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Abstract

In this article, the two-phase water hammer theoretical and numerical simulation are provided. A mathematical
formulation is presented to describe the transient one-dimensional flow of bubbly gas-liquid mixtures without
phase change in an horizontal pipe. The features of the two-fluid model for simulating water hammer flows are
investigated. The governing equations were obtained from mass and momentum conservation laws combined with
interfacial interaction correlations. The obtained system of equations for steady-state is solved through the Runge-
Kutta method. On the other hand, the transient flow equation solutions are provided by the Newton-Raphson
methods. A laborious calculation was carried out to determine the common pressure of the two phases. In order
to improve the robustness and efficiency of the Richtmeyer-Lax-Wendroff method in solving the two-fluid model,
a flux corrected transport technique was proposed. The results obtained by the proposed model are compared
successfully to the corresponding homogeneous equilibrium model and the experimental ones provided by the
literature.
© 2022 University of West Bohemia.
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1. Introduction

Two-phase flows are frequently encountered in engineering applications such as boilers, con-
densers, power cooling systems, fuel transport systems, petroleum, gas industries, chemical
reactors, nuclear and water distribution networks. Two-phase flows have been the subject of
intense research and have reached enormous attention during the last decades, e.g., [2,7,18,33].
This interest is reflected by the large and continuously growing literature on this subject.

Their connection to the problems of transient flows, such as water hammers, could be chal-
lenging tasks for predicting the flow behavior of industrial processes namely. The water hammer
is a compression shock wave that propagates along the pipe once the flowing fluid is interrupted
by an external cause, such as the valve’s sudden closure or opening, sudden shutdown or start
of a pump, or hydraulic turbine. It is one of the most destructive hydrodynamic phenomena that
may happen in pumping and pipeline systems and hydroelectric installations. This phenomenon
can provoke an anomaly increase in pressure, cavitation and eventually pipe rupture and sys-
tem collapse. Therefore, the comprehension of this phenomenon before the conception of the
water transport pipeline has a significant role in preventing its occurrence. The water hammer
has aroused much interest in the scientific community. When the flowing fluid consists of two
phases, the phenomenon becomes more complicated than in the case of a single-phase flow.
The modeling of two-phase flows has not yet achieved a maturity phase, as all the efforts to find
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a model for all the feasible cases are unfortunately defeated. Despite the apparent complexity
of involving two-phase flow systems, it is possible to perform physical modeling of the pro-
cess from the integrated equations of fluid mechanics. However, the modeling of the interface
between the two phases is one of the challenges to overcome. Given the difficulty of directly
accessing the measurement of variables characterizing these interfaces, experimentally based
correlations have been proposed. Therefore, accurate modeling of the surface-averaged inter-
facial force in the interfacial momentum transfer term, is essential to accurately predict flow
parameters. To the best of the authors’ knowledge, the two-phase water hammer investigations
are relatively rare or partially analyzed against those of single-phase. Different two-phase wa-
ter hammer investigations were performed in the past and several models have been proposed
by many authors, see [3, 5, 30, 38]. These investigations were mainly related to cavitation, gas
release or column separation. Indeed, the first studies on two-phase flow were carried out for
column separation and gas release [5].

The propagation of pressure waves in a bubbly flow has been studied for several decades.
Pitcher [8] studied the propagation of a shock wave in a liquid containing gas bubbles. A simple
form related to the shock wave was obtained by applying the conservation equations through the
stationary shock wave. One of the first theoretical studies of water hammers in two-phase fluids
was conducted by Enever [12], who developed the Pitcher method by investigating the pressure
wave due to the closure of a valve in a pipe conveying an initially flowing bubbling mixture.
The first experimental study of water hammer in two-phase flow was conducted by Martin et
al. [25]. Subsequently, Martin et al. [24] studied the propagation of pressure waves in mixtures
containing small amounts of gas, a one-dimensional homogeneous model was developed and
a system of conservation equations was numerically solved to provide the transient pressure
history at any point in the mixture. Additionally, the gas release process was described by Wig-
gert and Sundquist [37] using a single-bubble ensemble model applied to vaporous and gaseous
cavitation in a long pipeline containing an air-water mixture. The flow governing equations
were solved by the finite-difference Lax-Wendroff scheme. The effect of released gas on the
flow parameters was highlighted. A discrete bubble model was devoted by Safwat [31] to wa-
ter column separation and gaseous cavitation in short pipelines. By considering an isothermal
homogeneous flow, several authors [10, 24, 25] carried out a numerical analysis of the pressure
wave caused by rapid valve closure in two-component bubbly flow. Three kinds of the working
fluid are investigated experimentally in [13] during the water hammer phenomena caused by a
rapid valve closure. Bergant et al. [4] presented a historical review focusing on transient va-
porous and gaseous cavitation. Numerical methods simulating transient two-phase flows were
improved by Guinot [14]. Ouzi et al. [29] used a second-order shock-capturing scheme by fi-
nite difference method to compare conservative, semi-conservative and non-conservative sets
of two-phase flow water hammer equations. In order to simulate two-phase flow water ham-
mer, Leon et al. [22] formulated and evaluated a second-order shock-capturing scheme using
the finite volume method. MacCormack scheme was used by Sumam et al. [35] to develop and
simulate two-phase water hammer flow in a pipe. Zeng et al. [39] used both explicit and im-
plicit AUSM-family schemes to multiphase flow simulations. Their results show that implicit
AUSM-family schemes capture the waves successfully with the same accuracy as the explicit
ones for compressible flow problems.

For several years, accurate modeling and simulation of two-phase flows were a challenge
to the safety and design of many setup industrial components. The homogeneous equilibrium
model, the drift-flux model [16, 41] and the two-fluid model [16, 19, 27, 28] are the most fre-
quently used models dedicated to two-phase flows. The two-fluid model (TFM) has been incor-
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porated into many modern codes because of its suitability to deal with mechanical and thermal
non-equilibrium between different phases through interfacial transfer terms. Significant success
has been attained using the two-fluid model. In this model, each phase is treated separately. In-
terfacial interactions between phases are considered through constitutive correlations, which
must be supplied to fully close the equation system. Compared to the more complex two-fluid
models, the four equations TFM is the most simple of them. It is based on the phase pressures
being the same.

In the following, the main objective is to derive the formulations, using classical water
hammer theory, to express primitive variables variation against the time at different positions
of a horizontal pipe filled by a two-phase fluid. The two-fluid model is involved in solving,
simultaneously, the flow equations in the gas and in the liquid.

This article is structured as follows: The governing equations in conservative form for one-
dimensional two-phase flows and the interfacial interaction correlations are presented in Sec-
tion 2. In order to provide the distributions of static pressure and velocity prior to valve closure,
a steady-flow analysis is carried out in Section 3. Section 4 outlines the framework for the
proposed TFM on the basis of the Newton-Raphson method and the mathematical model for
the two-phase flow description. The implementation of the numerical method is presented in
Section 5 and the discretization of the partial differential equations involved in the governing
equations is given. The numerical model is tested and validated by simulating two-phase wa-
ter hammer flow using two test cases ranging from laboratory experiments in Section 6. The
conclusions are given in the final section.

2. Governing equations and closure relations

It should be mentioned that the analysis presented here is limited to a one-dimensional bubbling
flow in a horizontal pipe. The gas phase, assumed insoluble in the liquid phase, is treated using
the ideal gas law. In our case, the regions of interest can be modeled with simple liquid equations
of state that considerably simplify the problem, for which the liquid will be supposed barotropic.
The flow variables are replaced by their respective surface-averaged quantities using the average
form of the two-fluid model.

Most of the water hammer experiments are neither adiabatic nor isothermal, but given the
relatively short time of most of the pressure recordings of this phenomenon, it allows, at least
from the point of view of engineering applications, to consider the flow corresponding to the
water hammer as isothermal and adiabatic. The basic equations describing unsteady two-phase
flow in a pipe can be obtained from the mass, momentum and energy conservation laws. The
conservation of energy equation is not taken into account here because the flow is assumed
isothermal and any heat dissipation along the pipe is neglected. As mentioned above, the interest
of this study is a one-dimensional bubbly flow water hammer, in which the change between
phases and interfacial mass transfer term are neglected. Following the compressible two-fluid
model proposed by Saurel and Abgrall [32] and taking into account the effects due to liquid
compressibility and pipe elasticity, the balance equations of mass and momentum conservation
lead to four equations that can be written in the compact vector form

∂U

∂t
+

∂F

∂x
= Sint, (1)

where U is the vector of conserved quantities, F is the flux vector, and Sint is the source term
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vector including the interface pressure correction terms, gravity and the interfacial drag terms

U =


αgϱgA
αlϱlA

αgϱgugA
αlϱlulA

 , F =


αgϱgugA
αlϱlulA

αgϱgu
2
gA+ αgpA

αlϱlu
2
lA+ αlpA

 ,

Sint =


0
0

Aαgϱgg sin β + Apint ∂αg

∂x
+ AF d

g + AFwg

Aαlϱlg sin β + Apint ∂αl

∂x
+ AF d

l + AFwl

 ,

(2)

where αk stands for the phase volume fraction, the subscript k = g, l indicates the gas and
liquid phases, uk and ϱk are the velocities and the density for each phase, respectively, and p is
the pressure. The drag force is assumed to be the dominant component of the total interfacial
forces. Therefore, the other interfacial forces are neglected herein. The pipe is horizontal with
the slope β = 0 and A is the pipe’s cross-sectional area defined as A = πD2/4, where D is the
internal diameter.

The origin of the drag force is caused by the friction of a bubble traveling in the liquid.
Presently, by far the most common computational expression used for modeling the drag force,
found in [18], is given as

F d
g = −1

8
aiCDϱl|ug − ul|(ug − ul) and F d

l = −F d
g , (3)

where ai is the interfacial area concentration [17]

ai =
6αg

Db

, (4)

where Db is the bubble diameter.
The drag coefficient CD is provided by the universal drag model according to the flow

regime [1, 21]:
• In the viscous regime, the following condition is satisfied: CDdis

< CDvis
, CD is defined

as CD = CDvis
.

• In the distorted bubble regime, the following condition is satisfied: CDvis
≤ CDdis

< CDcap ,
CD is defined as CD = CDdis

.

• In the strongly deformed, capped bubble regime, the following condition is satisfied:
CDdis

> CDcap , CD is defined as CD = CDap .
Here, the drag coefficients are defined as

CDvis
=

24

Reb
(1 + 0.1Reb

0.75), (5)

CDdis
=

2Db

3λRT

(
1 + 17.67f ∗ 6

7

18.67f ∗

)2
, (6)

where f ∗ = (1− αg)
1.5 and λRT =

√
σ

g(ϱl−ϱg)
, where σ is the water surface tension coefficient

and g is the gravitational acceleration, and

CDcap =
8

3
(1− αg)

2. (7)
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The relative Reynolds number Reb between the bubble and water is given as

Reb =
ϱl|ug − ul|Db

µm

, (8)

where µm is the mixture viscosity expressed as µm = µl/(1− αg), where µl is the viscosity of
the liquid. The bubbles are assumed to be spheres of uniform size. In the simulation, the bubble
diameter is set to Db = 2mm.

Let Fwl and Fwg denote the friction forces acting upon the pipe wall by the liquid and gas
phases, respectively,

Fwk = −fkαkϱkuk|uk|
2D

, k = l, g, (9)

where fl and fg are the Darcy-Weisbach friction coefficients for the liquid and gas phases,
respectively. In the simulation, both fl and fg are computed by an iteration algorithm using the
Churchill correlation [11], taking into account that fk = 4f ′

k, where f ′
k is the Fanning friction

factor given as

f ′
k = 2

[(
8

Rek

)12

+
1

(a+ b)
3
2

] 1
12

, (10)

where

a =

2.475 · ln

 1(
7

Rek

)0.9
+ 0.27min

(
0.02,max(10−9, e

D
)
)



16

, b =

(
37 530

Rek

)16
, (11)

where
Rek =

αkϱkukD

µk

(12)

and e is the pipe roughness. The critical Reynolds number was set to Rec = 2100.
Additional relations are required to close the system such as the compatibility relation for

the volume fraction expressed as follows

αg + αl = 1. (13)

Assuming the bulk stress of each phase to be in equilibrium involves that both components have
the same pressure

pl = pg = p. (14)

Interfacial pressure pint was initially used as the equivalent of the averaged pressure on the
surface of bubbles in dispersed flows. It can be related to the global pressure p by a finite jump
term, which represents the deviation of the interfacial pressure from the local-global pressure
as follows

pint = p− δp∗. (15)

Assuming the interfacial pressure of gas to be in equilibrium with the pressure at the cell center
leads to

pintg = pint = p− δp∗. (16)
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A correction term δp∗ is added to preserve the hyperbolic behavior of the two-phase flow system
[23, 34] and expressed as follows

δp∗ = ξ
αgϱgαlϱl

αgϱl + αlϱg
|ug − ul|2. (17)

Following Stuhmiller [34], ξ ≥ 1, especially ξ = 2, is an adequate value for most simulations
[9, 20, 23].

The Laplace pressure jump caused by surface tension is added to the gas pressure to achieve
the pressure at the free surface on the liquid side pintl as follows

pintl = pintg + σκ, (18)

where σ is the surface tension coefficient, assumed to be constant, and κ is the mean curvature
of the interface. The radius of curvature is not easily accessible in the general case, but with
some approximations, it can be modeled using the Laplace’s law. According to the Laplace
formula, the mean curvature of the interface can be adopted in terms of the bubble diameter Db

as follows
κ =

4

Db

. (19)

The system of equations obtained in the two-fluid model should be closed by equations of
state for the gas and liquid phases. In the following, the gas phase is assumed to be governed
by the isothermal gas equation of state

p(ϱg) = po
ϱg
ϱgo

, (20)

where ϱgo is the gas density under the pressure po, the subscript o concerns parameter values
corresponding to the reference pressure po. To specify the thermodynamic properties of gas, the
following parameters are chosen: ϱgo = 1.29 kgm−3, i.e., gas density at the standard pressure
po = 1.013× 105 Pa, and γ = 1.4.

The liquid phase is considered as a barotropic substance and assumed to be governed by the
latest version of the Tait’s equation of state as given in [33], in which the pressure p is related
to the liquid density ϱl as follows

p(ϱl) = B

[(
ϱl
ϱlo

)n

− 1

]
. (21)

Here, the water is the liquid phase used and represented by the following constants: n = 7.15,
B = 3.3×108 Pa and ϱlo = 1000 kgm−3. The evolution is assumed to be barotropic; therefore,
it is worth pointing out that all primitive variables are given as a function of the common phase
pressure p.

At the pressure p, the pipe conveying the fluid is assumed to be cylindrical with a circular
cross-sectional area A = πD2/4 and wall thickness e. When deformations are small in quasi-
rigid pipes, the elastic pipe wall behavior is given by the well known simplified relationship [38]

dA

A
√
A

=
2c

Ee
√
π
dp, (22)

where E is the Young’s modulus of the pipe material and c is the pipe constraint factor related
to the pipe support conditions. Note that c is expressed in terms of the Poisson’s ratio ν as [38]:
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• c = 1− ν
2

if the pipe is anchored at its upstream only,

• c = 1− ν2 if the pipe is anchored throughout against axial movement,

• c = 1 if the pipe is anchored with expansion joints throughout.
Then, the pipe sectional area can be expressed in terms of the average absolute pressure as

A(p) =
Ao[

1− Doc
2Ee

(p− po)
]2 , (23)

where Do and Ao are the diameter and cross-section of the pipe under the pressure po.

3. Resolution method

3.1. Initial conditions

The equations of mass conservation are expressed in steady flow as

d

dx
(αkϱkAu

o
k) = 0, (24)

which yields
αkϱkAu

o
k = Ωko, (25)

where Ωko, k = g, l, are the constants obtained for both the gas phase and the liquid phase, re-
spectively, at initial conditions. The steady-state velocities are denoted by the superscript o. The
total mass conservation equation obtained from the summation of mass conservation equations
for each phase can be written as

d

dx

{[
A(1− αg)ϱl(u

o
l )

2 + Aαgϱg(u
o
g)

2
]
+ Ap

}
=

− Aσκ
∂αg

∂x
− Aflαlϱl

uo
l |uo

l |
2D

− Afgαgϱg
uo
g|uo

g|
2D

. (26)

The isothermal flow assumption leads to poϱg = pϱgo and αgp = αopo, thus, dαg

dx
= −αg

p
dp
dx

,
where αo is the void fraction under the pressure po.

Equation (25) becomes
dp

dx
= H(p), (27)

where

H(p) = −
√
πA
[
αgfqgu

o
g|uo

g|+ (1− αg)fqlu
o
l |uo

l |
]

4(G(p)− Aσκαg

p
)

, (28)

G(p) = F1(p) + F2(p), (29)

where

F1(p) = A

(
1 + p

Doc

Ee

√
A√
Ao

)
− ΩgoVgo

Doc
√
Ao

Ee
√
A

,

F2(p) = −Ωlo
(1− αo)

αl

ϱloAo

ϱlA

{
Doc

√
A

Ee
√
Ao

+

[
αg

pαl

+
1

nB

(
P

B
+ 1

)−1
]}

,
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where fqk, k = g, l, is the Darcy-Weisbach wall friction coefficient for the steady flow. Note
that uo

g and uo
l can be expressed in terms of pressure p using (24).

Finally, the steady-state pressure can be evaluated at different positions along the pipe by
solving the previous equation using the Runge-Kutta algorithm. Therefore, all primitive vari-
ables are known in the steady-state flow regime.

3.2. Boundary conditions

As mentioned above, the interior nodes are solved by the previous transient equations. To
fully describe the mathematical model, it is necessary to specify the boundary conditions in the
computational domain.

The test procedure, for the first experiment [10], was as follows: a steady-state flow of
an air-water mixture was established by controlling the exit valves and the pressure of the in-
jected air at the inlet. By reducing the rate of air-injection, the flow velocity was kept high
enough that slug flow could be avoided. The downstream valve was rapidly closed and pres-
sures were continuously measured at the following three locations: x = 8m, x = 21.1m
and x = 30.6m. These pressure records are used to validate the aforementioned computa-
tional procedures. Chaudhry et al. [10] reported that the rate of closure of a valve measurement
and, consequently, the velocity measurement are difficult. Therefore, they suggested using the
recorded pressure history at x = 30.6m as the downstream boundary condition instead of the
flow discharge boundary condition, while the upstream boundary was a constant-level reservoir.

Two tests were performed by Chaudhry et al. [10] for two different initial conditions (see
Table 1). Fig. 1a shows the recorded pressure history at the downstream end (x = 30.6m) for
Test 1, which represents the boundary condition for the pressure instead of the velocity usually
used in this kind of experiments. Fig. 1b shows the recorded pressure history at the downstream
end (x = 30.6m) for Test 2.

For the second experiment, Zhang et al. [40] used a gravitational pipe system consisting of
a long pipe, an upstream reservoir keeping the upstream water level constant, and a downstream
valve. The flow is steady at the initial state. The water hammer was initiated by a sudden
downstream valve closure. The upstream boundary was a constant-level reservoir, while a valve
law was proposed for velocity downstream boundary conditions. The boundary conditions were
calculated from the compatibility equation for the upstream and downstream parts for unknown
velocities.
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Fig. 1. Experimental pressure variation at the downstream end (x = 30.6m) [10]
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It should be noted that special conditions at the boundary positions outside the computa-
tional domain are required to provide the numerical flux of the tests in the virtual ghost cells.
Fictitious state was used to compute the fluxes at the boundaries FN− 1

2
and FN+ 1

2
. In the present

work, the treatment of the later boundary conditions is based on the use of transmissive bound-
ary conditions. Further details can be found in [36].

4. Primitive variables computation

Before performing the numerical flow calculations, the primitive variables p, ug, ul and αg,
which denote the pressure, the gas velocity, the liquid velocity, and the void fraction, respec-
tively, must be available. The transformation between the vectors of conservative and primitive
variables can be expressed as follows

U1 = αgϱgA, U2 = (1− αg)ϱlA,

U3 = αgϱgug, U4 = (1− αg)ϱlul.

From the initial conditions of the steady-state, the values of conservative variables Un+1
i

are computed at the new time level tn+1 by the corresponding discretized mass conservation
equation. Then, the common pressure can be calculated as follows: By substituting U1 into U2,
αg can be eliminated as

U2 =

(
1− U1

ϱgA

)
ϱlA, (30)

which can be rewritten as

W (p) =

(
1− U1

ϱgA

)
ϱlA− U2 = 0. (31)

The first derivative of W (p) with respect to p is

W ′(p) =
U1

ϱgp
ϱl +

1

nB

(
1− U1

ϱgA

)
ϱlA

( p

B
+ 1
)−1

+ ϱl
Doc

Ee

A
3
2

√
Ao

. (32)

An iterative method, such as the Newton-Raphson technique, is required to solve (29). In-
deed, if Un

i denotes the discretized variable value at the discrete-time level tn at the mesh-cell
centered position xi, the pressure pn+1

i at time level tn+1 can be calculated from the computed
value of

(
U2(p)

)n+1

i
as follows

(pn+1
i )o = pni , (33)

(pn+1
i )m+1 = (pn+1

i )m −

[(
1− U1

ϱgA

)
ϱlA
]
(pn+1

i )m
− (U2)

n+1
i

∂
∂p

[(
1− U1

ϱgA

)
ϱlA
]
(pn+1

i )m

= (pn+1
i )m −

[(
1− U1

ϱgA

)
ϱlA
]
(pn+1

i )m
− (U2)

n+1
i[

U1

ϱgp
ϱl +

1
nB

(
1− U1

ϱgA

)
ϱlA

(
p
B
+ 1
)−1

+ ϱl
Doc
Ee

A
3
2√
Ao

]
(pn+1

i )m

. (34)

The subscript m indicates the sub-step in the Newton-Raphson method. The values of the
hydraulic variables at the time associated with n = 0 are given by the initial steady-state condi-
tions. When the iteration converges to p at time t, all variables α(p, t), ug(p, t) and ul(p, t) can
be then evaluated at the time t and at the position x for internal nodes.
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5. Numerical simulation

This section gives a summary of the discretized forms of the two-fluid model equations. The
explicit-time differencing method is used here. The variables taken at the current time are
denoted with a superscript n. The superscript (n+ 1

2
) denotes variables taken at the intermediate

time level. Un
i is the average value of the variable U over the cell i at the time level n. The finite

difference is used to discretize the governing equations on a staggered grid, ∆x is the length of
a computational cell, the numerical flux between cells i and i+ 1 is denoted by Fi+ 1

2
.

As mentioned above, Un
i denotes the discretized variable value at the discrete-time level tn

at the mesh-cell centered position xi. The variable value at the cell-interface xi+ 1
2

is defined as
follows: Ui+ 1

2
=
(
Un
i+1 + Un

i

)
/2.

Starting from the steady-state, where all the flow variables are known at any grid nodes,
the equations used in the analytical model are solved by an explicit method based on the
Richtmeyer-Lax-Wendroff scheme. This scheme is summarized as follows:
• First step:

In order to obtain the unknown solution at the new time level tn+1, the flow conservative
variables at an intermediate time level

(
t+ ∆t

2

)
are computed

U
n+ 1

2

i+ 1
2

=
1

2

(
Un
i+1 + Un

i

)
− ∆t

2∆x

(
F n
i+1 − F n

i

)
+

∆t

2

(
Sn
i+1 − Sn

i

)
. (35)

• Second step:
Diffusive fluxes are computed by advancing the solution to the full-time step in order to
update fluxes. At this stage, variables at the cell center at the time level tn+1 = tn + ∆t are
updated

Un+1
i = Un

i − ∆t

∆x

(
F

n+ 1
2

i+ 1
2

− F
n+ 1

2

i− 1
2

)
−∆t S

n+ 1
2

i+ 1
2

, (36)

where F
n+ 1

2

i+ 1
2

is the flux at the edge
(
x+ 1

2

)
expressed as F

n+ 1
2

i+ 1
2

= F
(
U

n+ 1
2

i+ 1
2

)
.

The use of the second-order scheme can lead to numerical oscillations, especially when
discontinuities arise. These spurious oscillations can be avoided using flux limiters such as the
flux-corrected transport (FCT) technique. The diffusive fluxes, which introduce a numerical
diffusion to the solution in order to ensure stability and monotonicity, are expressed as [6]

Ũn
i+ 1

2
= µ

(
Un
i+1 − Un

i

)
, Ũn

i− 1
2
= µ

(
Un
i − Un

i−1

)
. (37)

By contrast, the anti-diffusive flux, which eliminates the eventual excessive numerical diffusion,
is expressed as

Ūn+1
i+ 1

2

= η
(
Un+1
i+1 − Un+1

i

)
, Ūn+1

i− 1
2

= η
(
Un+1
i − Un+1

i−1

)
. (38)

Following [15], the numerical diffusion µ and anti-diffusion η coefficients are given as

µ =
1

6

[
1 + 2(Cr)

2
]
, η =

1

2

[
1− (Cr)

2
]
, (39)

where Cr represents the Courant-Friedrichs-Lewy (CFL) number. The local time step ∆t de-
termined by the largest eigenvalue of the governing equations for each grid cell by the CFL
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condition is used as a choice to evaluate the physical time step. For all simulation runs, the
Courant number adopted is given by

∆t =
Cr∆x

max (cl + |ul|, cg + |ug|)
. (40)

The celerity of the pure liquid phase and that of the pure gaseous phase are expressed as [38]

cl =

√
Kl

ϱl√
1 + KlD

Ee

, cg =

√
γϱg
p

, (41)

where Kl is the water bulk modulus of elasticity, ϱl is the water density, E is the pipe material
Young’s modulus of elasticity, D is the internal diameter and e is the wall thickness of the pipe.

The first difference of the diffused fluxes is used to update the values of (35)

Un+1
i = Un+1

i + Ũn
i+ 1

2
− Ũn

i− 1
2
. (42)

Then, the obtained solution is anti-diffused by the flux limiter expressed as

Ln+1
i+ 1

2

= S ·max
{
0,min

[
S
(
Un+1
i − Un+1

i−1

)
, S
(
Un+1
i+1 − Un+1

i+1

)
,
∣∣∣Ūn+1

i+ 1
2

∣∣∣]} , (43)

where

S =

 +1 if Q̄n+1
i+ 1

2

≥ 0,

−1 if Q̄n+1
i+ 1

2

< 0.
(44)

Finally, the solution is updated by using the first-order difference of the limited fluxes

Un+1
i = Un+1

i + Ln+1
i+ 1

2

− Ln+1
i− 1

2

. (45)

6. Numerical results

The presented model and the numerical scheme applied to the previous governing equations are
validated with experimental tests conducted by Chaudhry et al. [10] and with the experimental
results provided by Zhang et al. [40]. In [10], two tests were carried out in which water-hammer
waves were generated by a rapid valve closure at the downstream part of an horizontal pipe. The
basic parameters of the pipe system are summarized in Table 1. Here, Go is the steady air mass

Table 1. Piping system parameters

Description Test 1 Test 2
Hres [m] 18.46 21.7

Vo [m s−1] 2.42 2.94

fql [−] 0.020 5 0.019 5

Go [kg s
−1] 4.1× 10−6 1.15× 10−5

αexpi
o [−] 0.002 3 0.005 3
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flow rate, αexpi
o is the downstream void ratio for test i, fql is the Darcy-Weisbach friction factor

for the liquid phase in the steady regime, the same factor for the gas phase fqg is set to fqg = 0.01
for all simulation runs, Vo is the steady flow velocity, and Hres is the upstream reservoir pressure
head. Transient pressures were recorded by transducers located at tree locations: x = 8.0m,
21.1m and 30.6m.

Figs. 2 and 3 show the simulation results corresponding to Test 1 and Test 2, in which the
number of cells was taken equal to N = 100. The numerical simulation is performed with
Cr = 0.95, which gives the best and more accurate results.

The second experiment conducted by Zhang et al. [40] consisted of a straight pipe of length
L = 29m. Its inner diameter was Do = 0.107m and wall thickness was e = 0.005m. The pipe
material elasticity modulus was 210GPa. The valve boundary equation can be written as [38]

uk(L, t+∆t) = Cd

√
p(L, t+∆t)

p(L, 0)
, k = g, l, (46)

where p(L, 0) and p(L, t+∆t) are the pressures at valve in the steady state and at the new time
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(t + ∆t), respectively, and Cd is the discharge coefficient. In order to approximate the valve
behavior, Cd is given as

Cd =

(
1− t

Tc

)j

, (47)

where Tc = 2.6 s is the valve time closure and j is an adjustable constant set to 4.8, which gives
a good fit for the experimental data. The pressure p(L, t+∆t) is obtained using the method of
characteristics by considering the flow as a single component homogeneous equilibrium model.

In the test case of Zhang et al. [40], the simulation was carried out using the maximum
Courant number of Cr = 0.96. Fig. 4 shows the pressure profile at the valve computed using
the present model, assuming isothermal conditions (with µ = η = 0.125). The pressure profile
at the valve obtained using the method of characteristics and the Vardy-Brown approach (not
detailed) is also presented in the figure.
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Fig. 4. Comparison between computed and experimental [40] pressure traces

In Figs. 2–4, the results of pressure computations and measurements were compared. It
was shown that a good performance of the used model and numerical schemes was achieved.
The comparison shows that pressure peaks simulated by the present model are closer to the
experimental results and are more accurate than those by the homogeneous equilibrium model,
in which the quality was assumed to be constant [29]. The model also allowed us to capture a
decrease in pressure amplitudes caused by the presence of a small quantity of dissolved gas in
the liquid without using the convolution methods generally used to highlight this decrease.

7. Conclusions

In this study, a comparison between the results obtained using the homogeneous equilibrium
model (HEM) and the two-fluid model (TFM) was undertaken. The high-order scheme was
successfully extended to the two-fluid model. Indeed, compared to HEM, the numerical calcu-
lation based on the two-fluid model allowed a high resolution of the local flow processes and
the quality variable not having been assumed constant. Numerical validation was performed
by comparing numerical results and experimental data. The FCT technique was conveniently
applied to the present model. The present numerical computation is in better agreement with
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the experimental results. As can be seen in Fig. 4, compared to the convolution methods used
when considering the HEM single-phase water hammer, another advantage of TFM was high-
lighted by the decrease in pressure magnitude during the water hammer due to the presence
of a small amount of gas. Although the study is limited to the isothermal two-phase flow, the
present two-fluid model and the Lax-Wendroff numerical method can be applied to the pre-
diction of cavitation or evaporation in two-phase flows by considering an energy transfer and
treating the source terms properly in the future. Furthermore, other numerical methods such
as the Godunov-type scheme, based on the resolution of the Riemann problem for fluid flow
of real materials [26], can be used as a numerical method to solve the equations of the model
proposed in this article for future studies.
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