
The ε-approximation of the Label Correcting Modification of the
Dijkstra’s Algorithm

František Kolovský1, Jan Ježek1 and Ivana Kolingerová2

1Depatment of Geomatics, University of West Bohemia, Univerzitnı́ 2732/8, Plzeň, Czech Republic
2Department of Computer Science, University of West Bohemia, Univerzitnı́ 2732/8, Plzeň, Czech Republic

Keywords: Time-dependent Shortest Path Problem, Approximation, Travel Time Function, Road Network.

Abstract: This paper is focused on searching the shortest paths for all departure times (profile search). This problem
is called a time-dependent shortest path problem (TDSP) and is important for optimization in transportation.
Particularly this paper deals with the ε-approximation of TDSP. The proposed algorithm is based on a label
correcting modification of Dijkstra’s algorithm (LCA). The main idea of the algorithm is to simplify the arrival
function after every relaxation step so that the maximum relative error is maintained. When the maximum
relative error is 0.001, the proposed solution saves more than 95% of breakpoints and 80% time compared to
the exact version of LCA. A more efficient precomputation step for another time-dependent routing algorithms
can be built using the developed algorithm.

1 INTRODUCTION

Computing the arrival function from a source node
to all other nodes is important for a lot of transporta-
tion applications. More formally, given a directed
graph G = (V,E), a source node s ∈ V , we want to
know the travel time between the source node s and all
other nodes for every departure time (in some literature
called a travel time profile). This problem is gener-
ally called the time-dependent shortest path problem
(TDSP). The main principle is that the arrival time tu
at the node u is used as the argument of the arrival time
function f corresponding with the edge that origins at
u.

The common approach is to use a piecewise linear
function as a realization of the arrival function. Let us
have two consecutive edges (e.g, the edges (s,u) and
(u,d) in Figure 1a) then the arrival time at the node d is
the value of the arrival function fud in the arrival time
fsu(td) at the node u, where td is the departure time at
the node s. In the exact case, the combination f2(f1(t))
of two piecewise linear functions f1, f2 with | f1|, | f2|
linear pieces is also a piecewise linear function with
up to | f1|+ | f2| linear pieces (Foschini et al., 2014). It
means that the arrival function at the end of the path
with n edges can have up to ∑

n
i=1 | fi| linear pieces. For

example, the path across the Pilsen city has around
100 edges. If every arrival function on the path has 24
linear pieces, the resulting arrival function has 2400

liner pieces. It can be seen that the computational time
and memory requirements strongly increases with the
length of the paths.

The problem with an increase in the number of lin-
ear pieces can be solved using the ε-approximation of
the resulting arrival function. This approach reduces
the number of linear pieces and thus reduces mem-
ory requirements as well as computation time. Our
proposed algorithm is based on the so-called label cor-
recting modification of Dijkstra’s algorithm (Orda and
Rom, 1990). The main idea is to perform a simplifi-
cation of the arrival functions during the computation
with a suitable maximum absolute error such that the
relative error ε is maintained.

2 DEFINITIONS AND
PRELIMINARIES

2.1 Road Network

Let G = (V,E) be a directed graph that represents a
road network, where V is a set of nodes and E is a set
of edges. Each edge (u,v) ∈ E has an arrival function
(AF) f : R→ R≥0 that for the given departure time
at u returns the arrival time at v. Alternatively, we
can define a travel time function (TTF) that returns the
time needed to cross the edge. A relationship between

26
Kolovský, F., Ježek, J. and Kolingerová, I.
The e-approximation of the Label Correcting Modification of the Dijkstra’s Algorithm.
DOI: 10.5220/0007658200260032
In Proceedings of the 5th International Conference on Geographical Information Systems Theory, Applications and Management (GISTAM 2019), pages 26-32
ISBN: 978-989-758-371-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

the TTF g and the corresponding AF f is defined as
g(t) = f (t)− t.

It is assumed that every AF f fulfill the FIFO prop-
erty: ∀t1 < t2 : f (t1)≤ f (t2) and the departure time td
must be smaller then the arrival time ta (the travel time
must be positive). AFs are implemented as piecewise
linear functions.

In Figure 1a you can see AFs (fsu, fsv, fud
and fvd) for every edge in a small example graph
with four nodes V = {s,u,v,d} and four edges E =
{(s,u),(s,v),(u,d),(v,d)}.

The points of AFs are called breakpoints. The
number of breakpoints of AF f can be written as | f |.
The following operation must be defined for two AFs:

• There are two consecutive edges (s,u) and (u,d)
with AFs fsu, fud . The operation combination
fud ∗ fsu : t 7→ fud(fsu(t)) represents AF from s to
d. In Figure 1b there are AFs as results of the com-
bination along the paths (s,u,d) (solid red line)
and (s,v,d) (solid blue line).

• There are two parallel paths p1, p2 from s to
d with AFs f 1

sd , f 2
sd . The operation minimum

min(f 1
sd , f 2

sd) : t 7→min{ f 1
sd , f 2

sd} represents the ear-
liest AF from s to d. In Figure 1a p1 = (s,u,d) and
p2 = (s,v,d). In Figure 1c you can see this earliest
AF as a result of the operation minimum (green
line).

2.2 Problem Definition

More precisely, TDSP can be defined as minimizing
the travel time over the set Ps,d of all paths in G from
the source node s to the destination node d:

fd = min{ fp(t)|p ∈ Ps,d} (1)

where fd is the function of the earliest arrival time
(minimal AF) from s to d and fp is AF of the path
p ∈ Ps,d .

This paper deals with one-to-all problem. The
input data are the graph G, AF fuv for every edge
(u,v) ∈ G and the source node s. The output is the
set F of the earliest AFs from the source node s to all
other nodes u: F = { fu|u ∈V \{s}}.

2.3 Approximation

In this paper the ε-approximation of AF f l is under-
stood as the ε-approximation of TTF f (t)− εg(t) ≤
f l(t) ≤ f (t)+ εg(t). So the ε-approximation of the
set F is Fl = { f lu |u ∈V \{s}}.

Let us present some useful theorems about the ap-
proximation that were derived for a use in the proposed
algorithm.

Theorem 1. Let gl be an ε-approximation of TTF g.
Then it holds that

g↓ =
gl

1+ ε
≤ g≤ gl

1− ε
= g↑

Proof. If the function gl is substituted by its extreme
values (1− ε)g, (1+ ε)g, the expression is still valid.

Theorem 2. Let f lu be an ε-approximation of AF fu

and f lv = fuv ∗ f lu . Let α ∈ [0, g↓v
g↓u
] be the maximum

slope of AF fuv, approx(f ,δ) be a function that sim-
plifies the AF f with the maximum absolute error
δ ≥ 0. Then f lv = approx(f lv ,εg↓v −αεg↓u) is the ε-
approximation of AF fv.

Proof. The maximum absolute error of fv is εgv and
the maximum absolute error of the operation fuv ∗ f lu
is αεgu. Then the result of the combination can be
simplified with the maximum absolute error:

δ = εgv−αεgu ≥ εg↓v−αεg↓u

Then δ must be ≥ 0

εg↓v−αεg↓u ≥ 0

α≥ g↓v
g↓u

Theorem 2 can be also formulated in a local form
for a given departure time.

In Figure 1b there are dotted lines that represent
the approximation of AFs. In Figure 1d you can see
the ε-approximation f ld of the earliest AF fd from s to
d (solid green line) and its upper bound f ↑d and lower
bound f ↓d (green dashed lines).

2.4 Related Work

There are two groups of methods that compute an ap-
proximation of the AF. The first methods use forward
and backward probes. The forward probe computes
the arrival time at the node d with the given departure
time at the node s. The backward probe solves the
inverse problem. The arrival time at d is given and we
want to know the departure time at s. These probes
can be computed using the well-known Dijkstra’s al-
gorithm (Dehne et al., 2012).

These methods recognize two types of breakpoints.
The V points represent points that are created as im-
ages of the breakpoints that lie on the edge arrival

The e-approximation of the Label Correcting Modification of the Dijkstra’s Algorithm

27

s d

u

v

Figure 1: Example of calculation of the arrival function from node s to d.

functions { fuv|(u,v) ∈ E}. The X points are created
as an intersection of two AF in the minimum operation.
It can be proved that the AF between two consecu-
tive V points is concave or a line segment (Foschini
et al., 2014) (see Example in Fig. 1c). The algo-
rithms described in (Foschini et al., 2014), (Omran
and Sack, 2014) use this concavity. First the V points
are computed using one backward probe and two for-
ward probes (more in (Dehne et al., 2012)) and then
the approximation of AF between the V points is de-
termined. The main problem of this approach is that

the computation of V points requires 3∑(u,v)∈E | fuv|
probes (Dehne et al., 2012).

The second group of methods uses a label correct-
ing modification of the Dijkstra’s algorithm (LCA)
(Algorithm 1). The modifications of the Dijkstra’s
algorithm are:

• The node labels are AFs from s.

• The key of the priority queue is the minimum of
AF (min f).

• The relaxation of the edge (u,v) is performed using

GISTAM 2019 - 5th International Conference on Geographical Information Systems Theory, Applications and Management

28

fv = min(fv, fuv ∗ fu)

LCA has time complexity O(|V ||E|) (Orda and
Rom, 1990), but a real road network is far from the
worst case. This technique is widely used, see e.g,
(Geisberger and Sanders, 2010) (Batz et al., 2013)
(Geisberger, 2010). First LCA is performed in the
exact form and after that the resulting arrival functions
F are simplified and used for further computation (e.g,
some query algorithm). Some guarantees about the
error of AF are presented in (Geisberger and Sanders,
2010), but these guarantees give only a maximum
error dependent on the degree of approximation.

Algorithm 1: LCA in the exact form.
1 PQ = minimum priority queue where key is

min f
2 ∀u ∈V : fu = ∞

3 gs = 0
4 PQ.put(fs)
5 while queue is not empty do
6 fu = PQ.get()
7 foreach v : (u,v) ∈ E do
8 f v = fuv ∗ fu // combination

9 if ∃t : f v(t)< fv(t) then // compare
10 fv = min(f v, fv) // min
11 PQ.put(fv)

In Algorithm 1 the initialization is performed in
the lines 1-4. All node labels (AFs) are set to infinity
in the line 2. The travel time at s is set to zero (line
3) and the node label at s (fs) is added to the priority
queue (PQ) (line 4). In the line 6 the algorithm takes
the node on the top of PQ and relaxes all edges that
lead from this node. The relaxation is represented by
the lines 8-11. The line 8 performs the combination
of the node label at u (fu) and the edge AF (fuv). The
condition in the line 9 checks for update. Updates of
the label at the node v are performed in the line 10.
The line 11 puts the node v to the PQ.

The main task is to develop an algorithm which
solves TDSP with the given maximum relative error
and is effective for a real road network. It follows that
we focused on the ε-approximation of the LCA.

3 PROPOSED ALGORITHMS

This section describes two algorithms solving the ε-
approximation of TDSP based on LCA (Algorithm
1).

3.1 ε-LCA Algorithm

The basic idea of the first proposed algorithm (ε-LCA)
is that the simplification of AF is performed after ev-
ery edge relaxation (the operation combination). The
degree of the simplification is directed by Theorem 2.

The ε-LCA computes AF with the maximum rela-
tive error ε assuming that

∀(u,v) ∈ E : αuv ∈

[
0,

g↓v
g↓u

]
(2)

where αuv is the maximum slope of AF fuv. The slope
αuv must be bounded because Theorem 2 is used in
the ε-LCA and the theorem needs this assumption.

The ε-LCA differs from the exact LCA only in
the computation of fv. The AF fv in the line 8 in
Algorithm 1 is simplified with the maximum absolute
error δ (according to Theorem 2). So the line 8 is
replaced by 2 lines

δ(t) = ε((fuv ∗ f lu)↓(t)− t)−α(t)εg↓u(t)
fv = approx((fuv ∗ f lu),δ)

(3)

where α(t) is the maximum slope of fuv in the interval
[f ↓u (t), f ↑u (t)]. The simplification was performed using
Douglas-Peucker algorithm or Imai and Iri algorithm
(Imai and Iri, 1986).

The main problem of ε-LCA is that if the assump-
tion (2) is not complied, δ < 0 and the algorithm can-
not ensure the given relative error ε. This occurs when
the maximum slope αuv is too large. This issue is re-
solved using the second algorithm that is described in
the upcoming section.

3.2 ε-LCA-BS Algorithm

The second proposed algorithm (ε-LCA-BS) is based
on backsearch. It has no limitations for the slope α.
The pseudo-code of the ε-LCA-BS is in Algorithm
2. The basic idea is that if the algorithm finds an
edge (u,v) where α is too big in some departure time
interval [tm, tn] (δ < 0), it determines fv in [tm, tn] again
with a higher accuracy (lines 11-15 of the Algorithm
2). The algorithm returns back to the point such that
the edge (u,v) can be reached from this point with
sufficient precision using the exact LCA.

When the label at the node v (AF fv) is updated
(the condition at the line 16 is fulfilled), the edge (u,v)
is added to the predecessor list pred(v) of the node v
(lines 17-20). The set of predecessors form a graph
R = (VR,ER) (red color in Fig. 2). We assume that the
graph R is acyclic. In general, the graph R may not be
acyclic, but in real case it is very unlikely.

The e-approximation of the Label Correcting Modification of the Dijkstra’s Algorithm

29

Figure 2: Example of backsearch procedure.

We want to find nodes w such that if the exact
LCA is performed from these nodes w, the AF fv is
an ε-approximation. The nodes w have to satisfy the
following inequalities in the interval [tm, tn]:

max

{
∏
e∈p

αe|p ∈ Pvw

}
≤min

(
g↓v
g↓w

)
(4)

Algorithm 2: ε-LCA-BS.
1 PQ = minimum priority queue where key is

min f

2 ∀u ∈V : f lu = ∞

3 gls = 0

4 PQ.put(f ls)
5 pred(s) = null
6 while queue is not empty do
7 f lu = PQ.get()
8 foreach v : (u,v) ∈ E do
9 δ(t) =

ε((fuv ∗ f lu)↓(t)− t)−α(t)εg↓u(t)
// according equation 3

10 f v = approx(fuv ∗ f lu ,δ+)
// δ+(t) = max(δ(t),0)

11 if ∃t : δ(t)< 0 then
12 find all intervals [tm, tn] where δ is

negative
13 foreach [tm, tn] do
14 h = backSearch((u,v), [tm, tn])
15 substitute f v by h in interval

[tm, tn]

16 if ∃t : f v(t)< f lv (t) then
17 if f v < f lv then
18 pred(v) = (u,v)

19 else
20 pred(v).add((u,v))

21 f lv = min(f v, f lv)

22 PQ.put(f lv)

where Pvw is the set of all paths from v to w in the
graph R (the paths must contain the edge (u,v)) and αe
represents the maximum slope of AF fe corresponding
with the edge e. The set W is the set of all nodes w
that meet the condition (4) and there is a path p ∈ Pvw
that does not contain any other node from the set W
(W is the smallest possible).

These nodes w can be found using a topological
ordering of VR (Algorithm 3). The node labels αb
correspond to the left side of the inequalities (4). So
the algorithm finds maximal paths in R. First the labels
are set to negative infinity (the line 2) and the label
at u is set to αuv (the line 3). The lines 4-5 ensure a
topological ordering. If the condition (4) in the line
6 is fulfilled, b is added to the W . The lines 9-12
ensure updating of the node labels. The part of f v in
the interval [tm, tn] is substituted by a more accurate
result of the exact LCA with the initial priority queue
PQ that is created by adding all fw ∈ { fw|w ∈W} (the
lines 13-16).

In Figure 2 there is an example of backsearch. The
black color represents the original graph G and the red
color represents the acyclic graph R. The edge (u,v)
violates the condition 2. Then the algorithm starts
backSearch procedure and finds the set W (red nodes)
using the graph R.

Algorithm 3: backSearch.
1 W = {} // set of all w
2 ∀b ∈VR : αb =−∞

3 αu = αuv
4 while ∃b : b ∈VR \W ∧deg−(b) = 0 do

// topological ordering
5 b = some node that meets the conditions

above

6 if αb ≤min
(

g↓v
g↓b

)
then

7 W =W ∪{b}
8 else
9 foreach a : (b,a) ∈ R do

10 if αbαba > αa then
11 αa = αbαba

12 VR =VR \{b}

13 foreach w ∈W do
14 PQ.put(fw)

15 run LCA on G with initial priority queue PQ
on interval [tm, tn] // algorithm 1

16 return fv

When the graph R is not acyclic, it is necessary to
modify the algorithm for searching the set W .

GISTAM 2019 - 5th International Conference on Geographical Information Systems Theory, Applications and Management

30

If the condition (2) is fulfilled, the ε-LCA-BS is
reduced to ε-LCA, because the algorithm then does
not perform any backSearch procedure.

4 EXPERIMENTS

The real road network with real speed profiles that
were computed from GPS tracks was used for testing.
This data represent part of Paris in France (Figure 3).

Figure 3: Route network for testing.

The algorithms were implemented using Scala pro-
gramming language (OpenJDK 1.8, Debian 10). The
testing was performed on a computer with Intel(R)
Core(TM) i5-8250U CPU @ 1.60GHz and with 16
GB RAM. One thread was used only.

Table 1: Graph properties (#edges - number of edges, | fe| -
number of linear pieces of AF for each edge).

dataset #edges | fe|
G1 10 798 24
G2 33 354 24
G3 107 476 24
G4 160 092 24

Table 2: Absolute values of measured parameters for ε =
0.001.

Imai and Iri Douglas Peucker
time [s] # bps time [s] # bps

G1 0.5 608 k 1.0 940 k
G2 1.9 2 087 k 3.9 3 136 k
G3 6.4 5 734 k 13.3 8 606 k
G4 9.6 7 876 k 20.2 11 892 k

The ε-LCA-BS was tested only because ε-LCA
is a special case of ε-LCA-BS only. The maximum
allowed relative error ε was set to 10−1,10−2,10−3

and 10−4.
Four graphs (G1, G2, G3 and G4) were created

to show the performance of the developed algorithms.
Every edge in the graphs has AF with 24 linear pieces.

Table 3: Results of testing ε-LCA-BS (tr - the relative time
related to the exact version of LCA, bps - the relative number
of breakpoints, ε - the maximum allowed relative error).

Imai and Iri Douglas Peucker
ε tr [%] bps [%] tr [%] bps [%]

G1 10−1 3.9 0.1 7.0 0.2
10−2 6.0 0.8 6.4 0.9
10−3 16.4 3.1 32.3 4.9
10−4 45.2 10.6 104.7 15.3

G2 10−1 1.7 0.1 1.5 0.1
10−2 4.1 0.6 4.7 0.7
10−3 14.0 3.0 27.1 4.6
10−4 42.0 10.6 97.3 15.4

G3 10−1 1.5 0.1 1.5 0.1
10−2 3.5 0.5 3.3 0.5
10−3 11.1 2.5 21.4 3.8
10−4 37.5 9.4 86.5 14.2

G4 10−1 1.4 0.1 1.0 0.1
10−2 3.3 0.5 3.3 0.5
10−3 10.5 2.4 20.3 3.6
10−4 35.3 8.8 82.8 13.7

Every graph represents different classes of roads. In
Table 1 there are numbers of edges for each graph.
In Table 3 there are performance results of ε-LCA-
BS: the relative time tr and the relative number of
breakpoints bps related to the exact version of LCA.
The same results you can see in Figure 4.

The results in Table 3 show that the maximum rel-
ative error 10−4 brings only a small improvement, but
this accuracy is too big for a real use. The maximum
relative error from 10−2 to 10−3 seems to be a good
compromise between accuracy and performance.

In Table 2 there are absolute values of measured
parameters for the maximal relative error 10−3. The
column bps represents the number of breakpoints in
the resulting AFs. In all cases the graphs (G1-G4) do
not violate the condition (2), thus the ε-LCA-BS was
reduced to ε-LCA.

The results show that the breakpoints savings are
significant. It means that the ε-LCA-BS saves a lot of
memory. Let us assume a path that takes 1 hour, then
the relative error 0.1 % implicates the absolute error
3.6 s. In this case the epsilon approximation saves
more than 95% of memory and 80% of time. In case
that ε is too small then the algorithm can run slower
than the exact version, because the simplification takes
too much time.

The main disadvantage of the ε-LCA-BS is that it
is sensitive to values of the maximum slope of AFs. If
AFs have too big slope then the algorithm performs
too many calls of backSearch procedure and thereby
makes the computation too slow. In practice, the func-

The e-approximation of the Label Correcting Modification of the Dijkstra’s Algorithm

31

Figure 4: The relative number of breakpoints and the relative time related to exact LCA (II - Imai and Iri, DP - Douglas
Peucker).

tions usually have small slopes. When it is certain
that input data do not violate the condition (2), the
algorithm is more suitable.

5 CONCLUSION

Two algorithms for ε-approximation of TDSP were
presented. The algorithms significantly reduce the
memory use. When the maximum relative error is a
sufficiently large value (in our case 10−3), the algo-
rithms save the computational time too. From this
point of view, the algorithms are suitable for precom-
puting the TTFs for the next use (e.g., time-dependent
distance oracles, time-dependent contraction hierar-
chies).

In a real road network the maximum slopes of
AFs are not too big (Strasser, 2017). So the main
disadvantage (too many calls of back search procedure)
is not a too big problem. In one-to-one problem case
the developed algorithms can be combined with other
speed-up techniques that reduce the graph (e.g., time-
dependent-sampling (Strasser, 2017)).

In the future work it would be useful to use some
heuristics for decision whether it is necessary to per-
form backSearch. The goal is to remove the cases
when the difficult-to-calculated AF (using backSearch)
is fully replaced by another AF from another node.

ACKNOWLEDGEMENTS

This work has been supported by the Project SGS-
2019-015 (”Využitı́ matematiky a informatiky v geo-
matice IV”) and by Ministry of Education, Youth and
Sports of the Czech Republic, the project PUNTIS
(LO1506) under the program NPU I

REFERENCES

Batz, G. V., Geisberger, R., Sanders, P., and Vetter, C. (2013).
Minimum time-dependent travel times with contraction
hierarchies. Journal of Experimental Algorithmics,
18:1.1–1.43.

Dehne, F., Omran, M. T., and Sack, J.-R. (2012). Shortest
Paths in Time-Dependent FIFO Networks. Algorith-
mica, 62(1-2):416–435.

Foschini, L., Hershberger, J., and Suri, S. (2014). On the
Complexity of Time-Dependent Shortest Paths. Algo-
rithmica, 68(4):1075–1097.

Geisberger, R. (2010). Engineering Time-dependent One-
To-All Computation. arXiv:1010.0809 [cs]. arXiv:
1010.0809.

Geisberger, R. and Sanders, P. (2010). Engineering time-
dependent many-to-many shortest paths computation.
In OASIcs-OpenAccess Series in Informatics, vol-
ume 14. Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik.

Imai, H. and Iri, M. (1986). An optimal algorithm for ap-
proximating a piecewise linear function. Journal of
information processing, 9(3):159–162.

Omran, M. and Sack, J.-R. (2014). Improved approximation
for time-dependent shortest paths. In International
Computing and Combinatorics Conference, pages 453–
464. Springer.

Orda, A. and Rom, R. (1990). Shortest-path and minimum-
delay algorithms in networks with time-dependent
edge-length. Journal of the ACM (JACM), 37(3):607–
625.

Strasser, B. (2017). Dynamic Time-Dependent Routing
in Road Networks Through Sampling. In OASIcs-
OpenAccess Series in Informatics, volume 59. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.

GISTAM 2019 - 5th International Conference on Geographical Information Systems Theory, Applications and Management

32

