution of 
semi-linear initial value problem (29). We introduce several sequences of functions which 
allow us to locate all generalized zeros of the solution of the problem (29). Finally, in 
Section 4, our main results are stated and proved. We give several descriptions of the 
Fučík spectrum of the Dirichlet matrix in the form of necessary and sufficient conditions.

2. The continuous extension of a solution of the linear problem

In this section, we look more closely at the linear initial value problem
{

Δ2u(k − 1) + λu(k) = 0, k ∈ Z,

u(0) = C0, u(1) = C1,
(9)

where λ and C0, C1 ∈ R are constants such that C2
0 + C2

1 �= 0.

The characteristic equation for the difference equation in (9) has the form

r2 + (λ − 2)r + 1 = 0

with the roots

r1,2 =

⎧
⎪⎨
⎪⎩

2−λ
2 ±

√( 2−λ
2
)2 − 1 for |λ − 2| ≥ 2,

2−λ
2 ± i

√
1 −
( 2−λ

2
)2 for |λ − 2| < 2.

Let us point out that r1r2 = 1. For λ = 0 (λ = 4), we get r1 = r2 = 1 (r1 = r2 = −1). 
For |λ − 2| ≤ 2, roots r1 and r2 are complex conjugate such that |r1| = |r2| = 1. For 
λ ≤ 0 (λ ≥ 4), both roots r1 and r2 are real and positive (negative). For given λ ∈ R
and C0, C1 ∈ R, the initial value problem (9) has a unique solution of the form

u(k) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C0(1 − k) + C1(k) for λ = 0,

−C0(1 − k)(−1)1−k − C1(k)(−1)k for λ = 4,

C0
r1r

k
2 − r2r

k
1

r1 − r2
+ C1

rk
1 − rk

2
r1 − r2

for λ ∈ R \ {0, 4}.
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Fig. 4. The graph of ωλ as a function of λ.

In the following lemma, we provide a different formula for the discrete solution u of the 
initial value problem (9), which allows us to extent this discrete solution u to the whole 
real line.

Lemma 1. For given λ ∈ R and C0, C1 ∈ R, the initial value problem (9) has a unique 
solution of the form

u(k) = C0F
λ(1 − k) + C1F

λ(k), k ∈ Z, (10)

where the function Fλ : R → R is defined as

Fλ(t) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

sinh(ωλt)/ sinhωλ for λ < 0,
t for λ = 0,
sin(ωλt)/ sinωλ for λ ∈ (0, 4),

−t cos(πt) for λ = 4,
− cos(πt) sinh(ωλt)/ sinhωλ for λ > 4,

ωλ :=

⎧
⎪⎨
⎪⎩

arcosh 2−λ
2 for λ ≤ 0,

arccos 2−λ
2 for λ ∈ (0, 4),

arcosh λ−2
2 for λ ≥ 4.

Proof. It is straightforward to verify that (10) holds for λ = 0 and for λ = 4 where we 
used the fact that (−1)k = cos(kπ) for k ∈ Z. Now, let us assume λ < 0. If we take into 
account that r1r2 = 1, we conclude that r1r

k
2 − r2r

k
1 = −(rk−1

1 − rk−1
2 ). Since

ln r1 = ln
(

coshωλ +
√

cosh2 ωλ − 1
)

= ln(coshωλ + sinhωλ)

= ln
(

eωλ + e−ωλ

2 + eωλ − e−ωλ

2

)
= ωλ,

we obtain that

rk
1 − rk

2 = rk
1 − r−k

1 = ek ln r1 − e−k ln r1 = ekωλ − e−kωλ = 2 sinh(ωλk).

Thus, we finally get
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Fig. 5. The continuous extension uc of the solution u of the discrete problem (9) and the first non-negative 
zero t1 of uc.

u(k) = C0
r1r

k
2 − r2r

k
1

r1 − r2
+ C1

rk
1 − rk

2
r1 − r2

= C0F
λ(1 − k) + C1F

λ(k).

Cases λ ∈ (0, 4) and λ > 4 are very similar to the case λ < 0. We have

ln r1 =
{

iωλ for λ ∈ (0, 4),
−ωλ + π i for λ > 4,

and

rk
1 − rk

2 =
{

2 i sin(ωλk) for λ ∈ (0, 4),
−2 sinh(ωλk) cos(πk) for λ > 4,

and thus (10) holds. �
See Fig. 4 for the graph of function λ → ωλ and note its point of discontinuity of the 
first kind at λ = 4.

For the solution u of the discrete problem (9), let us define its continuous extension
on R (see Fig. 5) as

uc(t) := C0F
λ(1 − t) + C1F

λ(t), t ∈ R.

Moreover, for the non-trivial solution u of the discrete problem (9) (let us remind that 
we have C2

0 + C2
1 �= 0), we define the bi-infinite sequence (qk)k∈Z of ratios of values of u

in two consecutive integers in the following way

qk := u(k)
u(k − 1) , k ∈ Z. (11)

Let us note that the sequence (qk) is a mapping from Z to R∗ := R ∪{∞} (the one-point 
compactification of R). We say that the solution u of the discrete problem (9) has a 
generalized zero at k ∈ Z if

u(k) = 0 or u(k)u(k − 1) < 0.

Let us point out that u has a generalized zero at k ∈ Z if and only if qk ≤ 0 and qk �= ∞. 
For λ ≤ 0, the solution u of (9) has no generalized zero if q1 = C1

C0
∈ [e−ωλ , eωλ ] and has 
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Fig. 6. The graph of T λ as a function of q.

exactly one generalized zero for q1 /∈ [e−ωλ , eωλ ]. For λ > 0, the solution u of (9) has 
infinitely many generalized zeros. Let us consider λ ∈ (0, 4). In this case, 0 < ωλ < π

and the continuous extension uc of the solution u of the initial value problem (9) is 
2π
ωλ

-periodic function. Let us denote the first non-negative zero of uc by t1 (see Fig. 5). 
Then all zeros of uc are tk = t1 + (k − 1) π

ωλ
, k ∈ Z. If C0 = 0 then uc(t) = C1

sin(ωλt)
sin ωλ

and q1 = ∞, t1 = 0. If C0 �= 0 then for t1, we have that

sin(ωλ(1 − t1)) + q1 sin(ωλt1) = 0, 0 < t1 <
π

ωλ
,

which gives us

q1 = cosωλ − sinωλ · cot(ωλt1), t1 = 1
ωλ

arccot cosωλ − q1
sinωλ

.

Let us point out that function arccotangent has the usual principal values, thus it is 
defined for all real numbers and its range is interval (0, π). In the following definition, 
we introduce the function Tλ such that t1 = Tλ(q1).

Definition 2. For λ ∈ (0, 4), let us define the function Tλ : R∗ → R as

Dom
(
Tλ
)

:= R∗, Tλ(∞) := 0, Tλ(q) := 1
ωλ

arccot cosωλ − q

sinωλ
for q ∈ R.

Let us note that Tλ is a strictly increasing function on R and maps R∗ onto 
[
0, π

ωλ

)

and it is straightforward to verify that (see Fig. 6)

Tλ(0) = 1, Tλ(−1) = 1
2 , Tλ(1) = 1

2 + π
2ωλ

, Tλ
( 2−λ

2
)

= π
2ωλ

.

Moreover, if we take into account that the difference equation in (9) is autonomous, we 
realize that

t1 = j + Tλ(q1+j), j = 	t0
, . . . , 0, . . . , �t1�.

Finally, in the following lemma, let us introduce a useful formula for Tλ.
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Lemma 3. For q = ∞ and q ≤ 0, we have

Tλ(q) + Tλ
(

1
q

)
= 1. (12)

Proof. For q = ∞, (12) is trivially satisfied since Tλ(∞) = 0 and Tλ(0) = 1. For q ≤ 0, 
let us prove (12) in the following way. Let us denote the inverse function of Tλ by Qλ:

Qλ :
[
0, π

ωλ

)
→ R∗, Qλ(0) = ∞, Qλ(t) = −sin(ωλ(1 − t))

sin(ωλt)
for 0 < t < π

ωλ
.

Thus, we obtain that Qλ(1 − t) = 1/Qλ(t) for all t ∈ [0, 1] and using t = Tλ(q) and 
q = Qλ(t) we obtain

1 − Tλ(q) = 1 − t = Tλ(Qλ(1 − t)) = Tλ

(
1

Qλ(t)

)
= Tλ

(
1
q

)
. �

Now, for all λ ∈ R and k ∈ Z, let us denote

V λ
k := Uk

( 2−λ
2
)
,

where Uk = Uk(x) are the Chebyshev polynomials of the second kind of degree k. For 
all λ ∈ R, polynomials V λ

k satisfy the three terms recurrence formula

V λ
k−1 − (2 − λ)V λ

k + V λ
k+1 = 0, k ∈ Z, (13)

and moreover, we have that V λ
−k = −V λ

k−2 for all k ∈ Z. Since Fλ(k) = V λ
k−1 for all 

λ ∈ R and k ∈ Z, the solution u of (9) can be written as

u(k) = −C0V
λ
k−2 + C1V

λ
k−1. (14)

In the following lemma, we introduce an identity for Chebyshev polynomials of the second 
kind (also known as the special form of Turán inequality).

Lemma 4. For all λ ∈ R and k ∈ Z, we have the following identity

(
V λ

k

)2 − V λ
k+1V

λ
k−1 = 1. (15)

Proof. For k = 0, the equality (15) is trivially satisfied since we have that

V λ
−1 = 0, V λ

0 = 1, V λ
1 = 2 − λ.

For k ∈ Z, using (13), we obtain that
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(
V λ

k+1
)2 − V λ

k+2V
λ
k =

(
V λ

k+1
)2 −

(
(2 − λ)V λ

k+1 − V λ
k

)
V λ

k

= V λ
k+1
(
V λ

k+1 − (2 − λ)V λ
k

)
+
(
V λ

k

)2

= −V λ
k+1V

λ
k−1 +

(
V λ

k

)2
.

But it implies that the equality
(
V λ

k+1
)2 − V λ

k+2V
λ
k =

(
V λ

k

)2 − V λ
k+1V

λ
k−1

holds for all k ∈ Z, which leads to (15) using induction. �
Let us introduce the function Wλ

k which determines the value of k-th element qk

defined by (11) by the value of q0.

Definition 5. For all λ ∈ R and k ∈ Z, let us define the function Wλ
k : R∗ → R∗ in the 

following way

Wλ
k (q) :=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

q · V λ
k − V λ

k−1
q · V λ

k−1 − V λ
k−2

for q ∈ R,

V λ
k

V λ
k−1

for q = ∞.

Let us recall that a Möbius transformation is given by (a, b, c, d ∈ C, ad − bc �= 0)

f : C∗ → C∗ : z → a · z + b

c · z + d
.

Thus, using (15), we conclude that Wλ
k is the restriction of a Möbius transformation 

on R∗.

Lemma 6. For all λ ∈ R and k ∈ Z, we have

qk = Wλ
k (q0). (16)

Proof. Firstly, we claim that

Wλ
k+1(q) = 2 − λ − 1

Wλ
k (q)

, q ∈ R∗, k ∈ Z, λ ∈ R. (17)

Indeed, using (13), we obtain the following relation

1
Wλ

k (q)
=

q · V λ
k−1 − V λ

k−2
q · V λ

k − V λ
k−1

=
q
(
(2 − λ) · V λ

k − V λ
k+1
)

−
(
(2 − λ) · V λ

k−1 − V λ
k

)

q · V λ
k − V λ

k−1

= 2 − λ − Wλ
k+1(q)
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for all q ∈ R such that Wλ
k (q) �= 0. On the other hand, for all q ∈ R such that Wλ

k (q) = 0, 
we get q · V λ

k − V λ
k−1 = 0, which implies that Wλ

k+1(q) = ∞. In the case of q = ∞, we 
have

1
Wλ

k (∞)
=

V λ
k−1
V λ

k

=
(2 − λ) · V λ

k − V λ
k+1

V λ
k

= 2 − λ − Wλ
k+1(∞),

provided Wλ
k (∞) �= 0. If Wλ

k (∞) = 0 then we have that V λ
k = 0, which implies that 

Wλ
k+1(∞) = ∞.
Now, for k = 0, the equality in (16) holds since Wλ

0 is the identity on R∗. For k ∈ Z, 
the difference equation in (9) can be written in the form

u(k + 1)
u(k) = 2 − λ − u(k − 1)

u(k) ,

provided u(k) �= 0, which means qk �= 0, qk+1 �= ∞ and that

qk+1 = 2 − λ − 1
qk

. (18)

If u(k) = 0 then qk = 0 and qk+1 = ∞. Thus, the equality (18) holds for all k ∈ Z
and for any sequence (qk) defined by (11). Finally, if we assume that (16) holds for fixed 
k = j ∈ Z, using (17) and (18), we obtain

qj+1 = 2 − λ − 1
qj

= 2 − λ − 1
Wλ

j (q0)
= Wλ

j+1(q0)

and

qj−1 = 1
2 − λ − qj

= 1
2 − λ − Wλ

j (q0)
= Wλ

j−1(q0). �
Every Möbius transformation can be associated with its Möbius matrix. In our case it 
is useful to simplify proofs of certain identities (see Lemma 9).

Definition 7. For all λ ∈ R and k ∈ Z, we associate a corresponding 2 × 2 Möbius matrix[
Wλ

k

]
with the Möbius transformation Wλ

k (q) (see [7], page 156):

[
Wλ

k

]
:=
[

V λ
k −V λ

k−1

V λ
k−1 −V λ

k−2

]
.

Moreover, let us define the homogeneous coordinates of q ∈ R and of ∞ as 2 ×1 matrices

[
q
]

:=
[

q

1

]
,

[
∞
]

:=
[

1
0

]
.
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Thus, for all q ∈ R, we have

[
Wλ

k

]
·
[
q
]

=
[

qV λ
k − V λ

k−1

qV λ
k−1 − V λ

k−2

]
and

qV λ
k − V λ

k−1
qV λ

k−1 − V λ
k−2

= Wλ
k (q),

[
Wλ

k

]
·
[
∞
]

=
[

V λ
k

V λ
k−1

]
and V λ

k

V λ
k−1

= Wλ
k (∞).

Remark 8.

1. Using (15), we conclude that det
[
Wλ

k

]
= 1. Moreover, for the inverse matrix, we 

obtain
[
Wλ

k

]−1
=
[

−V λ
k−2 V λ

k−1
−V λ

k−1 V λ
k

]
=
[

V λ
−k −V λ

−k−1
V λ

−k−1 −V λ
−k−2

]
=
[
Wλ

−k

]
. (19)

2. The composition of Möbius transformations corresponds to the multiplication of 
Möbius matrices (see [7], page 157)

[
Wλ2

k2
◦ Wλ1

k1

]
=
[
Wλ2

k2

]
·
[
Wλ1

k1

]
. (20)

In the following lemma, let us introduce some useful properties of Wλ
k .

Lemma 9. For all k, l ∈ Z and q ∈ R∗, we have that

Wλ
l (Wλ

k (q)) = Wλ
k+l(q), (21)

Wλ
−k(Wλ

k (q)) = q, (22)

Wλ
−k(q) = 1

Wλ
k

(
1
q

) . (23)

Proof. Firstly, we prove that Wλ
k ◦ Wλ

l = Wλ
k+l. Using (20), we obtain

[
Wλ

l ◦ Wλ
k

]
=
[
Wλ

l

]
·
[
Wλ

k

]

=
[

V λ
l −V λ

l−1

V λ
l−1 −V λ

l−2

]
·
[

V λ
k −V λ

k−1

V λ
k−1 −V λ

k−2

]

=
[

V λ
k V λ

l − V λ
k−1V

λ
l−1 −(V λ

k V λ
l−1 − V λ

k−1V
λ
l−2)

V λ
k−1V

λ
l − V λ

k−2V
λ
l−1 −(V λ

k−1V
λ
l−1 − V λ

k−2V
λ
l−2)

]

=
[

V λ
k+l −V λ

k+l−1

V λ
k+l−1 −V λ

k+l−2

]

=
[
Wλ

k+l

]
,
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where we used the fact that V λ
k V λ

l − V λ
k−1V

λ
l−1 = V λ

k+l, which follows from

V λ
k V λ

l =
l∑

j=0
V λ

k−l+2j = V λ
k−l + V λ

k−l+2 + V λ
k−l+4 + · · · + V λ

k+l.

Secondly, the equality (22) follows directly from (21) for l = −k (recall that Wλ
0 (q) = q). 

Finally, using (19), we get

[
Wλ

−k

]
·
[
q
]

=
[

−V λ
k−2 V λ

k−1

−V λ
k−1 V λ

k

]
·
[

q1

q2

]
=
[

q2V
λ
k−1 − q1V

λ
k−2

q2V
λ
k − q1V

λ
k−1

]
,

[
Wλ

k

]
·
[

1
q

]
=
[

V λ
k −V λ

k−1

V λ
k−1 −V λ

k−2

]
·
[

q2

q1

]
=
[

q2V
λ
k − q1V

λ
k−1

q2V
λ
k−1 − q1V

λ
k−2

]
,

which justifies (23). �
Remark 10. Let us assume that we have some element of bi-infinite sequence (qk) (for 
example q1 = C1

C0
is given by the initial conditions). If we want to get any other element 

of such sequence or the first non-negative zero t1 of uc, we can use the following formulas.

1. For λ ∈ R and i, j, k ∈ Z such that i + j = k, we have that

qk = Wλ
j (qi) and

[
qk

]
=
[
Wλ

j

]
·
[
qi

]
.

2. For λ ∈ (0, 4), we have for the first non-negative zero t1 of uc that

t1 = j + Tλ(Wλ
j (q1)), j = 	t0
, . . . , 0, . . . , �t1�.

The following lemma provides us with the necessary and sufficient condition for Wλ
k to 

be a linear function.

Lemma 11. For k ∈ N, k ≥ 2, we have

Wλ
k (q) = q if and only if ∃ j ∈ {1, . . . , k − 1} : π

ωλ
= k

j
.

Proof. Let us recall that all zeros of the Chebyshev polynomial of the second kind 
Uk−1 = Uk−1(x) of degree (k − 1), k ∈ N, k ≥ 2, are given by

xj = cos jπ

k
, j = 1, . . . , k − 1.

Now, we have that Wλ
k (q) = q if and only if V λ

k−1 = Uk−1
( 2−λ

2
)

= 0, which is true if 
and only if λ = 2 − 2xj for some j ∈ {1, . . . , k − 1}. Moreover, for λ = 2 − 2xj , we have 
that 0 < λ = 4 sin2 jπ

2k < 4 and ωλ = arccos 2−λ
2 = jπ

k , which leads to π
ωλ

= k
j . �
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In the last part of this section, let us consider the following linear problem

{
Δ2u(k − 1) + ak · u(k) = 0, k ∈ N,

u(0) = 0, u(1) = C1,
(24)

where C1 ∈ R, C1 �= 0 and the sequence (ak)k∈N is given by

(ak)k∈N = (λ1, . . . , λ1︸ ︷︷ ︸
k1–times

, λ2, . . . , λ2︸ ︷︷ ︸
k2–times

, . . . , λm, . . . , λm︸ ︷︷ ︸
km–times

, . . . ),

where (kj)j∈N is a sequence of natural numbers, λj ∈ R, j ∈ N. For a solution u of (24), 
let us define the sequence (qk)k∈N by (11). We have that

q1 = C1
0 = ∞,

qk+1 = Wλ1
k (q1) for 1 ≤ k ≤ k1,

qk+k1+1 = Wλ2
k (qk1+1) for 1 ≤ k ≤ k2,

...
qk+km−1+···+k1+1 = Wλm

k (qkm−1+···+k1+1) for 1 ≤ k ≤ km, m ≥ 3,
...

Thus, for all m ∈ N, we obtain qkm+···+k2+k1+1 =
(
Wλm

km
◦ · · · ◦ Wλ2

k2
◦ Wλ1

k1

)
(q1), which 

implies that

[
qkm+···+k2+k1+1

]
=
[
Wλm

km

]
· · ·
[
Wλ2

k2

]
·
[
Wλ1

k1

]
·
[
q1
]
. (25)

Let us note that if λj = λ ∈ R for all j ∈ N then (25) simplifies to

[
qkm+···+k2+k1+1

]
=
[
Wλ

km+···+k2+k1

]
·
[
q1
]
.

Lemma 12. Let AD be n ×n Dirichlet matrix, n ∈ N. Let m ∈ N and let k1, k2, . . . , km ∈ N, 
be such that 

m∑
j=1

kj = n. Moreover, let Λ be n × n diagonal matrix

Λ = diag(λ1, . . . , λ1︸ ︷︷ ︸
k1–times

, λ2, . . . , λ2︸ ︷︷ ︸
k2–times

, . . . , λm, . . . , λm︸ ︷︷ ︸
km–times

), λ1, λ2, . . . , λm ∈ R.

Then

det
(
AD − Λ

)
=
[

1 0
]

·
[
Wλm

km

]
· · ·
[
Wλ2

k2

]
·
[
Wλ1

k1

]
·
[

1
0

]
. (26)
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Proof. According to (21), it is enough to show by induction that if

Λ = diag (a1, a2, . . . , an−1, an) , ai ∈ R, i = 1, . . . , n,

then

detMn =
[

1 0
]

·
[
W an

1

]
·
[
W

an−1
1

]
· · ·
[
W a2

1

]
·
[
W a1

1

]
·
[

1
0

]
, (27)

where Mn is n ×n matrix Mn := AD−Λ. It is straightforward to verify that the equality 
(27) holds for n = 1 and n = 2. Indeed, we have that

[
1 0

]
·
[
W a1

1

]
·
[

1
0

]
= 2 − a1 = detM1,

[
1 0

]
·
[
W a2

1

]
·
[
W a1

1

]
·
[

1
0

]
= (2 − a1)(2 − a2) − 1 = detM2.

Now, let us assume that (27) holds for n and n − 1, n ∈ N, n ≥ 2. Let us denote

B =
[

b1,1 b1,2
b2,1 b2,2

]
:=
[
W

an−1
1

]
· · ·
[
W a2

1

]
·
[
W a1

1

]

and expand the determinant detMn+1 along the last row of Mn+1

detMn+1 = (2 − an+1) detMn − detMn−1

= (2 − an+1)
[

1 0
]

·
[
W an

1

]
· B ·

[
1
0

]
−
[

1 0
]

· B ·
[

1
0

]

= (2 − an+1) ((2 − an)b1,1 − b2,1) − b1,1. (28)

Since

[
W

an+1
1

]
·
[
W an

1

]
=
[

(2 − an+1)(2 − an) − 1 −(2 − an+1)
2 − an −1

]
,

we obtain using (28) that

[
1 0

]
·
[
W

an+1
1

]
·
[
W an

1

]
· B ·

[
1
0

]
= ((2 − an+1)(2 − an) − 1)b1,1 − (2 − an+1)b2,1

= detMn+1,

which implies that (27) holds for n + 1. �
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Remark 13. Let u be the solution of the initial value problem (24). Then using (25) and 
(26) we deduce that

u(n + 1) = u(km + · · · + k1 + 1) = det
(
AD − Λ

)
.

Moreover, if λj = λ ∈ R for j = 1, . . . , m then (cf. (14))

u(n + 1) = V λ
n =

[
1 0

]
·
[
Wλ

n

]
·
[

1
0

]
= det

(
AD − λI

)
.

3. The localization of generalized zeros of a solution of the semi-linear problem

In this section, we deal with the semi-linear initial value problem
{

Δ2u(k − 1) + αu+(k) − βu−(k) = 0, k ∈ Z,

u(0) = 0, u(1) = C1,
(29)

where u±(k) = max{±u(k), 0}, C1 ∈ R, C1 �= 0 and (α, β) ∈ D,

D := ((0, 4) × (0,+∞)) ∪ ((0,+∞) × (0, 4)).

Let u be a solution of (29). Then u is also the solution of (24) if we take (ak)k∈N in the 
following form

ak =
{

α for u(k) ≥ 0,

β for u(k) < 0.

Let i ∈ Z be a generalized zero of a solution u of the initial value problem (29). Moreover, 
let j ∈ Z : j > i, such that for all k = i, . . . , j, u(k) is non-negative (or non-positive) and 
(see Fig. 7)

u(j)u(j + 1) < 0 or u(j) = 0.

This means that i and (j + 1) are two consecutive generalized zeros of u if u(j) �= 0. 
In the case of u(j) = 0, i and j are two consecutive generalized zeros of u. Since for all 

Fig. 7. Anchoring of two positive semi-waves by one negative semi-wave uc
i,j of length 3 for 0 < α, β < 4.
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Fig. 8. Positive and negative semi-waves of a solution of the initial value problem (29) for 0 < α, β < 4 and 
C1 > 0.

k = i, . . . , j, u(k) is non-negative (or non-positive) then u solves the difference equation 
in (9) with λ = α (or λ = β) if u(i − 1) is negative (or u(i − 1) is positive). Also, let us 
note that u(i − 1)u(j + 1) is strictly positive. Now, we define the continuous extension
uc

i,j of u on the interval [i − 1, j + 1] as

uc
i,j(t) :=

{
u(i − 1)Fα(1 − (t − i + 1)) + u(i)Fα(t − i + 1) for u(i − 1) < 0,

u(i − 1)F β(1 − (t − i + 1)) + u(i)F β(t − i + 1) for u(i − 1) > 0,

where functions Fα and F β are given by Fλ (defined in Lemma 1) for λ = α and λ = β, 
respectively. By the length of the continuous extension uc

i,j of u we mean the length of 
the interval [i − 1, j + 1], which reads j − i + 2.

Finally, we say that the continuous extension uc
i,j of u is a positive (negative) semi-wave

of u if u(k) is non-negative (or non-positive) for all k = i, . . . , j (see Fig. 7). See also 
Fig. 8 for two positive semi-waves uc

0,5 and uc
7,11 on intervals [−1, 6] and [6, 12], and two 

negative semi-waves uc
6,6 and uc

12,13 on intervals [5, 7] and [11, 14].
Now, let us restrict ourselves to the case 0 < α, β < 4.

Lemma 14. Let 0 < α, β < 4 and let u be a solution of the initial value problem (29). 
Moreover, let uc

i,j be a negative semi-wave of u defined on [i − 1, j + 1]. Then

j = i +
⌊
T β(qi) + π

ωβ

⌋
− 1,

where qi = u(i)
u(i−1) . The length of the negative semi-wave uc

i,j is given by 
⌊
T β(qi) + π

ωβ

⌋
+1.

Proof. The continuous extension uc
i,j has exactly two zeros s1 and s2 (see Fig. 7):

s1 = i − 1 + T β(qi), s2 = s1 + π

ωβ
,

where qi = u(i)
u(i−1) ≤ 0. Since j = �s2�, we get

j =
⌊
s1 + π

ωβ

⌋
=
⌊
i − 1 + T β(qi) + π

ωβ

⌋
= i +

⌊
T β(qi) + π

ωβ

⌋
− 1. �
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Now, let 0 < α, β < 4 and C1 > 0 and let u be a solution u of initial value problem 
(29) (see Fig. 8). We show how to describe all positive generalized zeros of u. For this 
purpose, let us define recurrently two sequences of functions (pj)j∈N and (ϑj)j∈N defined 
on (0, 4) × (0, 4) in the following way

p1(α, β) :=
⌊

π
ωα

⌋
, ϑ1(α, β) := Wα

p1(α,β)(∞),

p2(α, β) :=
⌊
T β(ϑ1(α, β)) + π

ωβ

⌋
, ϑ2(α, β) := W β

p2(α,β)(ϑ1(α, β)),

p3(α, β) :=
⌊
Tα(ϑ2(α, β)) + π

ωα

⌋
, ϑ3(α, β) := Wα

p3(α,β)(ϑ2(α, β)),

p4(α, β) :=
⌊
T β(ϑ3(α, β)) + π

ωβ

⌋
, ϑ4(α, β) := W β

p4(α,β)(ϑ3(α, β)),
...

...

(30)

Since C1 > 0, we have the positive semi-wave uc
0,p1 of u, which is defined on [−1, p1 + 1]

and has two zeros t0 = 0 and t1 = π
ωα

. Moreover, we have p1 = �t1� ≤ t1 < p1 + 1 and 
ϑ1 = qp1+1 < 0 if u(p1) > 0 or ϑ1 = qp1+1 = ∞ if u(p1) = 0. Thus, we obtain

t1 = �t1� + Tα
(
q�t1�+1

)
= p1 + Tα(qp1+1) = p1 + Tα(ϑ1)

and the first positive generalized zero of u is z1 = p1 + 1 if ϑ1 < 0 or z1 = p1 = t1 if 
ϑ1 = ∞. The next semi-wave of u is the negative semi-wave uc

	s1
,�s2�, which has two 
zeros s1 and s2 and is defined on [	s1
 − 1, �s2� + 1]. Moreover, we have

s1 = �t1� + T β
(
q�t1�+1

)
= p1 + T β (ϑ1) and s2 = s1 + π

ωβ

and thus, we obtain �s2� =
⌊
s1 + π

ωβ

⌋
=
⌊
p1 + T β (ϑ1) + π

ωβ

⌋
= p1 + p2. This implies 

that

qp2+p1+1 = W β
p2(p1 + 1) = W β

p2(ϑ1) = W β
p2(W

α
p1(∞)) = ϑ2

and that

s2 = �s2� + T β
(
q�s2�+1

)
= p1 + p2 + T β (qp2+p1+1) = p1 + p2 + T β (ϑ2) .

The second positive generalized zero of u is z2 = p1 +p2+1 if ϑ2 < 0 or z2 = p1+p2 = s2
if ϑ2 = ∞. The next semi-wave of u is the positive semi-wave uc

	t2
,�t3�, which has two 
zeros t2 and t3 and is defined on [	t2
 − 1, �t3� + 1]. We have that t3 − t2 = π

ωα
and

t2 = �s2� + Tα
(
q�s2�+1

)
= p1 + p2 + Tα (ϑ2) ,

ϑ3 = qp3+p2+p1+1 = Wα
p3(W

β
p2(W

α
p1(∞))),

t3 = �t3� + Tα
(
q�t3�+1

)
= p1 + p2 + p3 + Tα(ϑ3).
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The third positive generalized zero of u is z3 = p1 + p2 + p3 + 1 if ϑ3 < 0 or z3 =
p1 + p2 + p3 = t3 if ϑ3 = ∞.

Lemma 15. Let 0 < α, β < 4 and let u be a solution of (29) with C1 > 0. For k ≥ 0, u =
u(k) consists of infinitely many positive and negative semi-waves. The m-th semi-wave, 
m ∈ N, is positive (negative) one with zero points tm−1 and tm (sm−1 and sm) if m is 
odd (even), where

t0 = 0, tm =
m∑

j=1
pj(α, β) + Tα(ϑm(α, β)), sm =

m∑

j=1
pj(α, β) + T β(ϑm(α, β)).

Moreover, all positive generalized zeros of u form a sequence (zm)m∈N such that

zm =
m∑

j=1
pj(α, β) + 1 if ϑm(α, β) �= ∞, zm =

m∑

j=1
pj(α, β) if ϑm(α, β) = ∞.

Proof. We proceed via an induction. Thus, let uc
	tm−1
,�tm� be a positive semi-wave of u, 

m ∈ N is odd, which has two zero points tm−1 and tm such that

tm−1 =
m−1∑

j=1
pj + Tα(ϑm−1), tm =

m∑

j=1
pj + Tα(ϑm).

The next semi-wave of u is the negative semi-wave uc
	sm
,�sm+1�, which has two zeros sm

and sm+1 and is defined on [	sm
 − 1, �sm+1� + 1]. Moreover, we have

sm = �tm� + T β
(
q�tm�+1

)
=

m∑

j=1
pj + T β (ϑm) and sm+1 = sm + π

ωβ

and thus, we obtain �sm+1� =
⌊
sm + π

ωβ

⌋
=
⌊
p1 + · · · + pm + T β (ϑm) + π

ωβ

⌋
= p1 +

· · · + pm + pm+1. This implies that

qpm+1+pm+···+p1+1 = W β
pm+1(pm + · · · + p1 + 1) = W β

pm+1(ϑm) = ϑm+1

and that

sm+1 = �sm+1�+T β
(
q�sm+1�+1

)
=

m+1∑

j=1
pj +T β

(
qpm+1+···+p1+1

)
=

m+1∑

j=1
pj +T β (ϑm+1) .

The next positive generalized zero of u is zm+1 = p1 + · · · + pm+1 + 1 if ϑm+1 < 0 or 
zm+1 = p1 + · · · + pm+1 = sm+1 if ϑm+1 = ∞.
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For positive generalized zeros of u, we obtain

zm = 	tm
 = 	sm
 =
m∑

j=1
pj + 1 if ϑm �= ∞,

zm = tm = sm =
m∑

j=1
pj if ϑm = ∞. �

Now, let us turn our attention to the case of 0 < α < 4 and β ≥ 4.

Lemma 16. Let 0 < α < 4 ≤ β and let u be a solution of the initial value problem (29). 
Moreover, let uc

i,j be a negative semi-wave of u defined on [i − 1, j + 1]. Then

j = i + �Tα(qi) + Tα(2 − β)� , (31)

where qi = u(i)
u(i−1) . The length of the negative semi-wave uc

i,j is given by �Tα(qi) +
Tα(2 − β)� + 2.

Proof. Recall that

qi+1 = 2 − β − 1
qi

.

Now, let us distinguish the following four disjoint cases:

1. If qi = 0 then qi+1 = ∞ and qi+2 = 2 − β − 1
qi+1

= 2 − β < 0. Thus, in this case, we 
have that j = i + 1 (see Fig. 9, left).

2. If qi < 0 and qi+1 = 0 then qi+2 = ∞, u(j + 1) > 0 and thus, we get j = i + 1 (see 
Fig. 9, right).

3. If qi < 0 and qi+1 < 0 then j = i (see Fig. 10, left).
4. If qi < 0 and qi+1 > 0 then qi+2 = 2 − β − 1

qi+1
< 0 and thus, j = i + 1 (see Fig. 10, 

right).

Now, observe that qi+1 = 0 if and only if 2 − β = 1
qi

, i.e., if and only if Tα(2 − β) =
Tα
(

1
qi

)
= 1 − Tα(qi). Thus, for qi < 0, we have that

1. qi+1 = 0 if and only if Tα(qi) + Tα(2 − β) = 1,
2. qi+1 < 0 if and only if 0 < Tα(qi) + Tα(2 − β) < 1,
3. qi+1 > 0 if and only if 1 < Tα(qi) + Tα(2 − β) < 2.

Which implies that for qi < 0, we obtain

j = i + �Tα(qi) + Tα(2 − β)� . (32)
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Fig. 9. Different anchoring of two positive semi-waves with one negative semi-wave uc
i,j for 0 < α < 4 ≤ β: 

qi = 0, qi+1 = ∞, qi+2 < 0 (left) and qi < 0, qi+1 = 0, qi+2 = ∞ (right).

Fig. 10. Different anchoring of two positive semi-waves with one negative semi-wave uc
i,j for 0 < α < 4 ≤ β: 

qi < 0, qi+1 < 0 (left) and qi < 0, qi+1 > 0, qi+2 < 0 (right).

In the case of qi = 0, we have �Tα(qi) + Tα(2 − β)� = �1 + Tα(2 − β)� = 1, since 
2 − β < 0. Thus, (32) holds also in this case. �

For 0 < α < 4 ≤ β and C1 > 0, we have to extend the definition of p2k, k ∈ N. If 
ϑ2k−1 < 0 then we have one positive semi-wave uc

�,i and one negative semi-wave uc
i,j such 

that (see Fig. 9, right, and Fig. 10)

qi = ϑ2k−1.

We define p2k to be equal to j − i + 1 (see (31))

p2k(α, β) := �Tα(ϑ2k−1(α, β)) + Tα(2 − β)� + 1. (33)

If ϑ2k−1 = ∞ then we have one positive semi-wave uc
�,i and one negative semi-wave uc

i,j

such that (see Fig. 9, left)

qi+1 = ϑ2k−1 = ∞, qi = 0.

In such a case, we define p2k to be equal to j − i (see (31))

p2k(α, β) := �Tα(qi) + Tα(2 − β)� = �Tα(0) + Tα(∞) + Tα(2 − β)�
= �Tα(ϑ2k−1(α, β)) + Tα(2 − β)� + 1,

since Tα(0) = 1 and Tα(∞) = 0. Thus, in this case, we define p2k as in (33).
For 0 < α < 4 ≤ β and C1 < 0, we have to extend the definition of p2k+1, k ∈ N ∪{0}, 

in a similar way as in the case of C1 > 0 (cf. (33)):
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p2k+1(α, β) := �Tα(ϑ2k(α, β)) + Tα(2 − β) + 1� . (34)

In the following definition, we collect all partial definitions (30), (33) and (34) and we 
extend them also to the case of 0 < β < 4 ≤ α.

Definition 17. For all j ∈ Z, let us denote

φj :=
{

α for j odd,
β for j even.

On the domain D = ((0, 4) × (0, +∞)) ∪ ((0, +∞) × (0, 4)), let us define sequences of 
functions (pi) and (ϑi), which are given recurrently for i ∈ N in the following way

ϑ0(α, β) := ∞,

pi(α, β) :=

⎧
⎨
⎩

⌊
Tφi(ϑi−1(α, β)) + π

ωφi

⌋
for φi < 4,

⌊
Tφi+1(ϑi−1(α, β)) + Tφi+1 (2 − φi) + 1

⌋
for φi ≥ 4,

ϑi(α, β) := Wφi

pi(α,β)(ϑi−1(α, β)).

Moreover, for all k ∈ N, let us define function Pk : D → N and composite functions 
W±

k : R∗ → R∗ as

Pk(α, β) :=
k∑

i=1
pi(α, β), W+

k := Wφk

pk(α,β) ◦ · · · ◦ Wφ2
p2(α,β) ◦ Wφ1

p1(α,β),

W-
k := W

φk+1
pk(β,α) ◦ · · · ◦ Wφ3

p2(β,α) ◦ Wφ2
p1(β,α).

Remark 18. Using notation in Definition 17, we end up with the following relations

ϑk(α, β) = W+
k(∞), ϑk(β, α) = W-

k(∞).

Lemma 19. Let (α, β) ∈ D and let u be a solution of the initial value problem (29) with 
C1 > 0. All generalized zeros of u form a sequence (zm)m∈Z, where

z−i = −Pi(β, α), zi =
{

Pi(α, β) + 1 if ϑi(α, β) �= ∞,

Pi(α, β) if ϑi(α, β) = ∞,
i ∈ N.

Moreover, the solution u consists of infinitely many positive and negative semi-waves.
For 0 < α < 4 and β > 0, all zero points of all positive semi-waves form a sequence 

(tm)m∈Z, where

t−i = −Pi(β, α) −Tα(ϑi(β, α)), t0 = 0, ti = Pi(α, β) +Tα(ϑi(α, β)), i ∈ N.
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Fig. 11. Positive and negative semi-waves of a solution of the initial value problem (29) for 0 < α, β < 4 and 
C1 > 0 (0 = s0 = t0 < t1 < s1 < s2 < t2 < s3 < t3 < t4 < s4).

The m-th semi-wave, m ∈ Z \ {0}, is positive one if and only if m > 0 is odd or m < 0
is even and it has exactly two zero points tm−1 and tm for 0 < α < 4 and β > 0.

For α > 0 and 0 < β < 4, all zero points of all negative semi-waves form a sequence 
(sm)m∈Z, where

s−i = −Pi(β, α)−T β(ϑi(β, α)), s0 = 0, si = Pi(α, β)+T β(ϑi(α, β)), i ∈ N.

The m-th semi-wave, m ∈ Z \ {0}, is negative one if and only if m > 0 is even or m < 0
is odd and it has exactly two zero points sm−1 and sm for α > 0 and 0 < β < 4.

Proof. If u is a solution of (29) with u(1) = C1 > 0 then v(k) := −u(−k), k ≥ 0, solves 
the initial value problem

{
Δ2v(k − 1) + βv+(k) − αv−(k) = 0, k ∈ N,

v(0) = 0, v(1) = C1.

For 0 < α < 4 and β > 0, negative zeros t−i of positive semi-waves of u are determined 
by positive zeros s̃i of negative semi-waves of v, thus

t−i = −s̃i, s̃i = Pi(β, α) + Tα(ϑi(β, α)), i ∈ N.

Moreover, in this case, we have that

zi = 	ti
 = 	Pi(α, β) + Tα(ϑi(α, β))
 =
{

Pi(α, β) + 1 if ϑi(α, β) �= ∞,

Pi(α, β) if ϑi(α, β) = ∞,

z−i = 	t−i
 = 	−Pi(β, α) − Tα(ϑi(β, α))
 = −Pi(β, α).

For α > 0 and 0 < β < 4, negative zeros s−i of negative semi-waves of u are determined 
by positive zeros t̃i of positive semi-waves of v, thus

s−i = −t̃i, t̃i = Pi(β, α) + T β(ϑi(β, α)), i ∈ N.

Finally, in this case, we obtain
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Fig. 12. Positive and negative semi-waves of a solution of the initial value problem (29) for 0 < α, β < 4 and 
C1 < 0.

zi = 	si
 = 	Pi(α, β) + T β(ϑi(α, β))
 =
{

Pi(α, β) + 1 if ϑi(α, β) �= ∞,

Pi(α, β) if ϑi(α, β) = ∞,

z−i = 	s−i
 = 	−Pi(β, α) − T β(ϑi(β, α))
 = −Pi(β, α). �
Remark 20. If u is a solution of (29) with u(1) = C1 < 0 (see Fig. 12) then v(k) := −u(k)
solves the initial value problem

{
Δ2v(k − 1) + βv+(k) − αv−(k) = 0, k ∈ Z,

v(0) = 0, v(1) = −C1 > 0.

For α > 0 and 0 < β < 4, zeros t̃i of positive semi-waves of v are zeros si of negative 
semi-waves of u

s−i = t̃−i = −Pi(α, β) − T β(ϑi(α, β)), s0 = t̃0 = 0,

si = t̃i = Pi(β, α) + T β(ϑi(β, α)), i ∈ N.

For 0 < α < 4 and β > 0, zeros s̃i of negative semi-waves of v are zeros ti of positive 
semi-waves of u

t−i = s̃−i = −Pi(α, β) − Tα(ϑi(α, β)), t0 = s̃0 = 0,

ti = s̃i = Pi(β, α) + Tα(ϑi(β, α)), i ∈ N.

Example 21. In this example, we show how to obtain all pairs (α, β) ∈ (0, 4) × (0, 4) such 
that the corresponding solution of the initial value problem (29) satisfies the following 
sign conditions (see Fig. 11)

u(k) ≥ 0 for k = 1, 2, 3, 4 and k = 8, 9, 10, 11, 12, (35)

u(k) ≤ 0 for k = 5, 6, 7 and k = 13. (36)

These sign conditions mean that p1(α, β) = 4, p2(α, β) = 3, p3(α, β) = 5. For 0 < α, 
β < 4, we have that

p1(α, β) =
⌊

π
ωα

⌋
, p2(α, β) =

⌊
π
ωβ

+ T β(W+
1(∞))

⌋
,

p3(α, β) =
⌊

π
ωα

+ Tα(W+
2(∞))

⌋
,
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Fig. 13. Set of all pairs (α, β) ∈ (0, 4) × (0, 4) for which the corresponding solution u of the initial value 
problem (29) satisfies sign conditions (35) and (36) (left) and those pairs (α, β) from this set for which 
u(12) = 0 (black curve, right).

and

W+
1(∞) = V α

4
V α

3
, W+

2(∞) = V α
4 V β

3 − V α
3 V β

2

V α
4 V β

2 − V α
3 V β

1
,

since

[
W+

1

]
=
[
Wα

4

]
=
[

V α
4 −V α

3

V α
3 −V α

2

]
,

[
W+

2

]
=
[
W β

3

]
·
[
Wα

4

]
=
[

V β
3 −V β

2

V β
2 −V β

1

]
·
[

V α
4 −V α

3

V α
3 −V α

2

]

=
[

V α
4 V β

3 − V α
3 V β

2 V α
2 V β

2 − V α
3 V β

3

V α
4 V β

2 − V α
3 V β

1 V α
2 V β

1 − V α
3 V β

2

]
.

Thus, for 0 < α, β < 4, the sign conditions (35) and (36) read (see Fig. 13, left)

⌊
π

ωα

⌋
= 4 ∧

⌊
π
ωβ

+ T β
(

V α
4

V α
3

)⌋
= 3 ∧

⌊
π

ωα
+ Tα

(
V α
4 V β

3 −V α
3 V β

2
V α
4 V β

2 −V α
3 V β

1

)⌋
= 5.

Moreover, the second zero t3 of the second positive semi-wave uc
8,12 has the following 

form

t3 = p1(α, β) + p2(α, β) + p3(α, β) + Tα(W+
3(∞))

= 12 + Tα

(
V α

5 V α
4 V β

3 − (V α
5 V α

3 + V α
4 V β

4 )V β
2 + V α

4 V α
3 V β

1

V α
4 V α

4 V β
3 − 2V α

4 V α
3 V β

2 + V α
3 V α

3 V β
1

)
,

since
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[
W+

3

]
=
[
Wα

5

]
·
[
W β

3

]
·
[
Wα

4

]
=
[

V α
5 −V α

4

V α
4 −V α

3

]
·
[
W+

2

]
.

In addition, the condition u(12) = 0 gives us that t3 = 12, which means that W+
3(∞) = ∞

or that (see the black curve in Fig. 13, right)

V α
4 V α

4 V β
3 − 2V α

4 V α
3 V β

2 + V α
3 V α

3 V β
1 = 0.

4. The Fučík spectrum of the Dirichlet matrix

In this section, we provide the description of the Fučík spectrum Σ (AD) of the Dirichlet 
matrix AD, i.e. we describe the set of all pairs (α, β) ∈ R2 such that the problem

ADu = αu+ − βu−, (37)

has a non-trivial solution u = [u(1), . . . , u(n)]t, n ∈ N, n ≥ 2. The eigenvalues of AD are 
of the form

λD
j = 4 sin2 (j + 1)π

2(n + 1) , j = 0, . . . , n − 1.

Thus, all pairs (λD
j , λ

D
j), j = 0, . . . , n − 1, belong to the Fučík spectrum Σ (AD) since for 

α = β = λ, the problem (37) is linear one ADu = λu. Now, we apply general results in 
[4] in the case of the Dirichlet matrix AD. Due to the symmetry of the matrix AD, the 
inadmissible set Π (AD) for the Fučík spectrum Σ(AD) (i.e. Π (AD)∩Σ (AD) = ∅) has the 
following form (see Corollary 4.7 in [4])

Π
(
AD) =

n⋃

i=0
Si,

where S0 := (−∞, λD
0) × (−∞, λD

0), Si := (λD
i−1, λ

D
i ) × (λD

i−1, λ
D
i ) for i = 1, . . . , n − 1, 

Sn := (λD
n−1, +∞) × (λD

n−1, +∞). Moreover, λD
0 is a principal eigenvalue of AD, which 

implies that

{
(α, β) ∈ R2 :

(
α − λD

0
) (

β − λD
0
)
< 0
}

∩ Σ
(
AD) = ∅,

i.e. both shifted quadrants are inadmissible sets for the Fučík spectrum Σ (AD) (see 
Fig. 14). Thus, it is enough to investigate the Fučík spectrum Σ (AD) only on the set 
D = ((0, 4) × (0, +∞)) ∪ ((0, +∞) × (0, 4)).

Recall that a solution u of (1) has a generalized zero at k ∈ T if u(k) = 0 or u(k −
1)u(k) < 0. Since the boundary value problem (1) is equivalent to the Fučík spectrum 
problem (37), we conclude that
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Fig. 14. Inadmissible areas for the Fučík spectrum Σ 
(
AD) (left, n = 5) and the particular Fučík curves C±

k

(black curves) of the Fučík spectrum Σ 
(
AD) (right, n = 5).

Σ
(
AD) =

n−1⋃

k=0
(C+

k ∪ C-
k) ,

where

C±
k :=

{
(α, β) ∈ R2 : the problem (1) has a non-trivial solution u

with exactly k generalized zeros on T and u(1) ≷ 0
}
.

The Fučík curves C±
0 are trivial ones

C+
0 =

{
(α, β) : α = λD

0
}
, C-

0 =
{
(α, β) : β = λD

0
}
,

since the corresponding non-trivial solutions u(k) = C sin kπ
n+1 , C �= 0, do not change 

sign in T. According to Remark 20, we deduce that

C-
k = {(α, β) ∈ D : (β, α) ∈ C+

k} ,

and thus, it is enough to focus only on Fučík curves C+
k for k = 1, . . . , n −1. The following 

theorem provides us with the first two possibilities how to describe these curves C+
k (see 

Figs. 15 and 16).

Theorem 22. For k = 1, . . . , n − 1, n ∈ N, n ≥ 2, we have that

C+
k = {(α, β) ∈ (0, 4) × (0,+∞) : Pk+1(α, β) + Tα(ϑk+1(α, β)) = n + 1} ∪ (38)

{
(α, β) ∈ (0,+∞) × (0, 4) : Pk+1(α, β) + T β(ϑk+1(α, β)) = n + 1

}
.

Moreover, if we denote
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Fig. 15. The set Ω+
1 as the grey region for n = 5 (left) and the first non-trivial Fučík curve C+

1 as the black 
curve (right) due to Theorem 22.

Ω+
k := {(α, β) ∈ D : Pk+1(α, β) = n + 1} , k = 1, . . . , n − 1,

then we have that

C+
k =

{
(α, β) ∈ Ω+

k : W+
k+1(∞) = ∞

}
. (39)

Proof. Let (α, β) ∈ D and let u be a non-trivial solution of the initial value problem 
(29) with C1 > 0. Using Lemma 19, we conclude that u has k generalized zeros zi for 
i = 1, . . . , k. Moreover, for 0 < α < 4 and β > 0, we have that tk+1 = Pk+1(α, β) +
Tα(ϑk+1(α, β)) is the smallest zero of a positive semi-wave, which is greater than k-th 
generalized zero zk. Thus, the solution u has exactly k generalized zeros on T and u(n +
1) = 0 if and only if tk+1 = n + 1, i.e.

Pk+1(α, β) + Tα(ϑk+1(α, β)) = n + 1. (40)

The equation (40) is satisfied if and only if Pk+1(α, β) = n + 1 and Tα(ϑk+1(α, β)) = 0, 
which implies that W+

k+1(∞) = ϑk+1(α, β) = ∞. On the other hand, for α > 0 and 
0 < β < 4, we have that sk+1 = Pk+1(α, β) + T β(ϑk+1(α, β)) is the smallest zero of a 
negative semi-wave, which is greater than k-th generalized zero zk. Thus, the solution 
u has exactly k generalized zeros on T and u(n + 1) = 0 if and only if sk+1 = n + 1, 
i.e.

Pk+1(α, β) + T β(ϑk+1(α, β)) = n + 1. (41)

The equation (41) is satisfied if and only if Pk+1(α, β) = n + 1 and T β(ϑk+1(α, β)) = 0, 
which implies that W+

k+1(∞) = ϑk+1(α, β) = ∞. �
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Fig. 16. The sets Ω+
k as grey regions for n = 9 (left) and the Fučík curves C+

k as black curves (right) due to 
Theorem 22.

Remark 23.

1. The description (38) is suitable for the numerical approximation of C+
k (see Fig. 16, 

right). For fixed β ≥ 4, we determine numerically α ∈ (0, 4) such that (40) is satisfied. 
Then for fixed β ∈ (0, 4), we determine α > 0 such that (41) is satisfied.

2. The condition W+
k+1(∞) = ∞ in the description (39) can be equivalently written as

det
(
AD − Λ

)
= 0, (42)

where

Λ = diag(
p1(α, β)–times︷ ︸︸ ︷

α, α, . . . . . . , α,

p2(α, β)–times︷ ︸︸ ︷
β, β, . . . . . . , β, . . . ,

pk(α, β)–times︷ ︸︸ ︷
α, α, . . . . . . , α,

(pk+1(α, β) − 1)–times︷ ︸︸ ︷
β, β, . . . . . . . . . , β )

for k odd and

Λ = diag(α, α, . . . . . . , α︸ ︷︷ ︸
p1(α, β)–times

, β, β, . . . . . . , β︸ ︷︷ ︸
p2(α, β)–times

, . . . , β, β, . . . . . . , β︸ ︷︷ ︸
pk(α, β)–times

, α, α, . . . . . . . . . , α︸ ︷︷ ︸
(pk+1(α, β) − 1)–times

)

for k even. Indeed, for k odd, the condition W+
k+1(∞) = ∞ reads

[
0 1

]
·
[
W β

pk+1(α,β)

]
·
[
Wα

pk(α,β)

]
· · ·
[
W β

p2(α,β)

]
·
[
Wα

p1(α,β)

]
·
[

1
0

]
= 0,

[
1 0

]
·
[
W β

pk+1(α,β)−1

]
·
[
Wα

pk(α,β)

]
· · ·
[
W β

p2(α,β)

]
·
[
Wα

p1(α,β)

]
·
[

1
0

]
= 0,
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which is exactly (42) due to Lemma 12. See Figs. 15 and 16 for the sets Ω+
k which 

contain particular Fučík curves C+
k according to the description (39).

Example 24. In this example, we focus on the first non-trivial Fučík curve C+
1. Using 

Theorem 22, we conclude that (see Fig. 15, left)

Ω+
1 = {(α, β) ∈ D : p1(α, β) + p2(α, β) = n + 1} ,

where

p1(α, β) =

⎧
⎪⎪⎨
⎪⎪⎩

⌊
π

ωα

⌋
for 0 < α < 4, β > 0,

⌊
T β(2 − α) + 1

⌋
for α ≥ 4, 0 < β < 4,

p2(α, β) =

⎧
⎪⎪⎨
⎪⎪⎩

⌊
T β
(
Wα

p1(α,β)(∞)
)

+ π
ωβ

⌋
for 0 < β < 4, α > 0,

⌊
Tα
(
Wα

p1(α,β)(∞)
)

+ Tα(2 − β) + 1
⌋

for β ≥ 4, 0 < α < 4.

Let us note that for α ≥ 4 and 0 < β < 4, p1(α, β) = 1 and thus, the condition 
p1(α, β) + p2(α, β) = n + 1 simplifies into

1 +
⌊
T β(2 − α) + π

ωβ

⌋
= n + 1.

Moreover, for the first non-trivial Fučík curve C+
1, we obtain that (see Fig. 15, right)

C+
1 = {(α, β) ∈ (0, 4) × (0,+∞) : p1(α, β) + p2(α, β) + Tα(W+

2(∞)) = n + 1} ∪
{
(α, β) ∈ (0,+∞) × (0, 4) : p1(α, β) + p2(α, β) + T β(W+

2(∞)) = n + 1
}

= {(α, β) ∈ Ω+
1 : W+

2(∞) = ∞} .

Finally, since W+
2 = W β

p2(α,β) ◦Wα
p1(α,β), the condition W+

2(∞) = ∞ can be reformulated 
as (see Remark 23)

[
0 1

]
·
[
W β

p2(α,β)

]
·
[
Wα

p1(α,β)

]
·
[

1
0

]
= 0,

V α
p1(α,β)V

β
p2(α,β)−1 − V α

p1(α,β)−1V
β
p2(α,β)−2 = 0.

In the following corollary we introduce analytical description of some points belonging 
to the particular Fučík curves C±

k.
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Fig. 17. The non-trivial solution u of (1) for (α, β) ∈ C+
6 (n = 16, i = 4, j = 3, k = 6) with six generalized 

zeros of u on T (z1 < z2 < z3 < z4 = z̃−3 < z̃−2 < z̃−1) and six zeros of positive semi-waves strictly 
between 0 and n + 1 (t1 < t2 < t3 < t4 = t̃−3 < t̃−2 < t̃−1).

Corollary 25. Let k, n ∈ N be such that k ≤ n − 1, n ≥ 3. Moreover, let k1, k2 ∈ N, 
k1, k2 ≥ 2 and denote

ξk1 := 4 sin2 π

2k1
, ξk2 := 4 sin2 π

2k2
.

1. If k is odd and k+1
2 k1 + k+1

2 k2 = n + 1 then (ξk1 , ξk2) ∈ C+
k = C-

k.
2. If k is even and 

(
k
2 + 1

)
k1 + k

2k2 = n + 1 then (ξk1 , ξk2) ∈ C+
k.

3. If k is even and k
2k1 +

(
k
2 + 1

)
k2 = n + 1 then (ξk1 , ξk2) ∈ C-

k.

Proof. For α = ξk1 and β = ξk2 , we have 0 < α, β < 4 and using Lemma 11, we obtain

π

ωα
= k1, Wα

k1(q) = q,
π

ωβ
= k2, W β

k2
(q) = q.

Moreover, for i = 1, . . . , k + 1, we have that

ϑi(α, β) = ∞, pi(α, β) =
{

k1 for i odd,
k2 for i even.

Indeed, Tα(∞) = T β(∞) = 0 and Wα
k1(∞) = W β

k2(∞) = ∞. Thus, we obtain that

Pk+1(α, β) =
k+1∑

i=1
pi(α, β) =

{
k+1
2 (k1 + k2) for k odd,

k
2 (k1 + k2) + k1 for k even.

The statement now follows from Theorem 22. �
The next theorem provides a different description of Fučík curves C±

k than Theorem 22. 
We reconstruct the non-trivial solution of (1) from both end points of T̂: from t = 0 to 
the right and from t = n + 1 to the left. Thus, we consider solutions of two initial value 
problems at t = 0 and at t = n + 1 and we require that their selected zero points of 
positive (or negative) semi-waves coincide (see Fig. 17 and note that t4 = t̃−3).

Theorem 26. Let k, n ∈ N be such that k ≤ n − 1, n ≥ 2. Moreover, let i, j ∈ N be such 
that i + j = k + 1.



92 I. Looseová, P. Nečesal / Linear Algebra and its Applications 553 (2018) 58–103

1. If k is odd then

C+
k =

{
(α, β) ∈ (0, 4) × (0,+∞) : Pi(α, β) + Pj(β, α)

+ Tα(ϑi(α, β)) + Tα(ϑj(β, α)) = n + 1
}

∪
{
(α, β) ∈ (0,+∞) × (0, 4) : Pi(α, β) + Pj(β, α)

+ T β(ϑi(α, β)) + T β(ϑj(β, α)) = n + 1
}
.

2. If k is even then

C+
k =

{
(α, β) ∈ (0, 4) × (0,+∞) : Pi(α, β) + Pj(α, β)

+ Tα(ϑi(α, β)) + Tα(ϑj(α, β)) = n + 1
}

∪
{
(α, β) ∈ (0,+∞) × (0, 4) : Pi(α, β) + Pj(α, β)

+ T β(ϑi(α, β)) + T β(ϑj(α, β)) = n + 1
}
.

Proof. Let (α, β) ∈ D, let u be the solution of the initial value problem (29) with C1 > 0
and let v be the solution of the following initial value problem

{
Δ2v(k − 1) + αv+(k) − βv−(k) = 0, k ∈ Z,

v(n + 1) = 0, v(n) = C2,

where C2 �= 0.
Firstly, let us consider 0 < α < 4 and β > 0. According to Lemma 19, we conclude 

that

ti = Pi(α, β) + Tα(ϑi(α, β)) (43)

is the zero point of a positive semi-wave of u such that u has exactly (i − 1) generalized 
zeros

zm =
{

Pm(α, β) + 1 if ϑm(α, β) �= ∞,

Pm(α, β) if ϑm(α, β) = ∞,
m = 1, . . . , i − 1,

which are strictly between 0 and zi = 	ti
: 0 < z1 < · · · < zi−1 < ti ≤ zi. Moreover,

t̃−j =
{

n + 1 − Pj(β, α) − Tα(ϑj(β, α)) for C2 > 0,

n + 1 − Pj(α, β) − Tα(ϑj(α, β)) for C2 < 0,
(44)

is the zero point of a positive semi-wave of v such that v has exactly j generalized zeros

z̃−m = n + 1 − Pm(α, β), m = 1, . . . , j,
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which are between t̃−j and n: t̃−j ≤ z̃−j < · · · < z̃−1 ≤ n. Now, a task of finding 
all (α, β) ∈ (0, 4) × (0, +∞) such that (α, β) ∈ C+

k is equivalent to finding all (α, β) ∈
(0, 4) × (0, +∞) such that ti = t̃−j with C2 > 0 (C2 < 0) for k odd (even), which leads 
to

Pi(α, β) + Tα(ϑi(α, β)) = n + 1 − Pj(β, α) − Tα(ϑj(β, α)) for k odd,

Pi(α, β) + Tα(ϑi(α, β)) = n + 1 − Pj(α, β) − Tα(ϑj(α, β)) for k even.

Secondly, in the case of α > 0 and 0 < β < 4, we proceed in a similar way. The only 
difference is that we deal with negative semi-waves instead of positive ones and in (43)
and (44), we use T β instead of Tα. �

The next theorem is associated with the previous Theorem 26 and contains new sets 
Ω+,n

i,j , which play similar role as sets Ω+
k in Theorem 22.

Theorem 27. Let k, n ∈ N be such that k ≤ n − 1, n ≥ 2. Moreover, let i, j ∈ N be such 
that i + j = k + 1 and let us denote

Ω+,n
i,j :=

{ {(α, β) ∈ D : Pi(α, β) + Pj(β, α) = n} for k odd,

{(α, β) ∈ D : Pi(α, β) + Pj(α, β) = n} for k even.

1. If k is odd then

C+
k =
{

(α, β) ∈ Ω+,n
i,j : W+

i (∞) = 1
W-

j (∞)

}
∪

{
(α, β) ∈ Ω+,n+1

i,j : W+
i (∞) = ∞ = W-

j (∞)
}

. (45)

2. If k is even then

C+
k =
{

(α, β) ∈ Ω+,n
i,j : W+

i (∞) = 1
W+

j (∞)

}
∪

{
(α, β) ∈ Ω+,n+1

i,j : W+
i (∞) = ∞ = W+

j (∞)
}

. (46)

Proof. Let (α, β) ∈ C+
k and let u be the corresponding non-trivial solution of (1). More-

over, let us consider that 0 < α < 4, β > 0. According to Theorem 26, we have that

Pi(α, β) + Pj(β, α) + Tα(ϑi(α, β)) + Tα(ϑj(β, α)) = n + 1. (47)

There are exactly two possibilities how to satisfy (47):

Pi(α, β) + Pj(β, α) = n + 1 and Tα(ϑi(α, β)) + Tα(ϑj(β, α)) = 0, (48)
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Fig. 18. The set Ω+,n
1,1 as the grey region for n = 6 (left) and the first non-trivial Fučík curve C+

1 as the black 
curve (right) due to Theorems 26 and 27.

or

Pi(α, β) + Pj(β, α) = n and Tα(ϑi(α, β)) + Tα(ϑj(β, α)) = 1. (49)

The second equation in (48) gives us Tα(ϑi(α, β)) = 0 and Tα(ϑj(β, α)) = 0, which 
implies that

ϑi(α, β) = W+
i (∞) = ∞ and ϑj(β, α) = W-

j (∞) = ∞.

Using Lemma 3, we obtain from the second equation in (49) that

Tα(ϑi(α, β)) = 1 − Tα(ϑj(β, α)) = Tα

(
1

ϑj(β, α)

)
,

and thus, according to Remark 18, we get

W+
i (∞) = ϑi(α, β) = 1

ϑj(β, α) = 1
W-

j (∞) . �
See Fig. 18 for the first non-trivial Fučík curve C+

1 for n = 6 and the corresponding set 
Ω+,n

1,1 according to Theorem 27. Fig. 19 contains the second non-trivial Fučík curve C+
2 for 

n = 9 and also the corresponding set Ω+,n
2,1 . Let us point out that we have two different 

sets Ω+,n
i,j available for the third non-trivial Fučík curve C+

3, namely Ω+,n
3,1 and Ω+,n

2,2 (see 
Figs. 20 and 22). Moreover, see Figs. 20, 22, 23 and 24 to compare all different sets Ω+,n

i,j

in the case of n = 9.
In the following remark, we reveal the algebraic structure of particular Fučík curves 

due to Theorem 27 in a similar way as in Remark 23 (compare also with preliminary 
results for general matrices in [3]).
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Fig. 19. The set Ω+,n
2,1 as the grey region for n = 9 (left) and the second non-trivial Fučík curve C+

2 as the 
black curve (right) due to Theorems 26 and 27.

Remark 28. The condition W+
i (∞) = 1

W-
j(∞) in (45) reads det (AD − Λ) = 0, where

Λ = diag
( p1(α, β)–times︷ ︸︸ ︷
α, α, . . . . . . , α,

p2(α, β)–times︷ ︸︸ ︷
β, β, . . . . . . , β, . . . ,

pi(α, β)–times︷ ︸︸ ︷
β, β, . . . . . . , β,

α, α, . . . . . . , α︸ ︷︷ ︸
pj(β, α)–times

, . . . , α, α, . . . . . . , α︸ ︷︷ ︸
p2(β, α)–times

, β, β, . . . . . . , β︸ ︷︷ ︸
p1(β, α)–times

)
(50)

for k = i + j − 1 odd and both i, j even, and

Λ = diag
( p1(α, β)–times︷ ︸︸ ︷
α, α, . . . . . . , α,

p2(α, β)–times︷ ︸︸ ︷
β, β, . . . . . . , β, . . . ,

pi(α, β)–times︷ ︸︸ ︷
α, α, . . . . . . , α,

β, β, . . . . . . , β︸ ︷︷ ︸
pj(β, α)–times

, . . . , α, α, . . . . . . , α︸ ︷︷ ︸
p2(β, α)–times

, β, β, . . . . . . , β︸ ︷︷ ︸
p1(β, α)–times

)

for k = i + j − 1 odd and both i, j odd. Indeed, for k odd and i, j even, the condition 
W+

i (∞) = 1
W-

j(∞) can be written as

(
W β

pi(α,β) ◦ · · · ◦ W β
p2(α,β) ◦ Wα

p1(α,β)

)
(∞)

= 1(
Wα

pj(β,α) ◦ · · · ◦ Wα
p2(β,α) ◦ W β

p1(β,α)

)
(∞)

,

(
W β

pi(α,β) ◦ · · · ◦ W β
p2(α,β) ◦ Wα

p1(α,β)

)
(∞)
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Fig. 20. The sets Ω+,n
i,1 as grey regions for n = 9 (left) and the Fučík curves C+

k as black curves (right) due to 
Theorems 26 and 27.

=
(
Wα

−pj(β,α) ◦ · · · ◦ Wα
−p2(β,α) ◦ W β

−p1(β,α)

)
(0),

where we used relation (23) in Lemma 9. Moreover, using (22), we obtain

(
W β

p1(β,α) ◦ Wα
p2(β,α) ◦ · · · ◦ Wα

pj(β,α)

◦W β
pi(α,β) ◦ · · · ◦ W β

p2(α,β) ◦ Wα
p1(α,β)

)
(∞) = 0, (51)

[
1 0

]
·
[
W β

p1(β,α)

]
·
[
Wα

p2(β,α)

]
· · ·
[
Wα

pj(β,α)

]

·
[
W β

pi(α,β)

]
· · ·
[
W β

p2(α,β)

]
·
[
Wα

p1(α,β)

]
·
[

1
0

]
= 0. (52)

Using Lemma 12, the condition (52) is exactly det (AD − Λ) = 0 with Λ in the form 
of (50). Similarly, we get that the condition W+

i (∞) = 1
W+

j(∞) in (46) reads det(AD −
Λ) = 0, where

Λ = diag
( p1(α, β)–times︷ ︸︸ ︷
α, α, . . . . . . , α,

p2(α, β)–times︷ ︸︸ ︷
β, β, . . . . . . , β, . . . ,

pi(α, β)–times︷ ︸︸ ︷
β, β, . . . . . . , β,

α, α, . . . . . . , α︸ ︷︷ ︸
pj(α, β)–times

, . . . , β, β, . . . . . . , β︸ ︷︷ ︸
p2(α, β)–times

, α, α, . . . . . . , α︸ ︷︷ ︸
p1(α, β)–times

)

for k = i + j − 1 even, i even and j odd, and
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Fig. 21. The Fučík spectrum Σ 
(
AD) for n = 4 (left) and samples of corresponding non-trivial solutions 

(right).

Λ = diag
( p1(α, β)–times︷ ︸︸ ︷
α, α, . . . . . . , α,

p2(α, β)–times︷ ︸︸ ︷
β, β, . . . . . . , β, . . . ,

pi(α, β)–times︷ ︸︸ ︷
α, α, . . . . . . , α,

β, β, . . . . . . , β︸ ︷︷ ︸
pj(α, β)–times

, . . . , β, β, . . . . . . , β︸ ︷︷ ︸
p2(α, β)–times

, α, α, . . . . . . , α︸ ︷︷ ︸
p1(α, β)–times

)

for k = i + j − 1 even, i odd and j even.

In the following last example we consider n = 4 and discuss specific representation 
for each Fučík curve.

Example 29. In this example, let us consider n = 4. Thus, we have 4 ×4 Dirichlet matrix

AD =

⎡
⎢⎢⎢⎣

2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2

⎤
⎥⎥⎥⎦

with the eigenvalues

λD
0 = 1

2 (3 −
√

5), λD
1 = 1

2 (5 −
√

5), λD
2 = 1

2 (3 +
√

5), λD
3 = 1

2 (5 +
√

5).

See Fig. 21 for the Fučík spectrum of AD (left) and for some corresponding non-
trivial solutions (right). Now, we apply Theorem 27 to get the following results. At 
first, as for the first non-trivial Fučík curve C+

1, we focus on all pairs (α, β) ∈ Ω+,n
1,1 =

{(α, β) ∈ D : p1(α, β) + p1(β, α) = 4}, for which the condition
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Fig. 22. The sets Ω+,n
i,2 as grey regions for n = 9 (left) and the Fučík curves C+

k as black curves (right) due to 
Theorems 26 and 27.

W+
1(∞) = 1

W-
1(∞) (53)

is satisfied. Since p1(α, β), p1(β, α) ∈ N, there are exactly three following cases (recall 
Remark 28).

1. For p1(α, β) = 1, p1(β, α) = 3, the condition (53) reads

det(AD − diag(α, β, β, β)) = 0,

αβ3 − 2β3 − 6αβ2 + 11β2 + 10αβ − 4α − 16β + 5 = 0,

V α
1 V β

3 − V α
0 V β

2 = 0.

2. For p1(α, β) = 2, p1(β, α) = 2, the condition (53) has the following form

det(AD − diag(α, α, β, β)) = 0,

α2β2 − 4α2β − 4αβ2 + 3α2 + 15αβ + 3β2 − 10α − 10β + 5 = 0,

V α
2 V β

2 − V α
1 V β

1 = 0.

3. For p1(α, β) = 3, p1(β, α) = 1, the condition (53) reads

det(AD − diag(α, α, α, β)) = 0,

α3β − 2α3 − 6α2β + 11α2 + 10αβ − 16α − 4β + 5 = 0,

V α
3 V β

1 − V α
2 V β

0 = 0.



I. Looseová, P. Nečesal / Linear Algebra and its Applications 553 (2018) 58–103 99

Fig. 23. The sets Ω+,n
i,3 as grey regions for n = 9 (left) and the Fučík curves C+

k as black curves (right) due to 
Theorems 26 and 27.

Secondly, as for the second non-trivial Fučík curve C+
2, we focus on all pairs (α, β) ∈

Ω+,n
1,2 = Ω+,n

2,1 = {(α, β) ∈ D : 2p1(α, β) + p2(α, β) = 4}, for which the condition

W+
1(∞) = 1

W+
2(∞) (54)

is satisfied. Since p1(α, β), p2(α, β) ∈ N, we have that p1(α, β) = 1 and p2(α, β) = 2 and 
the condition (54) reads (recall Remark 28)

det(AD − diag(α, β, β, α)) = 0,

α2β2 − 4α2β − 4αβ2 + 3α2 + 14αβ + 4β2 − 8α − 12β + 5 = 0,

V α
1 V α

1 V β
2 − 2V α

1 V β
1 + 1 = 0. (55)

Moreover, using V β
2 = V β

1 V β
1 − 1, the equality (55) can be simplified as

(V α
1 V β

1 − V α
1 − 1)(V α

1 V β
1 + V α

1 − 1) = 0,

(αβ − 2β − α + 1)(αβ − 2β − 3α + 5) = 0.

Finally, as for the last non-trivial Fučík curve C+
3, we focus on all pairs (α, β) from sets

Ω+,n
1,3 = {(α, β) ∈ D : p1(α, β) + p1(β, α) + p2(β, α) + p3(β, α) = 4} ,

Ω+,n
2,2 = {(α, β) ∈ D : p1(α, β) + p2(α, β) + p1(β, α) + p2(β, α) = 4} ,

Ω+,n
3,1 = {(α, β) ∈ D : p1(α, β) + p2(α, β) + p3(α, β) + p1(β, α) = 4} ,

for which one of the following conditions is satisfied, in particular,
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Fig. 24. The sets Ω+,n
i,4 as grey regions for n = 9 (left) and the Fučík curves C+

k as black curves (right) due to 
Theorems 26 and 27.

W+
1(∞) = 1

W-
3(∞) , W+

2(∞) = 1
W-

2(∞) , W+
3(∞) = 1

W-
1(∞) . (56)

For j = 1, 2, 3, pj(α, β) and pj(β, α) are positive integers, which implies that

p1(α, β) = p2(α, β) = p3(α, β) = p1(β, α) = p2(β, α) = p3(β, α) = 1,

and thus, each condition in (56) can be simplified to the following form (recall Remark 28)

det(AD − diag(α, β, α, β)) = 0,

α2β2 − 4α2β − 4αβ2 + 4α2 + 13αβ + 4β2 − 10α − 10β + 5 = 0,

V α
1 V α

1 V β
1 V β

1 − 3V α
1 V β

1 + 1 = 0.

In the final corollary, we reveal the algebraic structure of the first non-trivial 
Fučík curve C±

1 in detail.

Corollary 30. For the first non-trivial Fučík curve, n ∈ N, n ≥ 3, we have that

C+
1 = C-

1 = CP
1 ∪ CC

1,

where

CP
1 :=

n−2⋃

i=1

{
(ξn−i, ξi+1)

}
, ξk := 4 sin2 π

2k , k = 2, . . . , n,

CC
1 :=

n−1⋃

i=1

{
(α, β) ∈ Ωi : Wα

n−i (∞) · W β
i (∞) = 1

}
,
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and

Ω1 := (ξn, ξn−1) × (ξ2,+∞) ,

Ωi := (ξn−i+1, ξn−i) × (ξi+1, ξi) , i = 2, . . . , n − 2 for n ≥ 4,

Ωn−1 := (ξ2,+∞) × (ξn, ξn−1) .

Proof. According to Theorem 27, we have the following characterization of the first 
non-trivial Fučík curve

C+
1 =

{
(α, β) ∈ Ω+,n

1,1 : W+
1(∞) = 1

W-
1(∞)

}
∪

{
(α, β) ∈ Ω+,n+1

1,1 : W+
1(∞) = ∞ = W-

1(∞)
}

.

Firstly, we detect all points (α, β) ∈ Ω+,n+1
1,1 such that W+

1(∞) = ∞ = W-
1(∞). Thus, 

we look for all α, β > 0 such that

p1(α, β) + p1(β, α) = n + 1, Wα
p1(α,β)(∞) = ∞, W β

p1(β,α)(∞) = ∞, (57)

where

p1(α, β) =

⎧
⎨
⎩

⌊
π

ωα

⌋
for 0 < α < 4, β > 0,

⌊
T β(2 − α) + 1

⌋
for α ≥ 4, 0 < β < 4,

(58)

p1(β, α) =

⎧
⎨
⎩

⌊
π
ωβ

⌋
for α > 0, 0 < β < 4,

�Tα(2 − β) + 1� for 0 < α < 4, β ≥ 4.
(59)

Now, if we denote i := p1(β, α) − 1 then (57) reads

p1(α, β) = n − i, Wα
n−i(∞) = ∞, (60)

p1(β, α) = i + 1, W β
i+1(∞) = ∞. (61)

Both conditions in (60) imply that i ≤ n − 2 and π
ωα

= n − i, i.e. α = ξn−i. On the other 
hand, conditions in (61) imply that i ≥ 1 and π

ωβ
= i + 1, which means that β = ξi+1.

Secondly, we determine all points (α, β) ∈ Ω+,n
1,1 such that W+

1(∞) = 1
W-

1(∞) . Thus, we 
look for all α, β > 0 such that

p1(α, β) + p1(β, α) = n, Wα
p1(α,β)(∞) = 1

W β
p1(β,α)(∞)

, (62)
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where p1(α, β) and p1(β, α) are given by (58) and (59). If we denote i := p1(β, α) then 
1 ≤ i ≤ n − 1, p1(α, β) = n − i and the second equation in (62) reads

Wα
n−i(∞) · W β

i (∞) = 1.

The condition p1(β, α) = i implies that (recall the basic properties of ωβ and Tα and 
note that for i ≥ 2, we have that π

ωβ
= i if and only if β = ξi)

ξ2 < β for i = 1,

ξi+1 < β ≤ ξi for i ≥ 2.

Finally, the condition p1(α, β) = n − i implies that

ξ2 < α for i = n − 1,

ξn−i+1 < α ≤ ξn−i for i ≤ n − 2,

which finishes the proof. �
5. Conclusion

In this paper, we introduced a new approach how to investigate the Fučík spectrum for 
the discrete Dirichlet operator of the second order, which allowed us to reveal its algebraic 
structure. We started with the initial value problems (9) and (29) and we discussed 
properties of their solutions. A suitable continuous extension of the discrete solution 
was used to localize all its generalized zeros. We defined recurrently two sequences of 
functions (pi) and (ϑi) (recall Definition 17) in order to localize all generalized zeros and 
to obtain several descriptions of particular Fučík curves. Thus, we introduced various 
analytic implicit formulas for Fučík curves and we also identified sets, where these curves 
are localized. Let us point out that our description of the Fučík spectrum has the form 
of necessary and sufficient conditions.

Approach presented in this paper can be directly applied for other discrete operators 
of the second order as well (e.g. with Neumann or mixed boundary conditions) and 
provides a new way how to deal with the discrete Fučík spectrum problems.
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1. Introduction

In 1976, two papers [10] by Fučík and [5] by Dancer were published concerning the 
solvability of the following Dirichlet problem

{
v′′(x) + g(v(x)) = f(x), x ∈ (0, 1),

v(0) = v(1) = 0,
(1)

where g is a jumping nonlinearity, i.e., lim
s→−∞

g(s)
s =: a �= b := lim

s→+∞
g(s)

s . Both authors 
independently recognized that the solvability of the problem (1) depends strongly on the 
fact if there exists a non-trivial solution v of the following problem

{
v′′(x) + av+(x) − bv−(x) = 0, x ∈ (0, 1),

v(0) = v(1) = 0,
(2)

where v+ and v− are the positive and negative parts of v, respectively, i.e. v±(x) :=
max{±v(x), 0}. The following set

Σc :=
{
(a, b) ∈ R2 : the problem (2) has a non-trivial solution v

}

is usually called as the Fučík spectrum for (2) and can be expressed analytically in the 
following way (see [10,11]). The Fučík spectrum Σc consists of two lines C±

0 :
(
a − π2) ·(

b − π2) = 0 and countably many curves C±
l (see Fig. 1, left) given by (j ∈ N)

C±
2j−1 : jπ√

a
+ jπ√

b
= 1, C+

2j : (j+1)π√
a

+ jπ√
b

= 1, C-
2j : jπ√

a
+ (j+1)π√

b
= 1. (3)

Let us note that for a pair (a, b) ∈ C±
l , the corresponding non-trivial solution v of (2)

has exactly l zeros in (0, 1) and consists of positive and negative semi-waves of lengths 
π√
a

and π√
b
, respectively (see Fig. 1, right).

In 1987, Lazer and McKenna introduced a new nonlinear model of a suspension bridge 
using the asymmetric nonlinearity g(v) = kv+ to describe supporting cable stays as one-
sided springs which do not exert restoring force if they are compressed. They studied 
periodic solutions of such asymmetric systems and showed in [17] that a sufficiently large 
asymmetry in the system leads to large oscillations which cannot be predicted by the 
linear theory. In [8], authors consider the following normalized symmetric model of the 
vertical motion of a suspension bridge

⎧
⎪⎪⎨
⎪⎪⎩

vtt(x, t) + vxxxx(x, t) + kv+(x, t) = f(x, t) in
(
−π

2 , π
2
)

× R,

v
(
±π

2 , t
)

= vxx

(
±π

2 , t
)

= 0, t ∈ R,

v(x, t) = v(−x, t) = v(x,−t) = v(x, t + T ),

(4)
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Fig. 1. The Fučík spectrum Σc (left) for the continuous problem (2) given by countable many Fučík curves 
C±

l , l ∈ N ∪ {0}, and corresponding non-trivial solutions v (right) for three different pairs (a, b) as points 
A1 ∈ C+

1, A2 ∈ C+
2 and A3 ∈ C+

3, where A1 =
(
9π2, 9

4π2), A2 =
(
16π2, 4π2) and A3 =

(
36π2, 9π2).

and investigate its set of solutions v that are T -periodic in the second variable. For special 
right hand sides f and T > π, they show that it has very rich set of non-stationary 
solutions with blow up points in the sense that for bounded values of the parameter k
there are non-stationary solutions of (4) with the amplitude approaching infinity. Let 
us point out that the blow up points are determined by the Fučík spectrum of the 
beam operator v �→ −(vtt + vxxxx) with the boundary conditions given in (4). However, 
the knowledge of the Fučík spectrum of this operator seems to be a hard problem. 
For other one dimensional models of suspension bridges, we recommend the reader the 
book [12] by Gazzola with a focus on Subchapter 2.8 concerning models with asymmetric 
nonlinearities. Finally, let us note that asymmetric nonlinearities also surprisingly appear 
in the study of competing systems of species with large interactions in biology (see 
[4,6,22]) and the Fučík spectrum of the Dirichlet Laplacian (the Laplace operator u �→
−Δu with zero Dirichlet boundary conditions) is needed (see [6] for details).

Nowadays, there are a number of papers in which authors study the structure of the 
Fučík spectrum for particular linear differential operators, let us mention here only some 
of them: [1,2,7,9,14,23,24] for the Dirichlet Laplacian on bounded domains, [3,13,15,16,
26,27] for the ordinary differential operators with various boundary conditions (Dirichlet, 
Neumann, Robin, Navier, periodic, multipoint, integral type).

In [22] and [25], authors consider a finite dimensional nonlinear matrix-vector equation

Au = g(u), (5)
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where A is an n ×n matrix and g : Rn → Rn is mildly nonlinear, i.e. g(u) = au+−bu−+
h(u), where h : Rn → Rn is such that lim

‖u‖→+∞
h(u)
‖u‖ = 0. Equations of this type (5) can 

represent numerical approximations of continuous boundary value problems describing 
nonlinear oscillations in asymmetric systems such as suspension bridges (see [25] and 
[18]). The Fučík spectrum of the matrix A is defined as the set of all pairs (a, b) ∈ R2

such that the problem Au = au+ − bu− has a non-trivial solution u and plays an 
important role in questions of the solvability of the discrete equation (5). More precisely, 
in [22], the solvability of (5) is provided in the so-called nonresonance case when the point 
(a, b) is not in the Fučík spectrum of A and can be connected by a continuous curve 
to a point (λ, λ) on the diagonal a = b such that this curve belongs to the complement 
of the Fučík spectrum. In [25], authors investigate the Fučík spectrum of the following 
tridiagonal persymmetric matrix (δ ≥ 0)

Aδ :=

⎡
⎢⎢⎢⎢⎢⎢⎣

2 + δ −(1 + δ)
−1 2 + δ −(1 + δ)

. . . . . . . . .
−1 2 + δ −(1 + δ)

−1 2 + δ

⎤
⎥⎥⎥⎥⎥⎥⎦

(6)

which represents a discrete approximation of the differential operator u �→ −(u′′ + δu′)
with zero Dirichlet boundary conditions. Moreover, the solvability of (5) is investigated 
in both the resonance and nonresonance case, i.e. when the point (a, b) is, or is not in 
the Fučík spectrum of Aδ. Finally, at the end of the paper [25], authors leave the reader 
with two interesting problems and one of them is to determine a complete description of 
the Fučík spectrum of the n × n matrix Aδ for n ≥ 3. In the special case of δ = 0, the 
Fučík spectrum of A0 has been also studied in [20–22,28] and let us note that its known 
description for n ≥ 3 is rather more complicated in comparison to the simple description 
of Fučík curves C±

l given in (3) for the continuous problem (2).
In this paper, we continue in studying the Fučík spectrum of the matrix A0 given 

in (6) for δ = 0 and thus, we deal with the following discrete Dirichlet problem

{
Δ2u(k − 1) + αu+(k) − βu−(k) = 0, k ∈ T ,

u(0) = u(n + 1) = 0,
(7)

where T := {1, . . . , n}, n ∈ N, and u : T̂ → R, T̂ := T ∪ {0, n + 1}. Moreover, α, β ∈ R, 
Δ2 denotes the second order forward difference operator, i.e.

Δ2u(k − 1) := u(k − 1) − 2u(k) + u(k + 1),

u± : T̂ → R are positive and negative parts of u, i.e. u±(k) := max{±u(k), 0}. The aim 
of this paper is to investigate the Fučík spectrum for the problem (7) as the set
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Fig. 2. The Fučík spectrum Σ (left) for the discrete problem (7) given by twelve Fučík curves C±
0, C±

1, C±
2, 

C±
3, C±

4, C±
5 in the case of n = 6 (note that C+

1 = C-
1, C+

3 = C-
3 and C+

5 = C-
5) and corresponding non-

trivial solutions u (right) for three different pairs (α, β) as points B1 ∈ C+
1, B2 ∈ C+

2 and B3 ∈ C+
3, where 

B1
.= (3.342, 0.309), B2

.= (3.421, 0.538) and B3
.= (3.732, 1.657).

Σ :=
{
(α, β) ∈ R2 : the problem (7) has a non-trivial solution u

}
.

Let us note that the set Σ is exactly the Fučík spectrum of the matrix A0.
Let us briefly recall some known results concerning the set Σ (for a more detailed 

overview see the first section in [20]). The Fučík spectrum consists of a finite number of 
algebraic curves (see Fig. 2)

Σ =
n−1⋃

l=0
(C+

l ∪ C-
l ) ,

where

C±
l :=

{
(α, β) ∈ R2 : the problem (7) has a non-trivial solution u

with exactly l generalized zeros on T and u(1) ≷ 0} .

Let us note that j ∈ T is a generalized zero of the solution u of (7) if u(j) = 0 or 
u(j)u(j − 1) < 0. Fučík curves C±

0 are trivial ones (lines α = λ0 and β = λ0, where 
λ0 := 4 sin2 π

2(n+1) ), each non-trivial Fučík curve C±
l , l ∈ {1, . . . , n − 1} is located in the 

domain D := ((0, 4) × (0, +∞)) ∪ ((0, +∞) × (0, 4)). For α = β = λ, the problem (7)
is a linear one and thus, it is straightforward to verify that it has a non-trivial solution 
u if and only if λ = λj := 4 sin2 (j+1)π

2(n+1) , j = 0, . . . , n − 1. Moreover, the corresponding 
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Fig. 3. The geometry of the discrete solution u of (7) for (α, β) = B1 ∈ C±
1, where B1

.= (3.342, 0.309). 
The solution u has one generalized zero at j = 2 and two continuous extensions uc

0,1 and uc
2,7.

non-trivial solution is uj(k) = sin(ωλj
k)/ sin ωλj

, where ωλj
:= arccos 2−λj

2 , and thus, 
the point (λj , λj) on the diagonal α = β belongs to both Fučík curves C+

j and C-
j .

The qualitative properties of the first non-trivial Fučík curve C±
1 were studied in [20,28]. 

In [28], a conjecture is stated that C±
1 has no elementary parametrization and possible 

ways to prove it are also discussed. On the other hand, in [20], it is shown that the 
first non-trivial Fučík curve C±

1 has an elementary parametrization for n ≤ 7. The reason 
is that it is possible to provide the implicit description of C±

1 in terms of Chebyshev 
polynomials of the second kind. More precisely, due to Corollary 30 in [20], the first 
non-trivial Fučík curve C±

1 consists of the following (n − 1) algebraic curves in prescribed 
rectangles

V α
n−1 · (2 − β) − V α

n−2 = 0 for (α, β) ∈ (ξn, ξn−1) × (ξ2,+∞) ,

V α
n−i · V β

i − V α
n−i−1 · V β

i−1 = 0 for (α, β) ∈ (ξn−i+1, ξn−i) × (ξi+1, ξi) ,

i = 2, . . . , n − 2,

(2 − α) · V β
n−1 − V β

n−2 = 0 for (α, β) ∈ (ξ2,+∞) × (ξn, ξn−1) ,

where V α
k and V β

k are defined by the Chebyshev polynomial Uk = Uk(x) of the second 
kind of degree k

V λ
k := Uk

( 2−λ
2
)
, k ∈ Z, λ ∈ R, (8)

and the values ξk for k = 2, . . . , n are given by the formula

ξk := 4 sin2 π

2k , k ∈ N. (9)

Moreover, the first non-trivial Fučík curve C±
1 contains also (n − 2) points (ξn−i, ξi+1), 

i = 1, . . . , n − 2 (see Fig. 2 for the Fučík curve C±
1 in the case of n = 6, which consists of 

four points and five algebraic curves).



P. Nečesal, I. Sobotková / Bull. Sci. math. 171 (2021) 103014 7

Fig. 4. The geometry of the discrete solution u of (7) for (α, β) = B2 ∈ C+
2, where B2

.= (3.421, 0.538). 
The solution u has two generalized zeros (2 and 6) and three continuous extensions uc

0,1, uc
2,5 and uc

6,7.

Now, let us recall the discrete anchoring procedure introduced in [28] which is also 
called the matching-extension method in [21] and can be used to obtain an implicit 
description of all Fučík curves C±

l . This technique consists of successive anchoring positive 
and negative continuous semi-waves which are defined as continuous extensions of the 
discrete solution u of (7) on intervals determined by generalized zeros of u. See Figs. 2 and 
3 for a non-trivial discrete solution u of (7) for (α, β) = B1 ∈ C+

1. This discrete solution 
u has one generalized zero on T at j = 2 and thus, we have one positive continuous 
semi-wave uc

0,1 on the interval [0, 2] and one negative continuous semi-wave uc
2,7 on the 

interval [1, 7]. These two continuous semi-waves are anchored on the interval [1, 2] such 
that uc

0,1(1) = uc
2,7(1) and uc

0,1(2) = uc
2,7(2). Now, for simplicity, let us consider that 

0 < α, β < 4. By Theorem 26 in [20], the problem (7) has a non-trivial solution u with 
u(1) > 0 and exactly one generalized zero on T if and only if

p1(α) + p1(β) + τα,α + τα,β = n + 1, (10)

where we have denoted

p1(α) :=
⌊

π
ωα

⌋
, p1(β) =

⌊
π
ωβ

⌋
, τα,β := Tα

(
V β

p1(β)

V β
p1(β)−1

)
, τα,α = Tα

(
V α

p1(α)

V α
p1(α)−1

)
,

(11)

and 
·� is the floor function, ωα := arccos 2−α
2 and the function Tα : R∗ → R with the 

domain R∗ := R ∪ {∞} (the one-point compactification of R) is defined as

Tα(∞) := 0, Tα(q) := 1
ωα

arccot cosωα − q

sin ωα
for q ∈ R. (12)

Let us point out that the function arccotangent in (12) is strictly decreasing on R with 
the range (0, π). Thus, a pair (α, β) belongs to C+

1 if and only if (10) holds. Moreover, 
the equation (10) can be equivalently replaced by
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Fig. 5. The geometry of the discrete solution u of (7) for (α, β) = B3 ∈ C±
3, where B3

.= (3.732, 1.657). 
The solution has three generalized zeros (2, 4 and 5) and four continuous extensions uc

0,1, uc
2,3, uc

4,4 and 
uc

5,7.

p1(α) + p1(β) + τβ,β + τβ,α = n + 1. (13)

Let us point out that if (α, β) ∈ C+
1 such that α �= β and β �= ξk for all k ∈ {2, . . . , n − 1}

then zeros of the positive and the negative continuous semi-waves do not coincide (see 
Fig. 3). Indeed, (p1(α) + τα,α) and (p1(α) + τβ,α) are zeros of the positive and the 
negative semi-waves, respectively, and we have that τα,α = τβ,α if and only if α = β or 
β ∈ {ξ2, . . . , ξn−1}.

Now, using Theorem 26 in [20], the second non-trivial Fučík curve C+
2 can be implicitly 

described as (see Figs. 2 and 4)

2p1(α) + p2(α, β) + τα,α + τ2,+
α,β = n + 1, (14)

where we have denoted

p2(α, β) :=
⌊
τβ,α + π

ωβ

⌋
,

τ2,+
α,β := Tα

(
V α

p1(α)V
β
p2(α,β) − V α

p1(α)−1V
β
p2(α,β)−1

V α
p1(α)V

β
p2(α,β)−1 − V α

p1(α)−1V
β
p2(α,β)−2

)
. (15)

As in the previous case, the equation (14) can be equivalently replaced by

2p1(α) + p2(α, β) + τ2,-
α,β + τβ,α = n + 1, (16)

where we have denoted

τ2,-
α,β := Tα

(
V β

p1(β)V
α
p2(β,α) − V β

p1(β)−1V
α
p2(β,α)−1

V β
p1(β)V

α
p2(β,α)−1 − V β

p1(β)−1V
α
p2(β,α)−2

)
.

Finally, the third non-trivial Fučík curve C+
3 can be implicitly described as (see Figs. 2

and 5)
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p1(α) + p1(β) + p2(α, β) + p2(β, α) + τ2,+
α,β + τ2,-

α,β = n + 1, (17)

or as

p1(α) + p1(β) + p2(α, β) + p2(β, α) + τ2,-
β,α + τ2,+

β,α = n + 1. (18)

Now, if we would like to describe higher Fučík curves then we have to use functions 
with higher level of nesting depth and also a higher number of different Chebyshev 
polynomials. Let us only note that to obtain an implicit description of the Fučík curve 
C+

l for l ≥ 4, we need to use nested functions p3(α, β) :=
⌊
τ2,+
α,β + π

ωα

⌋
and

τ3,+
α,β := Tα

(
V α

p1V
β
p2V

α
p3 − V α

p1−1V
β
p2−1V

α
p3 − V α

p1V
β
p2−1V

α
p3−1 + V α

p1−1V
β
p2−2V

α
p3−1

V α
p1V

β
p2V

α
p3−1 − V α

p1−1V
β
p2−1V

α
p3−1 − V α

p1V
β
p2−1V

α
p3−2 + V α

p1−1V
β
p2−2V

α
p3−2

)
,

(19)

where p1 = p1(α), p2 = p2(α, β) and p3 = p3(α, β). If we compare the definitions of 
τα,β , τ2,+

α,β and τ3,+
α,β in (11), (15) and (19), respectively, we have to conclude that the 

complexity of the known implicit description of Fučík curves C±
l substantially increases 

with increasing numbers of generalized zeros l of the solution u. As far as we know, it 
is not possible to lower the level of used nested functions. Thus, in this paper, for each 
non-trivial Fučík curve C±

l , we provide new bounds with the same description complexity 
as the implicit description (10) for the first non-trivial Fučík curve C±

1. In the following 
section, we introduce these new bounds and present the main results of this paper.

2. Main results

In this section, we introduce two main results of this paper concerning the discrete 
problem (7), namely Theorems 3 and 5. Proofs of both these theorems are provided in 
the following sections.

One of the main goals of this paper is to provide new suitable bounds for each 
non-trivial Fučík curve C±

l such that all these bounds will have the same simplicity 
of description as used in (10) for the first non-trivial Fučík curve C±

1. Let us recall that 
the Fučík spectrum Σ is symmetric to the diagonal α = β and each of its non-trivial 
Fučík curve C±

l is in the domain D = ((0, 4) × (0, +∞)) ∪ ((0, +∞) × (0, 4)) (see Fig. 6). 
Thus, it is enough to construct bounds for Fučík curves only in the following half-strip

D := (0, 4) × (0,+∞).

Now, let us define the basic map κβ : (0, +∞) → N0, where N0 := N ∪ {0}, as

κβ :=

⎧
⎨
⎩

⌊
π
ωβ

⌋
− 1 for 0 < β < 4,

0 for β ≥ 4,
(20)
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Fig. 6. All non-trivial Fučík curves C±
l (black curves) for l = 1, . . . , n − 1 are contained in the domain 

D = ((0, 4) × (0, +∞)) ∪ ((0, +∞) × (0, 4)) (grey region). Let us note that for n = 11, we have C+
l = C-

l for 
l = 1, 3, 5, 7, 8, 9, 10.

where ωβ := arccos 2−β
2 for 0 < β < 4. Using κβ, we decompose the half-strip D into 

rectangles by κβ = k, k ∈ N0, i.e. we have (see Fig. 8)

D =
(
(0, 4) × (ξ2,+∞]

)
∪
(
(0, 4) × (ξ3, ξ2]

)
∪ · · · ∪

(
(0, 4) × (ξk+2, ξk+1]

)
∪ . . . ,

where ξk is defined in (9). On each rectangle given by κβ = k, we use Chebyshev 
polynomials of two degrees V β

κβ
and V β

κβ+1 to introduce three basic elements ηα,β, τα,β

and μα,β in the following definition. Let us note that for fixed β ∈ (0, 4), the value π
ωβ

used 
in (20) represents the distance between zeros of the continuous extension of a negative 
semi-wave (see Figs. 4 and 5 for continuous extensions uc

2,5 and uc
2,3, respectively).

Definition 1. For 0 < α < 4 and β > 0, let us define

ηα,β := Tα

(
V β

κβ+1 − 1
V β

κβ

)
, τα,β := Tα

(
V β

κβ+1

V β
κβ

)
, μα,β := Tα

(
V β

κβ+1

V β
κβ + 1

)
,

where the function Tα is given by (12) and V β
k is given in (8) by Chebyshev polynomials 

of the second type of degree k.



P. Nečesal, I. Sobotková / Bull. Sci. math. 171 (2021) 103014 11

Fig. 7. Graphs of functions β 
→ ρmin
α,β and β 
→ ρmax

α,β for fixed α = 3.9 and the graph of the function β 
→ π
ωβ

.

Let us recall that using τα,β , we can formulate an implicit description of the first 
non-trivial Fučík curve C±

1 as in (10) or (13). Now, using ηα,β and μα,β in the following 
definition, let us introduce ρminα,β and ρmaxα,β that are given on the half-strip D. See also 
Fig. 7 and note that ρminα,β ≤ π

ωβ
≤ ρmaxα,β for 0 < β < 4.

Definition 2. For 0 < α < 4 and β > 0, let us define

ρminα,β :=
{

2μα,β + κβ for α ≤ β,

2ηα,β + κβ + 1 for α > β,

ρmaxα,β :=
{

2ηα,β + κβ + 1 for α ≤ β,

2μα,β + κβ for α > β.

In the following theorem, we use ρminα,β and ρmaxα,β to construct sets Υ±
l as bounds for 

Fučík curves C±
l such that (see Figs. 9 and 8)

(C±
l ∩ D) ⊂ Υ±

l .

Theorem 3. In the domain D = (0, 4) × (0, +∞), we have the following bounds for Fučík 
curves C±

l , l = 1, . . . , n − 1,

(
C±
2j−1 ∩ D

)
⊂ Υj,j =: Υ±

2j−1,
(
C+
2j ∩ D

)
⊂ Υj+1,j =: Υ+

2j ,
(
C-
2j ∩ D

)
⊂ Υj,j+1 =: Υ-

2j ,

j ∈ N, where for k, s ∈ N, sets Υk,s are given by
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Fig. 8. The decomposition of the half-strip D into rectangles by κβ = k, k ∈ N0, and the set Υ±
3 ⊂ D as 

a bound for the third non-trivial Fučík curve C±
3 for n = 8 (left) and the set Υ±

41 ⊂ D as a bound for the 
forty-first non-trivial Fučík curve C±

41 for n = 131 (right).

Υk,s :=
{
(α, β) ∈ D : ρminα,β ≤ 1

s

(
n + 1 − k π

ωα

)
≤ ρmaxα,β

}
.

Remark 4. Due to Theorem 3, the part of the Fučík curve C±
2j−1 that belongs to the 

half-strip D is in the set Υ±
2j−1 with the boundary determined by two curves

s (κβ + 2μα,β) + k π
ωα

= n + 1, s (κβ + 2ηα,β + 1) + k π
ωα

= n + 1, (21)

where k = s = j. And similarly, parts of Fučík curves C+
2j ∩D and C-

2j ∩D are in sets Υ+
2j

and Υ-
2j with boundaries given by curves in (21) for k = j+1, s = j and k = j, s = j+1, 

respectively.
For 0 < α, β < 4, the equation (10), which describes the first non-trivial Fučík 

curve C±
1, can be written in the following form

κβ + τα,β + 1 + π
ωα

= n + 1, (22)

since 
⌊

π
ωβ

⌋
= κβ+1 and 

⌊
π

ωα

⌋
+τα,α = π

ωα
(see Lemma 16). Let us note that the equation 

(22) has the same structure as equations in (21) which describe the boundary of the set 
Υ±

l containing the particular Fučík curve C±
l (τα,β is used in (22) instead of μα,β or ηα,β

in (21)). On the other hand, the structure of equations in (21) is much simpler than the 
known precise description of higher non-trivial Fučík curves C±

l for l ≥ 2. For example, 
compare (21) for k = 3 and s = 2 to the description of the fourth non-trivial Fučík curve 
C+
4 which has the following form

2
⌊

π
ωα

⌋
+ 2

⌊
τβ,α + π

ωβ

⌋
+
⌊
τ2,+
α,β + π

ωα

⌋
+ τ2,+

α,β + τ3,+
α,β = n + 1, (23)
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Fig. 9. Sets Υ±
l in D (grey regions) as bounds for Fučík curves C±

l (black curves, right) for n = 5.

Fig. 10. A non-trivial solution of the problem (7) with 7 generalized zeros on T for (α, β) ∈ C+
7 (n = 48, 

α .= 0.205, β .= 0.332).

where τ2,+
α,β and τ3,+

α,β are defined in (15) and (19), respectively.

The implicit description of all non-trivial Fučík curves C±
l is provided in the next The-

orem 5. Let us note that t+j and t-j determine zeros of positive semi-waves (as continuous 
extensions) and ρα,β (introduced in Definition 19 in Section 5) measures the distance 
between every two consecutive zeros of two different positive semi-waves. See Fig. 10 and 
observe that t+1 = π

ωα
and (�·� denotes the ceil function)

t+2 = t+1 + ρα,β (�t+1� − t+1) , t+3 = t+2 + π
ωα

, t+4 = t+3 + ρα,β (�t+3� − t+3) .

See also Figs. 29, 30 and 31 at the end of Section 5 for other examples of non-trivial 
solutions of the problem (7).
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Theorem 5. In the domain D = (0, 4) × (0, +∞), we have the following description of 
Fučík curves C±

l , l = 1, . . . , n − 1,

C±
2j−1 ∩ D =

{
(α, β) ∈ D : t+j(α, β) + t-j(α, β) = n + 1

}
,

C+
2j ∩ D =

{
(α, β) ∈ D : t+j+1(α, β) + t+j(α, β) = n + 1

}
,

C-
2j ∩ D =

{
(α, β) ∈ D : t-j+1(α, β) + t-j(α, β) = n + 1

}
,

where

t+1 := π

ωα
, t+j :=

{
t+j−1 + ρα,β

(
�t+j−1� − t+j−1

)
for j even,

t+j−1 + π
ωα

for j odd,
(24)

t-1 := ρα,β(0), t-j :=
{

t-j−1 + π
ωα

for j even,

t-j−1 + ρα,β

(
�t-j−1� − t-j−1

)
for j odd.

(25)

Finally, let us point out that the value ρα,β(s) of the distance function ρα,β is bounded 
by ρminα,β and ρmaxα,β used in Theorem 3 to construct sets Υ±

l as bounds for Fučík curves C±
l .

3. Connections between the Fučík spectra for discrete and continuous problems

In this section, we show some consequences of obtained results in Theorems 3 and 5 in 
order to reveal the link between the Fučík spectrum Σ for the discrete problem (7) and 
the Fučík spectrum Σc for the continuous problem (2). For this purpose, let us consider 
the following discrete Dirichlet problem

{
Δ2

hv(k − h) + av+(k) − bv−(k) = 0, k ∈ Th,

u(0) = u(1) = 0,
(26)

where a, b ∈ R, h := 1
n+1 , n ∈ N, Th := {ih : i = 1, . . . , n} and

Δ2
hv(k − h) = v(k + h) − 2v(k) + v(k − h)

h2 .

Thus, the problem (26) is the rescaled version of the original problem (7) and it can 
be also viewed as the result of a discretization of the continuous Dirichlet problem (2). 
The Fučík spectrum for the rescaled discrete problem (26) consists of finite number of 
Fučík curves C±

h,l, l = 0, . . . , n − 1, such that

C±
h,l =

{
(a, b) ∈ R2 :

(
ah2, bh2) ∈ C±

l

}
,
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Fig. 11. Non-trivial Fučík curves C±
l (grey dashed curves) for the continuous problem (2) and non-trivial 

Fučík curves C±
h,l (black curves) for the rescaled discrete problem (26): five curves C±

h,1, C+
h,2, C-

h,2, C±
h,3 and 

C±
h,4 for n = 5 in the domain Dh = ((0, 144) × (0, +∞)) ∪ ((0, +∞) × (0, 144)) (grey region, left) and eleven 

curves C±
h,1, C+

h,2, C-
h,2, . . . , C±

h,8 for n = 9 in the domain Dh = ((0, 400) × (0, +∞)) ∪ ((0, +∞) × (0, 400))
(grey region, right).

where non-trivial Fučík curves C±
l are described implicitly in Theorem 5. Since each non-

trivial Fučík curve C±
l is located in the domain D = ((0, 4) ×(0, +∞)) ∪((0, +∞) ×(0, 4))

then each non-trivial Fučík curve C±
h,l is contained in the domain

Dh :=
((

0, 4h−2)× (0,+∞)
)

∪
(
(0,+∞) ×

(
0, 4h−2)) .

See Fig. 11 for the domain Dh containing all non-trivial Fučík curves C±
h,l for the rescaled 

problem (26) and notice their correspondence to Fučík curves C±
l for the continuous 

problem (2). Moreover, according to Theorem 3, we have for l = 1, . . . , n − 1 that

(
C±

h,l ∩ Dh

)
⊂ Υ±

h,l :=
{
(a, b) ∈ R2 :

(
ah2, bh2) ∈ Υ±

l

}
,

where Dh :=
(
0, 4h−2) × (0,+∞). See Figs. 12 and 13 for sets Υ±

h,l and check their 
correspondence to Fučík curves C±

l for the continuous problem (2).
This paper is organized in the following way. Firstly, we recall some basic facts and 

results concerning mainly the semi-linear initial value problem in Section 4. At the end of 
this section, in Theorem 13, we obtain some basic bounds for each non-trivial Fučík curve 
C±

l using κβ . The next Section 5 is devoted to the investigation of the distance ρα,β of 
two consecutive zeros of two different positive semi-waves as continuous extensions. We 
explore the properties of ηα,β, τα,β , μα,β and ρα,β in detail. This careful analysis leads to 
the proof of Theorem 5, which is available at the end of this section. The next Section 6
is devoted to the construction of improved bounds Υ±

l for non-trivial Fučík curves C±
l . 

In Theorem 31, we prove that ρα,β is a differentiable function which attains its global 
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Fig. 12. Sets Υ±
h,l (black regions), l = 1, . . . , 9, as bounds for Fučík curves C±

h,l for the discrete rescaled 
problem (26) (n = 18) and Fučík curves C±

l (grey dashed curves) for the continuous problem (2).

Fig. 13. Sets Υ±
h,l (black thin regions), l = 1, . . . , 8, as bounds for Fučík curves C±

h,l for the discrete rescaled 
problem (26) (n = 50) and Fučík curves C±

l (grey dashed curves) for the continuous problem (2).
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extrema at points ηα,β and μα,β. Finally, the proof of the main Theorem 3 is available 
at the end of Section 6 and let us note that it is based on both Theorems 5 and 31.

4. Preliminaries and basic bounds for Fučík curves

In the first part of this section, we recall some preliminaries used in [20], and we 
also prove some basic properties of V β

κβ
and V β

κβ+1 defined by Chebyshev polynomials 
of the second kind. Let us note that we follow the notation used in [20]. In the second 
part of this section, we deal with the sequence of functions pi introduced in [20] that 
are used to describe implicitly a non-trivial Fučík curve C±

l (recall (10), (14) and (17), 
where p1 and p2 are used). Using κβ , we provide a new description of functions pi in 
Lemma 14. Moreover, due to this description, we obtain some basic bounds for each 
non-trivial Fučík curve C±

l in Theorem 13.
For 0 < α < 4, the function Tα defined in (12) is strictly increasing on R (see Fig. 14), 

maps R∗ onto 
[
0, π

ωα

)
and

Tα(0) = 1, Tα(−1) = 1
2 , Tα(1) = 1

2 + π
2ωα

, Tα
( 2−α

2
)

= π
2ωα

.

Moreover, we have the following useful formula (see Lemma 3 in [20])

Tα(q) + Tα
(

1
q

)
= 1 for q ≤ 0 or q = ∞. (27)

Let us denote the inverse function of Tα by Qα :
[
0, π

ωα

)
→ R∗

Qα(0) = ∞, Qα(t) = − sin(ωα(1 − t))
sin(ωαt) for 0 < t < π

ωα
, (28)

where ωα = arccos 2−α
2 . Let us point out that 1 < π

ωα
and that Qα is a strictly increasing 

function on 
(
0, π

ωα

)
. Moreover, using (28), we obtain that

Qα(t) = 1
Qα(1 − t) for 0 ≤ t ≤ 1. (29)

Let us consider the following semi-linear initial value problem

{
Δ2u(k − 1) + αu+(k) − βu−(k) = 0, k ∈ Z,

u(0) = 0, u(1) = C1,
(30)

where C1 ∈ R, C1 �= 0 and (α, β) ∈ D := ((0, 4) × (0, +∞)) ∪ ((0, +∞) × (0, 4)). For 
0 < α = β < 4, the problem (30) is a linear one and it has a unique solution u of the 
form
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Fig. 14. The graph of the function T α = T α(q) for fixed α = 3.4.

u(k) = C1
sin(ωβk)
sin ωβ

= C1V
β
k−1, (31)

where V β
k−1 is given in (8) by the Chebyshev polynomial of the second kind. For (α, β) ∈

D, the problem (30) has a unique solution u which consists of infinitely many positive 
and negative semi-waves (as continuous extensions). Moreover, for 0 < α < 4, β > 0
and C1 > 0, we have due to Lemma 19 and Remark 20 in [20] that all non-negative zero 
points of all positive semi-waves form a sequence (tj)+∞

j=0 such that

t0 = 0, tj =

⎧
⎨
⎩

∑j
i=1 pi(α, β) + Tα(ϑj(α, β)) for C1 > 0,

∑j
i=1 pi(β, α) + Tα(ϑj(β, α)) for C1 < 0,

j ∈ N,

where functions pi and ϑi are given recurrently for i ∈ N in the following way (see 
Definition 17 in [20])

ϑ0(α, β) := ∞,

p2i−1(α, β) :=

⎧
⎨
⎩

⌊
Tα(ϑ2i−2(α, β)) + π

ωα

⌋
for α < 4,

⌊
T β(ϑ2i−2(α, β)) + T β (2 − α) + 1

⌋
for α ≥ 4,

(32)

p2i(α, β) :=

⎧
⎨
⎩

⌊
T β(ϑ2i−1(α, β)) + π

ωβ

⌋
for β < 4,


Tα(ϑ2i−1(α, β)) + Tα (2 − β) + 1� for β ≥ 4,
(33)

ϑ2i−1(α, β) := Wα
p2i−1(α,β)(ϑ2i−2(α, β)), (34)

ϑ2i(α, β) := W β
p2i(α,β)(ϑ2i−1(α, β)). (35)

Finally, to complete the definition of ϑi in (34) and (35), let us recall the function 
Wλ

k : R∗ → R∗ for λ ∈ R and k ∈ Z as (see Definition 5 in [20])
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Fig. 15. Graphs of functions W β
1 = W β

1 (q) (left) and W β
2 = W β

2 (q) (right) for fixed β = 2.7.

Wλ
k (q) :=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

q · V λ
k − V λ

k−1
q · V λ

k−1 − V λ
k−2

for q ∈ R,

V λ
k

V λ
k−1

for q = ∞.

(36)

Let us note that the function Wλ
k is the restriction of a complex Möbius transformation 

on R∗ (see Fig. 15). Now, let us recall some useful properties of Wλ
k due to Lemma 9 in 

[20]

Wλ
l (Wλ

k (q)) = Wλ
k+l(q), Wλ

−k(Wλ
k (q)) = q, Wλ

−k(q) = 1
Wλ

k

(
1
q

) , (37)

where k, l ∈ Z and q ∈ R∗. Moreover, due to Remark 10 in [20], we have for λ ∈ R and 
k, l ∈ Z that

qk+l = Wλ
l (qk), qk := u(k)

u(k − 1) , (38)

where u is a non-trivial solution of the linear equation Δ2u(k − 1) + λu(k) = 0.
In (36), the coefficients V λ

k are defined in (8) using Chebyshev polynomial of the 
second kind and thus, V λ

k satisfies the three terms recurrence formula

V λ
k−1 − (2 − λ)V λ

k + V λ
k+1 = 0. (39)

Moreover, by Lemma 4 in [20], we also have
(
V λ

k

)2 − V λ
k+1V

λ
k−1 = 1. (40)

Let us introduce the next identity for Chebyshev polynomials of the second kind.
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Fig. 16. The graph of the piecewise constant function β 
→ κβ .

Lemma 6. For λ ∈ R and k ∈ Z, the following equality holds
(
V λ

k+1 − V λ
k

)2 = 1 − λ · V λ
k+1V

λ
k . (41)

Proof. Using (39) and (40), we obtain
(
V λ

k+1 − V λ
k

)2 =
(
V λ

k+1
)2 − 2V λ

k+1V
λ
k +

(
V λ

k

)2 + λV λ
k+1V

λ
k − λV λ

k+1V
λ
k

=
(
V λ

k+1
)2 − V λ

k+1(2 − λ)V λ
k +

(
V λ

k

)2 − λV λ
k+1V

λ
k

=
(
V λ

k+1
)2 − V λ

k+1
(
V λ

k−1 + V λ
k+1

)
+ 1 + V λ

k+1V
λ
k−1 − λV λ

k+1V
λ
k

= 1 − λ · V λ
k+1V

λ
k . �

Now, let us take into account κβ defined in (20) for β > 0 (see Fig. 16). The function 
β �→ κβ is a piecewise constant and decreasing function, which has a jump discontinuity 
at ξk for k ∈ N, k ≥ 2, defined in (9). Let us note that for β = ξk, k ∈ N, k ≥ 2, we 
have ωβ = π

k , κβ = k − 1 and W β
k is the identity function on R∗ (see Lemma 11 in [20]

for λ = β and j = 1). Thus, we have

W β
κβ+1(q) = q, q ∈ R∗, for β = ξk, k ∈ N, k ≥ 2. (42)

Let us investigate some basic properties of V β
κβ

and V β
κβ+1 (see Figs. 18 and 19).

Lemma 7. For β > 0, we have 0 ≤ V β
κβ

≤ 1 and V β
κβ+1 < 0. Moreover, V β

κβ
and V β

κβ+1
have the following properties:

1. V β
κβ

= 1 if and only if β > ξ2 = 2.
2. V β

κβ
= 0 if and only if β = ξk for some k ∈ N, k ≥ 2.

3. V β
κβ+1 = −1 for β = ξk, k ∈ N, k ≥ 2.

4. If V β
κβ

+ V β
κβ+1 = −1 for 0 < β �= 4 then β = ξk for some k ∈ N, k ≥ 2.

Proof. At first, let us assume that β > ξ2 = 2. In this case, we have κβ = 0 and thus 
V β

κβ
= V β

0 ≡ 1 and V β
κβ+1 = V β

1 = 2 − β < 0.
At second, let us assume that ξk+2 < β ≤ ξk+1 ≤ ξ2 for fixed k ∈ N. Then κβ = k

and it suffices to show that (see Fig. 17)
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Fig. 17. Graphs of functions β 
→ V β
k (black curve) and β 
→ V β

k+1 (grey curve).

Fig. 18. The graph of the function β 
→ V β
κβ

.

Fig. 19. The graph of the function β 
→ V β
κβ+1.

1. V β
k = 0 and V β

k+1 = −1 for β = ξk+1,
2. 0 < V β

k < 1 and V β
k+1 < 0 for ξk+2 < β < ξk+1.

Now, we have that V β
k = 0 if and only if β = 4 sin2 mπ

2(k+1) , m ∈ {1, . . . , k}. Thus, the first 
zero of V β

k is β = ξk+1. Similarly, β = ξk+2 < ξk+1 is the first zero of V β
k+1. Moreover, 

we have that V β
k > 0 for 0 < β < ξk+1 since for β = 0, we have V β

k = k + 1 > 0. Using 
(41) for λ = β = ξk+2, we obtain

(
V β

k+1 − V β
k

)2
+ ξk+2 · V β

k+1V
β
k = 1,
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which simplifies to 
(
V β

k

)2
= 1 since V β

k+1 = 0 for β = ξk+2. Thus, we conclude that 
V β

k = 1 for β = ξk+2 < ξk+1 since V β
k is positive for 0 < β < ξk+1. The Chebyshev 

polynomial of the second kind monotonically oscillates between its extrema and the first 
extreme of β �→ V β

k does not belong to the interval (0, ξk+1). Thus, for ξk+2 < β < ξk+1, 
we have that 0 < V β

k < 1. Since Chebyshev polynomials of the second kind are orthogonal 
with weight function ω(x) =

√
1 − x2, using Corollary 3.3.3 on page 93 in [19], we have 

that two consecutive polynomials strictly interlace, i.e. between two consecutive zeros of 
V β

k+1 is exactly one zero of V β
k . Since V β

k+1 = 0 for β = ξk+2 and V β
k = 0 for β = ξk+1, 

we have that V β
k+1 < 0 for ξk+2 < β < ξk+1. Finally, using (41) for λ = β = ξk+1, we 

obtain 
(
V β

k+1

)2
= 1 and thus, we conclude that V β

k+1 = −1.
Now, it remains to justify the last statement. Thus, let us assume that V β

κβ
+V β

κβ+1 =
−1 for 0 < β �= 4. Using (41) for λ = β and k = κβ , we obtain

(
V β

κβ+1 − V β
κβ

)2
+ β · V β

κβ+1V
β
κβ

= 1,
(
2V β

κβ
+ 1

)2
− β ·

(
V β

κβ
+ 1

)
V β

κβ
= 1,

4
(
V β

κβ

)2
+ 4V β

κβ
− β ·

(
V β

κβ

)2
− β · V β

κβ
= 0,

(4 − β)(V β
κβ

+ 1)V β
κβ

= 0,

(β − 4)V β
κβ+1V

β
κβ

= 0,

which implies that V β
κβ

= 0 and thus, β = ξk for some k ∈ N, k ≥ 2. �
In the second part of this section, we simplify the definition of functions pi = pi(α, β)

given by (32) and (33) within the following four lemmas. As a consequence of this sim-
plification, we also obtain the basic bounds for each non-trivial Fučík curve C±

l .

Lemma 8. For 0 < β < 4, we have

π
ωβ

−
⌊

π
ωβ

⌋
= T β

(
W β

κβ+1(∞)
)

. (43)

Proof. We have that π
ωβ

−
⌊

π
ωβ

⌋
= π

ωβ
− 1 − κβ and thus, using (31), we get

Qβ
(

π
ωβ

− 1 − κβ

)
= −

sin
(
ωβ

(
1 − π

ωβ
+ 1 + κβ

))

sin
(
ωβ

(
π
ωβ

− 1 − κβ

)) = sin (ωβ(κβ + 2))
sin (ωβ(κβ + 1))

=
V β

κβ+1

V β
κβ

= W β
κβ+1(∞). �
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Fig. 20. Graphs of functions W β
κβ+1 = W β

κβ+1(q) (left) and W β
κβ+2 = W β

κβ+2(q) (right) for fixed β = 0.8 (i.e. 
κβ = 2).

Lemma 9. Let β > 0.

1. If β = ξk, k ∈ N, k ≥ 2, then W β
κβ+1(q) = ∞ if and only if q = ∞.

2. If β > 2 then W β
κβ+1(q) = ∞ if and only if q = 0.

3. If β < 2 and β �= ξk, k ∈ N, k ≥ 2, then W β
κβ+1(q) is finite for q ≤ 0 and for q = ∞.

Proof. Firstly, in the case of β = ξk, k ∈ N, k ≥ 2, we have k = κβ + 1 and W β
κβ+1 is 

the identity function (recall (42)). Secondly, for β > 2, we have κβ = 0 and W β
κβ+1(q) =

W β
1 (q) = 2 − β − 1/q (see Fig. 15). Thirdly, let us assume that β �= ξk, k ∈ N, k ≥ 2, 

and that 0 < β < 2. Then we have (see Fig. 20)

W β
κβ+1(q) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q · V β
κβ+1 − V β

κβ

q · V β
κβ − V β

κβ−1
for q ∈ R,

V β
κβ+1

V β
κβ

for q = ∞.

(44)

Using Lemma 7, we obtain that W β
κβ+1(∞) is negative and that W β

κβ+1(q) is finite for 
q ≤ 0. Indeed, using (40) for λ = β and k = κβ , we have

q · V β
κβ

− V β
κβ−1 =

q · V β
κβ

V β
κβ+1 + 1 −

(
V β

κβ

)2

V β
κβ+1

< 0. �

The following lemma is based on Lemmas 14 and 16 in [20] and it allows us to 
determine the length of the interval [i − 1, j + 1] for a positive or negative semi-wave 
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Fig. 21. The length of the interval [i − 1, j + 1] for a negative semi-wave uc
i,j of the solution u of (30) for 

fixed (α, β) ∈ D according to the sign of W β
κβ+1(qi): j = i + κβ + 1 and u(j) < 0 (bottom), j = i + κβ + 1

and u(j) = 0 (middle) and j = i + κβ and u(j) < 0 (top).

of the solution u according to the ratio qi of the values u(i) and u(i − 1) (see Fig. 21). 
Let us note that conditions in (45) or (46) mean that the solution u has a positive or 
negative semi-wave on the interval [i − 1, j + 1].

Lemma 10. Let (α, β) ∈ D and u be the solution of the initial value problem (30). More-
over, let i, j ∈ Z be such that i ≤ j and

u(i − 1) < 0, u(k) ≥ 0 for k = i, . . . , j, u(j + 1) < 0, (45)

or

u(i − 1) > 0, u(k) ≤ 0 for k = i, . . . , j, u(j + 1) > 0. (46)

Then we have

j =
{

i + κλ for Wλ
κλ+1 (qi) < 0,

i + κλ + 1 for Wλ
κλ+1 (qi) ≥ 0,

(47)

where we denoted qi := u(i)
u(i−1) ≤ 0 and λ = α if (45) holds or λ = β if (46) holds. 

Moreover, we have u(k) �= 0 for k ∈ Z such that i < k < j, and u(j) = 0 if and only if 
Wλ

κλ+1 (qi) = 0.

Proof. Let us assume that conditions in (46) hold, which means that we have a negative 
semi-wave uc

i,j of u defined on the interval [i − 1, j + 1] (see Fig. 21). Moreover, let us 
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assume that the value W β
κβ+1 (qi) is finite and we split the proof according to the value 

of β.
At first, let us consider 0 < β < 4. Using Lemma 14 in [20], we have that

j = i +
⌊
T β(qi) + π

ωβ

⌋
− 1, (48)

where qi = u(i)
u(i−1) ≤ 0. If we denote s = 1 − T β(qi) then (48) reads

j = i +
⌊

π
ωβ

− s
⌋

(49)

and s ∈ [0, 1) since 0 < T β(qi) ≤ 1. Now, let us consider that

s > π
ωβ

−
⌊

π
ωβ

⌋
≥ 0, (50)

which implies that 
⌊

π
ωβ

⌋
−1 ≤ π

ωβ
−1 < π

ωβ
−s <

⌊
π
ωβ

⌋
and that 

⌊
π
ωβ

− s
⌋

=
⌊

π
ωβ

⌋
−1 =

κβ . Thus, we obtain using (49) that

j = i + κβ . (51)

Moreover, using (43), (27) and (37), the strict inequality in (50) reads

1 − T β(qi) > T β
(
W β

κβ+1(∞)
)

,

T β (qi) < T β
(
W β

−(κβ+1)(0)
)

,

W β
κβ+1 (qi) < 0,

which justifies (47) if we take into account (51). Now, let us consider that

0 ≤ s ≤ π
ωβ

−
⌊

π
ωβ

⌋
, (52)

which implies 
⌊

π
ωβ

⌋
≤ π

ωβ
− s ≤ π

ωβ
<
⌊

π
ωβ

⌋
+ 1 and that 

⌊
π
ωβ

− s
⌋

=
⌊

π
ωβ

⌋
= κβ + 1. 

Thus, we obtain using (49) that

j = i + κβ + 1. (53)

And similarly as in the previous case, using (43), (27) and (37), the second inequality in 
(52) reads W β

κβ+1 (qi) ≥ 0, which justifies (47) if we take into account (53).
At second, let us consider β ≥ 4. Then we have 0 < α < 4 and using Lemma 16 in 

[20], we obtain that

j = i + 
Tα(qi) + Tα(2 − β)�, (54)
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where qi = u(i)
u(i−1) ≤ 0. Since 0 < Tα(qi) ≤ 1 and 0 < Tα(2 − β) < 1

2 , we have 

0 < Tα(qi) + Tα(2 − β) < 3
2 and thus, (54) reads

j = i for Tα(qi) + Tα(2 − β) < 1, (55)

j = i + 1 for Tα(qi) + Tα(2 − β) ≥ 1. (56)

The inequality in (55) reads Tα(qi) < Tα
(

1
2−β

)
or qi < W β

−1(0), which justifies (47)
since κβ = 0 for β ≥ 4. And similarly, (56) can be identified with the second case in (47).

Finally, for β > 0 and k ∈ Z such that i < k < j, we have that u(k) < 0. In contrary, 
if we assume that u(k) = 0 for some k strictly between i and j then u(k−1)u(k+1) < 0, 
which contradicts (46). Moreover, we have u(j) = 0 if and only if W β

κβ+1 (qi) = 0. Indeed, 
using (38), we have

W β
κβ+1 (qi) = qi+κβ+1 =

⎧
⎨
⎩

qj+1 = u(j+1)
u(j) for W β

κβ+1 (qi) < 0,

qj = u(j)
u(j−1) for W β

κβ+1 (qi) ≥ 0.

Thus, the proof is complete in the case of a negative semi-wave such that the value 
W β

κβ+1 (qi) is finite. Now, let us clarify that the case W β
κβ+1 (qi) = ∞ cannot occur. If we 

assume that W β
κβ+1 (qi) = ∞ then we have qi+κβ+1 = ∞, u(i + κβ) = 0 and j = i + κβ . 

Taking into account that qi is finite, we obtain using Lemma 9 that qi = 0 and β > 2. 
Thus, we have that κβ = 0, i = j and that u(i − 1) > u(i) = 0 = u(j) < u(j + 1), which 
is a contradiction.

In the case of a positive semi-wave on [i − 1, j + 1], i.e. if conditions in (45) hold, we 
prove statements in an analogous way. �
Remark 11. Let u be the solution of (30) for (α, β) ∈ D such that u(i − 1) = 0 and on 
the interval [i − 2, j + 1], we have a negative semi-wave (cf. (46) in Lemma 10)

u(i − 2) > 0, u(i − 1) = 0, u(k) ≤ 0 for k = i, . . . , j, u(j + 1) > 0.

Then we have qi = u(i)
u(i−1) = ∞, j = i + κβ and W β

κβ+1(qi) is negative or infinity. 
Moreover, using Lemma 9, we conclude that W β

κβ+1(qi) = ∞ if and only if β = ξk, 
k ∈ N, k ≥ 2.

We provide a new expression for the values of pi(α, β) (defined in (32) and (33)) using 
the Heaviside unit step function H defined as

H(q) :=
{

1 for q ≥ 0,
0 for q < 0 or q = ∞.
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Lemma 12. For (α, β) ∈ D and k ∈ N, we have

p1(α, β) = κα + 1,

p2k(α, β) = κβ + 1 + H
(
W β

κβ+1 (ϑ2k−1(α, β))
)
, (57)

p2k+1(α, β) = κα + 1 + H
(
Wα

κα+1 (ϑ2k(α, β))
)
. (58)

Proof. Firstly, the statement (47) in Lemma 10 can be equivalently written in the fol-
lowing form

j = i + κλ + H
(
Wλ

κλ+1 (qi)
)
. (59)

Now, let u be the solution of the initial value problem (30) with C1 > 0. Then u has a 
positive semi-wave on the interval [−1, p1 + 1], where p1 is defined in (32) as

p1(α, β) =

⎧
⎨
⎩

⌊
Tα(∞) + π

ωα

⌋
for α < 4,

⌊
T β(∞) + T β (2 − α) + 1

⌋
for α ≥ 4.

Since Tα(∞) = T β(∞) = 0, we have that p1(α, β) = κα + 1. Indeed, for α ≥ 4, we have 
κα = 0 and 0 < T β (2 − α) < 1

2 . Moreover, using (34), we have ϑ1(α, β) = Wα
p1(α,β)(∞)

which is exactly the value of u(p1+1)
u(p1) . The solution u has a negative semi-wave on the 

interval [p1, p1 + p2 + 1], where p2 is given by (33) in the following way

p2(α, β) =

⎧
⎨
⎩

⌊
T β(ϑ1(α, β)) + π

ωβ

⌋
for β < 4,


Tα(ϑ1(α, β)) + Tα (2 − β) + 1� for β ≥ 4.

Thus, using (48), (54) and (59) for λ = β, we get

p2(α, β) = j − i + 1 = κβ + H
(
W β

κβ+1 (ϑ1(α, β))
)

+ 1,

which corresponds to (57). Moreover, using (35), we have that ϑ2(α, β) =
W β

p2(α,β)(ϑ1(α, β)) which is equal to u(p1+p2+1)
u(p1+p2) . And similarly, the solution u has a 

positive semi-wave on [p1 + p2, p1 + p2 + p3 + 1], where p3 is defined in (32) as

p3(α, β) =

⎧
⎨
⎩

⌊
Tα(ϑ2(α, β)) + π

ωα

⌋
for α < 4,

⌊
T β(ϑ2(α, β)) + T β (2 − α) + 1

⌋
for α ≥ 4.

Thus, using (59) for λ = α, we obtain

p3(α, β) = j − i + 1 = κα + H
(
Wα

κα+1 (ϑ2(α, β))
)

+ 1,
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Fig. 22. The set Θ+
2 (grey region) as the basic bound for the second non-trivial Fučík curve C+

2 ⊂ Θ+
2 (black 

curve) for n = 8 (left) and for n = 9 (right).

Fig. 23. The set Θ+
3 (grey region) as the basic bound for the third non-trivial Fučík curve C+

3 ⊂ Θ+
3 (black 

curve) for n = 10 (left) and for n = 11 (right).

which corresponds to (58). To conclude, we have justified (57) and (58) for k = 1 (i.e. 
for p2 and p3, respectively). In the case of k ≥ 2, the proof of (57) and (58) concerning 
p2k and p2k+1 can be done in an analogous way. �

At the end of this section, using Lemma 12, we obtain some basic bounds for each 
Fučík curve C±

l ⊂ Θ±
l (see Figs. 22 and 23).

Theorem 13. In the domain D, we have the following bounds for Fučík curves C±
l ⊂ Θ±

l , 
l = 1, . . . , n − 1, where

Θ±
2j−1 := {(α, β) ∈ D : 0 ≤ n + 1 − j(κα + 1) − j(κβ + 1) ≤ 2j − 1} ,

Θ+
2j := {(α, β) ∈ D : 0 ≤ n + 1 − (j + 1)(κα + 1) − j(κβ + 1) ≤ 2j} ,

Θ-
2j := {(α, β) ∈ D : 0 ≤ n + 1 − j(κα + 1) − (j + 1)(κβ + 1) ≤ 2j} .
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Proof. First of all, it is enough to focus only on Fučík curves C+
l since we have

C-
l = {(α, β) ∈ D : (β, α) ∈ C+

l } .

By Theorem 22 in [20], we have that C+
l ⊂ Ω+

l , where Ω+
l is the set of all pairs (α, β) ∈ D

such that

l+1∑

i=1
pi(α, β) = n + 1.

Thus, using Lemma 12, we obtain for l = 2j − 1 that

j(κα + 1) + j(κβ + 1) ≤ n + 1 ≤ j(κα + 1) + j(κβ + 1) + 2j − 1

and for l = 2j that

(j + 1)(κα + 1) + j(κβ + 1) ≤ n + 1 ≤ (j + 1)(κα + 1) + j(κβ + 1) + 2j. �
5. Implicit description of Fučík curves

In this section, we investigate the distance between zeros of two consecutive continuous 
positive semi-waves of the solution u of the initial value problem (30) for 0 < α < 4 and 
β > 0. Thus, let i, j ∈ Z be such that i < j and that (46) holds, i.e. i is the generalized 
zero of u and the next generalized zero of u is j or (j + 1) if u(j) = 0 or u(j) < 0, 
respectively. Moreover, we have two consecutive continuous positive semi-waves uc

1 and 

Fig. 24. The graph of the function β 
→ τα,β for fixed α = 2.9.

uc
2 of u with zeros t1 ∈ (i − 1, i] and t2 ∈ [j, j + 1), respectively. In the following 

Lemma 14, we show how to reconstruct the zero t2 according to values of t1, α and β. 
For this reconstruction, we use τα,β = Tα

(
V β

κβ+1/V
β
κβ

)
introduced in Definition 1 (see 

Fig. 24) to distinguish between two disjoint cases (see Fig. 25)

j = i + κβ and j = i + κβ + 1.
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Fig. 25. Two details of the solution u of the initial value problem (30) for fixed α = 0.432 and β = 0.671
(i.e. κβ = 2). On top, we have two continuous positive semi-waves uc

1 and uc
2 with zeros t1 and t2 such that 

j = i + κβ + 1. Bottom, we have two continuous positive semi-waves uc
2 and uc

3 with zeros t3 and t4 such 
that j = i + κβ .

Let us note that 0 ≤ τα,β < 1 since V β
κβ+1/V

β
κβ

is negative or equal to ∞ according to 
Lemma 7.

Lemma 14. Let u be the solution of the initial value problem (30) for 0 < α < 4 and β > 0
and let uc

1 and uc
2 be two consecutive continuous positive semi-waves of u. Moreover, let 

t1 be the second zero of uc
1 and let t2 be the first zero of uc

2. If we denote s = �t1� − t1
then we have

t2 =

⎧
⎨
⎩

t1 + s + κβ + Tα
(
W β

κβ+1 (Qα(1 − s))
)

for s > τα,β ,

t1 + s + κβ + 1 + Tα
(
W β

κβ+2 (Qα(1 − s))
)

for s ≤ τα,β .
(60)

Proof. We have t1 ∈ (i − 1, i] and t2 ∈ [j, j + 1), where i, j ∈ Z are such that i < j and 
that (46) holds. Moreover, we have

qi = Qα (1 − s) , qj+1 = W β
j−i+1(qi), (61)

where we denoted qk := u(k)
u(k−1) for k = i, . . . , j + 1. Now, using Lemma 10 and (47) for 

λ = β, we obtain

j =

⎧
⎨
⎩

i + κβ for W β
κβ+1(qi) < 0,

i + κβ + 1 for W β
κβ+1(qi) ≥ 0.

(62)

Since t2 − j = t2 − 
t2� = Tα (qj+1), we get using the second equality in (61) that 
t2 = j + Tα

(
W β

j−i+1(qi)
)
, which implies using (62) that
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t2 =

⎧
⎨
⎩

i + κβ + Tα
(
W β

κβ+1(qi)
)

for W β
κβ+1(qi) < 0,

i + κβ + 1 + Tα
(
W β

κβ+2(qi)
)

for W β
κβ+1(qi) ≥ 0.

(63)

Using the first equality in (61), the inequality W β
κβ+1(qi) < 0 in (63) reads Qα (1 − s) <

V β
κβ

/V β
κβ+1 which can be equivalently written as Qα(s) > V β

κβ+1/V
β
κβ

or as s > τα,β due 

to (29). Similarly, we obtain that the second inequality W β
κβ+1(qi) ≥ 0 in (63) reads 

s ≤ τα,β . To conclude, (63) can be also written in the following way

t2 =

⎧
⎨
⎩

i + κβ + Tα
(
W β

κβ+1(qi)
)

for s > τα,β ,

i + κβ + 1 + Tα
(
W β

κβ+2(qi)
)

for s ≤ τα,β ,

which is exactly (60) if we take into account the first equality in (61) and that i = �t1� =
t1 + s. �
Remark 15. Let us note that for s = τα,β , we have using (60) that t2 = t1 + s + κβ + 1, 
since Qα(1 − τα,β) = 1/Qα(τα,β) = V β

κβ
/V β

κβ+1 and thus

Tα
(
W β

κβ+2 (Qα(1 − τα,β))
)

= Tα (∞) = 0.

See also Fig. 20 and note that for q = V β
κβ

/V β
κβ+1, we have W β

κβ+1(q) = 0 and W β
κβ+2(q) =

W β
1

(
W β

κβ+1(q)
)

= ∞.

In the following lemma, we provide some basic properties of τα,β (see Fig. 24).

Lemma 16. For 0 < α < 4 and β > 0, we have that 0 ≤ τα,β < 1. Moreover, if we denote

ξk := 4 sin2 π

2k , ζk := 4 sin2 π

2k − 1 for k ∈ N, k ≥ 2,

then we have

1. τα,β = 0 if and only if β = ξk for some k ∈ N, k ≥ 2,
2. τα,β = 1

2 if and only if β = ζk for some k ∈ N, k ≥ 2,
3. τβ,β = π

ωβ
−
⌊

π
ωβ

⌋
for 0 < β < 4.

Proof. First of all, for 0 < α < 4 and β ≥ 4, we have that τα,β = Tα
(

V β
1

V β
0

)
= Tα (2 − β)

and thus, 0 < τα,β < 1
2 since (2 − β) < −1. For the rest of the proof, let us restrict to 

the case 0 < β < 4. We claim that

τα,β = Tα
(
Qβ

(
π
ωβ

−
⌊

π
ωβ

⌋))
for 0 < α, β < 4. (64)
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Indeed, using Lemma 8, we get

Qβ
(

π
ωβ

−
⌊

π
ωβ

⌋)
= W β

κβ+1(∞) =
V β

κβ+1

V β
κβ

,

which justifies (64) according to the definition of τα,β. Now, since 0 < π
ωβ

−
⌊

π
ωβ

⌋
< 1 or 

π
ωβ

−
⌊

π
ωβ

⌋
= 0, we have that

Qβ
(

π
ωβ

−
⌊

π
ωβ

⌋)
< 0 or Qβ

(
π
ωβ

−
⌊

π
ωβ

⌋)
= ∞,

respectively. Thus, using (64), we get that 0 < τα,β < 1 for 
⌊

π
ωβ

⌋
< π

ωβ
and that τα,β = 0

for 
⌊

π
ωβ

⌋
= π

ωβ
. Moreover, 

⌊
π
ωβ

⌋
= π

ωβ
if and only if π

ωβ
= k, k ∈ N, k ≥ 2 (recall that 

1 < π
ωβ

), and let us note that π
ωβ

= k reads β = 2 − 2 cos π
k or β = ξk. Finally, using 

(64), we conclude that τα,β = 1
2 can be equivalently written as Qβ

(
π
ωβ

−
⌊

π
ωβ

⌋)
= −1

or π
ωβ

=
⌊

π
ωβ

⌋
+ 1

2 or π
ωβ

= k + 1
2 , k ∈ N, k ≥ 2, and let us note that π

ωβ
= k + 1

2 reads 
β = 2 − 2 cos 2π

2k+1 or β = ζk. �
Let us introduce the function Nα,β : [0, 1 + τα,β ] → R, which we use to measure the 

distance t2−t1 between zeros t1 and t2 of two consecutive continuous positive semi-waves 
of u (see Figs. 25 and 26).

Definition 17. For 0 < α < 4 and β > 0, let us define

Dom(Nα,β) := [0, 1 + τα,β ], Nα,β(s) :=

⎧
⎪⎪⎨
⎪⎪⎩

¯̄Mα,β(s) + 1 for s ∈ [0, τα,β ],
M̄α,β(s) for s ∈ (τα,β , 1),
¯̄Mα,β(s − 1) for s ∈ [1, 1 + τα,β ],

where

M̄α,β(s) := Tα
(
W β

κβ+1 (Qα(1 − s))
)

, s ∈ [τα,β , 1],
¯̄Mα,β(s) := Tα

(
W β

κβ+2 (Qα(1 − s))
)

, s ∈ [0, τα,β ].

Remark 18. Let u be the solution of the initial value problem (30) for 0 < α < 4 and 
β > 0 and let t1 and t2 be two zeros of positive semi-waves of u as in Lemma 14 (see 
Fig. 25). Then we have

t2 = t1 + s + κβ + Nα,β(s), 0 ≤ s ≤ 1 + τα,β . (65)

Indeed, for 0 ≤ s < 1, we have that s = �t1� − t1 and we obtain using (60) that
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Fig. 26. The graph of the function Nα,β = Nα,β(s) for fixed α = 1.2 and β = 3.2.

t2 =

⎧
⎨
⎩

t1 + s + κβ + 1 + ¯̄Mα,β(s) for 0 ≤ s ≤ τα,β ,

t1 + s + κβ + M̄α,β(s) for τα,β < s < 1.

Moreover, for 1 ≤ s ≤ 1 + τα,β , we have 0 ≤ s − 1 ≤ τα,β and thus,

t2 = t1 + s − 1 + κβ + 1 + ¯̄Mα,β(s − 1) = t1 + s + κβ + Nα,β(s).

Let us introduce the function ρα,β according to (65), which measures the distance 
between zeros of two consecutive continuous positive semi-waves.

Definition 19. Let 0 < α < 4 and β > 0. Let us define

ρα,β(s) := s + κβ + Nα,β(s), 0 ≤ s ≤ 1 + τα,β .

Now, using (65), we have for zeros t1 and t2 in Lemma 14 that

t2 = t1 + ρα,β(�t1� − t1). (66)

In the following three lemmas, let us investigate some basic properties of Nα,β.
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Fig. 27. The graph of the function β 
→ μα,β for fixed α = 2.9.

Lemma 20. The function Nα,β is a continuous involution, i.e.

∀s ∈ [0, 1 + τα,β ] : Nα,β(Nα,β(s)) = s.

Moreover, we have Nα,β(0) = 1 + τα,β and Nα,β(τα,β) = 1.

Proof. At first, M̄α,β is the continuous strictly decreasing function on [τα,β, 1], which 
maps this interval onto itself. Moreover, M̄α,β is an involution. Indeed, for τα,β ≤ s ≤ 1, 
we have

M̄α,β(s) = Tα
(
W β

κβ+1 (1/Qα(s))
)

= Tα
(
1/W β

−κβ−1 (Qα(s))
)

and thus, we obtain

M̄α,β(M̄α,β(s)) = Tα
(
1/W β

−κβ−1

(
Qα

(
Tα
(
W β

κβ+1 (1/Qα(s))
))))

= s.

At second, ¯̄Mα,β is the continuous strictly decreasing function on [0, τα,β], which maps 
this interval onto itself. Moreover, ¯̄Mα,β is an involution, which can be justified similarly 
as in the case of M̄α,β .

Finally, Nα,β is the continuous strictly decreasing function on [0, 1 +τα,β], which maps 
this interval onto itself, and it is an involution. Indeed, for 0 ≤ s ≤ τα,β , we have

Nα,β(Nα,β(s)) = ¯̄Mα,β

( ¯̄Mα,β(s) + 1 − 1
)

= s,

and for 1 ≤ s ≤ 1 + τα,β , we have

Nα,β(Nα,β(s)) = ¯̄Mα,β

( ¯̄Mα,β(s − 1)
)

+ 1 = s − 1 + 1 = s. �
Now, let us focus on ηα,β and μα,β introduced in Definition 1 (see Figs. 27 and 28). 

Using Lemma 7, we get that 0 ≤ ηα,β < 1 and 0 < μα,β < 1 since (V β
κβ+1 − 1)/V β

κβ
is 

negative or equal to ∞ and V β
κβ+1/(V β

κβ
+ 1) is negative.
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Fig. 28. The graph of the function β 
→ ηα,β for fixed α = 2.9.

Lemma 21. The points ηα,β and μα,β are fixed points of ¯̄Mα,β and M̄α,β, respectively. 
Moreover, we have

Nα,β(ηα,β) = ηα,β + 1, Nα,β(μα,β) = μα,β .

Proof. Using (29), we obtain

¯̄Mα,β(ηα,β) = Tα

(
W β

κβ+2

(
V β

κβ

V β
κβ+1 − 1

))
= Tα

(
V β

κβ+1 − 1
V β

κβ

)
= ηα,β ,

where we used (40) to simplify

W β
κβ+2

(
V β

κβ

V β
κβ+1 − 1

)
=

V β
κβ+1 −

(
V β

κβ+1V
β
κβ+1 − V β

κβ
V β

κβ+2

)

V β
κβ

=
V β

κβ+1 − 1
V β

κβ

.

In a similar way, we show that M̄α,β(μα,β) = μα,β . Finally, we have Nα,β(ηα,β) =
¯̄Mα,β(ηα,β) + 1 = ηα,β + 1 and Nα,β(μα,β) = M̄α,β(μα,β) = μα,β , which finishes the 

proof. �
Lemma 22. Let 0 < α < 4.

1. If β = ξk, k ∈ N, k ≥ 2, then Nα,β(s) = 1 − s.
2. If β = α then Nα,β(s) = 1 − s + τβ,β = 1 − s + π

ωβ
−
⌊

π
ωβ

⌋
.

Proof. At first, let us assume that β = ξk, k ∈ N, k ≥ 2. Using Lemma 16, we obtain 
that τα,β = 0 and thus, we have that Nα,β(0) = 1 and Nα,β(1) = 0. Moreover, since 
W β

κβ+1 is the identity function (recall (42)), we have for 0 < s < 1 that

Nα,β(s) = M̄α,β(s) = Tα
(
W β

κβ+1 (Qα(1 − s))
)

= 1 − s.
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At second, let us assume that 0 < β = α < 4. Then using (64), we obtain

π
ωβ

= t2 − t1 = s + κβ + Nα,β(s), 0 ≤ s ≤ 1 + τβ,β , (67)

where τβ,β = π
ωβ

−
⌊

π
ωβ

⌋
due to Lemma 16. Finally, using (67), we get

Nα,β(s) = π
ωβ

− s − κβ = π
ωβ

− s −
⌊

π
ωβ

⌋
+ 1 = 1 − s + τβ,β . �

In the following lemma, we show that values ηα,β, τα,β and μα,β are always ordered 
in one way (see Figs. 27 and 28).

Lemma 23. For 0 < α < 4 and β > 0, we have that

0 < ηα,β < τα,β < μα,β < 1 if β �= ξk, k ∈ N, k ≥ 2. (68)

Moreover, we have

1. ηα,β = 0 if and only if β = ξk for some k ∈ N, k ≥ 2,
2. μα,β = 1

2 if and only if β = ξk for some k ∈ N.

Proof. At first, for β �= ξk, k ∈ N, k ≥ 2, we have that

V β
κβ+1 − 1

V β
κβ

<
V β

κβ+1

V β
κβ

<
V β

κβ+1

V β
κβ + 1

< 0,

which implies 0 < ηα,β < τα,β < μα,β < 1. At second, for β = ξk, k ∈ N, k ≥ 2, we 
have V β

κβ
= 0, V β

κβ+1 = −1, and thus, ηα,β = τα,β = Tα(∞) = 0 and μα,β = Tα(−1) =
1
2 . At third, for β = 4, we have κβ = 0, V β

κβ
= 1, V β

κβ+1 = 2 − β = −2 and thus, 
μα,β = Tα(−1) = 1

2 . Finally, let us assume that β �= 4 and μα,β = 1
2 . This means that 

V β
κβ+1

V β
κβ

+1 = −1 and thus, we have

V β
κβ

+ V β
κβ+1 = −1.

Thus, using Lemma 7, we obtain that β = ξk for some k ∈ N, k ≥ 2. �
Let us reveal a close connection among values ηα,β, τα,β and μα,β using the function 

Gβ : R → R∗ defined in the following way

Gβ(q) := 2q − (2 − β)q2

1 − q2 for q �= ±1, Gβ(±1) := ∞.
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Lemma 24. For 0 < α, β < 4, we have

τα,β = 1 − Tα
(
Gβ (Qα(1 − ηα,β))

)
, (69)

τα,β = Tα
(
Gβ (Qα(μα,β))

)
, (70)

Gβ(Qα(1 − ηα,β)) = 1
Gβ(Qα(μα,β)) . (71)

Proof. Firstly, let us assume that β = ξk for some k ∈ N, k ≥ 2. According to Lemmas 16
and 23, we have ηα,β = τα,β = 0 and μα,β = 1

2 . Moreover, we have

1 − Tα
(
Gβ (Qα(1 − ηα,β))

)
= 1 − Tα

(
Gβ (Qα(1))

)
= 1 − Tα

(
Gβ(0)

)
= 1 − Tα(0)

= 0 = τα,β

and

Tα
(
Gβ (Qα(μα,β))

)
= Tα

(
Gβ

(
Qα

( 1
2
)))

= Tα
(
Gβ(−1)

)
= Tα(∞) = 0 = τα,β .

Secondly, let us assume that β �= ξk, k ∈ N, k ≥ 2. We claim that ηα,β �= 1
2 . Indeed, 

if we assume that ηα,β = 1
2 then we get (V β

κβ+1 − 1)/V β
κβ

= −1 and

V β
κβ

+ V β
κβ+1 = 1,

which is a contradiction since V β
κβ

+V β
κβ+1 < 1 according to Lemma 7. Thus, 0 < ηα,β < 1, 

0 < 1 − ηα,β < 1, Qα(1 − ηα,β) < 0 and

Qα(1 − ηα,β) �= −1, Qα(ηα,β) �= −1.

Now, using (29), we have

Gβ (Qα(1 − ηα,β)) = Gβ

(
1

Qα(ηα,β)

)
= 2Qα(ηα,β) − (2 − β)

(Qα(ηα,β))2 − 1

and thus, using (39), we obtain

Gβ (Qα(1 − ηα,β)) = V β
κβ

2(V β
κβ+1 − 1) − (2 − β)V β

κβ

(V β
κβ+1 − 1)2 − (V β

κβ )2

= V β
κβ

2(V β
κβ+1 − 1) − (V β

κβ+1 + V β
κβ−1)

(V β
κβ+1 − 1)2 − (1 + V β

κβ+1V
β
κβ−1)

= V β
κβ

V β
κβ+1 − 2 − V β

κβ−1

(V β
κβ+1)2 − 2V β

κβ+1 − V β
κβ+1V

β
κβ−1

=
V β

κβ

V β
κβ+1

. (72)
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Using (27) and (72), we get

1 − Tα
(
Gβ (Qα(1 − ηα,β))

)
= Tα

(
1

Gβ (Qα(1 − ηα,β))

)
= Tα

(
V β

κβ+1

V β
κβ

)
= τα,β ,

which justifies (69). According to Lemma 23, we have that 0 < μα,β < 1 and μα,β �= 1
2 , 

which means that Qα(μα,β) < 0 and Qα(μα,β) �= −1. As in the previous case, using (39), 
we simplify Gβ (Qα(μα,β)) as V β

κβ+1/V
β
κβ

, which justifies (70). Finally, if we combine (69)
and (70) and use (27) then we obtain (71). �

Let us note that for 0 < α < 4, we have

0 < ηα,β < τα,β < μα,β < 1
2 for β > 4,

0 < ηα,β < τα,β < μα,β = 1
2 for β = 4,

0 < ηα,β < 1
2 < μα,β < 1 for 2 < β < 4, (73)

since Qα(ηα,β) = 1 − β, Qα(τα,β) = 2 − β and Qα(μα,β) = 2−β
2 for β > 2. The following 

lemma indicates that the values of ηα,β and μα,β are separated by 1
2 for 0 < α, β < 4.

Lemma 25. For 0 < α, β < 4, we have that

0 ≤ ηα,β < 1
2 ≤ μα,β < 1.

Proof. Firstly, for 2 < β < 4, we have the inequalities in (73). Secondly, for 0 < β < 2
such that β �= ξk, k ∈ N, k > 2, we have 0 < τα,β < 1, which implies Gβ(Qα(μα,β)) < 0
according to (70). Thus, we obtain that −1 < Qα(μα,β) < 0, which leads to 12 < μα,β < 1. 
Similarly, using (71), we get Gβ(Qα(1 − ηα,β)) < 0, which implies 0 < ηα,β < 1

2 . Finally, 
for β = ξk, k ∈ N, k ≥ 2, we have ηα,β = 0 and μα,β = 1

2 due to Lemma 23. �
Proof of Theorem 5. The proof is based on Theorem 26 in [20]. Let us find the descrip-
tion of the Fučík curve C+

2j−1, j ∈ N, in terms of functions t+j = t+j(α, β) and t-j = t-j(α, β)
defined in (24) and (25), respectively. Using Theorem 26 in [20], we obtain that the 
Fučík curve C+

2j−1 has in D the following implicit description

j∑

i=1
pi(α, β) +

j∑

i=1
pi(β, α) + Tα(ϑj(α, β)) + Tα(ϑj(β, α)) = n + 1 (74)

and moreover, the corresponding non-trivial solution u has exactly (2j − 1) generalized 
zeros on T and has exactly j positive semi-waves as continuous extensions. These positive 
continuous semi-waves have the zeros ti and t̃−i, which can be reconstructed from left 
and right endpoints of T̂ , respectively, in the following way
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Fig. 29. A non-trivial solution of the problem (7) with 7 generalized zeros on T for (α, β) ∈ C+
7 (n = 30, 

α .= 0.240, β .= 3.534).

ti =
i∑

k=1
pk(α, β) + Tα(ϑi(α, β)), t̃−i = n + 1 −

i∑

k=1
pk(β, α) − Tα(ϑi(β, α)),

for i = 1, . . . , j. The condition (74) means that tj = t̃−j . Now, according to Lemma 14, 
Remark 18 and (66), we have that

ti = t+i (α, β),

t̃−i = n + 1 − t-i (α, β), (75)

and thus, the condition (74) reads as

t+j(α, β) + t-j(α, β) = n + 1.

To justify (75), it remains to show that �α,β(0) = p1(β, α) +Tα(ϑ1(β, α)). Indeed, using 
Lemma 20, we obtain

�α,β(0) = κβ + Nα,β(0) = κβ + 1 + τα,β ,

and using Lemma 12, we get

p1(β, α) = κβ + 1,

Tα(ϑ1(β, α)) = Tα
(
W β

p1(β,α)(∞)
)

= Tα

(
V β

κβ+1

V β
κβ

)
= τα,β .

Now, the description of Fučík curves C-
2j−1, C+

2j and C-
2j in terms of functions t+j =

t+j(α, β) and t-j = t-j(α, β) can be obtained analogously (see Figs. 30 and 31). Let us only 
mention here the implicit description of curves C±

2j similar to (74)

C+
2j :

j+1∑

i=1
pi(α, β) +

j∑

i=1
pi(α, β) + Tα(ϑj+1(α, β)) + Tα(ϑj(α, β)) = n + 1,
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Fig. 30. A non-trivial solution of the problem (7) with 6 generalized zeros on T for (α, β) ∈ C+
6 (n = 48, 

α .= 0.145, β .= 0.329).

Fig. 31. A non-trivial solution of the problem (7) with 6 generalized zeros on T for (α, β) ∈ C-
6 (n = 48, 

α .= 0.150, β .= 0.251).

C-
2j :

j+1∑

i=1
pi(β, α) +

j∑

i=1
pi(β, α) + Tα(ϑj+1(β, α)) + Tα(ϑj(β, α)) = n + 1. �

6. Improved bounds for Fučík curves

In this last section, we focus on the function ρα,β introduced in Definition 19 which 
measures the distance between every two consecutive zeros of two different continuous 
positive semi-waves. In Theorem 31, we prove that ρα,β attains its global extrema at 
ηα,β and μα,β (see Fig. 32). Since ρα,β is defined by Nα,β, we express the first derivative 
(Nα,β)′ in Lemma 28 and then in Lemma 30, we determine where this derivative is less 
or greater than −1. Let us note that at the end of this section, the proof of the main 
Theorem 3 is available.
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Fig. 32. The graph of the function ρα,β = ρα,β(s) for fixed α = 2.6 and β = 3.8.

Let us introduce the function Sα,β
k , which we use to express the first derivative (Nα,β)′

of the function Nα,β given in Definition 17.

Definition 26. Let 0 < α < 4 and β > 0, k ∈ Z. Let us define the function Sα,β
k : R∗ → R

as

Sα,β
k (q) := V β

k · q2V β
k+1 − 2qV β

k + V β
k−1

q2 − (2 − α)q + 1 for q ∈ R, (76)

Sα,β
k (∞) := V β

k · V β
k+1. (77)

Let us note that the denominator q2 − (2 − α)q + 1 in (76) is always positive since its 
discriminant is α(α − 4) < 0.

Lemma 27. Let 0 < α < 4, β > 0 and k = κβ or k = κβ + 1. Then for 0 < t ≤ 1, we 
have

(
Tα ◦ W β

k+1 ◦ Qα
)′

(t) = 1
1 − (β − α)Sα,β

k (Qα(t))
. (78)

Moreover, we have

(
Tα ◦ W β

k+1 ◦ Qα
)′

+
(0) = 1

1 − (β − α)Sα,β
k (∞)

. (79)

Proof. For 0 ≤ t ≤ 1, let us denote q = Qα(t). Thus, we have that q is finite and 
non-positive for 0 < t ≤ 1 and q = ∞ for t = 0.

At first, in the special case of V β
k = 0, we have that Sα,β

k (q) = 0 and W β
k+1(q) = q

and thus, we obtain

Tα
(
W β

k+1 (Qα(t))
)

= Tα (Qα(t)) = t,
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which justifies (78) and (79).
Now, for the rest of the proof, let us assume that V β

k �= 0. Using (12), we obtain

(Tα)′(q) = sinωα

ωα
· 1
q2 − (2 − α)q + 1 , (80)

(Qα)′ (t) = 1
(Tα)′ (q)

.

Moreover, we have

(
Tα
(
W β

k+1 (Qα(t))
))′

=
(Tα)′

(
W β

k+1 (q)
)

(Tα)′ (q)
·
(
W β

k+1

)′
(q) . (81)

Let us point out that W β
k+1 (q) is a finite number due to q = Qα(t) for 0 ≤ t ≤ 1 and 

k = κβ or k = κβ + 1. Now, let us expand the factor (Tα)′
(
W β

k+1 (q)
)

in (81). Thus, let 
us write the denominator in (80) for q equal to W β

k+1 (q) as

(
W β

k+1(q)
)2

− (2 − α)W β
k+1(q) + 1 = Aq2 + Bq + C

(
qV β

k − V β
k−1

)2 , (82)

where the polynomial Aq2 + Bq + C has the form of

(
qV β

k+1 − V β
k

)2
− (2 − α)

(
qV β

k+1 − V β
k

)(
qV β

k − V β
k−1

)
+
(
qV β

k − V β
k−1

)2
.

Moreover, the coefficients A, B and C of this polynomial can be identified as

A = V β
k+1V

β
k+1 − (2 − α)V β

k V β
k+1 + V β

k V β
k = 1 + (2 − β)V β

k V β
k+1 − (2 − α)V β

k V β
k+1

= 1 − (β − α)V β
k V β

k+1, (83)

C = V β
k V β

k − (2 − α)V β
k V β

k−1 + V β
k−1V

β
k−1 = 1 + (2 − β)V β

k V β
k−1 − (2 − α)V β

k V β
k−1

= 1 − (β − α)V β
k V β

k−1, (84)

B = −2V β
k

(
V β

k+1 + V β
k−1

)
+ (2 − α)

(
V β

k V β
k − V β

k+1V
β
k−1

)

= −2(2 − β)V β
k V β

k + (2 − α)
(
2V β

k V β
k − 1

)

= −(2 − α) + 2(β − α)V β
k V β

k . (85)

If we combine (83), (84), (85) and (82), we obtain
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(Tα)′
(
W β

k+1(q)
)

(Tα)′(q) =

(
q2 − (2 − α)q + 1

) (
qV β

k − V β
k−1

)2

q2 − (2 − α)q + 1 − (β − α)V β
k

(
q2V β

k+1 − 2qV β
k + V β

k−1

)

=

(
qV β

k − V β
k−1

)2

1 − (β − α)Sα,β
k (q)

,

which means that (81) has the form of (78) since we have that

(
W β

k+1

)′
(q) =

V β
k+1

(
qV β

k − V β
k−1

)
−
(
qV β

k+1 − V β
k

)
V β

k
(
qV β

k − V β
k−1

)2 = 1
(
qV β

k − V β
k−1

)2 . �

Using the function Sα,β
k , we express the first derivative (Nα,β)′ (see Fig. 33).

Lemma 28. For 0 < α < 4 and β > 0, we have

(Nα,β)′ (s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1
1 − (β − α)Sα,β

κβ+1 (Qα(1 − s))
for s ∈ (0, τα,β ],

−1
1 − (β − α)Sα,β

κβ (Qα(1 − s))
for s ∈ (τα,β , 1),

−1
1 − (β − α)Sα,β

κβ (∞)
for s = 1,

where the functions Sα,β
κβ

and Sα,β
κβ+1 are defined in (76), (77) as Sα,β

k for k = κβ and 
k = κβ + 1, respectively.

Proof. Let us split the proof according to the value of the variable s.
At first, let us assume that 0 < s < τα,β . Then we have

Nα,β(s) = ¯̄Mα,β(s) + 1 = Tα
(
W β

κβ+2 (Qα(1 − s))
)

+ 1

and thus, the expression of the first derivative (Nα,β)′(s) follows directly from (78) for 
t = 1 − s and k = κβ + 1.

At second, let us assume that τα,β < s < 1. Then we have

Nα,β(s) = M̄α,β(s) = Tα
(
W β

κβ+1 (Qα(1 − s))
)

and thus, the expression of (Nα,β)′(s) follows from (78) for t = 1 − s and k = κβ .
At third, let us assume that s = τα,β . If we take into account that

V β
κβ+2V

β
κβ

−
(
V β

κβ+1

)2
= 1 = V β

κβ+1V
β
κβ−1 −

(
V β

κβ

)2
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then we obtain

Sα,β
κβ+1 (Qα(1 − τα,β)) = Sα,β

κβ+1

(
V β

κβ

V β
κβ+1

)

= V β
κβ+1V

β
κβ

V β
κβ+2V

β
κβ

−
(
V β

κβ+1

)2

(
V β

κβ

)2
− (2 − α)V β

κβV β
κβ+2 +

(
V β

κβ+1

)2

= V β
κβ+1V

β
κβ

V β
κβ+1V

β
κβ−1 −

(
V β

κβ

)2

(
V β

κβ

)2
− (2 − α)V β

κβV β
κβ+2 +

(
V β

κβ+1

)2

= Sα,β
κβ

(
V β

κβ

V β
κβ+1

)

= Sα,β
κβ

(Qα(1 − τα,β)) .

And thus, we obtain that the one-sided derivatives of Nα,β at τα,β coincide. Indeed, we 
have

(Nα,β)′
− (τα,β) = −1

1 − (β − α)Sα,β
κβ+1 (Qα(1 − τα,β))

= −1
1 − (β − α)Sα,β

κβ (Qα(1 − τα,β))

= (Nα,β)′
+ (τα,β). �

Remark 29. If we take into account that Sα,β
κβ

(∞) = Sα,β
κβ+1(0), we obtain using Lemma 28

that

(Nα,β)′ (1) = −1
1 − (β − α)Sα,β

κβ+1(0)
= (Nα,β)′

+ (0).

Moreover, due to Lemma 20, the function Nα,β is an involution and thus, for all s ∈
(0, 1 + τα,β), we have that (Nα,β)′ (Nα,β(s)) · (Nα,β)′ (s) = 1. And thus, we have

1
(Nα,β)′ (τα,β)

= (Nα,β)′ (1) = (Nα,β)′
+ (0) = 1

(Nα,β)′
− (1 + τα,β)

.

Let us examine where the value of the first derivative (Nα,β)′ (s) is equal, less or 
greater than −1 (see Fig. 33).

Lemma 30. Let 0 < α < 4 and β > 0. For β = ξk, k ∈ N, k ≥ 2, we have that

(Nα,β)′ (s) = −1 for s ∈ (0, 1). (86)
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Fig. 33. The graph of the first derivative s 
→ (Nα,β)′ (s) for fixed α = 1.5 and β = 2.7.

In the case of β �= ξk for all k ∈ N, k ≥ 2, we have for α ≶ β that

(Nα,β)′ (s)

⎧
⎪⎨
⎪⎩

≷ −1 for s ∈ (0, ηα,β) ∪ (μα,β , 1),
= −1 for s = ηα,β and for s = μα,β ,

≶ −1 for s ∈ (ηα,β , μα,β),

and the statement (86) holds for α = β.

Proof. In the case of β = ξk, k ∈ N, k ≥ 2, we have Nα,β(s) = 1 − s according to 
Lemma 22 and thus, (86) holds. For the rest of the proof, let us assume that β �= ξk for 
all k ∈ N, k ≥ 2. According to Lemma 23, we have that 0 < ηα,β < τα,β < μα,β < 1. 
Now, let us denote q = Qα(1 − s) and split the proof according to the value of s.

At first, let us assume that τα,β < s < 1. Thus, we have q < V β
κβ

/V β
κβ+1 < 0. Using 

Lemma 28, we obtain

(Nα,β)′(s) � −1 if and only if (α − β) · Sα,β
κβ

(q) � 0. (87)

If we take into account that V β
κβ−1V

β
κβ+1 =

(
V β

κβ

)2
− 1, it is possible to write Sα,β

κβ
(q) in 

the following form

Sα,β
κβ

(q) = V β
κβ

V β
κβ+1

(
q −

V β
κβ

−1

V β
κβ+1

)(
q −

V β
κβ

+1

V β
κβ+1

)

q2 − (2 − α)q + 1 .

Thus, the sign of Sα,β
κβ

(q) is equal to the sign of the factor 
(
q − (V β

κβ
+ 1)/V β

κβ+1

)
due to

V β
κβ

V β
κβ+1 < 0, q −

V β
κβ

−1

V β
κβ+1

< 0, q2 − (2 − α)q + 1 > 0.



46 P. Nečesal, I. Sobotková / Bull. Sci. math. 171 (2021) 103014

Now, since q = Qα(1 − s) and (V β
κβ

+ 1)/V β
κβ+1 = 1/Qα(μα,β) = Qα(1 − μα,β), we 

conclude that

Sα,β
κβ

(q) � 0 if and only if Qα(1 − s) � Qα(1 − μα,β). (88)

If we combine (87) and (88) and take into account that Qα is a strictly increasing 
function, we obtain

(Nα,β)′(s) � −1 if and only if (α − β) · (μα,β − s) � 0. (89)

At second, let us assume that 0 < s ≤ τα,β and 0 < β < 2. Thus, we have V β
κβ

/V β
κβ+1 ≤

q < 0. Using Lemma 28, we obtain

(Nα,β)′(s) � −1 if and only if (α − β) · Sα,β
κβ+1(q) � 0. (90)

It is possible to write Sα,β
κβ+1(q) in the following form

Sα,β
κβ+1(q) = V β

κβ+1

(
qV β

κβ+2 − V β
κβ+1 + 1

)(
q −

V β
κβ

V β
κβ+1−1

)

q2 − (2 − α)q + 1 . (91)

Now, the factor 
(
qV β

κβ+2 − V β
κβ+1 + 1

)
is positive since for 0 < β < 2, we have

V β
κβ

> 0, V β
κβ+1 < 0, V β

κβ+2 = (2 − β)V β
κβ+1 − V β

κβ
< 0.

Thus, Sα,β
κβ+1(q) has the opposite sign than the factor 

(
q − V β

κβ
/(V β

κβ+1 − 1)
)
. Moreover, 

since q = Qα(1 − s) and V β
κβ

/(V β
κβ+1 − 1) = 1/Qα(ηα,β) = Qα(1 − ηα,β), we conclude 

that

Sα,β
κβ+1(q) � 0 if and only if Qα(1 − s) � Qα(1 − ηα,β). (92)

If we combine (90) and (92) and take into account that Qα is a strictly increasing 
function, we obtain

(Nα,β)′(s) � −1 if and only if (α − β) · (ηα,β − s) � 0. (93)

At third, let us assume that 0 < s ≤ τα,β and β > 2. In this case, we have κβ = 0, 
1

2−β ≤ q < 0 and (90) holds. Moreover, the factor 
(
qV β

κβ+2 − V β
κβ+1 + 1

)
in (91) reads 

as (β −1)(q(β −3) +1) and thus, it is positive due to 0 ≤ q(β −2) +1. As in the previous 
case, we obtain that (93) holds.

Finally, the statement now follows from (89) and (93). �
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The following theorem provides the values of the global extrema of the function ρα,β

as well as points where these extrema are attained: μα,β and ηα,β.

Theorem 31. Let 0 < α < 4 and β > 0. Then the function ρα,β attains its global extrema 
at ηα,β and μα,β. More precisely, we have that

min
s∈[0,1+τα,β ]

ρα,β(s) =
{

ρα,β(μα,β) = 2μα,β + κβ for α ≤ β,

ρα,β(ηα,β) = 2ηα,β + κβ + 1 for α > β,

max
s∈[0,1+τα,β ]

ρα,β(s) =
{

ρα,β(ηα,β) = 2ηα,β + κβ + 1 for α ≤ β,

ρα,β(μα,β) = 2μα,β + κβ for α > β.

Proof. Using Lemma 28 and Remark 29, we get that the function ρα,β is continuously 
differentiable on [0, 1 +τα,β]. Let us point out that ρα,β(s) = ρ(s −1) for 1 ≤ s ≤ 1 +τα,β . 
Indeed, for 1 ≤ s ≤ 1 + τα,β , we have

ρα,β(s) = s + κβ + ¯̄Mα,β(s − 1) = s − 1 + κβ + ¯̄Mα,β(s − 1) + 1

= (s − 1) + κβ + Nα,β(s − 1) = ρα,β(s − 1).

Thus, we obtain for 0 < s < 1 + τα,β that

(ρα,β)′(s) = 1 + (Nα,β)′(s).

Moreover, using Lemma 21 we have that

ρα,β(ηα,β) = ηα,β + κβ + Nα,β(ηα,β) = 2ηα,β + κβ + 1,

ρα,β(μα,β) = μα,β + κβ + Nα,β(μα,β) = 2μα,β + κβ .

For β = ξk, k ∈ N, k ≥ 2, we have that Nα,β(s) = 1 − s according to Lemma 22 and 
thus ρα,β(s) ≡ 1 + κβ , which means that ρα,β is a constant function. Let us note that in 
this case, we have ηα,β = 0 and μα,β = 1

2 due to Lemma 23.
Now, let us assume that β �= ξk for all k ∈ N, k ≥ 2. Using Lemma 30, we determine 

the monotonic intervals of ρα,β. The points μα,β and ηα,β are stationary points of ρα,β. 
Firstly, let us assume that α < β. Then ρα,β is strictly increasing on intervals (0, ηα,β), 
(μα,β , 1) and strictly decreasing on the interval (ηα,β , μα,β). Thus, ηα,β and μα,β are 
points of the global extrema of ρα,β on the interval [0, 1 + τα,β ] (the global maximum 
and the global minimum, respectively). Secondly, let us assume that α > β. In this 
case, we similarly obtain that ηα,β and μα,β are points of the global minimum and the 
global maximum, respectively. Finally, in the case of α = β, we get using Lemma 22 that 
Nα,β(s) = 1 − s + τβ,β = 1 − s + π

ωβ
−
⌊

π
ωβ

⌋
. Thus, we obtain that ρα,β is a constant 

function such that ρα,β(s) ≡ 1 +κβ +τβ,β = π
ωβ

. Let us note that τβ,β = 2ηβ,β = 2μβ,β −1
in this case. �
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Remark 32. Due to Theorem 31, we have for all (α, β) ∈ D and s ∈ [0, 1 + τα,β ] that 
ρminα,β ≤ ρα,β(s) ≤ ρmaxα,β , where ρminα,β and ρmaxα,β are given in Definition 2. Moreover, using 
Lemma 25, we get the following bounds

⌊
π
ωβ

⌋
= 1 + κβ ≤ ρminα,β ≤ ρα,β(s) ≤ ρmaxα,β < 2 + κβ =

⌊
π
ωβ

⌋
+ 1

for 0 < α, β < 4.

Proof of Theorem 3. At first, let us prove that 
(
C±
2j−1 ∩ D

)
⊂ Υ±

2j−1, j ∈ N, where

Υ±
2j−1 =

{
(α, β) ∈ D : ρminα,β ≤ n+1

j − π
ωα

≤ ρmaxα,β

}
.

Thus, let us assume that (α, β) ∈ C±
2j−1 ∩ D. Then using Theorem 5, we get

t+j(α, β) + t-j(α, β) = n + 1, (94)

where t+j and t-j are defined in (24) and (25), respectively. The corresponding non-trivial 
solution u consists of j positive and j negative semi-waves (as continuous extensions) 
and the equation (94) reads as

j · π
ωα

+
j∑

i=1
ρα,β (�t2i−1� − t2i−1) = n + 1, (95)

where ti, i = 1, . . . , 2j − 1, are zeros of positive semi-waves

0 < t1 = t+1 < · · · < tj = t+j = n + 1 − t-j < · · · < t2j−1 = n + 1 − t-1 < n + 1.

Now, using Theorem 31, we obtain for i = 1, . . . , j that

2μα,β + κβ ≤ ρα,β (�t2i−1� − t2i−1) ≤ 2ηα,β + κβ + 1 for α ≤ β,

1 + 2ηα,β + κβ ≤ ρα,β (�t2i−1� − t2i−1) ≤ 2μα,β + κβ for α > β.

And thus, we have

j · ρminα,β ≤
j∑

i=1
ρα,β (�t2i−1� − t2i−1) ≤ j · ρmaxα,β , (96)

where ρminα,β and ρmaxα,β are given in Definition 2. Finally, if we combine (95) and (96), we 
obtain ρminα,β ≤ n+1

j − π
ωα

≤ ρmaxα,β .
At second, let us show that 

(
C+
2j ∩ D

)
⊂ Υ+

2j , j ∈ N, where

Υ+
2j =

{
(α, β) ∈ D : ρminα,β ≤ n+1

j − j+1
j · π

ωα
≤ ρmaxα,β

}
.



P. Nečesal, I. Sobotková / Bull. Sci. math. 171 (2021) 103014 49

Using Theorem 5, we obtain for (α, β) ∈ C+
2j ∩ D that

t+j+1(α, β) + t+j(α, β) = n + 1, (97)

and the corresponding non-trivial solution u consists of (j + 1) positive and j negative 
semi-waves. The equation (97) can be also written as

(j + 1) · π
ωα

+
j∑

i=1
ρα,β (�t2i−1� − t2i−1) = n + 1, (98)

where ti, i = 1, . . . , 2j − 1, are zeros of positive semi-waves. Using Theorem 31, we 
obtain the same inequalities as in (96). Now, if we combine (96) and (98), we get ρminα,β ≤
n+1

j − j+1
j · π

ωα
≤ ρmaxα,β .

At third, the last type of the inclusion 
(
C-
2j ∩ D

)
⊂ Υ-

2j , j ∈ N, can be proved similarly 
as in the previous two cases. Let us only note that for (α, β) ∈ C-

2j ∩D, we obtain (t0 = 0)

j · π
ωα

+
j∑

i=0
ρα,β (�t2i� − t2i) = n + 1,

which leads to ρminα,β ≤ n+1
j+1 − j

j+1 · π
ωα

≤ ρmaxα,β . �
7. Conclusion

In the paper, we improve and extend known results for the Fučík spectrum of the 
discrete Dirichlet operator. In Theorem 5, we present a new simple implicit description 
of all non-trivial Fučík curves C±

l . Moreover, for each non-trivial Fučík curve C±
l , we 

provide the suitable bound Υ±
l by two simple curves in Theorem 3. These results are 

based on Lemma 10 concerning the detailed analysis of nodal properties of the solution 
u of the discrete initial value problem (30). Generalized zeros of the solution u can be 
described by the sequence of functions pi which are given recurrently and were introduced 
in [20]. In Lemma 12, we provide a new simpler expression of these functions pi, which 
can be used to obtain the basic bound Θ±

l for each non-trivial Fučík curve C±
l ⊂ Θ±

l (see 
Theorem 13).

In this paper, we mainly focus on positive semi-waves of u as continuous extensions 
and investigate the distribution of zeros of these extensions with respect to the integer 
lattice. More precisely, if t1 and t2 are two consecutive zeros of two different positive 
semi-waves (as continuous extensions) then we have

t2 = t1 + ρα,β(�t1� − t1),

where the function ρα,β is given explicitly in Definition 19 using Chebyshev polynomials 
of the second kind. We use this function ρα,β in Theorem 5 to describe implicitly all 
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non-trivial Fučík curves C±
l . Let us emphasize that this new description using ρα,β does 

not require complicated construction of sequences of functions pi and ϑi as it was done 
in [20].

Let us note that in the case of α = β, the discrete initial value problem (30) is 
linear and ρα,β is the constant function ρα,β(s) ≡ π

ωβ
. Now, for 0 < α < 4 and β > 0, 

the function ρα,β is a differentiable bounded function and its global extrema are given 
in Theorem 31. Since the global extrema of ρα,β are available in an explicit form, we 
provide the improved bound Υ±

l for C±
l in Theorem 3 with the boundary given by two 

simple curves, which are described similarly to the first non-trivial Fučík curve C±
1.
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