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Abstract

The generalized bull is the graph Bi j, obtained by

attaching endvertices of two disjoint paths of lengths i j,

to two vertices of a triangle. We prove that every

3‐connected K X{ , }1,3 ‐free graph, where X B B{ , ,1,6 2,5∈

B }3,4 , is Hamilton‐connected. The results are sharp and

complete the characterization of forbidden induced bulls

implying Hamilton‐connectedness of a 3‐connected
{claw, bull}‐free graph.
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1 | DEFINITIONS AND NOTATIONS

In this paper, by a graph we always mean a simple finite undirected graph; whenever we admit
multiple edges, we always speak about a multigraph. We generally follow the most common
graph‐theoretical notation and terminology and for notations and concepts not defined here we
refer to [4]. Specifically, multiple edges of multiplicity at least 2 (exactly 2, exactly 3) are
referred to as a multiedge (double edge, triple edge), respectively. We use d x( )G to denote the
degree of a vertex x inG, and for i 1≥ we set V G x V G d x i( ) = { ( ) ( ) = }i G∈ . If x V G( )2∈ with
N x y y( ) = { , }G 1 2 , then the operation of replacing the path y xy1 2 by the edge y y1 2 is called
suppressing the vertex x . The inverse operation is called subdividing the edge y y1 2 with the
vertex x . We write F H⊂ if F is a sub(multi)graph of H ,G G1 2≃ if the (multi)graphsG1,G2 are
isomorphic, and  M G to denote the induced sub(multi)graph on a set M V G( )⊂ . We say that a
vertex x V G( )∈ is simplicial if  N x( )G G is a complete graph, and we use V G( )SI to denote the
set of all simplicial vertices ofG. The circumference ofG, denoted c G( ), is the length of a longest
cycle in G. The line graph of a multigraph H is the graph G L H= ( ) with V G E H( ) = ( ), in
which two vertices are adjacent if and only if the corresponding edges of H have at least one
vertex in common.
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By a closed trail inG wemean an Eulerian subgraph ofG, and a connected subgraph with exactly
two vertices of odd degree is called a trail inG. Its vertices of odd degree are its endvertices, and (any)
its edge incident to an endvertex is a terminal edge (note that these definitions are equivalent with
those in [4]). For x y V G, ( )∈ , a path (trail) with endvertices x y, is referred to as an x y( , )‐path
( x y( , )‐trail), a trail with terminal edges e f E G, ( )∈ is called an e f( , )‐trail, and TInt( ) denotes the
set of interior vertices of a trail T . A set of vertices M V G( )⊂ dominates an edge e, if e has at least
one vertex inM , and a sub(multi)graph F G⊂ dominates e ifV F( ) dominates e. A closed trailT is a
dominating closed trail (abbreviated DCT) if T dominates all edges of G, and an e f( , )‐trail is an
internally dominating e f( , )‐trail (abbreviated e f( , )‐IDT) if TInt( ) dominates all edges ofG. A graph
is Hamilton‐connected if, for any u v V G, ( )∈ ,G has a Hamiltonian u v( , )‐path, that is, a u v( , )‐path
P with V P V G( ) = ( ).

Finally, if  is a family of graphs, we say that G is  ‐free if G does not contain an induced
subgraph isomorphic to a member of  , and the graphs in  are referred to in this context as
forbidden (induced) subgraphs. If F= { } , we simply say that G is F ‐free. Here, the claw is the
graph K1,3, Pi denotes the path on i vertices, and Γi denotes the graph obtained by joining two
triangles with a path of length i (see Figure 2A). Several further graphs that will be used as
forbidden subgraphs are shown in Figure 1 (specifically, the vertex of degree 2 in the triangle of
the bull Bi j, will be called its mouth and denoted μ B( )i j, ). Whenever we will list vertices of an
Si j k, , in a graph, we will always write the list such that i j k≤ ≤ , and we will use the notation
S v a a a b b b c c c( ; … ; … ; … )i j k i j k, , 1 2 1 2 1 2 (in the labeling of vertices as in Figure 1D). Similarly, when
listing vertices of an induced claw K1,3, we will always list its center as the first vertex of the list,
and when listing vertices of an induced subgraph F Bi j,≃ , we will always list first μ F( ), and
then vertices of the two paths, starting (if possible) with the shorter one.

We also recall two well‐known graphs that will occur as exceptions in some of the results,
namely, the Petersen graph Π and the Wagner graphW (see Figure 2B,C). It is a well‐known
fact that the Wagner graph can be obtained from the Petersen graph by removing an arbitrary
edge and suppressing the two created vertices of degree 2. We will often refer to these graphs
using the labeling of their vertices as indicated in Figure 2.

2 | INTRODUCTION

There are many results on forbidden induced subgraphs implying various Hamilton‐type graph
properties. For Hamiltonicity in 2‐connected graphs (recall that 2‐connectedness is the
necessary connectivity level for the property), pairs of forbidden connected subgraphs are
completely characterized [8]. However, for Hamilton‐connectedness in 3‐connected graphs
(where again, 3‐connectedness is the necessary connectivity level for the property), the progress

(A) (B) (C) (D)

FIGURE 1 Graphs Zi, Bi j, , Ni j k, , , and Si j k, ,
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is relatively slow. For forbidden pairs of connected graphs, there is a list of potential candidates:
one of them must be the claw K1,3, and the second one belongs to the list mentioned in
Section 6. Among them, Pi and Ni j k, , are easier to handle since ifG is K P{ , }i1,3 ‐free or K N{ , }i j k1,3 , , ‐
free, then so is its closure (more on closures in Section 3), but this is not true for Bi j, , Zi, or Γi. In
this paper, we introduce a technique to overcome this problem for bull‐free graphs. Theorem A
below lists the best‐known results on pairs of forbidden subgraphs implying Hamilton‐
connectedness of a 3‐connected graph (where, in the statement (iii), W1 denotes the graph
obtained from the Wagner graphW (see Figure 2C) by attaching exactly one pendant edge to
each of its vertices).

Theorem A (Bian et al. [3], Broersma et al. [6], and Liu et al. [13–15,20]). Let G be a
3‐connected K X{ , }1,3 ‐free graph, where

(i) [6] X = Γ1, or
(ii) [3] X P= 9, or
(iii) [20] X Z= 6, or X Z= 7 and G L W( )1≄ , or
(iv) [13–15] X B= i j, for i j+ 6≤ , or
(v) [15] X N= 1,2,4, or
(vi) [13,14] X N N N{ , , }1,1,5 1,3,3 2,2,3∈ .

Then G is Hamilton‐connected.

Note that statement (iv) is an immediate corollary of (v) and (vi) since Bi j, with i j+ 6≤ is
an induced subgraph of N1,1,5, N1,2,4, or N1,3,3.

Let be the family of graphs obtained by attaching at least one pendant edge to each of the
vertices of the Wagner graphW , and let L H H= { ( ) } ∈ be the family of their line graphs.
Then any G ∈ is 3‐connected, non‐Hamilton‐connected (there is, e.g., no Hamiltonian
L w w L w w( ( ), ( ))1 5 3 7 ‐path), P10‐free, Bi j, ‐free for i j+ = 8, and Ni j k, , ‐free for i j k+ + = 8. Thus,
this example shows that parts (ii), (v), and (vi) of Theorem A are sharp, and also the next result,
which is the main result of this paper, is sharp.

Theorem 1. Let X B B B{ , , }1,6 2,5 3,4∈ , and let G be a 3‐connected K X{ , }1,3 ‐free graph.
Then G is Hamilton‐connected.

The proof of Theorem 1 is postponed to Section 5. In Section 3, we collect some known
results and facts on line graphs and on closure operations that will be needed. In Section 3.5, we

(A) (B) (C)

FIGURE 2 The graph Γi, the Petersen graph Π, and the Wagner graphW
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develop a method to overcome the difficulties arising from the fact that the class of K B{ , }i j1,3 , ‐
free graphs is not stable under closure operations. In Section 4, we develop a technique that
allows a significant reduction in the number of cases to be considered. Finally, in Section 6, we
briefly update the discussion of remaining open cases in the characterization of forbidden pairs
of connected graphs for Hamilton‐connectedness from [14].

3 | PRELIMINARIES

In Sections 3.1–3.4, we summarize some known facts that will be needed in our proof of
Theorem 1, and in Section 3.5, we introduce a class of graphs i j, such that every K B{ , }i j1,3 , ‐free
graph is in i j, , and for any G i j,∈ , each of its ultimate M (UM)‐closures also belongs to i j, .

3.1 | Line graphs of multigraphs and their preimages

While in line graphs of graphs, for a line graphG, the graph H such thatG L H= ( ) is uniquely
determined with a single exception of G K= 3, in line graphs of multigraphs this is not true.
Using a modification of an approach from [22], the following was proved in [18].

Theorem B (Ryjáček and Vrána [18]). Let G be a connected line graph of a multigraph.
Then there is, up to an isomorphism, a uniquely determined multigraph H such that
G L H= ( ) and a vertex e V G( )∈ is simplicial in G if and only if the corresponding edge
e E H( )∈ is a pendant edge in H .

The multigraph H with the properties given in Theorem B will be called the preimage of a
line graph G and denoted H L G= ( )−1 . We will also use the notation a L e= ( ) and e L a= ( )−1

for an edge e E H( )∈ and the corresponding vertex a V G( )∈ .
An edge‐cut R E H( )⊂ of a multigraph H is essential if H R− has at least two nontrivial

components, and H is essentially k‐edge‐connected if every essential edge‐cut of H is of size at
least k. It is a well‐known fact that a line graph G is k‐connected if and only if L G( )−1 is
essentially k‐edge‐connected. It is also a well‐known fact that if X is a line graph, then a line
graph G is X ‐free if and only if L G( )−1 does not contain as a sub(multi)graph (not necessarily
induced) a (multi)graph F such that L F X( ) = (but not necessarily F L X= ( )−1 ). However, it is
straightforward to verify that for the graph Bi j, there is exactly one multigraph F such that
L F B( ) = i j, , namely, the graph L B S( ) =i j i j

−1
, 1, +1, +1 (see Figure 1D).

Harary and Nash‐Williams [9] established a correspondence between a DCT in H and a
Hamiltonian cycle in L H( ) (the result was given in [9] for line graphs of graphs, but it is easy to
see that it is true also for line graphs of multigraphs). A similar result showing thatG L H= ( ) is
Hamilton‐connected if and only if H has an e e( , )1 2 ‐IDT for any pair of edges e e E H, ( )1 2 ∈ , was
given in [12] (in fact, part (ii) of the following theorem is slightly stronger than the result from
[12], and its easy proof is given in [13]).

Theorem C (Harary and Nash‐Williams [9] and Li et al. [12]). Let H be a multigraph
with  E H( ) 3≥ and let G L H= ( ).

(i) [9] The graph G is Hamiltonian if and only if H has a DCT.
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(ii) [12] For every e E H( )i ∈ and a L e= ( )i i , i = 1, 2, G has a Hamiltonian a a( , )1 2 ‐path if
and only if H has an e e( , )1 2 ‐IDT.

3.2 | SM‐closure

For a graph G and x V G( )∈ , the local completion of G at x is the graph
G V G E G y y y y N x* = ( ( ), ( ) { , ( )})x G1 2 1 2∪ ∈ (i.e., G*x is obtained from G by adding all the

missing edges with both vertices in N x( )G ). Obviously, ifG is claw‐free, then so isG*x . Note that
in the special case when G is a line graph and H L G= ( )−1 , G*x is the line graph of the (multi)
graph obtained from H by contracting the edge L x( )−1 into a vertex and replacing the created
loop(s) by pendant edge(s). Also note that clearly x V G( *)xSI∈ for any x V G( )∈ , and, more

generally, V G V G( ) ( *)xSI SI⊂ for any x V G( )∈ .

We say that a vertex x V G( )∈ is eligible if  N x( )G G is a connected noncomplete graph, and
we use V G( )EL to denote the set of all eligible vertices of G. In [17], it was shown that if G is
claw‐free and x V G( )EL∈ , then G*x is Hamiltonian if and only if G is Hamiltonian, and the
closure Gcl( ) of a claw‐free graph G was defined as the graph obtained from G by recursively
performing the local completion operation at eligible vertices, as long as this is possible (more
precisely: G Gcl( ) = k, where G G, …, k1 is a sequence of graphs such that G G=1 , G G= ( )*i i x+1 i

for some x V G( )i iEL∈ , i k= 1, …, − 1, and V G( ) =kEL ∅). We say that G is closed if G G= cl( ).
The closure Gcl( ) of a claw‐free graphG is uniquely determined, is the line graph of a triangle‐
free graph, and is Hamiltonian if and only if so is G. However, as observed in [5], the closure
operation does not preserve (non‐)Hamilton‐connectedness of G.

For Hamilton‐connectedness, the concept of a strong M (SM)‐closure GM of a claw‐free
graph G was defined in [11] by the following construction.

(i) If G is Hamilton‐connected, we set G G= cl( )M .
(ii) If G is not Hamilton‐connected, we recursively perform the local completion operation at

such eligible vertices for which the resulting graph is still not Hamilton‐connected, as long
as this is possible. We obtain a sequence of graphs G G, …, k1 such that
– G G=1 ,
– G G= ( )*i i x+1 i

for some x V G( )i iEL∈ , i k= 1, …, − 1,
– Gk has no Hamiltonian a b( , )‐path for some a b V G, ( )k∈ ,
– for any x V G( )kEL∈ , G( )*k x is Hamilton‐connected,

and we set G G=M
k.

A resulting graph GM is called an SM‐closure of the graph G, and a graph G equal to its SM‐
closure is said to be SM‐closed. Note that for a given graph G, its SM‐closure is not uniquely
determined.

As shown in [18, 11], if G is SM‐closed, then G L H= ( ), where H does not contain any of
the multigraphs shown in Figure 3.

The following theorem summarizes basic properties of the SM‐closure operation.

Theorem D (Kužel et al. [11]). Let G be a claw‐free graph and let GM be some of its SM‐
closures. Then GM has the following properties:

(i) V G V G( ) = ( )M and E G E G( ) ( )M⊂ ,
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(ii) GM is obtained from G by a sequence of local completions at eligible vertices,
(iii) G is Hamilton‐connected if and only if GM is Hamilton‐connected,
(iv) if G is Hamilton‐connected, then G G= cl( )M ,
(v) if G is not Hamilton‐connected, then either

α( ) V G( ) =M
EL ∅ and G G= cl( )M , or

β( ) V G( )M
EL ≠ ∅ and G( )*M

x is Hamilton‐connected for any x V G( )M
EL∈ ,

(vi) G L H= ( )M , where H contains either
α( ) at most two triangles and no multiedge, or
β( ) no triangle, at most one double edge and no other multiedge,

vii( ) if GM contains no Hamiltonian a b( , )‐path for some a b V G, ( )M∈ and
α( ) X is a triangle in H , then E X L a L b( ) { ( ), ( )}

G G
−1 −1
M M∩ ≠ ∅,

β( ) X is a multiedge in H , then E X L a L b( ) = { ( ), ( )}
G G
−1 −1
M M .

We will also need the following lemma on SM‐closed graphs proved in [19].

Lemma E (Ryjáček and Vrána [19]). Let G be an SM‐closed graph and let H L G= ( )−1 .
Then H does not contain a triangle with a vertex of degree 2 in H .

3.3 | Core of preimage of an SM‐closed graph

The definition of the core is slightly problematic for multigraphs, therefore we restrict our
observations to the case that we need. Thus, let G be a 3‐connected SM‐closed graph and let
H L G= ( )−1 . The core of H is the multigraph Hco( ) obtained from H by removing all pendant
edges and suppressing all vertices of degree 2.

Shao [21] proved the following properties of the core of a multigraph.

Theorem F (Shao [21]). Let H be an essentially 3‐edge‐connected multigraph. Then

(i) Hco( ) is uniquely determined,
(ii) Hco( ) is 3‐edge‐connected,
(iii) V H(co( )) dominates all edges of H ,
(iv) if Hco( ) has a spanning closed trail, then H has a DCT.

3.4 | UM‐closure

As shown in [13], the concept of SM‐closure can be further strengthened by omitting the
eligibility assumption for the application of the local completion operation (which was defined

FIGURE 3 The diamond T1, the multitriangle T2, and the triple edge T3
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in Section 3.2 for any vertex x V G( )∈ ). Specifically, for a given claw‐free graphG, we construct
a graph GU by the following construction.

(i) If G is Hamilton‐connected, we set  G K=U
V G( ) .

(ii) If G is not Hamilton‐connected, we recursively perform the local completion operation at
such vertices for which the resulting graph is still not Hamilton‐connected, as long as this
is possible. We obtain a sequence of graphs G G, …, k1 such that
– G G=1 ,
– G G= ( )*i i x+1 i

for some x V G( )i i∈ , i k= 1, …, − 1,
– Gk has no Hamiltonian a b( , )‐path for some a b V G, ( )k∈ ,
– for any x V G( )k∈ , G( )*k x is Hamilton‐connected,

and we set G G=U
k.

A graphGU obtained by the above construction is called a UM‐closure of the graphG, and a
graph G equal to its UM‐closure is said to be UM‐closed.

Obviously, if G is UM‐closed, then G is also SM‐closed, implying that G is a line graph and
H L G= ( )−1 has a special structure (contains no diamond, etc.—see Figure 3 and
Theorem D(vi) and (vii)). The next theorem shows that for UM‐closed graphs, not only H ,
but also Hco( ) has these strong structural properties.

Theorem G (Liu et al. [13]). Let G be a claw‐free graph and let GU be some of its UM‐
closures. Then GU has the following properties:

(i) V G V G( ) = ( )U and E G E G( ) ( )U⊂ ,
(ii) GU is obtained from G by a sequence of local completions at vertices,
(iii) G is Hamilton‐connected if and only if GU is Hamilton‐connected,
(iv) if G is Hamilton‐connected, then  G K=U

V G( ) ,
(v) ifG is not Hamilton‐connected, then G( )*U

x is Hamilton‐connected for any x V G( )U∈ ,
(vi) G L H= ( )U , where Hco( ) contains no diamond, no multitriangle and no triple edge,

and either
α( ) at most two triangles and no multiedge, or
β( ) no triangle, at most one double edge and no other multiedge, and if Hco( )

contains a double edge, then this double edge is also in H ,
vii( ) if GU contains no Hamiltonian a b( , )‐path for some a b V G, ( )U∈ and

α( ) X is a triangle in Hco( ), then E X L a L b( ) { ( ), ( )}
G G
−1 −1
U U∩ ≠ ∅,

β( ) X is a multiedge in Hco( ), then E X L a L b( ) = { ( ), ( )}
G G
−1 −1
U U .

The following lemma will be crucial in our proof of Theorem 1 (recall thatW denotes the
Wagner graph, see Figure 2C).

Lemma H (Liu et al. [13]). Let G be a 3‐connected non‐Hamilton‐connected UM‐closed
claw‐free graph. Then G has an induced subgraph G̃ (possibly G G˜ = ) such that G̃ is
3‐connected, non‐Hamilton‐connected and UM‐closed, and, moreover, H L G˜ = co( ( ˜))0

−1 is
2‐connected, and either c H( ˜ ) 90 ≥ and  V H( ˜ ) 100 ≥ , or H W˜

0 ≃ .
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3.5 | Closure operations and bull‐free graphs

When applying closure techniques to {claw, bull}‐free graphs, the main problem is that a
closure of a K B{ , }i j1,3 , ‐free graph is not necessarily K B{ , }i j1,3 , ‐free (i.e., in the terminology of [16],
the class of K B{ , }i j1,3 , ‐free graphs is not stable under the closure operation). Unfortunately, this
is the case with all the closure operations mentioned in the previous subsections.

It turns out that this difficulty can be overcome by working in a slightly larger class of
graphs which contains all the requested K B{ , }i j1,3 , ‐free graphs but is stable under the closure.
We define the class i j, as follows.

For any positive integers i j, , i j, is the class of all claw‐free graphs G such that every
induced subgraph F G⊂ , F Bi j,≃ , satisfies μ F V G( ) ( )SI∈ .

Clearly, every K B{ , }i j1,3 , ‐free graph is in i j, .

Theorem 2. Let i j, be positive integers and let G i j,∈ . Then, for any x V G( )∈ ,
G*x i j,∈ .

Proof. Let, to the contrary, G i j,∈ and x V G( )∈ be such that G*x contains an induced
subgraph F Bi j,≃ with μ F V G( ) ( *)xSI∉ . We will keep the notation of the vertices of F as

in Figure 1B, and we will denote by T the triangle  b a a{ , , } F0
1

0
2 . Since G i j,∈ and

b μ F= ( ) is nonsimplicial also in G (recall that V G V G( ) ( *)xSI SI⊂ ), we have

E F E G( ) ( )⧹ ≠ ∅. The edges in E F E G( ) ( )⧹ will be referred to as new edges, and we
will denote E F E G F( ) ( ) = new( )⧹ .

Suppose first that F E Tnew( ) ( ) =∩ ∅. Let, say, e a a= k k
2

+1
2 be a new edge for some k,

k j0 − 1≤ ≤ . Since e E G E G( *) ( )x∈ ⧹ , we have a a N x, ( )k k G
2

+1
2 ∈ . Since F is induced in

G*x , the vertices a a,k k
2

+1
2 are the only neighbors of x in V F( ) (both in G and in G*x ). But

then the graph  F b a a a a x a a′ = { , , …, , , …, , , , …, }i k k j G0
1 1

0
2 2

+1
2

−1
2 is an induced Bi j, in G

with μ F V G( ′) ( )SI∉ , contradicting the fact that G i j,∈ .
Thus, we have F E Tnew( ) ( )⊂ . If F E Tnew( ) = ( ), then  x b a a K{ , , , } G0

1
0
2

1,3≃ , a

contradiction. Hence  F1 new( ) 2≤ ≤ .
Suppose first that  Fnew( ) = 2. By symmetry, either F ba banew( ) = { , }0

1
0
2 , or

F ba a anew( ) = { , }0
1

0
1

0
2 . In both cases, necessarily N x V F b a a( ) ( ) = { , , }G 0

1
0
2∩ (since F is

induced in G*x ). Then, in the first case  F x a a a a′ = { , , …, , , …, }i j G0
1 1

0
2 2 , and in the second

case  F b x a a a a′ = { , , , …, , , …, }i j G0
1

−1
1

0
2 2 is an induced Bi j, in G with μ F V G( ′) ( )SI∉ , a

contradiction.
Hence  Fnew( ) = 1 and then, by symmetry, either F banew( ) = { }0

1 , or

F a anew( ) = { }0
1

0
2 . However, if F banew( ) = { }0

1 , then immediately  a a a b K{ , , , } G0
2

1
2

0
1

1,3≃ ,

a contradiction.
Thus, the only remaining case is F a anew( ) = { }0

1
0
2 . Then a a N x, ( )G0

1
0
2 ∈ , and x b≠

(since otherwise x b V G= ( *xSI∈ ). We have a x a b E G, ( )1
1

1
1 ∉ since F is induced in G*x ,

implying bx E G( )∈ , for otherwise  a a b x K{ , , , } G0
1

1
1

1,3≃ . Since b V G( *)xSI∉ , there is a

vertex u N b( )G∈ such that xu E G( )∉ , and since  b u a a K{ , , , } G0
1

0
2

1,3≄ ,
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N u a a( ) { , }G 0
1

0
2∩ ≠ ∅. By symmetry, let ua E G( )0

1 ∈ . Since  a x u a K{ , , , } G0
1

1
1

1,3≄ , we

have ua E G( )1
1 ∈ .

We consider the graph  F x b u a a″ = { , , , , …, }j G0
2 2 if i = 1,  F x b u a a a″ = { , , , , , …, }j G1

1
0
2 2

if i = 2, or  F x b u a a a a″ = { , , , …, , , …, }i j G1
1

−1
1

0
2 2 if i 3≥ , respectively. If F B″ i j,≃ , then

x μ F= ( ″), contradicting the fact that G i j,∈ since x V G( )SI∉ . Hence F B″ i j,≄ ,
implying that either ua E G( )0

2 ∈ , or, if i 3≥ , possibly ua E G( )1
2 ∈ (all other potential

edges either imply a claw with center at u, or contradict the fact that F is induced inG*x ).
Let first ua E G( )0

2 ∈ . Since  a a x u K{ , , , } G0
2

1
2

1,3≄ , we have ua E G( )1
2 ∈ , but then

 u a b a K{ , , , } G1
2

1
1

1,3≃ , a contradiction.

Secondly, if i = 1, then  F x b u a a B″ = { , , , , …, }j G i j0
2 2

,≃ , and if i = 2, then

 F x b u a a a B″ = { , , , , , …, }j G i j1
1

0
2 2

,≃ with μ F x( ″) = , a contradiction again.

Hence i 3≥ and ua E G( )1
2 ∈ . But then we have  F x b u a a a a B‴ = { , , , …, , , …, }i j G i j2

1 1
0
2 2

,≃

with μ F x( ‴) = , a contradiction. □

The following corollary is immediate.

Corollary 3. Let G be a K B{ , }i j1,3 , ‐free graph for some i j, 1≥ , and let GU be one of the
UM‐closures of G. Then GU

i j,∈ .

4 | A SPECIAL VERSION OF THE
“NINE ‐POINT ‐THEOREM”

We will use a special version of the well‐known “Nine‐point‐theorem” by Holton et al. [10] and
of its modification by Bau and Holton [2], developed in [13]. For this, we need some more
terminology from [1].

Let G be a multigraph, R G⊂ a spanning sub(multi)graph of G, and let  be the set of
components of R. Then G R∕ is the multigraph with V G R( ) = ∕ , in which, for each edge in
E G( ) between two components of R, there is an edge in E G R( )∕ joining the corresponding
vertices of G R∕ . The (multi)graph G R∕ is said to be a contraction of G. (Roughly, in G R∕ ,
components of R are contracted to single vertices while keeping the adjacencies between them).
Clearly, if R is connected, then G R K= 1∕ , and if R is edgeless, then G R G=∕ ; these two
contractions are called trivial.

The contraction operation mapsV G( ) ontoV G R( )∕ , where vertices of a component of R are
mapped on a vertex ofG R∕ . IfG R F∕ ≃ , then this defines a function α G F: → which is called
a contraction of G on F .

Throughout the rest of this section, Π denotes the Petersen graph.
The following special version of the “nine‐point‐theorem” was proved in [13].

Theorem I (Liu et al. [13]). Let H be a 3‐edge‐connected multigraph, A V H( )⊂ ,  A = 8,
and let e E H( )∈ . Then either

(i) H contains a closed trail T such that A V T( )⊂ and e E T( )∈ , or
(ii) there is a contraction α H: Π→ such that α e xy E( ) = (Π)∈ and α A( ) =

V x y(Π) { , }⧹ .
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We will also need the following auxiliary result from [13].

Lemma J (Liu et al. [13]). Let H be a graph such that H Wco( ) = . If there is a vertex
x V H(co( ))∈ such that N x N x( ) = ( )H Hco( ) , then L H( ) is Hamilton‐connected.

Theorem 4. Let X B B B{ , , }1,6 2,5 3,4∈ , and letG be a 3‐connected K X{ , }1,3 ‐free graph with
a UM‐closureGU such that Hco( ), where H L G= ( )U−1 , is 2‐connected. Let e e E H, ( )1 2 ∈ be
such that there is no e e( , )1 2 ‐IDT in H . Then for every set A V H(co( ))⊂ ,  A = 8, there is an
e e( , )1 2 ‐trail T in H such that A TInt( )⊂ .

Proof. First of all, it should be noted here that some parts of the proof of Theorem 4 are
(almost) the same as the corresponding parts of the proof of Theorem 9 in [13]. Since the
other parts are quite different, for the sake of completeness, we give a complete proof
here, including the identical parts.

Let G be a graph satisfying the assumptions of the theorem. By Corollary 3,
GU

1,6 2,5 3,4  ∈ ∪ ∪ , implying that in H L G= ( )U−1 , every subgraph (not necessarily
induced) isomorphic to S1,2,7, S1,3,6, or S1,4,5 has its branch of length 1 at a pendant edge
(recall that a vertex in GU is simplicial if and only if the corresponding edge in
H L G= ( )U−1 is pendant by Theorem B).

Let H′ be the multigraph obtained from H by the following construction:

(i) if e e,1 2 share a vertex of degree 2, say, e v v=i i , i = 1, 2 with v V H( )2∈ , we suppress v
and set h v v= 1 2,

(ii) otherwise, we subdivide either ei if ei is nonpendant, or some edge in Hco( ) sharing a
vertex with ei if ei is pendant, with a vertex vi, i = 1, 2, and add a new edge h v v= 1 2.

If there is no contraction α H′ : ′ Π→ such that α h x x E′( ) = (Π)1 2 ∈ and
α A V x x′( ) = (Π) { , }1 2⧹ , then, by Theorem I, there is a closed trail T′ in H′ such that
A V T( ′)⊂ and h E T( ′)∈ . Returning to H , that is, in case (i) subdividing h, or in case (ii)
removing h, suppressing v v,1 2, and extending the trail to ei if ei is pendant, we obtain an
e e( , )1 2 ‐trail T in H with A TInt( )⊂ .
Thus, we suppose that there is a contraction α H′ : ′ Π→ such that

α h x x E′( ) = (Π)1 2 ∈ and α A V x x′( ) = (Π) { , }1 2⧹ . In case (i), H can be contracted on a
graph isomorphic to the Petersen graph with at least one subdivided edge
which contains each of the graphs S1,2,7, S1,3,6, and S1,4,5: in the labeling of
vertices as in Figure 2B, if, say, the edge p p1

1
1
2 is subdivided with a vertex q,

we have S p q p p p p p p p p p( ; ; ; )1,2,7 1
1

2
1

3
1

5
1
4
1
4
2

1
2

3
2

5
2

2
2 , S p q p p p p p p p p p( ; ; ; )1,3,6 1

1
5
1
4
1

3
1

2
1

2
2

4
2

1
2

3
2

5
2 , and

S p q p p p p p p p p p( ; ; ; )1,4,5 1
1

5
1
4
1
4
2

1
2

2
1

3
1

3
2

5
2

2
2 as subgraphs of H with the branch of length 1 at a

nonpendant edge, a contradiction. Thus, for the rest of the proof, we suppose that H′
is obtained by construction (ii).

Set H H= co( )0 , and recall that H0 is 3‐edge‐connected (since H is essentially 3‐edge‐
connected). Let R′ be the spanning sub(multi)graph of H′ that defines α′, and suppose
that, say, the component R α x= ( ′) ( )1

−1
1 of R′ is nontrivial. Since x V (Π)1 ∈ , R1 is

separated from the rest of H′ by a 3‐edge‐cut containing the edge h, implying that in H0,
the sub(multi)graph R v−1 1 is separated from the rest of H0 by a 2‐edge‐cut,
contradicting the fact that H0 is 3‐edge‐connected. Hence α x( ′) ( )−1

1 , and symmetrically
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also α x( ′) ( )−1
2 , are trivial, that is, V α x v(( ′) ( )) = { }i i

−1 , i = 1, 2. Removing from H′ the
edge h and suppressing v1 and v2, we obtain from R′ the corresponding spanning sub
(multi)graph R of H , and from R, in a standard way, a spanning sub(multi)graph R0 of
H0. Note that clearly every component of R′ except v{ }1 and v{ }2 corresponds to a
nonempty component of R0 since α′ maps H′ on a cubic graph and hence every
component of R′ must contain a vertex of degree more than 2. Then the components of
R0 define a contraction α H W: 0 → , whereW is the Wagner graph (see Figure 2C; recall
thatW can be obtained fromΠ by removing an edge and suppressing the created vertices
of degree 2).

Case 1: α w( )−1 is trivial for any w V W( )∈ .
Then we have H W0 ≃ . By Lemma J, every vertex of H0 is incident in H to a

pendant edge or to a subdivided edge.

Subcase 1.1: No edge of H0 is subdivided in H .
Then, by Lemma J, each vertex of H0 is incident in H with at least one pendant

edge, and thenH contains each of the subgraphs S w w w w w w w w w w w( ; ′; ′; ′)1,2,7 1 1 8 8 2 3 4 5 6 7 7 ,
S w w w w w w w w w w w( ; ′; ′; ′)1,3,6 1 1 8 7 7 2 3 4 5 6 6 , and S w w w w w w w w w w w( ; ′; ′; ′)1,4,5 1 1 8 7 6 6 2 3 4 5 5

(where w′i is a vertex of degree 1 adjacent to wi, i = 1, …, 8).
Since G is X ‐free for X B B B{ , , }1,6 2,5 3,4∈ , for some vertex w V H( )i 0∈ , the set

of edges incident to wi corresponds in L H G( ) = U to a clique obtained from a
certain subgraph of G by a series of local completions. Let G G, …, k1 be the
sequence of graphs that yields GU , that is, G G=1 , G G=k

U , and G G= ( )*i i x+1 i
for

some x V G( )i i∈ , i k= 1, …, − 1. Then x V G( )k
U

−1 SI∈ , thus, by Theorem B, xk−1
corresponds to a pendant edge in H . Choose the notation such that
L x w w( ) = ′k
−1

−1 1 1. For any edge w w E W( )i j ∈ set L w w v( ) =i j i j, , and set
L w w v( ′) =i i i, i = 2, …, 8. Since  x v v v{ , , , }k G−1 1,2 1,5 1,8 U is a clique, xk−1 is adjacent

in Gk−1 to each of v1,2, v1,5, and v1,8. Now, if v v E G( )k1,2 1,8 −1∈ , we have
F x v v v v v v v v v B= { , , , , , , , , , }k G1 −1 1,8 8 1,2 2,3 3,4 4,5 5,6 6,7 7 1,6k−1≃ , F x v v v v= { , , , , ,k2 −1 1,8 7,8 7 1,2

v v v v v B, , , , } G2,3 3,4 4,5 5,6 6 2,5k−1
≃ , and F x v v v v v v v v= { , , , , , , , , ,k3 −1 1,8 7,8 6,7 6 1,2 2,3 3,4 4,5

v B} G5 3,4k−1
≃ with μ F μ F μ F x( ) = ( ) = ( ) = k1 2 3 −1, contradicting the fact that

Gk−1 1,6 2,5 3,4  ∈ ∪ ∪ (since xk−1 is simplicial in Gk, but not in Gk−1). Hence
v v E G( )k1,2 1,8 −1∉ , that is, v v1,2 1,8 is a new edge in G G=k

U .
If both v v E G( )k1,2 1,5 −1∉ and v v E G( )k1,5 1,8 −1∉ , we have

 x v v v K{ , , , }k G−1 1,2 1,5 1,8 1,3k−1
≃ , a contradiction. If both v v E G( )k1,2 1,5 −1∈ and

v v E G( )k1,5 1,8 −1∈ , then we have  v v v v K{ , , , } G1,5 1,2 1,8 4,5 1,3k−1
≃ , a contradiction again.

Thus, by symmetry, we can assume that v v E G( )k1,2 1,5 −1∈ and v v E G( )k1,5 1,8 −1∉ .
Then  F x v v v v v v v v v B= { , , , , , , , , , }k G1 −1 1,2 2 1,5 5,6 6,7 7,8 4,8 3,4 3 1,6k−1

≃ , F x v= { , ,k2 −1 1,5

v v v v v v v v B, , , , , , , } G5,6 6 1,2 2,3 3,4 4,8 7,8 7 2,5k−1
≃ , and F x v v v v v= { , , , , , ,k3 −1 1,5 4,5 3,4 3 1,2

v v v v B, , , } G2,6 6,7 7,8 8 3,4k−1
≃ with μ F μ F μ F x( ) = ( ) = ( ) = k1 2 3 −1, a contradiction

again.

Subcase 1.2: At least one edge of H0 is subdivided in H .
By symmetry, we can choose the notation such that w w1 2 or w w1 5 is

subdivided in H with a vertex w of degree 2 in H . Then we have the following
possibilities.
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Subdivided edge Subgraph Si j k, ,

w w1 2 ′ ′S w w w w w w w w w w w( ; ; ; )1,2,7 1 5 5 8 4 3 2 6 7 7

S w w w w w ww w w w w( ; ; ′; ′)1,3,6 1 8 5 4 4 2 3 7 6 6

S w w w w w w ww w w w( ; ; ′; ′)1,4,5 1 5 8 7 6 6 2 3 4 4

w w1 5 S w w w w ww w w w w w( ; ; ′; ′)1,2,7 1 2 8 8 5 4 3 7 6 6

S w w w w w w w ww w w( ; ; ′; ′)1,3,6 3 7 4 8 8 2 1 5 6 6

S w w w w w w ww w w w( ; ; ′; ′)1,4,5 1 2 8 7 6 6 5 4 3 3

where w′i is a neighbor of wi in H H− 0 which exists by Lemma J (note that w′i can
be a vertex of degree 2, subdividing some of the edges incident to wi, in which
case the last two vertices of a branch can occur in reverse order).

Since in each of the cases the branch of length 1 is a nonpendant edge, we have
a contradiction with the fact that GU

1,6 2,5 3,4  ∈ ∪ ∪ .

Case 2: α w( )−1 is nontrivial for some w V W( )∈ .
Let R R, …,1

0
8
0 be the components of the (multi)graph R0 that defines α, and

choose the notation such that R α w= ( )i i
0 −1 , i = 1, …, 8, and such that R α w= ( )1

0 −1
1

is nontrivial. Recall that V R V R V H( ( )) = ( ) = ( )i i=1
8 0

0 0∪ .

We observe that e e E H E R, ( ) ( )1 2 0 0∈ ⧹ since, by the construction of H′,
α x v( ) =i i
−1 are trivial and after deleting the edge h and suppressing the vertices
v v,1 2, each of the edges e e,1 2 has its vertices in different components of R0. By
Theorem G(vi),(vii), this implies that each Ri

0 is a triangle‐free (simple) graph.
Moreover, each Ri

0 is 2‐edge‐connected since R α w= ( )i i
0 −1 is separated from the

rest of H0 by a 3‐edge‐cut and a cut‐edge in Ri
0 would create a 2‐edge‐cut in H0.

We introduce the following notation. For any edge w w E W( )i j ∈ , we set

f α w w= ( )ij i j
−1 (i.e., fij joins Ri

0 and Rj
0), and we denote bj

i its vertex in Ri
0 and bi

j its

vertex in Rj
0. Thus, we, for example, have A R b b b( ) = { , , }H 1

0
2
1

5
1

8
1

0
, where

 b b b2 { , , } 32
1

5
1

8
1≤ ≤ , and f f f{ , , }12 15 18 is the 3‐edge‐cut that separates R10 from the

rest of H0.

Claim 1. Let Ri
0 be a component of R0, i1 8≤ ≤ , and let A R b b b( ) = { , , }H i j

i
j
i

j
i0

0 1 2 3
.

Then there is a vertex d V R( )i
i
0∈ and three internally vertex‐disjoint (possibly

trivial) d b( , )i
j
i
k
‐paths Pjik , k = 1, 2, 3.

Proof. Let P be an arbitrary (possibly trivial) b b( , )j
i

j
i

1 2
‐path in Ri

0, and let Pj
i
3
be

a shortest path between b j
i
3
and a vertex of P, which will be referred to as di.

Then the vertex di and the paths P d Pb=j
i i

j
i

1 1
, P d Pb=j

i i
j
i

2 2
, and Pj

i
3
have the

required properties. □

Claim 2. The component R1
0 contains a cycle C of length at least 4, vertices

c c c V C, , ( )2 5 8 ∈ and paths Q Q Q, ,2
1

5
1

8
1 (possibly trivial) such that

(i)  c c c2 { , , } 32 5 8≤ ≤ ,

RYJÁČEK AND VRÁNA | 139



(ii) Q2
1 is a c b( , )2 2

1 ‐path, Q51 is a c b( , )5 5
1 ‐path and Q8

1 is a c b( , )8 8
1 ‐path,

(iii) the paths Q Q Q, ,2
1

5
1

8
1 are internally vertex‐disjoint.

Proof. Let d1 and P2
1, P5

1, P8
1 be the vertex and paths in R1

0 given by Claim 1. Since
R1
0 is nontrivial, at least one of P P P, ,2

1
5
1

8
1 is nontrivial. Suppose that, say, P5

1 is
nontrivial. We consider a b b( , )2

1
8
1 ‐path P and choose two edge‐disjoint paths P′5, P ″5

such that

• P′5 is a b c( , )5
1

2 ‐path and P ″5 is a b c( , )5
1

8 ‐path for some c c V P, ( )2 8 ∈ ,
• if c c2 8≠ , then c2 is on P between c8 and b2

1, and
• c2, c8, P′5, and P ″5 are chosen such that    E P E P( ′) + ( ″)5 5 is smallest possible.

If c c2 8≠ , we choose c5 as the last common vertex of P′5 and P ″5 , and we set
C c Pc P c P c= ″ ′2 8 5 5 5 2, Q c Pb=2

1
2 2

1, Q c Pb=8
1

8 8
1, and, say, Q c P b= ′5

1
5 5 5

1. If c c=2 8, we
choose c5 as the last common vertex of P′5 and P ″5 distinct from the vertex c c=2 8

(possibly c b=5 5
1), and set C c P c P c= ′ ″2 5 5 5 2, Q c Pb=2

1
2 2

1, Q c Pb=8
1

8 8
1, and, say,

Q c P b= ′5
1

5 5 5
1 (recall that each Ri

0 is a triangle‐free [simple] graph, hence in each case,
C is of length at least 4).

If P2
1 or P8

1 is nontrivial, we get C, Q2
1, Q5

1, and Q8
1 in the same way with the only

difference that possibly c c=5 8 or c c=2 5.

By Claim 2, we have, up to a symmetry, the following possibilities (note thatW has
two types of symmetries—rotations and reflections, but is not edge‐transitive):
 c c c{ , , } = 32 5 8 ;  c c c{ , , } = 22 5 8 and c c=2 8;  c c c{ , , } = 22 5 8 and c c=2 5. For each of
the requested graphs S1,2,7, S1,3,6, and S1,4,5, we describe a sub(multi)graph of H0 in
which it is contained, in all three possible cases. Here, for integers i j k, ,0 0 0,

i j k1 0 0 0≤ ≤ ≤ , we use S i j k, ,0 0 0≥ ≥ ≥ to denote a graph containing an Si j k, ,0 0 0
as a

subgraph. If a component Ri
0 contains the vertex of degree 3 of the S i j k, ,0 0 0≥ ≥ ≥ , then it is

located in the vertex di and uses the paths Pj
i
k
, k = 1, 2, 3, given by Claim 1, and for any

other component Ri
0, i2 8≤ ≤ , and b b A R, ( )j

i
k
i

H i
0

0
∈ , we use Qj k

i
, to denote an

arbitrarily chosen b b( , )j
i

k
i ‐path in Ri

0 (of course, if Ri
0 is trivial, all these paths collapse to

a single vertex).
If we relabel the vertices of the cycle C given by Claim 2 such that  C u u u= … V C1 2 ( )

with u c=1 5 (and also u c c= =1 5 2 in the third case), then the requested subgraphs,
containing S1,2,7 and S1,4,5, can be (in all three cases) described as S d P b( ; ;1, 2, 7

3
2
3

3
2

≥ ≥ ≥

P Q b P Q Q Q;4
3

3,8
4

4
8

7
3

3,6
7

7,5
6

6,1
5 Q u u u u )5

1
1 2 3 4 and S d P b P Q Q Q b( ; ; ;1, 4, 5

4
8
4

4
8

3
4

4,2
3

3,6
2

2,7
6

6
7

≥ ≥ ≥

P Q Q u u u u )5
4

4,1
5

5
1

1 2 3 4 ; finally, if we relabel the vertices of C such that  C u u u= … V C1 2 ( )

with u c=1 8 (and also u c c= =1 2 8 in the second case), then the subgraph, containing
S1,3,6, can be (in all three cases) described as S d P b P Q Q b( ; ; ;1, 3, 6

6
2
6

6
2

5
6

6,4
5

5,3
4

4
3

≥ ≥ ≥

P Q Q Q u u u u )7
6

6,8
7

7,1
8

8
1

1 2 3 4 . In all cases, we have obtained a subgraph S1,2,7, S1,3,6, and
S1,4,5 such that its branch of length 1 is nonpendant, contradicting the fact
that GU

1,6 2,5 3,4  ∈ ∪ ∪ . □
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5 | PROOF OF THEOREM 1

Let G be a 3‐connected K X{ , }1,3 ‐free graph, where X B B B{ , , }1,6 2,5 3,4∈ , and suppose, to the
contrary, thatG is not Hamilton‐connected. By Theorem G and by Corollary 3, we can suppose
that G is UM‐closed and G 1,6 2,5 3,4  ∈ ∪ ∪ . Let thus H L G= ( )−1 , and set H H= co( )0 . By
Theorem F(ii), H0 is 3‐edge‐connected. By Lemma H, we can assume that H0 is 2‐connected
with c H( ) 90 ≥ and  V H( ) 100 ≥ , unless H W0 ≃ . However, if H W0 ≃ , then, by Theorem 4
and since  V H( ) = 80 , H has an e e( , )1 2 ‐IDT for any e e E H, ( )1 2 0∈ and hence also for any
e e E H, ( )1 2 ∈ , implying that G L H= ( ) is Hamilton‐connected, a contradiction. Thus, we have
c H( ) 90 ≥ and  V H( ) 100 ≥ . We consider the possible cases separately and, for each of the
subgraphs Bi j, , we distinguish cases according to the length of a longest cycle in H0, and we
attempt to identify a subgraph of type Si j k, , .

Throughout the proof, in each of the cases, C always denotes a cycle such that

(i) C is a longest cycle in H0,
(ii) subject to (i), C dominates in H maximum number of edges.

We further denote C x x x= … c H1 2 ( )0 , R V H V C= ( ) ( )⧹ , N y V H N y= { ( ) ( ) = }R0∈ ∅ ,
R R V H= ( )0 0∩ , and if R0 ≠ ∅, we set  { }R y y= , …, R0 1 0

and we choose the notation such
that y x E H( )1 1 0∈ . An edge x x E H E C( ) ( )i j 0∈ ⧹ with x x V C, ( )i j ∈ ,  i j V C1 , ( )≤ ≤ , will be
called a chord of C, and we say that x xi j is a k‐chord if the shorter one of the two subpaths of C
determined by xi and xj has k interior vertices.

There are several general comments to some situations in the proof.

• We will often list vertices of a subgraph Si j k, , , and then the following is possible.
‐ When some edge e uv= of the Si j k, , is in E H( )0 , it can always happen that e is subdivided
in H , that is, formally, e E H( )∉ . However, it is immediate to see that if this happens, then
the corresponding submultigraph of H , which instead of e uv= contains a path uzv with
z V H( )2∈ , also contains Si j k, , as a subgraph.

‐ When a vertex v V C( )∈ has a (potential) neighbor z R∈ and the vertex z occurs as the
last vertex of a branch of the Si j k, , , then such a vertex z can be an endvertex of a pendant
edge attached to v, or can be z V H( )2∈ and z subdivides some of the edges incident to v. It
should be noted that in the second case, the vertices v and z can occur in reverse order in
the list (i.e., v being the last vertex of the branch).

• In many subcases, the cycle C will be dominating, and we will consider its potential chords, using
the fact that δ H( ) 30 ≥ . In such situations, it is always implicitly understood that none of the edges
of C can be a double edge, since if, for example, x x1 2 is a double edge with V e V e( ) = ( ) =1 2

x x{ , }1 2 , then T e x x x x e= … c H1 2 3 ( ) 1 20
is an e e( , )1 2 ‐IDT in H , contradicting Theorem G β(vii)( ).

These facts will be always implicitly understood throughout the proof.

Case 1:G 1,6∈ . Then H does not contain as a subgraph the graph S1,2,7 such that its branch
of length 1 is in a nonpendant edge.

Subcase 1.1: c H( ) = 90 and  V H( ) 100 ≥ .
First observe that  E R( ) =H ∅, since if, for example, y z E H( )1 ∈ for some z R∈ , then H
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contains the subgraph S x x y z x x x x x x x( ; ; ; )1,2,7 1 2 1 9 8 7 6 5 4 3 with a branch of length 1 at
nonpendant edge x x1 2, a contradiction. Hence N y( ) =R 1 ∅.

Next observe that x N2 ∈ since otherwise, for some z N x( )R 2∈ , H contains the
subgraph S x y x z x x x x x x x( ; ; ; )1,2,7 1 1 2 9 8 7 6 5 4 3 (note that x y E H( )2 1 ∉ since C is longest).
Similarly, we have N x y( ) { }R 4 1⊂ , since otherwise, for a vertex z N x y( ) { }R 4 1∈ ⧹ , we have
S x y x x x x x x x x z( ; ; ; )1,2,7 1 1 2 3 9 8 7 6 5 4 in H (note that y V H( )1 0∈ , implying that the edge
x y1 1 is nonpendant in H). Symmetrically, x N9 ∈ and N x y( ) { }R 7 1⊂ .

Now, if x x E H( )2 4 ∉ , then the set A x x x x x x x y= { , , , , , , , }1 3 5 6 7 8 9 1 with  A = 8

dominates all edges in H , and, by Theorem 4, G L H= ( ) is Hamilton‐connected, a
contradiction. Hence x x E H( )2 4 0∈ . Analogously, by Theorem 4, considering the set
A V C y x x= ( ( ) { }) { , }1 7 9∪ ⧹ with  A = 8, we have x x E H( )7 9 0∈ , and considering the set
A V C y x x= ( ( ) { }) { , }1 2 9∪ ⧹ with  A = 8, we have x x E H( )2 9 0∈ . But then the edges
x x2 4, x x7 9, and x x2 9 are three 1‐chords in C, creating three triangles in H0, which
contradicts Theorem G(vi).

Subcase 1.2:  c H V H( ) = ( ) = 100 0 .
Since δ H( ) 30 ≥ , every vertex of C is in a chord.

Subcase 1.2.1: C has a 1‐chord.
Choose the notation such that x x E H( )1 3 0∈ . Then x N2 ∈ for otherwise, for a z N x( )R 2∈ ,
H contains S x x x z x x x x x x x( ; ; ; )1,2,7 1 3 2 10 9 8 7 6 5 4 . Similarly x N4 ∈ , for otherwise H

contains S x x x z x x x x x x x( ; ; ; )1,2,7 3 2 4 1 10 9 8 7 6 5 . Considering the set A V C x x= ( ) { , }2 4⧹

with  A = 8, we have x x E H( )2 4 0∈ by Theorem 4. But then the two 1‐chords x x1 3

and x x2 4 create a diamond (see Figure 3) in H0, contradicting Theorem G(vi).

Subcase 1.2.2: C has a 2‐chord.
Choose the notation such that x x E H( )1 4 0∈ . If there is a vertex z N x N x( ) ( )R R5 6∈ ∪ , we
have S x x x x x x x x x x z( ; ; ; )1,2,7 1 4 2 3 10 9 8 7 6 5 or S x x x x x x x x x x z( ; ; ; )1,2,7 4 5 3 2 1 10 9 8 7 6 inH . Hence
x x N{ , }5 6 ⊂ , and, symmetrically, x x N{ , }9 10 ⊂ . Then, using Theorem 4 and the
assumption that G is not Hamilton‐connected, the set A V C x x= ( ) { , }1 5 10⧹ with
 A = 81 yields x x E H( )5 10 0∈ , A V C x x= ( ) { , }2 6 9⧹ with  A = 82 yields x x E H( )6 9 0∈ ,
and A V C x x= ( ) { , }3 5 9⧹ with  A = 83 yields x x E H( )5 9 0∈ . But then the chords x x5 10,
x x6 9, and x x5 9 create a diamond in H0, contradicting Theorem G(vi).

Subcase 1.2.3: C has a 3‐chord.
Let x x E H( )1 5 0∈ . Since δ H( ) 30 ≥ , x3 is in a chord, and by the previous subcases, since

 V C( ) = 10 and by symmetry, we have x x E H( )3 7 0∈ (a 3‐chord), or x x E H( )3 8 0∈ (a
4‐chord).

Let first x x E H( )3 7 0∈ . Then x N2 ∈ , for otherwise, for a z N x( )R 2∈ , we have
S x x x z x x x x x x x( ; ; ; )1,2,7 3 4 2 7 6 5 1 10 9 8 in H . Similarly, x N4 ∈ , for otherwise, for a
z N x( )R 4∈ , we have S x x x z x x x x x x x( ; ; ; )1,2,7 3 2 4 7 6 5 1 10 9 8 in H . Then, using the set
A V C x x= ( ) { , }2 4⧹ with  A = 8, we have x x E H( )2 4 0∈ by Theorem 4, and we are
back in Subcase 1.2.1.

Thus, x x E H( )3 8 0∈ . Then, for a z N x( )R 2∈ , S x x x z x x x x x x x( ; ; ; )1,2,7 3 4 2 8 7 6 5 1 10 9 is a
subgraph of H , hence x N2 ∈ . Symmetrically, x N4 ∈ . Then Theorem 4 for the set
A V C x x= ( ) { , }2 4⧹ with  A = 8 implies x x E H( )2 4 0∈ , and we are again back in
Subcase 1.2.1.
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Subcase 1.2.4: C has a 4‐chord.
By the previous subcases, all chords in C are 4‐chords. If, say, z N x( )R 1∈ , then H

contains S x x x x x x x x x x z( ; ; ; )1,2,7 5 6 4 3 10 9 8 7 2 1 . Hence x N1 ∈ , and, symmetrically, x N3 ∈ .
Then, for the set A V C x x= ( ) { , }1 3⧹ with  A = 8, Theorem 4 implies 1‐chord
x x E H( )1 3 0∈ , a contradiction.

Subcase 1.3: c H( ) 100 ≥ and  V H c H( ) > ( )0 0 .
Set c H t( ) =0 . Then H contains S x y x x x x x x x x x( ; ; ; )t t t t t t t1,2,7 1 1 2 3 −1 −2 −3 −4 −5 −6 (note that
t − 6 > 3 since t 10≥ , and that the edge x y1 1 is nonpendant since y V H( )1 0∈ ).

Subcase 1.4:  c H V H( ) = ( ) = 110 0 .
Since δ H( ) 30 ≥ , every vertex of C is in a chord. If x x E H( )1 3 0∈ , H contains the subgraph
S x x x x x x x x x x x( ; ; ; )1,2,7 1 2 3 4 11 10 9 8 7 6 5 . Similarly, if x x E H( )1 4 0∈ , H contains
S x x x x x x x x x x x( ; ; ; )1,2,7 1 2 4 3 11 10 9 8 7 6 5 . Hence C has only k‐chords for k3 4≤ ≤ .

Suppose that C has a 3‐chord and let x x E H( )1 5 0∈ . Then x3 has a chord, that is, by
symmetry, x x E H( )3 7 0∈ or x x E H( )3 8 0∈ , but in the first case H contains the subgraph
S x x x x x x x x x x x( ; ; ; )1,2,7 1 2 5 6 11 10 9 8 7 3 4 , and in the second case H contains the subgraph
S x x x x x x x x x x x( ; ; ; )1,2,7 5 4 6 7 1 2 3 8 9 10 11 .

Hence the only chords inC are 4‐chords. Let x x E H( )1 6 0∈ . Then x9 has a chord and,
by symmetry, the only possibility is x x E H( )3 9 0∈ . Then H contains the subgraph
S x x x x x x x x x x x( ; ; ; )1,2,7 1 2 11 10 6 7 8 9 3 4 5 .

Subcase 1.5:  c H V H( ) = ( ) = 120 0 .
If x x E H( )1 3 0∈ , H contains S x x x x x x x x x x x( ; ; ; )1,2,7 1 2 3 4 12 11 10 9 8 7 6 , and if x x E H( )k1 0∈ for

k4 5≤ ≤ , H contains S x x x x x x x x x x x( ; ; ; )k1,2,7 1 2 3 12 11 10 9 8 7 6 . Hence C has only
4‐chords and 5‐chords.

Let x x E H( )1 6 0∈ be a 4‐chord ofC. Then x3 is in a 4‐chord or in a 5‐chord. There are
the following possibilities.

Chord at x3 Subgraph S1,2,7

x x3 8 S x x x x x x x x x x x( ; ; ; )1,2,7 3 2 4 5 8 7 6 1 12 11 10

x x3 9 S x x x x x x x x x x x( ; ; ; )1,2,7 3 2 4 5 9 10 11 12 1 6 7

x x3 10 S x x x x x x x x x x x( ; ; ; )1,2,7 3 2 4 5 10 11 12 1 6 7 8

Thus, C has only 5‐chords. Then H contains S x x x x x x x x x x x( ; ; ; )1,2,7 1 12 2 3 7 8 9 10 4 5 6 .

Subcase 1.6:  c H V H( ) = ( ) = 130 0 .
If x x E H( )k1 0∈ for k3 5≤ ≤ , then H contains S x x x x x x x x x x x( ; ; ; )k k1,2,7 1 2 +1 13 12 11 10 9 8 7 , and
if x x E H( )1 6 0∈ , then H contains S x x x x x x x x x x x( ; ; ; )1,2,7 1 2 6 5 13 12 11 10 9 8 7 . Thus, the only
chords in C are 5‐chords. Then x x E H( )1 7 0∈ and, up to a symmetry, x x E H( )4 10 0∈ , and
then H contains S x x x x x x x x x x x( ; ; ; )1,2,7 1 2 13 12 7 8 9 10 4 5 6 .

Subcase 1.7:  c H V H( ) = ( ) = 140 0 .
If x x E H( )k1 0∈ for k3 6≤ ≤ , then H contains S x x x x x x x x x x x( ; ; ; )k k1,2,7 1 2 +1 14 13 12 11 10 9 8 , and

if x x E H( )1 7 0∈ , then H contains S x x x x x x x x x x x( ; ; ; )1,2,7 1 2 7 6 14 13 12 11 10 9 8 . Thus, the only
chords in C are 6‐chords, and then H contains S x x x x x x x x x x x( ; ; ; )1,2,7 1 2 14 13 8 9 10 3 4 5 6 .
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Subcase 1.8:  c H V H( ) = ( ) 150 0 ≥ .
Set c H t( ) =0 . If x x E H( )1 3 0∈ , we have S x x x x x x x x x x x( ; ; ; )t t t t t t t1,2,7 1 2 3 4 −1 −2 −3 −4 −5 −6 in H .

Finally, if x x E H( )k1 0∈ for  k4 + 1
t

2
≤ ≤ , then H contains the subgraph

S x x x x x x x x x x x( ; ; ; )k k t t t t t t t1,2,7 1 2 −1 −1 −2 −3 −4 −5 −6 .

Case 2: G 2,5∈ .
Then H does not contain as a subgraph the graph S1,3,6 such that its branch of length 1

is in a nonpendant edge.

Subcase 2.1: c H( ) = 90 and  V H( ) 100 ≥ .
First observe that  R H does not contain a path P3 such that one of its endvertices has a
neighbor on C, since if, for example,  P y y y R= H3 1 2 3 ⊂ is such a path with
x y E H( )1 1 ∈ , we have S x x y y y x x x x x x( ; ; ; )1,3,6 1 9 1 2 3 2 3 4 5 6 7 in H .

Since H is essentially 3‐edge‐connected, every edge in  R H is connected to C by at
least three edges (two of them possibly being a double edge).

Subcase 2.1.1: there is an edge  e y y E R= ( )H1 2 ∈ such that  N y y({ , }) 3C 1 2 ≥ . By
symmetry, we assume that y R1 0∈ , and either  N y( ) 3C 1 ≥ (with e possibly being
pendant), or  N y( ) = 2C 1 and  N y( ) 1C 2 ≥ . We consider the case  N y( ) 3C 1 ≥ , and
since all our contradictions will consist in finding an S1,3,6 with the branch of length 1
at a nonpendant edge, or in finding a cycle contradicting the choice of C, our proof
remains true also in the case when  N y( ) = 2C 1 and  N y( ) 1C 2 ≥ , with only possibly
reverse order of last two vertices of a branch ending at y2 or of some branch being
subdivided with y2 in case of finding an S1,3,6.

Thus, let  N y( ) 3C 1 ≥ . Since C is longest, no two neighbors of y1 are consecutive on
C. Up to a symmetry, we have three possible situations: N y x x x( ) { , , }C 1 1 3 5⊃ ,
N y x x x( ) { , , }C 1 1 3 6⊃ , and N y x x x( ) = { , , }C 1 1 4 7 . We consider these cases separately.

Subcase 2.1.1.1: N y x x x( ) { , , }C 1 1 3 5⊃ .
If x N2 ∈ , then the cycle C x y x x x x x x x x′ = 1 1 3 4 5 6 7 8 9 1 dominates more edges than C,
contradicting the choice ofC. Hence x2 has a neighbor x R′2 ∈ . Symmetrically, x4 has
a neighbor x R′4 ∈ , and, moreover, x x′ ′2 4≠ , for otherwise we have
S x x x y y x x x x x x( ; ; ; ′ )1,3,6 2 3 1 1 2 2 4 5 6 7 8 in H . Also, x x y y′, ′ { , }2 4 1 2∉ , for otherwise there is

a cycle longer than C.
If x y E H( )8 1 0∈ , then H contains S y x x x x x x x x x x( ; ; ′; ′)1,3,6 1 3 1 2 2 8 7 6 5 4 4 , hence

x y E H( )8 1 0∉ . Similarly, x y E H( )8 2 ∉ . Now, if there is a vertex z N x( )R 8∈ , H
contains S x x x x z y x x x x x( ; ; ; )1,3,6 1 2 9 8 1 3 4 5 6 7 ; hence x N8 ∈ . Since δ H( ) 30 ≥ , x8 is in a
chord of C. We consider all possible chords containing x8, and for each of them we
obtain an S1,3,6 in H .

Chord at x8 Subgraph S1,3,6

x x8 1 S x x x x x x x x x x y( ; ; ′; )1,3,6 8 9 1 2 2 7 6 5 4 3 1

x x8 2 S y x x x x x x x x x x( ; ; ′; ′)1,3,6 1 1 3 4 4 5 6 7 8 2 2

x x8 3 S x x x x x x x x y x x( ; ; ′; )1,3,6 8 9 3 4 4 7 6 5 1 1 2
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Chord at x8 Subgraph S1,3,6

x x8 4 S y x x x x x x x x x x( ; ; ′; ′)1,3,6 1 1 3 2 2 5 6 7 8 4 4

x x8 5 S x x x x x x x x x y y( ; ; ′; )1,3,6 8 7 5 4 4 9 1 2 3 1 2

x x8 6 S x x x x y x x x x x x( ; ; ; ′)1,3,6 8 7 9 1 1 6 5 4 3 2 2

The only remaining possibilities are that there is a double edge containing x8.
However, if x x8 9 is a double edge, then, by symmetry, the same applies to x7 and we
have two double edges in H0, and if x x7 8 is a double edge, then we must have some of
the above chords since otherwise x x x x{ , }6 7 8 9 is an edge‐cut in H0, a contradiction.

Subcase 2.1.1.2: N y x x x( ) { , , }C 1 1 3 6⊃ .
By the choice of C, there is a vertex x N x y′ ( ) { }R2 2 1∈ ⧹ , for otherwise the cycle
C x y x x x x x x x x′ = 1 1 3 4 5 6 7 8 9 1 dominates more edges than C. But then we have
S x y x x x x x x x x x( ; ; ; ′)1,3,6 6 1 5 4 3 7 8 9 1 2 2 in H , a contradiction.

Subcase 2.1.1.3: N y x x x( ) = { , , }C 1 1 4 7 .
If there is a z N x( )R 2∈ , H contains S x y x x z x x x x x x( ; ; ; )1,3,6 4 1 3 2 5 6 7 8 9 1 , hence x N2 ∈

(note that N x y y( ) { , } =R 2 1 2∩ ∅ since C is a longest cycle). By symmetry,
x x x x x x N{ , , , , , }2 3 5 6 8 9 ⊂ . Since δ H( ) 30 ≥ , x2 is in a chord of C, and, since the same
applies to any of the vertices x3, x5, x6, x8, and x9, by symmetry, we can assume that
the chord containing x2 is neither a 1‐chord nor a double edge. Thus, by symmetry, x2
is adjacent to x5, x6, or x7.

Chord at x2 Contradiction

x x2 5 C x y x x x x x x x x x′ = 1 1 4 3 2 5 6 7 8 9 1 longer than C

x x2 6 S x x x x x x x x x y y( ; ; ; )1,3,6 2 3 6 5 4 1 9 8 7 1 2 in H

x x2 7 S x x x x x x x x x y y( ; ; ; )1,3,6 2 3 1 9 8 7 6 5 4 1 2 in H

Subcase 2.1.2: For every edge  e y y E R= ( )H1 2 ∈ ,  N y y({ , }) = 2C 1 2 .
Let N y y x x({ , }) = { , }C 1 2 1 2 with s3 8≤ ≤ and x y E H( )1 1 0∈ . Since H0 is 3‐edge‐connected
and y V H( )1 0∈ , the edge e is connected to C by at least three edges.

If there is no double edge, we can choose the notation such that
x y x y x y E H, , ( )s1 1 1 1 2 ∈ . But then, if x y E H( )2 2 ∉ ,  x y y{ } H1 1 2 is a triangle in H with
d y( ) = 2H 2 , contradicting Lemma E, and if x y E H( )2 2 ∈ , then x1, xs, y1, and y2
determine a diamond in H , contradicting Theorem G(vi). Hence, x y1 1 is a double edge,
implying that every edge in  R H is incident to y1.

Now, if there is a z N x y( ) { }R 3 1∈ ⧹ , we have S x y x x z x x x x x x( ; ; ; )1,3,6 1 1 2 3 9 8 7 6 5 4 in H ,
and if there is a z N x y( ) { }R 5 1∈ ⧹ , we have S x y x x x x x x x x z( ; ; ; )1,3,6 1 1 2 3 4 9 8 7 6 5 in H ;
hence N x x y({ , }) { }R 3 5 1⊂ . Moreover, x x E H( )3 5 0∉ by Theorem G(vi). Then the set
A V C y x x= ( ( ) { } { , }1 3 5∪ ⧹ with  A = 8 dominates all edges of H , hence G L H= ( ) is
Hamilton‐connected by Theorem 4, a contradiction.
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Subcase 2.1.3:  E R( ) =H ∅.
Choose again the notation such that x y E H( )1 1 0∈ with y R1 0∈ . Note that the edge x y1 1

is nonpendant since y R1 0∈ . If there is a z N x y( ) { }R 3 1∈ ⧹ , we have
S x y x x z x x x x x x( ; ; ; )1,3,6 1 1 2 3 9 8 7 6 5 4 in H ; hence N x y( ) { }R 3 1⊂ . Similarly, N x y( ) { }R 5 1⊂ ,
since otherwise, for a z N x y( ) { }R 5 1∈ ⧹ , we have S x y x x x x x x x x z( ; ; ; )1,3,6 1 1 2 3 4 9 8 7 6 5 in H .
Symmetrically, N x y( ) { }R 6 1⊂ . Consequently, if x x E H( )3 5 0∉ , then the set
A V C y x x= ( ( ) { }) { , }1 3 5∪ ⧹ with  A = 8 dominates all edges of H , implying that G
is Hamilton‐connected by Theorem 4, a contradiction. Hence x x E H( )3 5 0∈ .
Analogously, by Theorem 4, considering the set A V C y x x= ( ( ) { }) { , }1 3 6∪ ⧹ with
 A = 8, we have x x E H( )3 6 0∈ . But then the two chords x x3 5 and x x3 6 create a
diamond in H0, contradicting Theorem G(vi).

Subcase 2.2:  c H V H( ) = ( ) = 100 0 .
Since δ H( ) 30 ≥ , every vertex of C is in a chord.

Subcase 2.2.1: C has a 1‐chord.
Choose the notation such that x x E H( )1 3 0∈ .

If there is a z N x( )R 4∈ , we have S x x x x z x x x x x x( ; ; ; )1,3,6 1 2 3 4 10 9 8 7 6 5 in H , hence
x N4 ∈ . Also x N6 ∈ , for otherwise, for z N x( )R 6∈ , we have
S x x x x x x x x x x z( ; ; ; )1,3,6 1 2 3 4 5 10 9 8 7 6 in H . Symmetrically, x x N{ , }8 10 ⊂ . Theorem 4 for
A V C x x= ( ) { , }4 6⧹ with  A = 8 implies x x E H( )4 6 0∈ , Theorem 4 for
A V C x x= ( ) { , }8 10⧹ implies x x E H( )8 10 0∈ , and we have three triangles in H0,
contradicting Theorem G(vi).

Subcase 2.2.2: C has a 3‐chord.
Let x x E H( )1 5 0∈ . If z N x( )R 6∈ , we have S x x x x x x x x x x z( ; ; ; )1,3,6 1 5 2 3 4 10 9 8 7 6 in H ; hence
x N6 ∈ . Symmetrically, x N10 ∈ . Theorem 4 for the set A V C x x= ( ) { , }6 10⧹ with
 A = 8 implies x x E H( )6 10 0∈ , and Theorem 4 for the set A V C x x= ( ) { , }1 6⧹ implies
x x E H( )1 6 0∈ . The chords x x1 5, x x6 10, and x x1 6 then determine a diamond in H0,
contradicting Theorem G(vi).

Subcase 2.2.3: C has a 2‐chord.
Let x x E H( )1 4 0∈ . Then x x N,2 3 ∈ , since if there is a z N x( )R 3∈ , we have
S x x x x z x x x x x x( ; ; ; )1,3,6 1 4 2 3 10 9 8 7 6 5 in H , and x N2 ∈ follows by symmetry. Since
δ H( ) 30 ≥ and by the previous subcases, x2 is in a 2‐chord or in a 4‐chord of C.

If x x E H( )2 5 0∈ , then, by symmetry, x N4 ∈ , Theorem 4 for the set
A V C x x= ( ) { , }2 4⧹ implies x x E H( )2 4 0∈ , and we are back in Subcase 2.1.1 (since
x x2 4 is a 1‐chord ofC). If x x E H( )2 9 0∈ , then, by symmetry, x x N,1 10 ∈ , and Theorem 4
for the set A V C x x= ( ) { , }1 3⧹ implies 1‐chord x x E H( )1 3 0∈ , a contradiction again.

Hence x2 is in a 4‐chord, that is, x x E H( )2 7 0∈ . Then, for a z N x( )R 6∈ , we have
S x x x x z x x x x x x( ; ; ; )1,3,6 4 3 5 6 1 2 7 8 9 10 in H ; hence x N6 ∈ . Theorem 4 for the set
A V C x x= ( ) { , }2 6⧹ then implies x x E H( )2 6 0∈ , and we are back in Subcase 2.2.2.

Subcase 2.2.4: C has only 4‐chords.
If there is a z N x( )R 1∈ , we have S x x x x z x x x x x x( ; ; ; )1,3,6 5 10 6 1 4 3 2 7 8 9 in H ; hence x N1 ∈ .
Symmetrically, x N3 ∈ . Theorem 4 for the set A V C x x= ( ) { , }1 3⧹ then implies the 1‐
chord x x E H( )1 3 0∈ , and we are back in Subcase 2.2.1.
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Subcase 2.3: c H( ) 100 ≥ and  V H c H( ) > ( )0 0 .
Set c H t( ) =0 . Then we have S x y x x x x x x x x x( ; ; ; )t t t t t t1,3,6 1 1 2 3 4 −1 −2 −3 −4 −5 in H (note that
t − 5 > 4 since t 10≥ , and the edge x y1 1 is nonpendant since y V H( )1 0∈ ).

Subcase 2.4:  c H V H( ) = ( ) = 110 0 . Since δ H( ) 30 ≥ , every vertex of C is in a chord.

Subcase 2.4.1: C has a 1‐chord.
Let x x E H( )1 3 0∈ . Then H contains S x x x x x x x x x x x( ; ; ; )1,3,6 1 2 3 4 5 11 10 9 8 7 6 .

Subcase 2.4.2: C has a 3‐chord.
Let x x E H( )1 5 0∈ . Then H contains S x x x x x x x x x x x( ; ; ; )1,3,6 1 5 2 3 4 11 10 9 8 7 6 .

Subcase 2.4.3: C has a 2‐chord.
Let x x E H( )1 4 0∈ . If there is a z N x( )R 3∈ , we have S x x x x z x x x x x x( ; ; ; )1,3,6 1 4 2 3 11 10 9 8 7 6 in
H ; hence x N3 ∈ . Similarly, if there is a z N x( )R 5∈ , then H contains the subgraph
S x x x x z x x x x x x( ; ; ; )1,3,6 1 2 4 5 11 10 9 8 7 6 ; hence also x N5 ∈ . Theorem 4 for the set
A V C x x= ( ) { , }3 8⧹ then implies x x E H( )3 5 0∈ , and we are back in Subcase 2.4.1.

Subcase 2.4.3: C has only 4‐chords.
Since every vertex ofC is in a 4‐chord and  V C( ) is odd, some two 4‐chords have a vertex
in common. Choose the notation such that x x x x E H, ( )1 6 1 7 0∈ . Since x2 is in a 4‐chord
and the edge x x2 7 would create a diamond, necessarily x x E H( )2 8 0∈ . But then H

contains S x x x x x x x x x x x( ; ; ; )1,3,6 8 2 9 10 11 7 1 6 5 4 3 .

Subcase 2.5:  c H V H( ) = ( ) = 120 0 .
If x1 is in a k‐chord for k1 2≤ ≤ , H contains S x x x x x x x x x x x( ; ; ; )k k k1,3,6 1 2 +1 +2 12 11 10 9 8 7 ; if x1

is in a k‐chord for k3 4≤ ≤ , H contains S x x x x x x x x x x x( ; ; ; )k k k1,3,6 1 2 −1 −2 12 11 10 9 8 7 . Thus,
by symmetry, every vertex of C is in a 5‐chord. Then H contains the subgraph
S x x x x x x x x x x x( ; ; ; )1,3,6 1 12 7 6 5 2 3 4 10 9 8 .

Subcase 2.6:  c H V H( ) = ( ) 130 0 ≥ .
Set c H t( ) =0 . If x x E H( )k1 0∈ for some k, k3 4≤ ≤ , then H contains the subgraph
S x x x x x x x x x x x( ; ; ; )k k k t t t t t t1,3,6 1 2 +1 +2 −1 −2 −3 −4 −5 , and if x x E H( )k1 0∈ for some k with

 k5 + 1
t

2
≤ ≤ , then H contains S x x x x x x x x x x x( ; ; ; )k k k t t t t t t1,3,6 1 2 −1 −2 −1 −2 −3 −4 −5 .

Case 3:G 3,4∈ . Then H does not contain as a subgraph the graph S1,4,5 such that its branch
of length 1 is in a nonpendant edge.

Subcase 3.1: c H( ) = 90 and  V H( ) 100 ≥ .

Claim 1. The multigraph H does not contain a path P such that P RInt( ) ⊂ and either

(i)  V P( ) 5≥ and one of its endvertices is in V C( ), or
(ii)  V P( ) 4≥ and both its endvertices are in V C( ).

Proof. (i). If P x y y= … k1 1 , k 4≥ , is a path satisfying (i), then H contains
S x x y y y y x x x x x( ; ; ; )1,4,5 1 9 1 2 3 4 2 3 4 5 6 , a contradiction.
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(ii). Let, to the contrary, P x y y x= … k s1 1 , be a path satisfying (ii) for some k 2≥ and
s2 8≤ ≤ . If s = 2, then the cycle, obtained fromC by replacing the edge x x1 2 with the path

P, is longer than C, a contradiction. By symmetry, s {3, 4, 5}∈ . In each of these cases we
have a subgraph of H containing an S1,4,5 with the branch of length 1 at a nonpendant edge.

Case Subgraph containing an S1,4,5

s = 3 S x x y y x x x x x x x( ; ; … ; )k1, 4,5 1 2 1 3 4 9 8 7 6 5≥

s = 4 S x x y y x x x x x x x( ; ; … ; )k1, 4,5 1 2 1 4 3 9 8 7 6 5≥

s = 5 S x x x x x x y y x x x( ; ; ; … )k1,4, 5 1 2 9 8 7 6 1 5 4 3≥ □

Subcase 3.1.1:  E R( )H ≠ ∅.

Claim 2. Every edge in  E R( )H is a pendant edge of H , and one of its vertices is
connected to C by at least three edges.

Proof. Let first, to the contrary,  e y y E R= ( )H1 2 ∈ be nonpendant, and choose the
notation such that y V H( )1 0∈ . Since d y( ) 3H 1 ≥ , d y( ) 2H 2 ≥ , and H is essentially
3‐edge‐connected, e is connected toC by three edge‐disjoint paths P P P, ,1 2 3, two of them,
say, P1 and P2, starting at y1, and P3 starting at y2. Let xij be the endvertex of Pj on C,
j = 1, 2, 3. If P1, P2, and P3 can be chosen such that  i i i{ , , } 21 2 3 ≥ , then there is a path
satisfying the conditions of Claim 1(ii). Hence i i i= =1 2 3, and this vertex is a cutvertex
of H , contradicting the fact that H0 is 2‐connected. Thus, e is a pendant edge of H .

By the connectivity assumption, there are three edge‐disjoint paths P P P, ,1 2 3,
connecting y1 to C. Since H0 is 2‐connected, the paths P P P, ,1 2 3 can be chosen such
that at least two of their endvertices are distinct. But then necessarily PInt( ) =i ∅,
i = 1, 2, 3, since otherwise we have a path satisfying the conditions of Claim 1(ii). □

Subcase 3.1.1.1: There is an edge  e y y E R= ( )H1 2 ∈ such that  N y( ) 3C 1 ≥ .
SinceC is longest, no two neighbors of y1 are consecutive onC; thus, up to a symmetry,
N y x x x( ) { , , }C 1 1 3 5⊃ , N y x x x( ) { , , }C 1 1 3 6⊃ , or N y x x x( ) = { , , }C 1 1 4 7 .

Subcase 3.1.1.1.1: N y x x x( ) { , , }C 1 1 3 5⊃ . If x N2 ∈ , then the cycle
C x y x x x x x x x x′ = 1 1 3 4 5 6 7 8 9 1 dominates more edges than C, contradicting the choice
of C. Hence there is an x N x′ ( )R2 2∈ . We have x y′2 1≠ since C is the longest. But
then H contains S x y x x x x x x x x x( ; ; ′; )1,4,5 5 1 4 3 2 2 6 7 8 9 1 .

Subcase 3.1.1.1.2: N y x x x( ) { , , }C 1 1 3 6⊃ .
Then similarly there is a vertex x N x y′ ( ) { }R2 2 1∈ ⧹ , and H contains the subgraph
S x y x x x x x x x x x( ; ; ; ′)1,4,5 6 1 7 8 9 1 5 4 3 2 2 .

Subcase 3.1.1.1.3: N y x x x( ) = { , , }C 1 1 4 7 .
If there is an x N x y′ ( ) { }R2 2 1∈ ⧹ , we have S x y x x x x x x x x x( ; ; ; ′)1,4,5 7 1 6 5 4 3 8 9 1 2 2 in H .

Moreover, N x y y( ) { , } =R 2 1 2∩ ∅ since C is the longest. Hence x N2 ∈ . Since
δ H( ) 30 ≥ , there is a chord of C containing x2. Below we consider, up to a
symmetry, all possible 2‐chords and 3‐chords containing x2.
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Chord at x2 Contradiction

x x2 5 C x y x x x x x x x x x′ = 1 1 4 3 2 5 6 7 8 9 1 longer than C

x x2 6 S x x x x x x x x x y y( ; ; ; )1,4,5 2 3 1 9 8 7 6 5 4 1 2 in H

x x2 7 S x x x x x x x x x y y( ; ; ; )1,4,5 7 2 6 5 4 3 8 9 1 1 2 in H

Thus, x2 is in a 1‐chord or in a double edge. However, by symmetry, the same
applies to the vertices x3, x5, x6, x8, and x9, and we have at least three triangles or
double edges in H , contradicting Theorem G(vi).

Subcase 3.1.1.2: For every edge  e y y E R= ( )H1 2 ∈ , we have  N y( ) = 2C 1 .
Then x y1 1 is a double edge, implying that every edge in  R H contains y1. If there

is an x N x y′ ( ) { }R4 4 1∈ ⧹ , then H contains S x y x x x x x x x x x( ; ; ′; )1,4,5 1 1 2 3 4 4 9 8 7 6 5 , hence
N x y( ) { }R 4 1⊂ . Similarly, if there is an x N x y′ ( ) { }R5 5 1∈ ⧹ , then H contains
S x y x x x x x x x x x( ; ; ; ′)1,4,5 1 1 9 8 7 6 2 3 4 5 5 , hence N x y( ) { }R 5 1⊂ . By symmetry, also
N x x y({ , }) { }R 6 7 1⊂ . Considering the set A V C y x x= ( ( ) { }) { , }1 1 4 6∪ ⧹ with  A = 81

and the fact that G is not Hamilton‐connected, Theorem 4 implies x x E H( )4 6 0∈ . But
then the chord x x4 6 creates a triangle in H0, contradicting Theorem G(vi) since x y1 1 is a
double edge.

Subcase 3.1.2:  E R( ) =H ∅.
Let y R1 0∈ with x y E H( )1 1 0∈ (this is always possible by Claim 1 and since H0 is 3‐edge‐
connected). Similarly as in Subcase 3.1.1.2, N x y( ) { }R 4 1⊂ (otherwise, for an
x N x y′ ( ) { }R4 4 1∈ ⧹ , H contains S x y x x x x x x x x x( ; ; ′; )1,4,5 1 1 2 3 4 4 9 8 7 6 5 ), and N x y( ) { }R 5 1⊂

(otherwise, for an x N x y′ ( ) { }R5 4 1∈ ⧹ , H contains S x y x x x x x x x x x( ; ; ; ′)1,4,5 1 1 9 8 7 6 2 3 4 5 5 ). By

symmetry, also N x x y({ , }) { }R 6 7 1⊂ . Considering the sets A V C y x x= ( ( ) { }) { , }1 1 4 6∪ ⧹

and A V C y x x= ( ( ) { }) { , }2 1 4 7∪ ⧹ with    A A= = 81 2 , Theorem 4 implies
x x E H( )4 6 0∈ and x x E H( )4 7 0∈ , and then the two chords x x4 6 and x x4 7 create a
diamond in H0, contradicting Theorem G(vi).

Subcase 3.2:  c H V H( ) = ( ) = 100 0 .
Since δ H( ) 30 ≥ , every vertex of C is in a chord.

Subcase 3.2.1: C has a 1‐chord.
Choose the notation such that x x E H( )1 3 0∈ . If there is a z N x( )R 5∈ , then H contains
S x x x x x z x x x x x( ; ; ; )1,4,5 1 2 3 4 5 10 9 8 7 6 ; hence x N5 ∈ . Symmetrically, x N9 ∈ . If there is a
z N x( )R 7∈ , then H contains S x x x x x x x x x x z( ; ; ; )1,4,5 1 2 3 4 5 6 10 9 8 7 ; hence also x N7 ∈ .
Theorem 4 for A V C x x= ( ) { , }1 5 7⧹ then implies x x E H( )5 7 0∈ , Theorem 4 for
A V C x x= ( ) { , }2 7 9⧹ implies x x E H( )7 9 0∈ , and the three 1‐chords x x1 3, x x5 7, and
x x7 9 determine three triangles in H0, contradicting Theorem G(vi).

Subcase 3.2.2: C has a 3‐chord.
Let x x E H( )1 5 0∈ . If there is a z N x( )R 4∈ , we have S x x x x x z x x x x x( ; ; ; )1,4,5 1 5 2 3 4 10 9 8 7 6 in
H ; hence x N4 ∈ . Symmetrically, x N2 ∈ . From Theorem 4 for the set
A V C x x= ( ) { , }2 4⧹ we then have x x E H( )2 4 0∈ ; however, x x2 4 is a 1‐chord of C, and
we are back in Subcase 3.2.1.
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Subcase 3.2.3: C has a 4‐chord.
Let x x E H( )1 6 0∈ . Then x N7 ∈ , since otherwise, for a z N x( )R 7∈ , H contains
S x x x x x x x x x x z( ; ; ; )1,4,5 1 6 2 3 4 5 10 9 8 7 . Symmetrically, x N5 ∈ . Theorem 4 for the set
A V C x x= ( ) { , }5 7⧹ then yields x x E H( )5 7 0∈ , and we are again back in Subcase 3.2.1.

Subcase 3.2.4: Every chord in C is a 2‐chord.
Let x x E H( )1 4 0∈ . Since x2 is in a 2‐chord, we have x x E H( )2 9 0∈ or x x E H( )2 5 0∈ .

Let first x x E H( )2 9 0∈ . Then x N10 ∈ , since otherwise, for a z N x( )R 10∈ , H contains
S x x x x x x x x x x z( ; ; ; )1,4,5 4 3 5 6 7 8 1 2 9 10 . Symmetrically, x N5 ∈ . Theorem 4 for the set
A V C x x= ( ) { , }5 10⧹ then implies x x E H( )5 10 0∈ , and we are back in Subcase 3.2.3.
Thus, x x E H( )2 5 0∈ . Since x3 is in a 2‐chord, we have, up to a symmetry,
x x E H( )3 6 0∈ . But then we are in a situation symmetric to the first case.

Subcase 3.3: c H( ) 100 ≥ and  V H c H( ) > ( )0 0 .
Set c H t( ) =0 . Then H contains the subgraph S x y x x x x x x x x x( ; ; ; )t t t t t1,4,5 1 1 2 3 4 5 −1 −2 −3 −4 , a

contradiction.

Subcase 3.4:  c H V H( ) = ( ) = 110 0 .
Since δ H( ) 30 ≥ , every vertex of C is in a chord.

Subcase 3.4.1: C has a 1‐chord.
Let x x E H( )1 3 0∈ . Then H contains S x x x x x x x x x x x( ; ; ; )1,4,5 1 2 3 4 5 6 11 10 9 8 7 .

Subcase 3.4.2: C has a 4‐chord.
Let x x E H( )1 6 0∈ . Then H contains S x x x x x x x x x x x( ; ; ; )1,4,5 1 6 2 3 4 5 11 10 9 8 7 .

Subcase 3.4.3: C has a 3‐chord. Let x x E H( )1 5 0∈ .
By the previous subcases, x3 is in a 2‐chord or in a 3‐chord. Thus, up to a
symmetry, x x E H( )3 6 0∈ or x x E H( )3 7 0∈ . However, if x x E H( )3 6 0∈ , H contains
S x x x x x x x x x x x( ; ; ; )1,4,5 1 2 11 10 9 8 5 4 3 6 7 , and if x x E H( )3 7 0∈ , H contains
S x x x x x x x x x x x( ; ; ; )1,4,5 1 2 11 10 9 8 5 4 3 7 6 .

Subcase 3.4.4: Every chord in C is a 2‐chord.
Let x x E H( )1 4 0∈ . Then x2 is in a 2‐chord, that is, x x E H( )2 10 0∈ or x x E H( )2 5 0∈ . If
x x E H( )2 10 0∈ , H contains S x x x x x x x x x x x( ; ; ; )1,4,5 4 3 1 2 10 11 5 6 7 8 9 . Hence x x E H( )2 5 0∈ ,
and then, for any 2‐chord containing x3 we are in a situation symmetric to the first
case.

Subcase 3.5:  c H V H( ) = ( ) = 120 0 . We show that C does not have a k‐chord for
k {1, 2, 4, 5}∈ .

Chord in C Subgraph S1,4,5

1‐Chord x x1 3 S x x x x x x x x x x x( ; ; ; )1,4,5 1 2 3 4 5 6 12 11 10 9 8

2‐Chord x x1 4 S x x x x x x x x x x x( ; ; ; )1,4,5 1 2 4 5 6 7 12 11 10 9 8

150 | RYJÁČEK AND VRÁNA



Chord in C Subgraph S1,4,5

4‐Chord x x1 6 S x x x x x x x x x x x( ; ; ; )1,4,5 1 6 2 3 4 5 12 11 10 9 8

5‐Chord x x1 7 S x x x x x x x x x x x( ; ; ; )1,4,5 1 7 2 3 4 5 12 11 10 9 8

Hence any chord in C is a 3‐chord. Let x x E H( )1 5 0∈ be a 3‐chord. Up to a symmetry,
x x E H( )3 7 0∈ , and then H contains S x x x x x x x x x x x( ; ; ; )1,4,5 1 2 5 4 3 7 12 11 10 9 8 .

Subcase 3.6:  c H V H( ) = ( ) 130 0 ≥ .
Set c H t( ) =0 . If x x E H( )k1 0∈ for some k, k3 5≤ ≤ , then H contains the subgraph
S x x x x x x x x x x x( ; ; ; )k k k k t t t t t1,4,5 1 2 +1 +2 +3 −1 −2 −3 −4 , and if x x E H( )k1 0∈ for some k with

 k5 + 1
t

2
≤ ≤ , then H contains S x x x x x x x x x x x( ; ; ; )k k k k t t t t t1,4,5 1 2 −1 −2 −3 −1 −2 −3 −4 .

6 | CONCLUDING REMARKS

1. Theorem 1 admits a slight extension as follows. For s 0≥ , a graph G is s‐Hamilton‐
connected if the graph G M− is Hamilton‐connected for any set M V G( )⊂ with  M s≤ .
Obviously, an s‐Hamilton‐connected graph must be s( + 3)‐connected. Since an induced
subgraph of a K B{ , }i j1,3 , ‐free graph is also K B{ , }i j1,3 , ‐free, we immediately have the following
fact, showing that, in K B{ , }i j1,3 , ‐free graphs with i j+ 7≤ , the obvious necessary condition is
also sufficient.

Corollary 5. Let s i j, , be integers such that s 0≥ , i j, 1≥ and i j+ 7≤ , and let G be a
K B{ , }i j1,3 , ‐free graph. Then G is s‐Hamilton‐connected if and only if G is s( + 3)‐connected.

2. We can now update the discussion of potential pairs X Y, of connected graphs that
might imply Hamilton‐connectedness of a 3‐connected X Y{ , }‐free graph, as summarized
in [14].

As shown in [6], up to a symmetry, necessarily X K= 1,3, and, summarizing the discussions
from [3, 6, 7, 14], there are the following possibilities for Y (see Figure 1 for the graphs Zi, Bi j, ,
and Ni j k, , , and Figure 2A for the graph Γi):

(i) Y {Γ , Γ }1 3∈ , or Y = Γ5 for  n V G= ( ) 21≥ ,
(ii) Y P= i with i4 9≤ ≤ ,
(iii) Y Z= i with i 6≤ , or Y Z= 7 for  n V G= ( ) 21≥ ,
(iv) Y B= i j, with i j+ 7≤ ,
(v) Y N= i j k, , with i j k+ + 7≤ .

The best‐known results in the direction of each of these subgraphs are summarized
in Theorem A, and we summarize the current status of the problem in the following
table.
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Y Possible Best known Reference Open

Γi Γ1, Γ3, Γ5 for n 21≥ Γ1 [6] Γ3; Γ5 for n 21≥

Pi i4 9≤ ≤ P9 [3] –

Zi i 6≤ ; Z7 for n 21≥ Z6; Z7 for G L W( )1≄ [20] –

Bi j, i j+ 7≤ i j+ 7≤ This paper –

Ni j k, , i j k+ + 7≤ i j k+ + 7≤ [13–15] –

Thus, the only remaining cases are the Γ3 and the Γ5 for n 21≥ . The problem here is that
although we are able to construct a closure operation that turns a K{ , Γ}i1,3 ‐free graph into the
line graph of a multigraph and preserves both Hamilton‐connectedness and the property of
being Γi‐free, the structure still remains too complicated to be reasonably handled.
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