VÝUKOVÝ SYSTÉM RC2000 – ELEKTRONICKÝ VÝUKOVÝ MATERIÁL
DIPLOMOVÁ PRÁCE

Bc. Pavel Benajtr
Učitelství pro 2. stupeň ZŠ, obor INF-Te
léta studia (2010 - 2012)

Vedoucí práce: Mgr. Jan Krotký

Plzeň, 29. června 2012
Prohlašuji, že jsem diplomovou práci vypracoval samostatně s použitím uvedené literatury a zdrojů informací.

Plzeň, 29. června 2012

…………………………………………

vlastnoruční podpis
OBSAH

1 ÚVOD... 1
2 VÝUKOVÝ SYSTÉM RC2000.. 2
 2.1 ZÁKLADNÍ POPIS VÝUKOVÉHO SYSTÉMU RC2000... 2
 2.2 VYUŽITÍ VE VYUCE .. 3
 2.3 BEZPEČNOST PRÁCE SE STAVEBNICÍ .. 4
3 STRUKTURA VYTVORENÉHO VÝUKOVÉHO MATERIÁLU .. 7
 3.1 OBSAH JEDNOTLIVÝCH KAPITOL ... 7
 3.1.1 Kapitola Výukový systém rc2000 .. 7
 3.1.2 Kapitola Sestavení obvodu ... 8
 3.1.3 Kapitola Měřicí přístroje a zařízení .. 10
 3.1.4 Kapitola Součástky a moduly součástek .. 13
 3.1.5 Kapitola Propojovací moduly a obvody ... 15
 3.1.6 Kapitola Propojení s počítačem a program rc2000 .. 18
 3.1.7 Kapitola Příklady určené pro elektrotechnická měření .. 19
 3.1.8 Kapitola Literatura a použité zdroje ... 20
 3.2 UKÁZKA STUDIJNÍCH ČLÁNEKŮ A CVIČENÍ .. 21
 3.2.1 Studijní článek Programovatelný stejnosměrný zdroj napětí 21
 3.2.2 Studijní článek Propojovací moduly ... 24
 3.2.3 Cvičení Nastavení programovatelného zdroje napětí .. 27
 3.2.4 Cvičení Využití propojovacího modulu .. 28
4 NÁVRH PŘÍKLADŮ VHODNÝCH PRO VÝUKU .. 29
 4.1 VOLBA OBSAHU JEDNOTLIVÝCH PŘÍKLADŮ .. 29
 4.2 REALIZACE PŘÍKLADŮ .. 30
 4.2.1 Měření VA charakteristiky diody ... 30
 4.2.2 Měření VA charakteristiky Zenerovy diody ... 35
 4.2.3 Sériový rezonanční obvod RLC ... 40
 4.2.4 Invertující zapojení s operačním zesilovačem ... 46
 4.2.5 Neinvertující zapojení s operačním zesilovačem .. 50
 4.3 PRAKTIČKÉ OVĚŘENÍ PŘÍKLADŮ ... 54
5 ZÁVĚR... 57
6 SEZNAM OBRÁZKŮ .. 58
7 SEZNAM VZORCŮ .. 60
8 SEZNAM TABULEK ... 61
9 SEZNAM LITERATURE ... 62
10 RESUME ... 63
11 PŘÍLOHY ... 1
1 Úvod

Tématem diplomové práce bylo vytvoření výukového materiálu jako elektronickou podporu pro výuku práce s výukovým systémem rc2000. Cílovou skupinou, pro kterou je tento výukový kurz vytvořen, jsou studenti Pedagogické fakulty, Katedry Matematiky, fyziky a technické výchovy (KMT), kteří se s tímto výukovým systémem setkají ve výuce. Vzhledem k zaměření uvedeného systému rc2000, je tento kurz vhodný i pro jiné instituce zaměřené na vzdělávání. Kurz by bylo možné využít na středních odborných školách nebo gymnáziích. Své uplatnění by mohl nalézt také na základních školách s jistým omezením a případně další úpravou.

Součástí zadání diplomové práce bylo vytvoření vhodných příkladů do vybraných předmětů v rámci výuky práce s výukovým systémem rc2000. Příklady jsou součástí výukového kurzu v jeho závěru a neobsahují řešení. Řešení jednotlivých příkladů je uvedeno v textové části diplomové práce a může pomoci vyučujícímu při opravě odevzdaných prací, které studenti na základě zadání zpracují.

2 VÝUKOVÝ SYSTÉM RC2000

2.1 ZÁKLADNÍ POPIS VÝUKOVÉHO SYSTÉMU RC2000

Výukový systém rc2000 vyvíjí již řadu let firma RC společnost s r.o. přístroje pro vědu a vzdělání. Využití výukového systému je určeno zejména pro výuku elektrotechniky, automatizace, výpočetní techniky a další předměty, ve kterých by bylo možné využít jeho vlastnosti. Pro zjednodušení bychom mohli výukový systém rc2000 pojmenovat elektrotechnickou stavebnicí. Vzhledem ke způsobu práce a jednotlivým prvkům, které obsahuje, je toto pojmenování také možné a pro mnohé studenty lépe zapamatovatelné.

Obrázek 1: rc2000

Stavebnici lze pořídit v různých variantách nebo ji libovolně rozšířit zakoupením jednotlivých prvků samostatně. Některé prvky jsou určeny přímo pro určitou oblast výuky. Pro automatizační techniku bude například obsahovat elektrický motor a prvky pro jeho řízení. Součástí je vždy manuál k jednotlivým prvkům a návrhy příkladů, které lze sestavit.

Zámkem autorů je vytvářet výukový systém vhodný pro různé stupně a typy škol. Ovládání a práce se stavebnicí není proto příliš obtížná. Přesto by studentům mohl v počátcích jejich práce pomoci tento výukový kurz v elektronické podobě, který je zaměřen na komplexní seznámení s výukovým systémem rc2000.

Výukový kurz obsahuje studijní články, cvičení, úkoly a autotesty rozdělené do několika kapitol. Postupným studiem článků se student lépe seznámit se stavebnicí
nejen teoreticky, ale také praktickým ověřením získaných znalostí pomocí cvičení v závěru kapitol. Pro zjištění úrovne teoretických znalostí může využít autotesty, které vycházejí z informací uvedených v jednotlivých článcích. Na závěr výukového kurzu jsou uvedeny úkoly, které obsahují příklady určené pro výukové potřeby předmětu elektrotechnika.

2.2 Využití ve výuce

Výukový systém rc2000 je určen pro využití na různých stupních škol. Žáci základní školy se díky jeho jednoduchosti mohou lépe seznámit s tvorbou elektronických zapojení. Vzhledem k pokročilé ochraně jednotlivých prvků stavebnice je minimalizováno její poškození vlivem nesprávného propojení jednotlivých prvků a elektrického obvodu. Tato vlastnost je velmi důležitá pro využití stavebnice na základní škole, kdy žáci nemají dostatek předchozích zkušeností se zapojováním obvodů. Zařazení do výuky by bylo možné především pro oblasti Člověk a svět práce a Fyzika.

Své uplatnění stavebnice nalezne na vysokých školách, kde může plnit funkci seznámení s elektrotechnikou a elektronickými obvody. Studenti pedagogických fakult s oborovým zaměřením na výuku fyziky a technické výchovy se mohou naučit pracovat se stavebnicí a následně využít svoje zkušenosti ve své výuce.

Výukový kurz

Výukový kurz je zaměřen na teoretické a praktické seznámení se stavebnicí. Jeho součástí jsou příklady určené přímo pro výuku elektrotechniky a automatizační techniky. Zařazení kurzu do výuky je vhodné na úvod práce se stavebnicí. Žáci a studenti se s jeho pomocí nejprve seznámit s jednotlivými prvky a bezpečností práce. Po jeho absolvování
budou moci pracovat se stavebnicí a plnit složitější úkoly. Kurz může být následně využíván jako zdroj informací při plnění dalších úkolů.

První kapitola obsahuje vstupní autotest, který zjišťuje vstupní úroveň znalostí potřebných pro absolvování kurzu. V případě, že dojde k nesprávnému zodpovězení více jak poloviny uvedených otázek, je nutné doplnit si teoretické znalosti z oblasti elektrotechniky. Výukový kurz počítá s jistou úrovní znalostí, která je nutná pro jeho úspěšné absolvování. Nedostatečné vstupní znalosti mohou způsobit nenaplnění cílů kurzu.

Cíle kurzu
- Student se seznámí s výukovým systémem rc2000.
- Student bude dodržovat bezpečnost práce se stavebnicí.
- Student bude schopen pojmenovat jednotlivé prvky stavebnice.
- Student bude umět propojovat prvky stavebnice.
- Student bude umět ovládání přístrojů a programu stavebnice.
- Student bude schopen sestavit obvod na základě předloženého schématu.

2.3 BEZPEČNOST PRÁCE SE STAVEBNICÍ

Součástí modulů stavebnice je ochrana před jejich poškozením vlivem nesprávného propojení nebo překročení limitních hodnot. Pokud dojde k aktivaci ochrany modulu, je tento stav signalizován pomocí LED, alarmem nebo kombinací obou způsobů. V případě spuštění ochranného režimu některého z přístrojových modulů, je možné pomocí tlačítka přepnout zpětně do pracovního stavu. Nebude-li však problém, který
aktivoval ochranu modulu vyřešen, setrvá přístroj v ochranném režimu. Tím to způsobem je zajištěno, aby nedošlo k vážnému poškození modulu. Pokud bude aktivována akustická signalizace, je vhodné odpojit zapojený obvod od zdroje napětí a vyhledat v jeho zapojení chyby.

Přestože stavebnice obsahuje takto pokročilou ochranu před poškozením, je vhodné předcházet její aktivaci důkladnou kontrolou zapojeného obvodu. Pokud bychom pracovali s jinými systémy, které neumožňují tento stupeň ochrany, mohlo by dojít k jejich vážnému poškození.

[Obrázek 2: Zapojení logického obvodu]

NAPÁJENÍ STAVEBNICE

Stavebnice pracuje s bezpečným napětím i proudem a je proto vhodná pro využití na základní škole. Určité riziko však muže představovat napájecí zdroj stavebnice, který se připojuje do síťové zásuvky 230V. Z bezpečnostních důvodů je proto vhodné, aby s tímto zdrojem manipuloval pouze vyučující. V případě jakékoliv poruchy musí žáci tento stav ohlásit vyučujícímu bezprostředně po jeho zjištění.

PROPONOVAJÍ JEDNOTLIVÝCH PRVKŮ

Jak již bylo řečeno v úvodu, součástí stavebnice jsou ochranné prvky, které ji chrání před poškozením. Při propojování jednotlivých modulů je nutné využívat pouze propojovací vodiče, které jsou součástí stavebnice. Přestože je možné propojovat stavebnici s jinými výukovými systémy, je důležité mít v oblasti elektrotechniky dostatečné znalosti k této realizaci. Výukový kurz je zaměřen především na základy práce
se stavebnici. Z tohoto důvodu nebudeme o propojování výukových systému uvažovat. Pro sestavování obvodů využijeme pouze prvky, které jsou součástí stavebnice.

ROZŠÍŘENÍ STAVEBNICE O DALŠÍ SOUČÁSTKY

Určitou výjimku tvoří možnost rozšíření stavebnice o další součástky. Samostatná součástka může být připevněna k propojovacímu prvku, který se vkládá do konektorů na modulech stavebnice. Tyto součástky lze v případě jejich poškození nahradit. Pokud jde o nahrazení nebo rozšíření o další součástku, je nutné využít pájení. Z bezpečnostních důvodů by se touto činností měl zabývat pouze vyučující.

PRAVIDLA PRO ZAHÁJENÍ A UKONČENÍ PRÁCE

• Před připojením napájecího zdroje stavebnice je vhodné si nejprve připravit požadované prvky, které budou nutné k sestavení obvodu.
• Následným krokem je sestavení obvodu a jeho kontrola.
• Po provedené kontrole připojíme napájecí zdroj, nastavíme jednotlivé přístroje a zahájíme měření obvodu.
• Po dokončení měření vypneme nebo odpojíme napájecí zdroj.
• Pokud jsme dosáhly požadovaných výsledků a nebudeme v měření pokračovat, rozpojíme jednotlivé prvky a uložíme je na původní místo.
3 STRUKTURA VYTVORENÉHO VÝUKOVÉHO MATERIÁLU

3.1 OBSAH JEDNOTLIVÝCH KAPITOL

3.1.1 KAPITOLA VÝUKOVÝ SYSTÉM RC2000

Následující studijní článek Popis výukového systému již podrobněji představuje jednotlivé prvky stavebnice, které jsou názorně prezentovány pomocí obrazových ukázk. Je zde uvedeno rozdělení prvků do různých skupin, které pomohou studentům v následujícím studiu výukového kurzu lépe identifikovat části stavebnice a jejich účel i využití. Přestože článek neobsahuje všechny prvky, které je možné při sestavování obvodů využívat a jsou také součástí stavebnice, jsou zde uvedeny jejich typické příklady.

Obrázek 3: Kondenzátory na propojovacím prvku
Poslední studijní článek v této kapitole *Využití ve výuce* je vhodný zejména pro vyučujícího, který se zde může seznámit s možnostmi zařazení výukového systému rc2000 do výuky na různých stupních škol. Kromě předmětů, ve kterých by bylo možné a vhodné se stavebnicí pracovat, obsahuje studijní článek také návrh, jakým způsobem ji zařadit do výuky na jednotlivých stupních škol. Druhá část studijního článku je věnována výukovému kurzu, kde je uveden způsob studia a jeho zařazení do výuky.

V závěru kapitoly je již zmíněný autotest pojmenovaný *Vstupní autotest*. Jeho název byl zvolen záměrně. Vzhledem k tomu, že následující kapitoly obsahuji pojmy a schémata z oblasti elektrotechniky, je nutné před studiem výukového kurzu dosahovat určitého stupně znalostí. V rámci tohoto kurzu by nebylo možné doplňovat jednotlivé články o základní pojmy z elektrotechniky a zabývat se popisem různých elektrických dějů. Pokud student nebude úspěšný v absolvování uvedeného autotestu, který obsahuje hranici pro jeho úspěšné splnění, není doporučeno pokračovat ve studiu následujících kapitol. Před dalším opakováním autotestu bude nejprve nutné doplnit potřebné znalosti.

3.1.2 Kapitola Sestavení obvodu

V této kapitole se studenti seznámí s bezpečností práce se stavebnicí, a způsobem jakým lze sestavovat jednotlivé elektrické obvody. Její součástí je také popis propojovacích prvků a způsobu napájení stavebnice. Kapitola obsahuje čtyři studijní články nazvané *Bezpečnost práce se stavebnicí, Umístění modulů do panelu stavebnice, Propojovací prvky a Napájení stavebnice*. V jejím závěru je cvičení nazvané *Připojení napájení ke stavebnici a modulům* a autotest pro ověření získaných znalostí studiem článků, pojmenovaný shodně jako název kapitoly *Sestavení obvodu*.

Prvním studijním článkem v této kapitole je *Bezpečnost práce se stavebnicí*, který je velmi důležitý pro následné využívání stavebnice a sestavování obvodů. V jeho úvodu jsou studenti seznámeni s bezpečnostními prvky, které stavebnice obsahuje a chrání ji před poškozením. Dozvědět se mohou jakým způsobem je signalizována a jak lze přepnout zpět do pracovního režimu modulu v případě aktivace uvedené ochrany. V druhé části studijního článku je uvedena bezpečnost práce při připojování k napájecímu napětí a propojování jednotlivých prvků stavebnice. Je zde také popis možného rozšíření
o další součástky z pohledu bezpečnosti a soupis pravidel pro zahájení a ukončení práce při elektrotechnických měřeních.

Následující studijní článek *Propojovací prvky* je určen pro popis propojovacích prvků stavebnice. Obsahuje různé typy propojovacích vodičů, které jsou určeny nejen pro zapojování obvodů, ale také pro napájení jednotlivých modulů. Propojovací prvky jsou rozděleny do několika skupin podle jejich určení.

Poslední článek v této kapitole *Napájení stavebnice* obsahuje popis a ukázku propojení stavebnice s napájením. Současně je zde prezentován způsob, jakým lze napájet jednotlivé moduly, které napájení vyžadují. Student se může ve studijním článku dozvedět hlavních účelů využití panelů stavebnice.

Závěrečné cvičení *Připojení napájení ke stavebnici a modulům* má za úkol, aby si student procvičil způsob propojování stavebnice se zdrojem napětí a připojení napájení k zadaným modulům. Součástí cvičení je také návrh jeho řešení v podobě vhodného pracovního postupu, který by si měl student osvojit. Pro ověření správnosti řešení je součástí postupu také obrázek se správně zapojenými prvky dle zadání. Po dokončení zadaného úkolu je v závěru kapitoly autotest *Sestavení obvodu*, určený pro ověření získaných znalostí z předchozích článků.
3.1.3 Kapitola Měřicí přístroje a zařízení

V prvním studijním článku kapitoly Napájecí zdroje stavebnice se student seznámí s napájecími zdroji stavebnice, které slouží k různým účelům. V popisu zdroje lze nalézt parametry a prvky, které obsahuje. Součástí studijního článku jsou doprovodné obrázky pro snazší identifikaci zdroje a možnost jejich porovnání.

Studijní článek Programovatelný stejnosměrný zdroj napětí představuje studentům jeden z nejčastěji používaných modulů. Kromě funkci, která zdroj obsahuje, je součástí popisu také seznamení s bezpečnostní ochranou a způsobem její indikace. Uvedeny jsou zde parametry zdroje a rozsah nastavení výstupních hodnot. Důležitý
je také způsob napájení modulu a jeho připojení k napájecímu napětí. Větší část studijního článku popisuje způsob ovládání a nastavení jednotlivých parametrů. Pomocí obrázku s popisky jsou vysvětleny jednotlivé části zdroje včetně funkce ovládacích tlačítek a jejich využití. Studentům může pomoci s prvním nastavováním zdroje vložená animace, která obsahuje nastavení zdroje dle požadavků v zadání ukázkového příkladu. K animaci je také přiložen podrobný postup v textové části.

Následující studijní článek **Funkční generátor** je druhým nejčastěji využívaným přístrojovým modulem, se kterým je vhodné studenty seznámit. V popisu přístroje jsou uvedeny schopnosti generátoru z hlediska generování výstupního signálu a také určitá omezení. Součástí tohoto modulu je opět ochrana proti poškození, která je ve studijním článku popsána. Obdobně jako u předchozího modulu, je zde uveden rozsah výstupních hodnot a parametry funkčního generátoru. A také, zda je přístroj nutné připojit k napájecímu napětí a jaké konektory k těmto účelům slouží. Způsob ovládání a nastavení výstupního signálu je popsán v následující části studijního článku. Aby bylo možné nastavit požadované parametry, je text doplněn obrázkem generátoru s popisky jeho jednotlivých částí. V závěru můžeme nalézt animaci, která představuje postup nastavení přístroje dle uvedeného zadání. Stejným způsobem, jako u programovatelného stejnosměrného zdroje napětí, obsahuje text pracovní postup, který je řešením ukázkového příkladu.

Obrázek 5: Popis funkčního generátoru

Jedním z dalších přístrojových modulů, který výukový kurz popisuje, je voltmetr. Tento studijní článek je nazván **Voltmetr**. Součástí popisu měřicího přístroje jsou režimy, ve kterých může pracovat. Nalezneme zde rozsah voltmetru, ve kterém lze měřit vstupní
hodnoty pro různé režimy měření. Obdobně jako u předchozích přístrojů, obsahuje studijní článek popis způsobu napájí modulu. Pro názornost je zde obrázek s popisky jednotlivých částí voltmetru, který je doplněn o vysvětlení v textové části. Část studijního článku je věnována ukázkovému příkladu s animací, kde je uveden pracovní postup při nastavení parametrů pro měření vstupních hodnot.

Dalším studijním článkem v této kapitole je **Logická sonda se sedmi-segmentovým displejem**. Ve článku je uveden způsob využití modulu a jeho požadavky na napájení. Součástí popisu logické sondy jsou možnosti v oblasti zobrazování logických hodnot v různých kódech. Student se zde seznámí se způsobem uložení datového slova do paměti přístroje a jeho maximální velikosti. Pomocí obrázku s popisky a vysvětlením jednotlivých částí přístroje v textové části, lze lépe objasnit jeho možnosti použití v logických obvodech. V kombinaci s přepínačem logických stavů je prezentován pomocí ukázkového příkladu pracovní postup s modulem. Animace zobrazuje použití logické sondy v jednoduchém zapojení logického obvodu.

Posledním studijním článkem, který lze v kapitole nalézt, je **Časová základna**. Jakým způsobem lze připojit modul k napájení a jeho vlastní využití je uvedeno v úvodu studijního článku. Účel některých částí časové základny není na první pohled zřejmý, a proto je v popisu jednotlivých bloků uveden i jejich význam a možné použití. Popis je opět doplněn obrázkem s popisky důležitých částí modulu. V závěru studijního článku lze nalézt ukázkový příklad, který prezentuje využití dělíčky frekvence a spouštění časové základny. Kromě pracovního postupu, obsahuje příklad také řešení v podobě animace.

3.1.4 KAPÍTOOLA SOUČÁSTKY A MODULY SOUČÁSTEK

Studijní článek Resistory, kondenzátory, diody obsahuje rozdělení součástek, které jsou umístěny v propojovacích prvcích do kategorií odpovídajících názvu článku. Součástek shodného typu, avšak s jinou hodnotou je ve stavebnici velké množství, a proto jsou zde uvedeny jen vybrané prvky. Součástí studijního článku je popis zvolených součástek a způsob jejich použití. Kromě uvedených ukázek je zde uvedeno, jak lze jednotlivé součástky od sebe rozeznat a zvolit si její požadovanou hodnotu.
Druhý studijní článek *Rezistorové moduly* je zaměřen na popis modulů obsahující součástku rezistor s možností změny jeho velikosti. Představeny jsou tři typy modulů, které byly součástí stavebnice v době tvorby tohoto výukového kurzu. Studenti zde mohou nalézt, zda moduly vyžadují napájení a jakým způsobem lze měnit hodnotu odporu. Součástí je také uvedení parametrů a rozsahu měnitelných hodnot u jednotlivých rezistorových modulů.

Následující studijní článek *Kapacitorové moduly* seznamuje studenty s kapacitorovými moduly, které obsahují součástku kapacitor s možností změny její hodnoty. Kromě těchto modulů, se zde seznámi také s modulem obsahující sestavu kapacitorů. Studijní článek popisuje, jakým způsobem lze měnit hodnoty kapacitorového modulu a zda modul vyžaduje napájení. U modulu s kapacitní sestavou, je uveden způsob změny výsledné hodnoty kapacity s využitím dalších součástek a propojovacích prvků.

Studijní článek *Indukční moduly* je zaměřen na popis modulu indukční sestavy, který obsahuje induktor. Součástí článku je představení dalších možných modulů, které by mohla stavebnice obsahovat po jejím rozšíření o další moduly. Uvedeny jsou zde parametry modulu a jeho označení. Student se může seznámit s možným napájením modulu, a zda lze měnit hodnotu indukce.

Posledním studijním článkem v této kapitole je *Univerzální modul pro číslicovou techniku*. Článek popisuje způsob napájení univerzálního modulu a přestavuje jeho využití při sestavování číslicových obvodů. Vzhledem k tomu, že se jedná o univerzální modul, je zde uveden způsob záměny obvodu pro jiné účely využití. Obsahuje větší množství
logických obvodů, než je ve studijním článku uvedeno, avšak z hlediska zjednodušení jsou zde uvedeny pouze tři varianty. Každý z uvedených typů je krátce představen a je zde případně uvedena pravdivostní tabulka obvodu.

3.1.5 Kapitola Propojovací moduly a obvody

Studijní článek *Propojovací moduly*, seznamuje studenty s moduly obsahujícími připravené obvody, vhodné pro různá zapojení. V úvodu studijního článku je uveden způsob, kterým lze sestavit výsledný obvod a také zda modul vyžaduje napájení. Představeny jsou dva typy propojovacích modulů a jejich vzájemné odlišnosti. Pomocí obrázků s popisky a vysvětlením jednotlivých částí modulů v textové části, lze následně zvolit vhodný modul pro plánované sestavení obvodu.

Druhý studijní článek v této kapitole je nazván *Operační zesilovač*. Článek popisuje modul, ve kterém je umístěna součástka operační zesilovač a připravený obvod pro tvorbu různých zapojení s tímto prvkem. Naleznete zde také možnosti napájení modulu a popis jeho konektorů. Student se zde může seznámit se dvěma typy modulů s operačním zesilovačem, které nejsou příliš odlišné a jde pouze o novější a starší typ modulu. Jednotlivé části modulu jsou popsány pomocí obrázku s popisky.

Následující studijní článek *Rozdílový člen* seznamuje studenty s modulem obsahujícím rozdílový zesilovač a relé se spínacím kontaktem. V úvodu je uvedeno možné využití modulu a způsob jeho napájení. Studijní článek obsahuje popis způsobu zapojení obvodů modulu a základní seznámení s jejich funkcí. Ve druhé části textu naleznete vysvětlující popis k obrázku s popisky. Pro zjednodušení při zapojuvání modulu do obvodu, je zde uveden význam jednotlivých konektorů.

Studijní článek *Zpožďovací členy* popisuje modul, který obsahuje čtyři nezávislé zpožďovací členy a jejich možné využití. Je zde uveden způsob napájení modulu a propojení jednotlivých prvků v zapojení zpožďovacího členu. Studijní článek popisuje
možnou úpravu výstupních parametrů obvodu změnou součástek. Části modulu jsou zobrazeny na obrázku s popisky, které jsou doplněny o vysvětlení v textové části studijního článku.

Studijní článek *PID regulátor* je zaměřen na popis modulu obsahujícího proporcionální, integrační, derivační a sumační části. Seznámíme se zde s možným použitím modulu a způsobu jeho napájení. Studijní článek popisuje možnou úpravu obvodů jednotlivých částí pro změnu výstupních součástí. Součástí modulu je také uvedení způsobu, jakým lze dosáhnout změny zapojení obvodu pomocí součástek. Části modulu jsou podrobněji popsány pomocí obrázků s popisky a textu s jejich vysvětlením.

Obrázek 8: Modul motor – generátor

V závěru kapitoly naleznete dvě cvičení *Využití propojovacího modulu a Invertující zapojení s operačním zesilovačem*, která je vhodná vypracovat bezprostředně po prostudování předchozích článků. První cvičení využívá propojovací modul a součástky, které se do něj dle zadání a schématu zapojení umisťují. Druhé cvičení je zaměřeno na využití modulu s operačním zesilovačem při sestavení obvodu uvedeného ve schématu zapojení. Pod cvičeními je uveden návrh řešení, který kromě pracovního postupu obsahuje obrázek se správným řešením zapojeného obvodu. Pro ověření získaných znalostí je v závěru kapitoly zařazen autotest *Propojovací moduly a obvody*.

3.1.6 Kapitola Propojení s počítačem a program RC2000

Studijní článek *Komunikační modul* popisuje modul určený pro komunikaci s počítačem. Součástí článku je způsob propojení modulu a počítače a také samotné napájení modulu pomocí zdroje napětí. Modul obsahuje několik částí, které slouží k různým účelům. Tyto části jsou ve studijním článku podrobně vysvětleny a označeny pomocí obrázku s popisky. Na komunikačním modulu lze nalézt řadu vstupních a výstupních konektorů, které jsou součástí uvedeného popisu.

Kapitola obsahuje také cvičení *Dvoukanálový osciloskop* vycházející z předchozího studijního článku, které je zaměřeno na procvičení ovládání dvoukanálového osciloskopu. Součástí je propojení funkčního generátoru s komunikačním modulem a nastavením požadovaných hodnot. Cvičení obsahuje návrh řešení s pracovním postupem a obrázkem správného propojení funkčního generátoru a komunikačního modulu. V závěru kapitoly naleznete autotest *Propojení s počítačem a program rc2000*, vycházející z předchozích článků, který slouží k ověření získaných znalostí.

3.1.7 Kapitola Příklady určené pro elektrotechnická měření

První cvičení *Měření VA charakteristiky diody* je zaměřeno na měření volt-ampérové charakteristiky diody a zjištění prahového napětí. U tohoto cvičení, se studenti naučí určit katodu a anodu diody pomocí voltmetru a určit tak závěrný a propustný směr. Měření bude prováděno pro křemíkové diody a svítivé diody (LED).

Poslední cvičení v této kapitole *Neinvertující zapojení s operačním zesílačem*, je obdobou předchozího. Studenti vypočítají a ověří hodnotu zesílení obvodu s využitím funkčního generátoru a osciloskopu. Provedou měření pomocí stejnosměrného zdroje napětí a voltmetru a navrhnou obvod s určeným zesílením. Pro ověření správnosti obvodu provedou opakované měření.

3.1.8 Kapitola Literatura a použité zdroje

Závěrečná kapitola obsahuje studijní článek *Literatura a použité zdroje*, ve kterém je uvedena literatura a další materiály použité při sestavení výukového kurzu. Zdroje jsou rozděleny do dvou skupin na literaturu a ostatní materiály.
3.2 UKÁZKA STUDIJNÍCH ČLÁNKŮ A CVIČENÍ

V této kapitole můžeme nalézt vybrané studijní články a cvičení z vytvořeného studijního elektronického materiálu. Jednotlivé textové části a obrázky jsou převzaty přímo z výukového kurzu a upraveny pro možné vložení do této práce.

3.2.1 STUDIJNÍ ČLÁNEK PROGRAMOVATELNÝ STEJNOSMĚRNÝ ZDROJ NAPĚTÍ

PROGRAMOVATELNÝ STEJNOSMĚRNÝ ZDROJ NAPĚTÍ

Podívejte se na obrázek

Obrázek 9: Programovatelný stejnosměrný zdroj napětí

Výstupní napětí zdroje je v rozsahu -10,24 V až 10,24 V a maximální výstupní proud je 250 mA. Díky malému výstupnímu odporu (<0,1 Ω) se zdroj chová jako ideální. Přestože skutečně ideální zdroj napětí neexistuje, je možné se k němu přiblížit,
co nejmenším vnitřním odporem. V našem případě uvažujeme o ideální zdroj napětí, který se chová tak, že napětí na svorkách zdroje je nezávislé na připojené zátěži.

Napětí zdroje můžeme měnit v různých krocích pomocí tlačítek. Hodnota nastaveného napětí je zobrazena pomocí sedmi-segmentového displeje, kdy nejmenší zobrazená hodnota je ±1 mV. Případně lze nastavit menší hodnotu pomocí dalších ovládacích tlačítek po 50 µV. Menší hodnoty než ±1 mV však zdroj nezobrazuje. Kromě postupného nastavení lze přepínat mezi mezními hodnotami napětí nebo nastavit nulovou hodnotu.

Podívejme se na obrázek

Obrázek 10: Popis programovatelného stejnosměrného zdroje napětí

1...Napájecí konektor zdroje +5V, připojuje se k panelu pro moduly.
2...Napájecí konektor zdroje GND (zem), připojuje se k panelu pro moduly.
3...Sedmi-segmentový displej Voltage v bloku VALUE zobrazující aktuálně nastavenou hodnotu napětí. Nejmenší možná zobrazovaná hodnota ±1 mV.
4...Konektory výstupního stejnosměrného napětí v bloku OUT. U spodního konektoru je umístěna červená LED indikující přetížení zdroje. Výstupní napětí zdroje lze nastavit v rozsahu -10,24 V až 10,24 V.
5...Pomocí tlačítka Fuse, umístěného v bloku OUT, lze ukončit ochranný režim zdroje v případě jeho přetížení.
6...Pomocí prvních tlačítek Coarse v bloku VALUE, lze nastavit hodnotu napětí v kroku 1 V.
7...Pomocí druhých tlačítek Coarse v bloku VALUE, lze nastavit hodnotu napětí v kroku 100 mV.
8...Pomocí třetích tlačítek Coarse v bloku VALUE, lze nastavit hodnotu napětí v kroku 10 mV.
9...Pomocí čtvrtých tlačítek Coarse v bloku VALUE, lze nastavit hodnotu napětí v kroku 1 mV.
10...Tlačítko Write v bloku MEM slouží k uložení nastavené hodnoty napětí do paměti zdroje. Lze uložit až 8 hodnot napětí.
11...Tlačítko Clear v bloku MEM slouží k vymazání všech uložených hodnot napětí v paměti zdroje.
12...Tlačítko Read v bloku MEM slouží k načtení uložené hodnoty napětí z paměti zdroje.
13...Pomocí tlačítek Step v bloku FINE, lze nastavit hodnotu napětí v kroku 50 µV, která se však nezobrazuje na displeji zdroje.
14...Tlačítkem Hold v bloku FINE, lze uložit nastavenou hodnotu (tlačítky Step) do paměti.
15...Pomocí tlačítka Max v bloku SET nastavíme nejvyšší možnou hodnotu napětí 10,24 V.
16...Pomocí tlačítka Zero v bloku SET nastavíme napětí na 0 V.
17...Pomocí tlačítka Min v bloku SET nastavíme nejnižší možnou hodnotu napětí -10,24 V.
18...LED indukující připojení modulu k napájecímu napětí.

NASTAVENÍ VÝSTUPNÍHO NAPĚTÍ ZDROJE

V následující animaci nastavíme výstupní napětí zdroje pomocí ovládacích tlačítek Coarse v bloku VALUE na hodnotu 6,45 V. Uložíme ji následně do paměti tlačítkem Write a zvolíme maximální napětí 10,24 V, pomocí tlačítku Max. V závěru animace obnovíme z paměti uloženou hodnotu tlačítkem Read a vyzkoušíme nastavit nulovou hodnotu napětí pomocí tlačítku Zero.

1. Propojte konektor modulu +5V s konektorem +5 na panelu a následně konektor modulu GND s konektorem GND na panelu.
2. Stiskněte opakovaně první tlačítko **Coarse** v bloku **VALUE** pro nastavení číslice 6 na displeji.

3. Stiskněte opakovaně druhé tlačítko **Coarse** v bloku **VALUE** pro nastavení číslice 4 na displeji.

4. Stiskněte opakovaně třetí tlačítko **Coarse** v bloku **VALUE** pro nastavení číslice 5 na displeji. Nastavili jsme hodnotu výstupní napětí na **6,45 V**.

5. Stiskněte tlačítko **Write** v bloku **MEM** pro uložení aktuálně nastavené hodnoty napětí do paměti zdroje.

6. Stiskněte tlačítko **Max** v bloku **SET** pro nastavení maximální hodnoty napětí zdroje. Nastavili jsme hodnotu výstupní napětí na **10,24 V**.

7. Stiskněte tlačítko **Read** v bloku **MEM** pro načtení uložené hodnoty napětí. Nastavili jsme hodnotu výstupní napětí na **6,45 V**.

8. Stiskněte tlačítko **Zero** v bloku **SET** pro nastavení nulové hodnoty napětí. Nastavili jsme hodnotu výstupní napětí na **0 V**.

Podívejte se na animaci

Obrázek 11: Nastavení programovatelného stejnosměrného zdroje napětí

3.2.2 **Studijní článek** Propojovací moduly

Propojovací moduly

Podívejte se na obrázek

![Obrázek 12: Propojovací panel](image12)

SÉRIOVÝ / PARALELNÍ OBVOD

Propojovací modul (*SERIES / PARALLEL CIRCUIT*) obsahuje dva základní typy obvodů. Pomocí tohoto modulu lze vytvořit sériové i paralelní zapojení. Součástí modulu je také vnitřní stejnosměrný zdroj se stálým výstupním napětím +1 V. Lze jej využit pro různá elektronická zapojení. Přetížení zdroje je indikováno pomocí LED, která je umístěna u jeho výstupních konektorů.

Podívejte se na obrázek

![Obrázek 13: Popis propojovacího panelu](image13)
1. Napájecí konektor zdroje +5 (V), připojuje se k panelu pro moduly.

2. Napájecí konektor zdroje GND (zem), připojuje se k panelu pro moduly.

3. Výstupní konektory stejnosměrného zdroje napětí s indikací přetížení pomocí LED.

5. LED indukující připojení modulu k napájecímu napětí.

Modul prvků

Tento propojovací modul (COMPONENT BOARD) je novější verzí předchozího typu. Opět lze s jeho pomocí sestavit sériová i paralelní zapojení. Obsahuje však více konektorů a rozpojení. Díky tomu je možné vytvořit větší množství různých obvodů než u předchozího typu. Součástí modulu je také stejnosměrný zdroj napětí, u kterého můžeme nastavit hodnotu výstupního napětí. Pomocí tlačítek u zdroje lze měnit napětí v kroku 0,4 mV. Rozsah zdroje je v rozsahu 0 až 10 V. V případě přetížení zdroje je tento stav indikován pomocí LED umístěné u výstupních konektorů. Regulovatelný zdroj napětí s větším rozsahem poskytuje více možností využití u různých elektronických zapojení.

Podívejte se na obrázek

![Obrázek 14: Popis modulu prvků](image)

1. Napájecí konektor modulu +5V, připojuje se k panelu pro moduly.

2. Napájecí konektor modulu GND (zem), připojuje se k panelu pro moduly.

3. Výstupní konektory stejnosměrného zdroje napětí s indikací přetížení pomocí LED.
4. Pomocí tlačítka **Fine** lze nastavit hodnoty napětí v rozsahu 0 až 10V. Každým stisknutím tlačítka přičteme nebo odečteme hodnotu (krok) 0,4 mV. Hodnoty napětí však nejsou zobrazovány. Je proto nutné si pamatovat počet stisknutí nebo změřit výstupní napětí pomocí voltmetru.

6. LED indukující připojení modulu k napájecímu napětí.

3.2.3 Cvičení nastavení programovatelného zdroje napětí

Zadání

Do panelu stavebnice vložte Programovatelný stejnosměrný zdroj napětí (**PROGRAMMABLE DC SUPPLY**) a nastavte následující parametry.

1. Výstupní hodnotu napětí **10 V** uložte do paměti zdroje.
2. Výstupní hodnotu napětí **3,52 V** uložte do paměti zdroje.
3. Nastavte maximální hodnotu napětí **10,24 V**.
4. Postupně nastavte napětí zdroje uložené v paměti.

Řešení

1. Propojte konektor modulu + **5 V** s konektorem +5 na panelu a následně konektor modulu **GND** s konektorem **GND** na panelu.
2. Pomocí tlačítka **Coarse** v bloku **VALUE** nastavte požadovanou hodnotu napětí.
3. Tlačítkem **Write** v bloku **MEM** uložte aktuálně nastavenou hodnoty napětí do paměti zdroje.
5. Tlačítkem **Max** v bloku **SET** nastavte maximální hodnotu napětí.
6. Stisknutím tlačítka **Read** v bloku **MEM** načtete uložené hodnoty napětí.
3.2.4 Cvičení Využití propojovacího modulu

Zadání

Využijte propojovací modul COMPONENT BOARD k sestavení obvodu s paralelním řazením rezistorů. Obvod sestavte dle následujícího schématu zapojení. Hodnoty rezistorů jsou \(R_1 = 100 \, \Omega \) a \(R_2 = 1 \, \mathrm{k}\Omega \). Napětí zdroje nastavte na 10 V.

Schéma zapojení

\[
\begin{align*}
&-10 \, \mathrm{V} & &+ \hfill \\
&\text{DC} & &\hfill \\
&\text{R1} = 100 \, \Omega & &\text{R2} = 1 \, \mathrm{k}\Omega \\
\end{align*}
\]

Obrázek 15: Paralelní zapojení rezistorů

řešení

1. Do panelu stavebnice vložte modul COMPONENT BOARD.

2. Vyhledejte součástky rezistor umístěné na propojovacím prvku s uvedenými hodnotami.

4. Připojte napájení modulu pomocí panelu stavebnice.

5. Připojte zdroj napětí na propojovacím modulu do obvodu a nastavte maximální napětí 10 V pomocí tlačítek Fine.

Obrázek 16: Zapojení pomocí rc2000
4 NÁVRH PŘÍKLADŮ VHODNÝCH PRO VÝUKU

4.1 VOLTBA OBSAHU JEDNOTLIVÝCH PŘÍKLADŮ

ověřit, zda příklady mohou být bez větších problémů vypracovány. Tuto problematiku se zabýváme v následující části diplomové práce.

4.2 REALIZACE PŘÍKLADŮ

4.2.1 MĚŘENÍ VA CHARAKTERISTIKY DIODY

ZADÁNÍ

Potřeby

- modul prvků (COMPONENT BOARD)
- komunikační modul (ANALOG & DIGITAL DATA UNIT)
- programovatelný stejnosměrný zdroj napětí (PROGRAMMABLE DC SUPPLY)
- voltmetr (VOLTMETER DC & AC RMS)
- stejnosměrný zdroj napětí Z5
- propojovací vodiče
- rezistor R = 100 Ω
- křemíková dioda 1N4070, LED (červená, zelená, žlutá)

Úvod

Dioda je polovodičová součástka, která je určena pro vedení proudu pouze v jednom směru. Tuto její základní vlastnost umožňuje přechod P – N. Dioda má dva vývody anodu (A) a katodu (K). Pokud není přechod P – N připojen k vnějšímu napětí, dochází uvnitř diody ke vzniku tzv. potenciálové bariéry, který zabraňuje průchodu proudu. Zapojením diody do obvodu v propustném směru, dojde k překonání bariéry a začne procházet proud. Kladné nosiče náboje jsou přitahovány záporným napětím a volné elektrony kladným napětím.
Při zapojení diody do obvodu v závěrném směru obrátíme polaritu napětí. Uvnitř diody dojde k vytvoření prázdné oblasti a nemůže proto procházet proud. Při výrobě diod nelze vytvořit zcela čistý materiál, a proto u diody zapojené v závěrném směru může procházet určitý zbytkový proud, který je však u většiny součástek zanedbatelný.

Dioda v propustném a závěrném směru

![Diode symbol diagram](image)

Obrázek 17: Zobrazení přechodu PN diody

VA charakteristika diody

![VA characteristic graph](image)

Obrázek 18: VA charakteristika diody
Schéma zapojení

Obrázek 19: Zapojení diody v propustném a závěrném směru

Úkoly

1. Určete anodu a katodu diody. Přečtěte schématu zapojení sestavte obvod a zjistěte, kdy je dioda zapojena v propustném, a kdy v závěrném směru. Na stejnosměrném zdroji napětí nastavte hodnotu 1 V.

3. Zjistěte prahové napětí LED, kdy dojde k jejímu rozsvícení. Proveděte měření pro různé barvy diod (zelená, červená, žlutá) a porovnejte získané výsledky. Zapojte diodu v propustném směru dle prvního schématu zapojení. Napětí zvyšujte v kroku 0,1 V, dokud nedojde k rozsvícení LED.
ŘEŠENÍ

Úkol 1

Doplnění katody a anody do schématu zapojení

Úkol 2

Měření VA charakteristiky diody pomocí programu rc2000

Měření volt-ampérové charakteristiky jsme provedli pro rozsah napětí -5 V až 5 V. Pomocí kurzoru lze odečist prahové napětí $U_P = 0,53$ V diody 1N4070. Při nahlédnutí do katalogu součástek měřené napětí odpovídá uvedené hodnotě $U_P = 0,51$ V.
Úkol 3
V následující tabulce jsou uvedeny naměřené hodnoty prahového napětí pro různé LED. Každá z LED měla odlišnou hodnotu prahového napětí. Při počátečních hodnotách napětí se dioda chovala jako „nekonečně“ velký odpor a na voltmetru bylo měřeno napětí zdroje \(U_D = U \). Při dosažení prahového napětí začala LED svítit a voltmetr napětí na diodě \(U_D = U - U_R \).

Tabulka 1: Naměřené hodnoty prahového napětí

<table>
<thead>
<tr>
<th>Barva LED</th>
<th>Prahové napětí (U_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>zelená</td>
<td>1,8 V</td>
</tr>
<tr>
<td>červená</td>
<td>1,7 V</td>
</tr>
<tr>
<td>žlutá</td>
<td>1,9 V</td>
</tr>
</tbody>
</table>

Schéma zapojení

Obrázek 23: Schéma zapojení LED

Realizace pomocí rc2000

Obrázek 24: Zapojení diody pomocí rc2000
4.2.2 MĚŘENÍ VA CHARAKTERISTIKY ZENEROVY DIODY

ZADÁNÍ

Potřeby

- modul prvků (COMPONENT BOARD)
- komunikační modul (ANALOG & DIGITAL DATA UNIT)
- programovatelný stejnosměrný zdroj napětí (PROGRAMMABLE DC SUPPLY)
- voltmetr (VOLTMETER DC & AC RMS)
- stejnosměrný zdroj napětí Z5
- propojovací vodiče
- rezistor $R = 100 \, \Omega$
- Zenerova dioda 3V0

Úvod

Zenerova dioda se v propustném směru neliší od křemíkových diod. Dioda má dva vývody anodu (A) a katodu (K). Pokud není přechod $P - N$ připojen k vnějšímu napětí, dochází uvnitř diody ke vzniku tzv. potenciálové bariéry, který zabraňuje průchodu proudu. Zapojením diody do obvodu v propustném směru, se zruší uvedená bariéra a začne procházet proud. Kladné nosiče náboje jsou přitahovány záporným napětím a volné elektrony kladným napětím.

Při zapojení diody do obvodu v závěrném směru obrátíme polaritu napětí. Při určité hodnotě napětí (Zenerovo napětí) dojde k nedestraktivnímu průrazu, který je způsoben vytrháváním elektronů z vazby účinkem silného elektrického pole, tzv. Zenerův jev. Tento jen se využívá při stabilizaci napětí.

Měřením volt-ampérové charakteristiky diody lze pozorovat, že se součástka chová podobě v propustném i závěrném směru. V propustném směru po překročení prahového napětí U_p dochází k rychlému nárůstu proudu. Obdobný efekt je u překročení Zenerova napětí U_Z v závěrném směru.
VA charakteristika Zenerovy diody

Obrázek 25: VA charakteristika Zenerovy diody

Schéma zapojení

Obrázek 26: Schéma zapojení Zenerovy diody v propustném a závěrném směru

Úkoly

1. Určete anodu a katodu Zenerovy diody. Pomocí schématu zapojení sestavte obvod a zjistěte, kdy je dioda zapojena v propustném, a kdy v závěrném směru. Na stejnosměrném zdroji napětí nastavte hodnotu 1 V.

2. Změřte Zenerovo napětí U_Z pomocí stejnosměrného zdroje napětí a voltmetru. Zapojení obvodu provedte dle schématu zapojení. Měření provedte v rozsahu hodnot 2 V až 3,8 V v kroku 0,2 V.

ŘEŠENÍ

Úkol 1

Celkové napětí \(U \), je součtem napětí na rezistoru \(U_R \) a napětí na Zenerově diodě \(U_D \). Pokud zapojíme diodu v závěrném směru, bude mít „nekonečně“ velký odpor. Nesmíme však překročit hodnotu Zenerova napětí. V tomto případě bude napětí \(U_D = U \) a na voltmetru změříme hodnotu napětí zdroje. Dioda zapojená v propustném směru se bude chovat jako „malý“ rezistor. V tomto případě bude napětí \(U_D = U - U_R \) a na voltmetru změříme napětí na diodě.

Doplnění katody a anody do schématu zapojení

Úkol 2

Pro měření Zenerova napětí zapojíme diodu v závěrném směru. Jednotlivé naměřené hodnoty napětí zapišeme do následující tabulky. Logickou úvahou lze určit možné Zenerovo napětí. Vzrostlé napětí \(U \) nad hodnotou Zenerova napětí \(U_Z \) zvyšuje se proud protékající diodou, avšak napětí na diodě \(U_D \) zůstává téměř konstantní.
Porovnáme-li nastavenou a naměřenou hodnotu pomocí voltmetru, dochází k větším rozdílům od \(3,2\ \text{V}\). Lze tedy uvažovat o této hodnotě blížící se Zenerovu napětí.

Tabulka 2: Naměřené hodnoty napětí

<table>
<thead>
<tr>
<th>Měření</th>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
<th>5.</th>
<th>6.</th>
<th>7.</th>
<th>8.</th>
<th>9.</th>
<th>10.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U_1) [V]</td>
<td>2</td>
<td>2,2</td>
<td>2,4</td>
<td>2,6</td>
<td>2,8</td>
<td>3</td>
<td>3,2</td>
<td>3,4</td>
<td>3,6</td>
<td>3,8</td>
</tr>
<tr>
<td>(U_0) [V]</td>
<td>1,986</td>
<td>2,168</td>
<td>2,340</td>
<td>2,497</td>
<td>2,638</td>
<td>2,762</td>
<td>2,872</td>
<td>2,968</td>
<td>3,053</td>
<td>3,129</td>
</tr>
</tbody>
</table>

Úkol 3

Měření VA charakteristiky Zenerovy diody pomocí programu rc2000

Obrázek 29: VA charakteristika Zenerovy diody

Měření volt-ampérové charakteristiky jsme provedly pro rozsah napětí \(-5\ \text{V}\) až \(5\ \text{V}\). Pomocí kurzoru lze odečíst prahové napětí \(U_p = 0,625\ \text{V}\), což přibližně odpovídá běžně udávané hodnotě \(0,7\ \text{V}\).
Obrázek 30: VA charakteristika Zenerovy diody, Zenerovo napětí

Zenerovo napětí bylo určeno pomocí přepnutí do třetího kvadrantu grafu a odečtení prostřednictvím kurzoru. Hodnota Zenerova napětí byla určena na $U_Z = 3 \, V$, což odpovídá popisku součástky $3V0$.

Úkol 4

Porovnáme-li změřenou hodnotu pomocí stejnosměrného zdroje napětí a voltmetru s odečtenou hodnotou z grafu volt-ampérové charakteristiky, jsou obě hodnoty téměř shodné. Je tedy potvrzeno, že hodnota Zenerova napětí u zadané součástky je $U_Z = 3 \, V$.

Realizace pomocí rc2000

Obrázek 31: Zapojení Zenerovy diody pomocí rc2000
4.2.3 SÉRIOVÝ REZONANČNÍ OBVOD RLC

ZADÁNÍ

Potřeby

- funkční generátor (FUNCTION GENERATOR)
- komunikační modul (ANALOG & DIGITAL DATA UNIT)
- rezistorová dekáda 2 (R DECADE 2)
- indukční sestava (L SET)
- kapacitní dekáda (C DECADE)
- stejnosměrný zdroj napětí Z5
- propojovací vodiče

Úvod

Schéma zapojení

Jednotlivými součástkami v obvodu prochází stejný proud, avšak napětí se liší u každého prvku svou velikostí a vzájemnou fází. Napětí na rezistoru U_R má shodnou fázi jako protékající proud. Napětí na induktoru U_L předbíhá proud a naopak napětí na kapacitoru U_C se za proudem zpožďuje.

Při rezonanci je impedance rovna rezistoru $Z = R$. Odpor rezistoru R je obvykle 10x až 100x menší než impedance Z a představuje při sériové rezonanci poměrně malý činný odpor. Napětí na rezistoru U_R je rovno elektromotorickému napětí zdroje U. Na induktoru
a kapacitoru se vytvoří napětí o stejné velikosti, avšak s opačnou fází. Poměrně malé
elektromotorické napětí vyvolá v sériovém rezonančním obvodu velký proud a tím velká
napětí na kapacitoru a induktoru. Jedná se o rezonanci napětí. Při rezonanční frekvenci
musí být maximální napětí na induktoru L na stejné úrovni jako nulové napětí impedance
Z.

Vzorec pro výpočet velikosti proudu v obvodu

\[I = \frac{U}{R} = \frac{U}{Z} \]

Rovnice 1: Výpočet velikosti proudu

Výpočet napětí rezistoru

\[U_R = I \cdot R = \frac{U}{R} \cdot R = U \]

Rovnice 2: Výpočet napětí rezistoru

Výpočet napětí kapacitoru a induktoru

\[U_C = U_L = I \cdot Z = \frac{U}{R} \cdot Z \]

Rovnice 3: Výpočet napětí kapacitoru a induktoru

Rezonanční křivka

Úkoly

1. Vypočítejte rezonanční frekvenci pro hodnoty \(L = 1 \) H a \(C = 100 \) nF.
2. Sestavte obvod dle schématu zapojení a zvolte následující hodnoty součástek. Rezistorový modul nastavte na hodnotu \(R = 2 \, \text{k}\Omega \), induktorový modul zvolte \(L = 1 \, \text{H} \) a na kapacitorním modulu nastavte hodnotu \(C = 100 \, \text{nF} \). Na funkčním generátoru, sloužícího jako zdroj střídavého napětí nastavte frekvenci \(f = 100 \, \text{Hz} \), amplitudu \(U = 1 \, \text{V} \) a zvolte harmonický průběh signálu. Zapojený obvod propojte dle následujícího schématu s komunikačním modulem a spusťte program rc2000 v režimu dvoukanálového osciloskopu.

3. Zvyšujte frekvenci \(f \) v rozsahu 100 Hz až 1 kHz. Pro každou frekvenci provedte měření na osciloskopu s využitím sekvence kanálu B a najděte rezonanční frekvenci pomocí kurzorů osciloskopu.

![Obrázek 34: Propojení obvodu RLC s komunikačním modulem](image)

1. Ověřte nalezenou rezonanční frekvenci pomocí následujícího výpočtu, kde \(f \) je frekvence a \(T \) časová perioda. V osciloskopu změňte zobrazení na Phasor a popište jednotlivé fáze signálu.

\[
f = \frac{1}{T}
\]

Rovnica 5: Výpočet frekvence

2. Změňte hodnotu kapacitoru \(C = 300 \, \text{nF} \) a provedte měření při nastavené rezonanční frekvenci pomocí osciloskopu. Rezonanční frekvenci nejprve spočítejte a následně provedte měření. Porovnejte získané výsledky s předchozím měřením.
ŘEŠENÍ

Úkol 1
Výpočet rezonanční frekvence

\[f = \frac{1}{2\pi \cdot \sqrt{L \cdot C}} = \frac{1}{2\pi \cdot \sqrt{1 \cdot 100}} = 503,3 \text{ Hz} \]

Rovnice 6: Výpočet rezonanční frekvence

Pomocí výpočtu byla zjištěna rezonanční frekvence sériového rezonačního obvodu s určenými hodnotami součástek \(f = 503,3 \text{ Hz} \).

Úkol 2

Úkol 3
Měření pomocí osciloskopu programu rc2000

Obrázek 35: Měření pomocí osciloskopu rc2000

Při nastavené frekvenci \(f = 500 \text{ Hz} \) na funkčním generátoru bylo napětí na induktoru největší \(U_L = 1,54 \text{ V} \) a zároveň byla hodnota impedance Z nulová. Napětí na kapacitoru bylo téměř shodné \(U_C = -1,58 \text{ V} \) a dle polarity v opačné fázi. Lze tedy určit hodnotu rezonanční frekvence \(f = 500 \text{ Hz} \). Hodnota frekvence odpovídá vypočtené hodnotě. Nastavením frekvence funkčního generátoru na předem vypočtenou hodnotu bychom získali přesnější výsledky.
Úkol 4

Podíváme-li se pozorně na určené místo frekvenční rezonance, v grafu osciloskopu, dochází k rezonanci v časové periodě 1,99ms. Dosazením do vzorce pro výpočet frekvence bychom měli získat stejný výsledek. Z následujícího výpočtu vyplívá, že jsme hodnotu rezonanční frekvence určili správně.

Výpočet rezonanční frekvence

\[f = \frac{1}{T} = \frac{1}{1,99m} = 502,5 \, Hz \]

Rovnice 7: Výpočet rezonanční frekvence

Zobrazení fází signálu

Signál rezistoru je ve fázi se vstupním signálem. Signál induktoru je o 90° otočený vůči vstupnímu signálu a signál kapacitoru je vůči vstupnímu signálu otočený o -90°. Z grafu lze odvodit nepřesnost jeho zobrazení při nastavené frekvenci 500 Hz, nastavením vypočtené hodnoty rezonanční frekvence dosáhneme přesnějšího zobrazení.

Úkol 5

Výpočet rezonanční frekvence

\[f = \frac{1}{2 \pi \cdot \sqrt{L \cdot C}} = \frac{1}{2 \pi \cdot \sqrt{1 \cdot 300n}} = 290,6 \, Hz \]

Rovnice 8: Výpočet rezonanční frekvence
Měření pomocí osciloskopu programu rc2000

Změnili jsme hodnotu kapacitoru v obvodu na \(C = 300 \text{ nF} \) a vypočetli hodnotu rezonanční frekvence \(f = 290,6 \text{ Hz} \). Pomocí kurzorů lze zjistit maximální hodnotu napětí induktoru \(U_L = 0,90 \text{ V} \) při nulové impedanci. Zvětšením hodnoty kapacitoru došlo ke zmenšení rezonanční frekvence při nižším napětí na induktoru, než v předchozím měření, kde naopak došlo ke zvýšení napětí oproti nastavené hodnotě.

Realizace pomocí rc2000

Obrázek 37: Měření pomocí osciloskopu

Obrázek 38: Zapojení obvodu RLC pomocí rc2000
4.2.4 Invertující zapojení s operačním zesilovačem

Zadání

Potřeby

- funkční generátor (FUNCTION GENERATOR)
- operační zesilovač (OPERATION AMPLIFIER)
- komunikační modul (ANALOG & DIGITAL DATA UNIT)
- programovatelný stejnosměrný zdroj napětí (PROGRAMMABLE DC SUPPLY)
- voltmetr (VOLTMETER DC & AC RMS)
- stejnosměrný zdroj napětí Z5
- propojovací vodiče
- rezistory \(R_1 = 1 \text{k} \Omega, \ R_2 = 2 \text{k}\Omega, \ R_3 = 5 \text{k}\Omega \)

Úvod

Operační zesilovač byl původně navržen pro realizaci matematických operací v analogových počítačích. Jedním ze základních obvodů, které lze pomocí operačního zesilovače sestavit je invertující zapojení s operačním zesilovačem. Zapojení slouží k zesílení vstupního signálu. Vzhledem k tomu, že se jedná o invertující zapojení, je u výstupního signálu obracena jeho polarita. Pokud na jeho vstup přivedeme kladnou hodnotu napětí, na výstupu bude napětí zesílené a záporné. Do jaké míry bude výstupní signál zesílen, určíme pomocí rezistorů \(R_1 \) a \(R_2 \).

Vzorec pro výpočet zesílení

\[
|A_u| = \frac{R_2}{R_1}
\]

Rovnice 9: Výpočet zesílení

Vzorec pro výpočet výstupního napětí

\[
U_2 = -\frac{R_2}{R_1} \cdot U_1 = -|A_u| \cdot U_1
\]

Rovnice 10: Výpočet vstupního napětí
Schéma zapojení

Obrázek 39: Schéma inverujícího zapojení s OZ

Úkoly

1. Vypočítejte zesílení obvodu s rezistory $R_1 = 1 \, k\Omega$ a $R_2 = 2 \, k\Omega$.

2. Sestavte obvod dle schématu zapojení s využitím uvedených prvků stavebnice. Funkční generátor nastavte na následující hodnoty $f = 520 \, Hz$, $U_1 = 1 \, V$, harmonický tvar signálu. Ověřte pomocí dvoukanálového osciloskopu vypočtenou hodnotu zesílení.

3. Modifikujte zapojení výměnou funkčního generátoru za stejnosměrný zdroj napětí a na výstup obvodu se zesilovačem připojte voltmetr. Vypočítejte výstupní napětí U_2 a ověřte jej pomocí voltmetu. Vstupní napětí nastavte na $U_1 = 5 \, V$.

4. Navrhněte a realizujte invertující zapojení s operačním zesilovačem pro zesílení $A_u = 3$. Pomocí osciloskopu a funkčního generátoru ověřte zesílení sestaveného obvodu. Pro sestavení obvodu využijte rezistor $R_3 = 5 \, k\Omega$.

ŘEŠENÍ

Úkol 1

Výpočet zesílení

$$|A_u| = \frac{R_2}{R_1} = \frac{2}{1} = 2$$

Rovnice 11: Výpočet zesílení

Obvod zobrazený na obrázku s použitými rezistory $R_1 = 1 \, k\Omega$ a $R_2 = 2 \, k\Omega$ má zesílení $A_u = 2$. Vstupní napětí bude na výstupu dvojnásobně zesíleno a bude mít opačnou polaritu.
Úkol 2
Měření pomocí dvoukanálového osciloskopu

Po zobrazení vstupního a výstupního signálu z obvodu, je zřejmé, že dochází k dvojnásobnému zesílení a změně polarity signálu. Při vstupním napětí $U_1 = 0,98 \, \text{V}$ bylo na výstupu napětí $U_2 = -1,98 \, \text{V}$. Pro hodnotu vstupního napětí $U_1 = -1 \, \text{V}$ bylo na výstupu napětí $U_2 = 2 \, \text{V}$.

Úkol 3
Výpočet výstupního napětí

$U_2 = - \frac{R_2}{R_1} \cdot U_1 = - \frac{2}{1} \cdot 5 = 10 \, \text{V}$

Úkol 4
Výpočet zesílení je založen na podílu obou rezistorů. Pro zesílení $A_u = 3$ bude nutné využít rezistory $R_1 = 2 \, \text{k}Ω$ a $R_2 = 6 \, \text{k}Ω$. Vzhledem k určeným hodnotám rezistorů v zadání, je nutné rezistor R_2 sestavit sériovým spojením rezistorů o hodnotách $1 \, \text{k}Ω$ a $5 \, \text{k}Ω$.
Výpočet zesílení

\[|A_u| = \frac{R_2}{R_1} = \frac{1 + 5}{2} = 3 \]

Rovnice 12: Výpočet zesílení

Schéma zapojení

Obrázek 42: Schéma invertujícího zapojení

Měření pomocí dvoukanálového osciloskopu

Po zobrazení vstupního a výstupního signálu z obvodu, je zřejmé, že dochází k trojnásobnému zesílení a změně polarity signálu. Při vstupním napětí \(U_1 = 1 \text{ V} \) bylo na výstupu napětí \(U_2 = -3 \text{ V} \). Pro hodnotu vstupního napětí \(U_1 = -1 \text{ V} \) bylo na výstupu napětí \(U_2 = 3 \text{ V} \).
Realizace pomocí rc2000

Obrázek 44: Zapojení invertujícího obvodu pomocí rc2000

4.2.5 Neinvertující zapojení s operačním zesilovačem

Zadání

Potřeby

- funkční generátor (FUNCTION GENERATOR)
- operační zesilovač (OPERATION AMPLIFIER)
- komunikační modul (ANALOG & DIGITAL DATA UNIT)
- programovatelný stejnosměrný zdroj napětí (PROGRAMMABLE DC SUPPLY)
- voltmetr (VOLTMETER DC & AC RMS)
- stejnosměrný zdroj napětí Z5
- propojovací vodiče
- rezistory \(R_1 = 2 \, \text{k}\Omega \), \(R_2 = 10 \, \text{k}\Omega \)

Úvod

Operační zesilovač byl původně navržen pro realizaci matematických operací v analogových počítačích. Jedním ze základních obvodů, které lze pomocí operačního zesilovače sestavit je neinvertující zapojení s operačním zesilovačem. Zapojení slouží k zesílení vstupního signálu. Vzhledem k tomu, že se jedná o neinvertující zapojení, není u výstupního signálu obarvena jeho polarita, jak tomu je u inverujícího zapojení. Pokud na jeho vstup přivedeme kladnou hodnotu napětí, na výstupu bude zesílena a opět kladná. Do jaké míry bude výstupní signál zesílen, určíme pomocí rezistorů \(R_1 \) a \(R_2 \).
Vzorec pro výpočet zesílení

\[|A_u| = 1 + \frac{R_2}{R_1} \]

Rovnice 13: Výpočet zesílení

Vzorec pro výpočet výstupního napětí

\[U_2 = \left(1 + \frac{R_2}{R_1}\right) \cdot U_1 = |A_u| \cdot U_1 \]

Rovnice 14: Výpočet výstupního napětí

Schéma zapojení

![Schéma neinvertujícího zapojení s OZ](image.png)

Obrázek 45: Schéma neinvertujícího zapojení s OZ

Úkoly

1. Vypočítejte zesílení obvodu s rezistory \(R_1 = 2 \, \text{kΩ} \) a \(R_2 = 10 \, \text{kΩ} \).

2. Sestavte obvod dle schématu zapojení s využitím uvedených prvků stavebnice. Funkční generátor nastavte na následující hodnoty \(f = 360 \, \text{Hz} \), \(U_1 = 0,5 \, \text{V} \), harmonický tvar signálu. Ověřte pomocí dvoukanálového osciloskopu vypočtenou hodnotu zesílení.

3. Modifikujte zapojení výměnou funkčního generátoru za stejnosměrný zdroj napětí a na výstup obvodu se zesilovačem připojte voltmetr. Vypočítejte výstupní napětí \(U_2 \) a ověřte jej pomocí voltmetru. Vstupní napětí nastavte na \(U_1 = 250 \, \text{mV} \).

4. Navrhněte a realizujte neinvertující zapojení s operačním zesilovačem pro zesílení \(A_u = 7 \). Pomocí osciloskopu a funkčního generátoru ověřte zesílení sestaveného obvodu. Pro sestavení obvodu využijte vhodné velikosti rezistorů.
ŘEŠENÍ

Úkol 1

Výpočet zesílení

\[|A_u| = 1 + \frac{R_2}{R_1} = 1 + \frac{10}{2} = 6 \]

Rovnice 15: Výpočet zesílení

Obvod zobrazený na obrázku s použitými rezistory

\(R_1 = 2 \, \text{k}\Omega \) a \(R_2 = 10 \, \text{k}\Omega \) má zesílení \(A_u = 6 \). Vstupní napětí bude na výstupu zesíleno násobkem 6 a bude mít shodnou polaritu.

Úkol 2

Měření pomocí dvoukanálového osciloskopu

Obrázek 46: Měření pomocí dvoukanálového osciloskopu

Po zobrazení vstupního a výstupního signálu z obvodu, je zřejmé, že dochází k zesílení násobkem 6 při shodné polaritě signálu. Při vstupním napětí \(U_1 = 0,5 \, \text{V} \) bylo na výstupu napětí \(U_2 = 3 \, \text{V} \). Pro hodnotu vstupního napětí \(U_1 = -1 \, \text{V} \) bylo na výstupu napětí \(U_2 = -3 \, \text{V} \).

Úkol 3

Výpočet výstupního napětí

\[U_2 = \left(1 + \frac{R_2}{R_1} \right) \cdot U_1 = \left(1 + \frac{10}{2} \right) \cdot 0,25 = 6 \cdot 0,25 = 1,5 \, \text{V} \]

Rovnice 16: Výpočet výstupního napětí
Měření výstupního napětí

Po nastavení vstupního napětí $U_1 = 250 \text{ mV}$ na stejnosměrném zdroji, bylo na voltmetru naměřeno napětí $U_2 = 1,498 \text{ V}$. Vezmeme-li v úvahu vnitřní odpor voltmetru, jedná se o velmi přesný výsledek shodný s výpočtem.

Úkol 4

Výpočet zesílení je založen na podílu obou rezistorů a je nutné brát v úvahu přičtení hodnoty 1. Pro zesílení $A_u = 7$ bude nutné využít rezistory $R_1 = 2 \text{ kΩ}$, $R_2 = 2 \text{ kΩ}$ a $R_3 = 10 \text{ kΩ}$. Vzhledem k hodnotám rezistorů, je nutné rezistor R_2 sestavit sériovým spojením rezistorů o hodnotách 2 kΩ a 10 kΩ.

Výpočet zesílení

$$|A_u| = 1 + \frac{R_2}{R_1} = 1 + \frac{10 + 2}{2} = 1 + 6 = 7$$

Rovnice 17: Výpočet zesílení

Schéma zapojení

Obrázek 47: Neinverující zapojení obvodu
Měření pomocí dvoukanálového osciloskopu

Po zobrazení vstupního a výstupního signálu z obvodu, je zřejmé, že dochází k zesílení násobkem 7 při shodné polaritě signálu. Při vstupním napětí \(U_1 = 0,5 \) V bylo na výstupu napětí \(U_2 = 3,5 \) V. Pro hodnotu vstupního napětí \(U_1 = -0,5 \) V bylo na výstupu napětí \(U_2 = -3,55 \) V.

Realizace pomocí rc2000

4.3 PRAKTICKÉ OVĚŘENÍ PŘÍKLADŮ

Vypracování příkladů proběhlo bezprostředně po sestavení jejich zadání. V předchozím textu je uvedeno jejich řešení, které bylo zhotoveno na základě jednotlivých úkolů. Každý z příkladů byl vždy sestaven promocí výukového systému rc2000 a ověřen z hlediska výsledků měření. Získané výsledky byly porovnány se zadáním a vhodným
způsobem vysvětleny. Tímto způsobem vzniklo řešení, které může využít vyučující při opravě odevzdaných prací, které žáci v rámci výuky zpracovali.

Obdobně jako u výukového kurzu, který byl v rámci této diplomové práce sestaven, je také u příkladů důležitá jejich využitelnost ve výuce. Pro skutečné ověření, zda příklady mohou být zařazeny do výuky, byla vybrána skupina studentů Pedagogické fakulty, Katedry matematiky, fyziky a technické výchovy (KMT), která uvedené příklady vypracovala dle zadání. Vybraný vzorek studentů byl zvolen z hlediska použití výukového kurzu, který bude při výuce elektrotechniky na uvedené katedře využíván. Studenti se již s uvedeným výukovým systém rc2000 setkali, a proto bylo možné zaměřit se především na ověření jednotlivých příkladů.

Obrázek 50: Práce studenta se stavebnicí rc2000

Každý ze studentů vždy vypracoval všechny sestavené příklady a bezprostředně po dokončení jejich práce proběhla diskuze, určena pro nalezení problémů během jejich realizace. Z odevzdaných dokumentů bylo možné určit, že uvedení studenti přesahují požadovanou vstupní úroveň pro jejich vypracování. Získané výsledky během měření odpovídali dříve zpracovanému řešení, včetně jejich popisu. V rámci zpětné vazby od studentů došlo k odstranění nedostatků a následným úpravám příkladů před zařazením do této práce.

Ověření příkladů pomocí studentů, kteří se již s výukovým systémem rc2000 setkali a dosahovali požadovaných znalostí, lze považovat za úspěšné. Zda však příklady bude možné využívat při běžné výuce, bude prokázáno až po zařazení výukového kurzu do vhodných předmětů. Studenti bez předchozích znalostí, kteří je teprve získávají,
mohou mít určité problémy, které nelze bez předchozího ověření nalézt. Další fází tedy bude zjištění, využitelnosti příkladů přímo v průběhu výuky, kterou doplní výukový kurz.
5 ZÁVĚR

Sestavené příklady v rámci této diplomové práce jsou vhodné pro použití ve výuce elektrotechniky, a vzhledem k vypracovanému zadání mohou být jednoduše použity. Řešení příkladů je součástí této práce a lze jej pro výukové potřeby doplnit a rozšířit. Zadání příkladů je uvedeno ve výukovém materiálu, který může sloužit jako zdroj informací při jejich zpracování.

Příklady byly ověřeny pomocí studentů Pedagogické fakulty (KMT) a opraveny na základě jejich připomínek. Tvorba výukového kurzu a práce s výukovým systémem přinesla nové zkušenosti a plány na další rozšíření vytvořeného kurzu.

6 SEZNAM OBRÁZKŮ

Obrázek 1: rc2000 ... 2
Obrázek 2: Zapojení logického obvodu .. 5
Obrázek 3: Kondenzátory na propojovacím prvku .. 7
Obrázek 4: Napájení stavebnice .. 10
Obrázek 5: Popis funkčního generátoru .. 11
Obrázek 6: Rezistorová dekáda 1 .. 14
Obrázek 7: Modul operačního zesilovače .. 16
Obrázek 8: Modul motor – generátor ... 18
Obrázek 9: Programovatelný stejnosměrný zdroj napětí .. 21
Obrázek 10: Popis programovatelného stejnosměrného zdroje napětí 22
Obrázek 11: Nastavení programovatelného stejnosměrného zdroje napětí 24
Obrázek 12: Propojovací panel ... 25
Obrázek 13: Popis propojovacího panelu .. 25
Obrázek 14: Popis modulu prvku .. 26
Obrázek 15: Paralelní zapojení rezistorů .. 28
Obrázek 16: Zapojení pomocí rc2000 .. 28
Obrázek 17: Zobrazení přechodu PN diody ... 31
Obrázek 18: VA charakteristika diody ... 31
Obrázek 19: Zapojení diody v propustném a závěrném směru 32
Obrázek 20: Propojení s komunikačním panelem ... 32
Obrázek 21: Schéma zapojení diody .. 33
Obrázek 22: VA charakteristika diody .. 33
Obrázek 23: Schéma zapojení LED ... 34
Obrázek 24: Zapojení diody pomocí rc2000 ... 34
Obrázek 25: VA charakteristika Zenerovy diody ... 36
Obrázek 26: Schéma zapojení Zenerovy diody v propustném a závěrném směru 36
Obrázek 27: Propojení s komunikačním modulem ... 37
Obrázek 28: Schéma zapojení Zenerovy diody ... 37
Obrázek 29: VA charakteristika Zenerovy diody .. 38
Obrázek 30: VA charakteristika Zenerovy diody, Zenerovo napětí 39
Obrázek 31: Zapojení Zenerovy diody pomocí rc2000 ... 39
Obrázek 32: Schéma zapojení sériového RLC obvodu ... 40
Obrázek 33: Rezonanční křivka .. 41
Obrázek 34: Propojení obvodu RLC s komunikačním modulem 42
Obrázek 35: Měření pomocí osciloskopu rc2000 ... 43
Obrázek 36: Zobrazení fázi signálu .. 44
Obrázek 37: Měření pomocí osciloskopu .. 45
Obrázek 38: Zapojení obvodu RLC pomocí rc2000 .. 45
Obrázek 39: Schéma inverujícího zapojení s OZ ... 47
Obrázek 40: Měření pomocí dvoukanálového osciloskopu .. 48
Obrázek 41: Výpočet výstupního napětí .. 48
Obrázek 42: Schéma inverujícího zapojení .. 49
Obrázek 43: Měření pomocí dvoukanálového osciloskopu .. 49
Obrázek 44: Zapojení inverujícího obvodu pomocí rc2000 ... 50
Obrázek 45: Schéma neinvertujícího zapojení s OZ ... 51
Obrázek 46: Měření pomocí dvoukanálového osciloskopu .. 52
Obrázek 47: Neinvertující zapojení obvodu ... 53
Obrázek 48: Měření pomocí dvoukanálového osciloskopu .. 54
Obrázek 49: Realizace neinvertujícího zapojení pomocí rc2000 54
Obrázek 50: Práce studenta se stavebnicí rc2000 .. 55
7 SEZNAM VZORŮ

Rovnice 1: Výpočet velikosti proudu ... 41
Rovnice 2: Výpočet napětí rezistoru ... 41
Rovnice 3: Výpočet napětí kapacitoru a induktoru .. 41
Rovnice 4: Výpočet rezonanční frekvence .. 41
Rovnice 5: Výpočet frekvence .. 42
Rovnice 6: Výpočet rezonanční frekvence .. 43
Rovnice 7: Výpočet rezonanční frekvence .. 44
Rovnice 8: Výpočet rezonanční frekvence .. 44
Rovnice 9: Výpočet zesílení .. 46
Rovnice 10: Výpočet vstupního napětí ... 46
Rovnice 11: Výpočet zesílení .. 47
Rovnice 12: Výpočet zesílení .. 49
Rovnice 13: Výpočet zesílení .. 51
Rovnice 14: Výpočet výstupního napětí ... 51
Rovnice 15: Výpočet zesílení .. 52
Rovnice 16: Výpočet výstupního napětí ... 52
Rovnice 17: Výpočet zesílení .. 53
8 SEZNAM TABULEK

Tabulka 1: Naměřené hodnoty prahového napětí... 34
Tabulka 2: Naměřené hodnoty napětí.. 38
9 SEZNAM LITERATURY

10 Resumé

The theme of this thesis was creation of educational material as an electronic support for teaching with didactic system rc2000. The text part contains description of didactic system and learning material. Also included is a proposal of exercises for teaching in selected subjects using the rc2000. Examples are part of the training course at its conclusion and do not contain solutions. Solution of the examples can be found in the text part of this thesis. It can help teacher with correction of students work.

Learning material contains thirty study articles divided to the nine chapters. The study articles describe different parts of the didactic system rc2000. Students can learn how to set devices contains in the didactic system and how to control it. Some study articles contains animations with correct presentation of work process. In the education material can be found fourteen exercises. It can help students with practical use of the didactic system. Some exercise contains correct solution for check completed work. The level of knowledge is tested by tests at the end of every chapter.
11 PŘÍLOHY

Přiložený DVD-ROM obsahuje text diplomové práce, výukový elektronický materiál a pracovní soubory ProAuthoru. Součástí DVD je také spouštěcí soubor autorun, který pro vložení disku do mechaniky spustí výukový materiál. Struktura DVD je zobrazena na následujícím obrázku.