
LEVERAGING PYTHON TENSOR CONTRACTION PACKAGES
FOR EVALUATING FINITE ELEMENT WEAK FORMS

Cimrman R.*

Abstract: A new implementation of finite element matrix evaluation functions in the finite element code SfePy
is introduced, leveraging several Python tensor contraction packages that implement a general function for
evaluating expressions given using the Einstein summation convention. An example of the new weak form
implementation is shown, and then results of a numerical study are presented comparing performance of the
new implementation, the original implementation, and FEniCS suite.

Keywords: Finite element method, Tensor contractions, Weak form transpiler, Numerical study.

1. Introduction

Computing weak form integrals in individual finite elements can be a bottleneck in the FE assembling pro-
cess, especially when higher order approximations are in use. This was the case of the freely available finite
element package SfePy (Simple Finite Elements in Python) (Cimrman et al., 2019), co-developed by the
author, which has been mostly used with low-order finite elements — the higher-order approximations, al-
though available, were not implemented very efficiently in terms of the elapsed time as well as the computer
memory usage.

Python, being an interpreted language, has very slow loops. In order to be fast, SfePy employs two basic
strategies. The first one is using vectorized operations enabled by NumPy array data structure (Harris et al.,
2020) for the calculations. When a vectorization is not possible or it would be too difficult, the other strategy
applies: critical parts of the code are implemented in C and Cython (Behnel et al., 2011) languages. The two
strategies come with a cost: the vectorization, to be efficient, needs to be applied to data large enough, and
using a low level language complicates the implementation. In multiscale and multiphysical simulations
(the principal application of SfePy), e.g. in the field of biomechanics (Rohan et al., 2021), it is often
necessary to implement several new weak forms (called terms in the code), and while it is not very difficult,
still it is a hurdle for users with non-programmer background.

To make implementing weak forms easier, we decided to exploit existing Python tensor contraction pack-
ages that implement a general function, called in this text einsum, for evaluating expression given a descrip-
tion of operands using the Einstein summation convention — a standard and well known notation common
in the continuum mechanics and finite element contexts. The considered packages were: NumPy (Harris
et al., 2020) (the basic implementation and some optimizations from opt einsum); opt einsum (Smith and
Gray, 2018) (state-of-the-art contraction optimization strategies); Dask (Dask Development Team, 2016)
(parallel out-of-core calculations with very large data); JAX (Bradbury et al., 2021) (the JIT (just-in-time)
compilation and possible parallel execution or automatic GPU transfer). In (Cimrman, 2021a) a transpiler**

was proposed for translating generalized einsum-like expressions to the actual einsum expressions for eval-
uating multilinear finite element weak forms. A desirable side effect of this approach was an efficient (in
terms of elapsed time) support for higher-order approximations, as was shown in the article (all obtained
data are available online (Cimrman, 2021b)).

* Robert Cimrman, New Technologies - Research Centre and Faculty of Applied Sciences, University of West Bohemia, Plzeň;
CZ, cimrman3@ntc.zcu.cz

** A transpiler translates input in a language to another language that works at approximately the same level of abstraction,
unlike a traditional compiler that translates from a higher level programming language to a lower level programming language.

73

27/28th International Conference
ENGINEERING MECHANICS 2022
Milovy, Czech Republic, May 9 –12, 2022
Paper #35, pp. 73–76, doi: 10.21495/51273

In this contribution we first show an example of a weak form implementation that uses the transpiler, and
then present results of a new numerical study comparing performance of the transpiler-based terms, and the
original implementation.

2. Example weak form implementation

The transpiler allows straightforward definitions of multi-linear finite element weak forms such as those
given in Tab. 1 (a dot denotes a partial derivative, 0 stands for scalars). It supports several einsum evalu-
ation backends based on the packages given above, arbitrary memory layout of operands, easy automatic
differentiation due to (multi-)linearity of the considered weak forms and various evaluation modes.

In Listing 1 the full implementation of the Navier-Stokes convection term is shown. This is in stark contrast
to the original implementation, that uses about the same amount of Python code, but additionally more than
200 lines of C, not counting the Cython wrapping code — all this is removed by the transpiler (1100 lines
of Python including alternative evaluation function implementations used for benchmarking).

description definition weak form expression

weak Laplacian ('0.i,0.i', v, u)
∫
T

∂v
∂xi

· ∂u
∂xi

Navier-Stokes convection ('i,i.j,j', v, u, u)
∫
T
vi

∂ui

∂xj
uj

Tab. 1: Examples of multi-linear weak form definitions.
class EConvectTerm(ETermBase):

"""
Nonlinear convective term.
"""
name = 'de_convect'
arg_types = (('virtual', 'state'),

('parameter_1', 'parameter_2'))
arg_shapes = {'virtual' : ('D', 'state'), 'state' : 'D',

'parameter_1' : 'D', 'parameter_2' : 'D'}
modes = ('weak', 'eval')

def get_function(self, virtual, state, mode=None, term_mode=None,
diff_var=None, **kwargs):

return self.make_function(
'i,i.j,j', virtual, state, state, diff_var=diff_var,

)

Listing 1: The Navier-Stokes convection term implementation.

3. Numerical study: comparing new and original terms

The performance measurements were executed on a Linux workstation with the AMD Ryzen Threadrip-
per 1920X 12-Core Processor, 32 GB RAM and Python version 3.9.5, NumPy 1.22.1, JAX 0.2.27, SfePy
2021.4+git.25152f5d, FEniCS 2019.1.0 (Anaconda package py39hf3d152e 26). The calculations were lim-
ited to a single CPU using the affinity setting. The original and new term implementations in SfePy were
compared to each other and also to a widely acknowledged and used package FEniCS (Logg et al., 2012)
to provide a broader context.

The results are summarized in Figs. 1, 2 (the highest values for each color-coded approximation order
are annotated by arrows) and Tab. 2. Only two of the available transpiler backends are considered: jax
(a JIT compilation), and numpy loop (a loop in Python over cells, evaluate using NumPy’s einsum()).
Both backends offer a significant speed-up w.r.t. the original implementation for higher order approxima-
tions. The jax backend is the most memory demanding, but performs well also for low orders, while the
numpy loop has the same memory footprint as the original implementation, but it is slow for low orders.

4. Conclusion

A new implementation of multilinear weak forms in the FE code SfePy, based on a transpiler of generalized
einsum-like expressions was described and its performance demonstrated using a numerical study.

74 Engineering Mechanics 2022, Milovy, Czech Republic, May 9 –12, 2022

103 104 105 106

#cells

10−2

10−1

100

101

102

103

T̄
w

w
[s

]

7.2

142.1

474.8
760.2886.2

1
2
3
4
5
fenics
sfepy
fenics form
dw

103 104 105 106

#cells

101

102

103

104

M
m

a
x

[M
B

]

3626.8

16550.2
22638.621495.2

16041.0

1
2
3
4
5
fenics
sfepy
fenics form
dw

103 104 105 106

#cells

10−1

100

101

102

T̄
w

w
[s

]

91.9
66.076.9

233.5293.2

1
2
3
4
5
de+jax
de+numpy loop
dw

103 104 105 106

#cells

102

103

104

M
m

a
x

[M
B

]

6341.4

16531.1
22639.221496.2

16041.7

1
2
3
4
5
de+jax
de+numpy loop
dw

Fig. 1: Performance of the weak Laplacian matrix evaluations for various approximation orders: top:
original term (circles), FEniCS (crosses), bottom: new term with jax (+), numpy loop (x) backends, original
term (circles). Left: the elapsed time mean without the worst case T̄ww, right: the memory consumption
Mmax.

Acknowledgments

The work was supported from European Regional Development Fund — Project “Application of Modern
Technologies in Medicine and Industry” (No. CZ.02.1.01/0.0/0.0/17 048/0007280).

References
Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D., and Smith, K. (2011) Cython: The best of both worlds.

Computing in Science Engineering, 13, 2, pp. 31 –39.
Bradbury, J., Frostig, R., and et al. (2021) JAX: composable transformations of Python+NumPy programs. https:
//github.com/google/jax. ver. 0.2.9.

Cimrman, R. (2021a) Fast evaluation of finite element weak forms using python tensor contraction packages. Advances
in Engineering Software, 159.

Cimrman, R. (2021b) Performance measurements of Python tensor contraction packages in the finite element context.
https://doi.org/10.5281/zenodo.4750560.

Cimrman, R., Lukeš, V., and Rohan, E. (2019) Multiscale finite element calculations in python using sfepy. Advances
in Computational Mathematics.

Dask Development Team (2016) Dask: Library for dynamic task scheduling.
Harris, C. R., Millman, K. J., and et al. (2020) Array programming with NumPy. Nature, 585, 7825, pp. 357–362.
Logg, A., Mardal, K.-A., and Wells, G., eds (2012) Automated Solution of Differential Equations by the Finite Element

Method: The FEniCS Book. Lecture Notes in Computational Science and Engineering. Springer-Verlag, Berlin
Heidelberg.

Rohan, E., Turjanicová, J., and Lukeš, V. (2021) Multiscale modelling and simulations of tissue perfusion using the
Biot-Darcy-Brinkman model. Computers & Structures, 251, pp. 106404.

Smith, D. G. A. and Gray, J. (2018) opt einsum - a python package for optimizing contraction order for einsum-like
expressions. Journal of Open Source Software, 3, 26, pp. 753.

Cimrman R. 75

103 104 105 106

#cells

10−1

100

101

102

103

T̄
w

w
[s

]

36.2

106.2

556.0
924.11203.6

1
2
3
4
5
fenics
sfepy
fenics form
dw

103 104 105 106

#cells

102

103

104

M
m

a
x

[M
B

]

13354.2
19723.9

25678.124602.120088.4

1
2
3
4
5
fenics
sfepy
fenics form
dw

103 104 105 106

#cells

10−1

100

101

102

103

T̄
w

w
[s

]

423.1

120.8

556.0
924.11203.6

1
2
3
4
5
de+numpy loop
de+jax
dw

103 104 105 106

#cells

102

103

104

M
m

a
x

[M
B

]

18564.8
25300.925678.124602.125179.4

1
2
3
4
5
de+numpy loop
de+jax
dw

Fig. 2: Performance of the Navier-Stokes convection term matrix evaluations for various approximation
orders: top: original term (circles), FEniCS (crosses), bottom: new term with jax (+), numpy loop (x)
backends, original term (circles). Left: the elapsed time mean without the worst case T̄ww, right: the
memory consumption Mmax.

Laplacian
order 1 2 3 4 5

med(T̄ww
sfepy−dw/T̄

ww
fenics) 0.59 0.42 0.32 0.61 0.66

med(T̄ww
sfepy−de−jax/T̄

ww
fenics) 0.86 0.46 0.27 0.22 0.19

med(T̄ww
sfepy−de−numpy loop/T̄

ww
fenics) 12.83 0.93 0.26 0.19 0.17

med(Mmax
sfepy−dw/M

max
fenics) 2.40 2.04 2.20 2.18 2.05

med(Mmax
sfepy−de−jax/M

max
fenics) 4.31 3.92 4.23 4.19 3.93

med(Mmax
sfepy−de−numpy loop/M

max
fenics) 2.43 2.04 2.20 2.18 2.05

NS convective
order 1 2 3 4 5

med(T̄ww
sfepy−dw/T̄

ww
fenics) 1.18 1.43 3.23 3.36 4.05

med(T̄ww
sfepy−de−jax/T̄

ww
fenics) 1.32 1.07 1.01 0.89 0.93

med(T̄ww
sfepy−de−numpy loop/T̄

ww
fenics) 13.56 1.66 1.05 0.89 0.90

med(Mmax
sfepy−dw/M

max
fenics) 1.12 0.94 1.89 1.86 1.83

med(Mmax
sfepy−de−jax/M

max
fenics) 1.59 1.31 2.61 2.55 2.51

med(Mmax
sfepy−de−numpy loop/M

max
fenics) 1.09 0.93 1.88 1.85 1.83

Tab. 2: The SfePy/FEniCS ratios of the elapsed time mean without the worst case T̄ww and the memory
consumption Mmax for the weak Laplacian and Navier-Stokes convective term weak forms for various
approximation orders. The values correspond to medians over various numbers of mesh cells, see Figs. 1,
2. Original SfePy terms data are denoted by “sfepy-dw”, the multilinear terms with jax and numpy loop
backends are denoted by “sfepy-de-jax” and “sfepy-de-numpy loop”, respectively.

76 Engineering Mechanics 2022, Milovy, Czech Republic, May 9 –12, 2022

