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Nahradit listem zadánı́.

i





Prohlášenı́
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Rád bych poděkoval svému vedoucı́mu práce prof. Ing. Petru Girgovi, Ph.D., za vedenı́, za
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Abstrakt

Pomocı́ numerických simulacı́ studujeme reakčně-difuznı́ problémy s difuzı́ popsanou frak-
cionálnı́m laplaciánem. Frakcionálnı́ laplacián se objevuje např. v matematických modelech
populačnı́ dynamiky, kde je pohyb jedinců způsoben tzv. Levyho skoky, nikoliv Brownovým
pohybem. Uvažované problémy zahrnujı́ nelineárnı́ reakčnı́ členy závislé na parametrech. Našı́m
cı́lem je pochopit závislost řešenı́ na těchto parametrech. Pro stacionárnı́ problémy provádı́me
numerické simulace a konstruujeme bifurkačnı́ diagramy pomocı́ algoritmů automatického sle-
dovánı́ větvı́ řešenı́ (tzv. ”branch following”). Pro řešenı́ úloh použı́váme metodu konečných
diferencı́, kterou jsme implementovali v prostředı́ Matlab. Problémy studujeme v jedné nebo
dvou prostorových dimenzı́ch. V přı́padě dvou rozměrů nám naše implementace konečných
diferencı́ umožňuje studovat tyto problémy na poměrně obecných oblastech. Studujeme také
evolučnı́ problémy, pro které použı́váme implicitnı́ Eulerovu metodu kombinovanou s konečnými
diferencemi. K řešenı́ nelineárnı́ch evolučnı́ch úloh použı́váme metodu monotónnı́ch iteracı́.

Klı́čová slova: frakcionálnı́ laplacián, frakcionálnı́ diferenciálnı́ rovnice, stacionárnı́ úlohy, evolučnı́
úlohy, numerické simulace, metoda konečných diferencı́
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Abstract

We use numerical simulations to study reaction-diffusion problems with diffusion driven by
fractional Laplacian. Fractional Laplacian appears, e.g., in mathematical models of population
dynamics where the dispersion of individuals is due to the so called Levy flights rather than due
to Brownian motion. Problems under consideration involve nonlinear reaction terms depend-
ing on parameters. Our aim is to understand the dependence of solutions on these parameters.
For stationary problems, we perform numerical simulations and construct bifurcation diagrams
using some simple algorithms of branch following. To handle the problems numerically, we use
method of finite differences which we implemented in Matlab. We study problems in one or
two spatial dimensions. In the case of two dimensions, our implementation of finite differences
allows us to study these problems on quite general domains. We also study evolution problems.
Here we use implicit Euler method combined with finite differences. In order to solve nonlinear
evolution problems we use method of monotone iterations.

Keywords: fractional Laplace operator, fractional differential equations, stationary problems,
evolutionary problems, numerical simulations, method of finite differences
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∆u Ordinary Laplacian of u.

xi



xii CONTENTS

(∇2u)i,j Second difference centered at the point (xi, yj).

u(n) nth derivative of the function u, where derivatives of order one, two and three
are denoted as u′, u′′, u′′′, respectively.

∂u
∂xi

Partial derivative of the function u with respect to xi, for i = 1, . . . , d.

Notation of special functions

[s]+ Non-negative part of s ∈ R, i.e., [s]+ := max{0, s}.

Γ(z) The Gamma function of z ∈ C, i.e., Γ(z) :=
∫ +∞

0 tz−1e−t dt for Re (z) > 0.

B(z1, z2) The Beta function of z1, z2 ∈ C, i.e., B(z1, z2) :=
∫ 1

0 tz1−1(1− t)z2−1 dt for
Re (z1), Re (z2) > 0.

χ[a,b](x) Indicator function, i.e., χ[a,b](x) :=

{
1 if x ∈ [a, b],
0 otherwise.

2F1(a, b; c; z) The generalized hypergeometric function, i.e.,

2F1(a, b; c; z) :=
Γ(c)

Γ(a)Γ(b)

∞

∑
s=0

Γ(a + s)Γ(b + s)
Γ(c + s)s!

zs

on the disk |z| < 1 in the complex domain, and by analytic continuation else-
where, see https://dlmf.nist.gov/15.2 for its definition with further de-
tails in the Digital Library of Mathematical Functions by the National Institute
of Standards and Technology. Note that F(a, b; c; z) does not exist when c =
0,−1,−2, . . ..

Notation of spaces of functions

C(Ω), C(Ω) The space of continuous functions defined on Ω, Ω, respectively.

Ck(Ω) The set of functions u ∈ C(Ω) such that their partial derivatives up to the order k
belongs to C(Ω).
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Introduction 1
The history of fractional calculus [28, pp. 1-36] can be traced back to 17th century, when a
question arose whether the meaning of usual derivative

u(n) =
dnx
dxn , n ∈N,

can be extended for any number n irrational, fractional or complex. It was L’Hospital who asked
Leibnitz about the possibility of n being a fraction, with an answer given in 1695, that it would
lead to a paradox. Moreover, Lebnitz prophetically added that one day ‘this paradox’ will be
considerably useful. In 1819, there is a first mention of a derivative of an arbitrary order in the
text by the French mathematician S. F. Lacroix, where Lacroix obtained a formula for derivative
of an order 1

2 . Also, mathematicians as Euler and Fourier discussed the derivatives of arbitrary
order but without any applications or examples. First applications of fractional calculus belongs
to Niels Henrik Abel, who used the fractional calculus in the solution of an integral equation
related to formulation of the tautochrome problem in 1823. It was the Abel’s solution which
probably motivated Liouville to attempt to provide a logical definition of a fractional derivative,
which lead to his publications in 1832 and then several more through 1855. Between the year
1835 and 1850 there was a controversy related to the names mentioned before, that is Lacroix
and Louiville. The controversy concerned the definition of a fractional derivative, where part of
the mathematicians preferred the Lacroix’s definition and part of the mathematicians preferred
the Louiville’s definition. Moving forward in time to 1938, M. Riesz introduced nowadays so
called Riesz potential Iα, defined by

Iαu(x) =
Γ
(

d−α
2

)
2απd/2Γ

(
α
2
) ∫

Rd

u(y)
|y− x|d−α

dy,

where α ∈ (0, d) and d ∈ N is the dimension. It can be shown that under certain assump-
tions (see [16, Th. 2.4]) the inverse of the Riesz operator Iα is the fractional Laplace operator
−(−∆)α/2. This was historically the first motivation to introduce the operator −(−∆)α/2 (see
[27]).

The fractional Laplacian (−∆)α/2, for α ∈ (0, 2), appears both in pure and applied math-
ematics. The usage of the fractional order Laplacian ranges from models for fractional dif-
fusion [8, 12, 34], through topics related to biology[2, 15, 17, 33]. To demonstrate that the
fractional Laplacian is not an abstract construct, we refer the reader to [8], where the author
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2 CHAPTER 1. INTRODUCTION

discusses the fact that the processes described by the fractional Laplacian can be directly ob-
served, for example in the shape of a smokestack plume. One can observe, that the shape of
the smokestack plume has rather conical shape than a shape of a paraboloid, which would cor-
respond to diffusion driven by the ordinary Laplacian. We can go even farther back in time,
where Richardson[26] in 1926 describes a phenomena where the diffusivity of particles in the
atmosphere does not behave accordingly to the Brownian motion. Richardson then develops a
model describing this behavior. Nevertheless, his model was able to describe the behavior just
for spherical cloud of a particles. Based on Richardson’s observation and models, Monin[24]
in 1955 developed an integro-differential equation which models turbulent dispersal in two
and three dimension. The operator appearing in Monin’s equation turns out to be the fractional
Laplacian. After Monin published his article[24], there was a rapid development in applications
related to the fractional Laplacian.

In the monograph[25], which is a monograph we will use as a main source in following
chapters, the author provides a physical motivation for the fractional Laplacian of a function
of one variable. As a motivation, motions of random walkers on a one-dimensional grid of
equidistant points are studied. These walkers have a 50% chance of moving to its direct neigh-
boring node on the right and 50% chance of moving to its direct neighboring node on the left.
If we would study how the system evolves in time, we would obtain an equation where an
approximation of the ordinary Laplacian appears. If we would consider instead of random
walkers so called random jumpers, which can jump to more distant locations than to its direct
neighboring grid points with a probability described by so called heavy-tailed probability dis-
tributions, we would obtain an equation where an approximation of the Fractional Laplacian
appears. For thorough discussion of these models, we refer the reader to [25, Chapter 1].

There are multiple ways of defining the fractional Laplacian operator, such as Fourier defini-
tion, distributional definition, Bochner’s definition, Balakrishnan’s definition, singular integral
definition, Dynkin’s definition, quadratic form definition, semigroup definition, definition as
an inverse of Riesz potential or a definition through harmonic extension. All of the mentioned
definitions are listed and discussed in [18]. Moreover, the article[18] also provides the equiva-
lence criteria between the pairs of definitions of the fractional Laplacian. For our purposes, we
will be using the singular integral definition of the fractional Laplacian (−∆)α/2. The fractional
Laplacian at point x ∈ Rd, where d ∈ N denotes the spatial dimension, is then defined for
sufficiently smooth function by the following formula

(−∆)α/2u(x) := cd,α

∫
Rd

p.v.
u(x)− u(y)
|x− y|d+α

dy, (1.1)

where

cd,α :=
α
2 2αΓ

(
d+α

2

)
π

d
2 Γ(1− α

2 )
,

where α ∈ (0, 2). The abbreviation p.v. in (1.1) stands for the Cauchy principal value of the
singular integral, defined as∫

Rd
p.v.

u(x)− u(y)
|x− y|d+α

dy := lim
ϵ→0+

∫
Rd\Bϵ(x)

u(x)− u(y)
|x− y|d+α

dy.

To specify for which functions u the integral in (1.1) is well defined, is quite complicated in
general. Thus, we will present a useful proposition from [30], which states sufficient conditions
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on u for the integral in (1.1) to be well defined. Before we state the proposition, we define
following weighted Lebesgue space

L1
(

Rd;
1

1 + |x|d+α

)
:=
{

v ∈ L1
loc

(
Rd
)

:
∫

Rd

|v(x)|
1 + |x|d+α

dx < ∞
}

.

PROPOSITION 1.1. [30, Proposition 2.4] Let u ∈ L1
(

Rd; 1
1+|x|d+α

)
be a function and Ω ⊂ Rd

be an open set such that, for some ε > 0,

(i) u
∣∣
Ω ∈ C0,α+ε

loc (Ω) for any α < 1, or

(ii) u
∣∣
Ω ∈ C1,α+ε−1

loc (Ω) for α ⩾ 1 .

Then (−∆)α/2u is a continuous function on Ω and its values are given by (1.1).

REMARK 1.2. Let us note that if u
∣∣
Ω ∈ C2(Ω) then (i) and (ii) are satisfied for any α ∈ (0, 2).

In the following example, we will present a function u which satisfies the assumptions of the
Proposition 1.1.

Example 1.3. Consider the following function u : Rd → R defined as

u(x) =
Γ
(

d
2

)
2αΓ

(
d+α

2

)
Γ
(
1 + α

2
) [1− |x|2]α/2

+
.

The function u belongs to L1
(

Rd; 1
1+|x|d+α

)
since it is continuous on B1(0) and zero outside

B1(0) because of the term
[
1− |x|2

]
+. By a straightforward calculation it can be proved that

u
∣∣
B1(0)
∈ C2(B1(0)). Hence u satisfies assumptions of Proposition 1.1 for Ω = B1(0) and any

α ∈ (0, 2). Thus, (−∆)αu is well defined in B1(0) and its values are given by (1.1) in B1(0). It is
known by [4, Eq. (5.4.)], [13, pp. 89] that the function u is the solution of the following problem{

(−∆)α/2u = 1 in B1(0),

u = 0 in Rd\B1(0).

Let us note that by a straightforward calculation it can be easily verified that u
∣∣
B1(0)
∈ C3(B1(0)),

indeed. This fact is later used in testing of our numerical linear solvers for stationary problems,
which require the solution to be of class C3(Ω) on the domain under consideration Ω, see Ex-
ample 2.2 on page 23.

Example 1.4. Let d ≥ 1, α ∈ (0, 2) and x = (x1, x2, . . . , xd). Consider function u : Rd → R

defined by
u(x) = xd [1− |x|2]2+ .

The function u belongs to L1
(

Rd; 1
1+|x|d+α

)
since it is continuous on B1(0) and zero outside

B1(0) because of the term
[
1− |x|2

]
+. By straightforward calculation it can be proved that

u
∣∣
B1(0)
∈ C2(B1(0)). Furthermore, let p > −1. Following Dyda[10], we define

Φ(d)
p,α(x) =

Ad,−αB(− α
2 , p + 1)πd/2

Γ
(

d
2

) 2F1

(
α + d

2
,−p +

α

2
;

d
2

; x
)

,
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where

Ad,−α =
2αΓ

(
α+d

2

)
πd/2|Γ

(
− α

2
)
|

.

Then by [10, Th. 1], the function u solves{
(−∆)α/2u = f (x) in B1(0),

u = 0 in Rd \ B1(0) ,

with right-hand side of the following form

f (x) = −xd Φ(d+2)
2,α (|x|2),

for |x| < 1.

The main scope of our work is to implement numerical methods for problems involving
fractional Laplacian in one and two dimensions, respectively. We will focus on stationary and
evolutionary problems with zero Dirichlet boundary condition. More precisely, the stationary
problems will be of the following type{

(−∆)α/2u(x) = λ f (x, u) in Ω,

u(x) = 0 in Rd\Ω,
(1.2)

where d = 1 or 2, α ∈ (0, 2), λ ∈ R is parameter, and Ω ⊂ Rd is a bounded, open and
connected set (which reduces to a bounded open interval for one-dimensional case). Let us
note that the theoretical study of existence and uniqueness of such problems is very difficult
task and requires to deal with various concepts of generalized solutions such as weak, energy, or
viscosity solutions that are better suited for the use of functional analytic tools, see e.g. [1, 5, 19,
23]. These theories are far beyond of the knowledge provided by basic courses of mathematical
and functional analysis. So we will limit ourselves only to numerical studies of problem (1.2)
for several selected examples of functions f : Ω×R×R→ R.

Concerning evolutionary problem, we study
∂u(t, x)

∂t
+ (−∆)α/2u(t, x) = f (t, x, u) in (T0, T)×Ω,

u(t, x) = 0 in (T0, T)× (R \Ω),

u(T0, x) = uinit(x) in Ω,

(1.3)

where −∞ < T0 < T < +∞ and d, α, Ω are as above. Here a formulation suitable for func-
tional analytic methods is even much more complicated, see e.g. [3, 19]. Thus we will again
limit ourselves only to numerical studies of problem (1.3) for several selected examples of func-
tions f : (T0, T)×Ω×R → R. Since we use method of monotone iterations to treat nonlinear
evolutionary problems, our examples must satisfy structural assumption that s1 ≤ s2 implies
f (t, x, s1) ≤ f (t, x, s1) for any t ∈ (T0, T) and any x ∈ Ω, cf. [3, 19, 29]. The initial function
uinit(x) is assumed to be L2(Ω) in the theoretical literature, see e.g. [19], which is satisfied in
our examples.

Let us also note that our discretization schemes of fractional Laplacian require sufficient
smoothness in spatial variables of solutions, e.g. C3(Ω) for the one-dimensional case, but such
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smoothness is not known a priori in practical situations. Thus, we cannot provide informa-
tion about the convergence of solutions of our discretized problems to the solutions of original
problems as the discretization step tends to zero. Despite this fact, we still believe that our
library of Matlab written functions for performing numerical simulations and creating bifurca-
tion diagrams for discretized problems can provide reasonably good insight into the problems
involving fractional Laplacian, if used with caution. This library of functions is the main output of
the work on this master’s thesis and it is enclosed in the attached files.

This thesis is organized as follows. In the second chapter of the text, we will consider one
dimensional case. We will start with the discretization of the fractional operator (−∆)α/2. After
that, stationary and evolutionary problems, respectively, will be studied. Both for the stationary
and evolutionary problems, we will consider right-hand side independent of the solution u at
first and develop so called linear solver. Only then we will move on to the problems with a
right-hand side involving u. Third chapter of the text focuses on the two dimensional case. The
structure of the third chapter mimics the structure described for one dimension case with focus
shifted to implementation details specific for domains with the shape more complicated than
just a square. For each of the aforementioned case, we will include examples to demonstrate the
results obtain by our solvers. Several of the examples will concerned right-hand sided for which
the exact solution is known, more specifically we will be testing our solver on the problems
presented in Example 1.3 and Example 1.4. Moreover, we will also consider right-hand sides
for which the solutions are not known, furthermore the smoothness of the solutions are not
know. In these cases, we will provide just numerical simulations.





Numerical study of
Fractional Laplacian in

bounded interval 2
In this chapter, we will focus on the numerical study of the fractional Laplacian in bounded
interval, that is one dimensional case will be studied. The main source we are using throughout
this chapter is the monograph [25, Chapt. 1 and Chapt. 2]. We are taking over the process of
discretizing the operator with our contribution of filling in the missing steps in the derivation of
the disretization schemes. Moreover, during the derivation of the disretization schemes we are
also discussing the errors which are introduced during certain approximations. We are mostly
using the notation which is used in the book, although there are a few cases for which we are
introducing a little bit different notation for better readability of the text.

In the first section of this chapter, we are focusing on the discretization of the fractional
Laplacian. The whole process is divided into multiple steps, where each step has its own sub-
section. At the end of the first section we will arrive at a matrix which will correspond to
the discretized fractional Laplacian. Throughout this chapter, the matrix corresponding to the
discretized fractional Laplacian will be in the core of every method we will implement. Also,
pseudocode for the assembly of the matrix will be included at the end of the first section. Lastly,
we will include an example in which the behavior of the matrix will be described.

In the following section we will study stationary version of the problem, that is the following
problem {

(−∆)α/2u(x) = λ f (x, u) in Ω,

u(x) = 0 in R\Ω,

where α ∈ (0, 2), λ ∈ R, Ω = (L, R) for−∞ < L < R < +∞. Firstly, we will focus on a problem
with right-hand side independent of u, that is{

(−∆)α/2u(x) = f (x) in Ω,

u(x) = 0 in R\Ω.

After that, we will focus on the original problem, where u can occur as an argument of the right-
hand side. To solve the nonlinear problem with the right-hand side dependent on u, Newton’s
method will be used. Also, because of the problem being dependent on parameter λ ∈ R,

7



8 CHAPTER 2. FRACTIONAL LAPLACIAN IN BOUNDED INTERVAL

simple continuation algorithm will be used. With the help of this algorithm, we will solve the
problem for different values of parameter λ in a given range [λmin, λmax]. Moreover, we will
plot the bifurcation diagram, that is the dependence of the norm of the solution on the value of
the parameter λ.

Last section is devoted to the evolutionary version of the problem, that is
∂u(t, x)

∂t
+ (−∆)α/2u(t, x) = f (t, x, u) in (T0, T)×Ω,

u(t, x) = 0 in (T0, T)× (R \Ω),

u(T0, x) = uinit(x) in Ω,

(2.1)

where α ∈ (0, 2), Ω = (L, R) for −∞ < L < R < +∞, T0 < T. As in the case of the stationary
case, we will start with a linear problem. That is a problem with right-hand side independent
of u, specifically 

∂u(t, x)
∂t

+ (−∆)α/2u(t, x) = f (t, x) in (T0, T)×Ω,

u(t, x) = 0 in (T0, T)× (R \Ω),

u(T0, x) = uinit(x) in Ω.

For this problem, implicit Euler method is used. After that, study of the nonlinear evolutionary
problem (2.1) follows. In that case, we are using method of monotone iterations.

For every of the above described cases, we will include several examples, on which the
behavior of the solutions can be observed. Also, each example will be solved for different
values of the fractional order α, so the difference of the solutions can be seen.

2.1 Discretization matrix for fractional Laplacian

As mentioned above, the foundation for all of the solvers that were implemented, is to con-
struct matrix corresponding to the fractional Laplace operator. As a starting point, assume the
problem with right-hand side independent of solution itself{

(−∆)α/2u(x) = f (x) in Ω := (L, R),

u(x) = 0 in R\Ω,
(2.2)

where α ∈ (0, 2), −∞ < L < R < +∞. For the case d = 1, we obtain from the definition (1.1) of
the fractional Laplacian operator

(−∆)α/2u(x) := c1,α

∫ +∞

−∞
p.v.

u(x + v)− u(x)
|v|1+α

dv,

where

c1,α = α
2α−1
√

π

Γ
(

1+α
2

)
Γ
( 2−α

2
) .

Now, let u be a given sufficiently smooth function (to be specified later). For the development
of the discretization scheme of the fractional Laplacian (−∆)α/2u, we introduce special notation
for the integral on the right-hand side in the definition above

J(x) :=
∫ +∞

−∞
p.v.

u(x + v)− u(x)
|v|1+α

dv.
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Figure 2.1: Division of the integration domain (−∞,+∞) into three parts.

To evaluate value of J(x) for a specific x ∈ R, integration over (−∞,+∞) is needed. Further, let
us assume that our domain Ω = (L, R) contains N ∈N equidistant nodes

L + h/2 =: x−N1 < x−N1+1 < . . . < x−1 < x0 := x < x1 < . . . < xN2−1 < xN2 := R− h/2,

where xj+1 − xj = h := R−L
N , N := N1 + N2 + 1. We also define L1, L2 as

L1 := x− x−N1 , L2 := xN2 − x .

For each node xi, i = −N1, . . . ,−1, 0, 1, . . . , N2, ith row of the desired matrix is constructed.

In order to construct a matrix which would correspond to discretized form of the operator,
it is convenient to split up the integration domain into three parts

J(x) =
∫ ∞

−∞
p.v.

u(x + v)− u(x)
|v|1+α

dv

=
∫ −L1−h/2

−∞

u(x + v)− u(x)
|v|1+α

dv +
∫ L2+h/2

−L1−h/2
p.v.

u(x + v)− u(x)
|v|1+α

dv (2.3)

+
∫ +∞

L2+h/2

u(x + v)− u(x)
|v|1+α

dv.

The function J(x) can be also rewritten1 as

J(x) = J1(x) + J3(x) + J2(x),

1The notation J1(x), J3(x), J2(x) is done in such a way, that the integrals J1(x), J2(x) correspond to the notation in
[25, pp. 54, 55].
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where

J1(x) =
∫ −L1−h/2

−∞

u(x + v)− u(x)
|v|1+α

dv,

J2(x) =
∫ +∞

L2+h/2

u(x + v)− u(x)
|v|1+α

dv,

J3(x) =
∫ L2+h/2

−L1−h/2
p.v.

u(x + v)− u(x)
|v|1+α

dv.

This division of the original integral into these three parts is done in such a way that the term
J3(x) represents the integral over the domain Ω = (L, R), in which our problem is being solved.
Remaining two terms J1(x), J2(x) are over the complement of Ω. To have a better understanding
of the division of J(x) into the sum of J1(x), J2(x), J3(x) take a look at Figure 2.1. This is
especially convenient for us, because with the help of the zero Dirichlet boundary condition in
(2.2), u(x + v) = 0 and the terms J1(x), J2(x) get simplified as follows

J1(x) = −u(x)
∫ −L1−h/2

−∞

1
|v|1+α

dv,

J2(x) = −u(x)
∫ +∞

L2+h/2

1
|v|1+α

dv,

and can be easily calculated, as we will see later in this text. As of next, each of the three integrals
of (2.3) will be taken care of separately in the following sections of this chapter.

2.1.1 Calculation of J3(x)

Firstly, let us deal with the term

J3(x) =
∫ L2+h/2

−L1−h/2
p.v.

u(x + v)− u(x)
|v|1+α

dv,

where L1, L2, h > 0. To be able to calculate this integral effectively, let us split the integral into
three more parts as follows∫ L2+h/2

−L1−h/2
p.v.

u(x + v)− u(x)
|v|1+α

dv =
∫ −h/2

−L1−h/2

u(x + v)− u(x)
|v|1+α

dv

+
∫ h/2

−h/2
p.v.

u(x + v)− u(x)
|v|1+α

dv (2.4)

+
∫ L2+h/2

h/2

u(x + v)− u(x)
|v|1+α

dv.

Next, we will treat each of these integrals separately.
Beginning with the second integral∫ h/2

−h/2
p.v.

u(x + v)− u(x)
|v|1+α

dv, (2.5)

where, as mentioned before, h > 0. For increasing number of nodes N ∈ N, spatial step h goes
to zero. For that reason, assume ρ > 0 together with integral∫ ρ

−ρ
p.v.

u(x + v)− u(x)
|v|1+α

dv. (2.6)
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We can see, that this integral is equal to the integral in (2.5) with ρ = h/2. Further, we will split
the integral in (2.6) into two integrals∫ ρ

−ρ
p.v.

u(x + v)− u(x)
|v|1+α

dv =
∫ ρ

−ρ
p.v.

u(x + v)− u(x)− u′(x)v + u′(x)v
|v|1+α

dv (2.7)

=
∫ ρ

−ρ
p.v.

u(x + v)− u(x)− u′(x)v
|v|1+α

dv + u′(x)
∫ ρ

−ρ
p.v.

v
|v|1+α

dv.

Each of these two integrals will be evaluated separately.
We will start with the first one, for which we claim that∫ ρ

−ρ
p.v.

u(x + v)− u(x)− u′(x)v
|v|1+α

dv ≈ u′′(x)
ρ2−α

2− α
, (2.8)

or more precisely

lim
ρ→0

∣∣∣∣2− α

ρ2−α

∫ ρ

−ρ
p.v.

u(x + v)− u(x)− u′(x)v
|v|1+α

dv− u′′(x)
∣∣∣∣ = 0.

Using Taylor formula centered at x with remainder in the integral form, we obtain

u(x + v) = u(x) + u′(x)v +
1
2

u′′(x)v2 +
1
2

∫ x+v

x
u′′′(t)(x + v− t)2 dt

∣∣∣∣∣ t = x + v s dt = vds
L = 0, H = 1

∣∣∣∣∣
= u(x) + u′(x)v +

1
2

u′′(x)v2 +
1
2

v3
∫ 1

0
(1− s)2u′′′(x + vs)ds.

Substituting into the left side of (2.8), we have

∫ ρ

−ρ
p.v.

u(x + v)− u(x)− u′(x)v
|v|1+α

dv =
∫ ρ

−ρ
p.v.

1
2 v2

(
u′′(x) + v

∫ 1
0 (1− s)2u′′′(x + vs)ds

)
|v|1+α

dv

=
∫ ρ

−ρ
p.v.

1
2

(
u′′(x) + v

∫ 1

0
(1− s)2u′′′(x + vs)ds

)
|v|1−α dv

=
1
2

∫ ρ

−ρ

(
u′′(x) + v

∫ 1

0
(1− s)2u′′′(x + vs)ds

)
|v|1−α dv

=
1
2

∫ ρ

−ρ
u′′(x)|v|1−α dv

+
1
2

∫ ρ

−ρ
v
∫ 1

0
(1− s)2u′′′(x + vs)ds |v|1−α dv,

where we have removed symbol p.v., since 1− α ∈ (−1, 1) and the integral exists as the usual
Lebesgue integral. By a simple calculation, we have

1
2

∫ ρ

−ρ
u′′(x)|v|1−α dv =

u′′(x)
2

∫ ρ

−ρ
|v|1−α dv = u′′(x)

∫ ρ

0
v1−α dv = u′′(x)

ρ2−α

2− α
.

It remains to prove that

lim
ρ→0

2− α

ρ2−α

1
2

∫ ρ

−ρ
v
∫ 1

0
(1− s)2u′′′(x + vs)ds|v|1−α dv = 0. (2.9)
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Assume, that the third derivative of u satisfies the following assumption

u′′′ ∈ Lp[x− 1, x + 1] where p > 1.

For 0 < ρ < 12, we will prove that∣∣∣∣∫ ρ

−ρ
v
∫ 1

0
(1− s)2u′′′(x + vs)ds |v|1−α dv

∣∣∣∣ ≤ ∣∣∣∣∫ 0

−ρ
v
∫ 1

0
(1− s)2u′′′(x + vs)ds |v|1−α dv

∣∣∣∣
+

∣∣∣∣∫ ρ

0
v
∫ 1

0
(1− s)2u′′′(x + vs)ds |v|1−α dv

∣∣∣∣ (2.10)

≤ 2∥u′′′∥Lp([x−1,x+1])
ρ2−α+1/p′

2− α + 1/p′
.

Using this estimate, we obtain

0 ≤ lim
ρ→0

∣∣∣∣2− α

ρ2−α

1
2

∫ ρ

−ρ
v
∫ 1

0
(1− s)2u′′′(x + vs)ds|v|1−α dv

∣∣∣∣
≤ lim

ρ→0

∣∣∣∣2− α

ρ2−α

∣∣∣∣ 1
2

(
2∥u′′′∥Lp([x−1,x+1])

ρ2−α+1/p′

2− α + 1/p′

)
= 0,

which implies (2.9). Now, it remains to prove (2.10). Indeed, we have∣∣∣∣∫ ρ

0
v
∫ 1

0
(1− s)2u′′′(x + vs)ds v1−α dv

∣∣∣∣ = ∣∣∣∣∫ ρ

0

∫ 1

0
(1− s)2u′′′(x + vs) v v1−α dsdv

∣∣∣∣
≤
∫ ρ

0

∫ 1

0

∣∣∣(1− s)2u′′′(x + vs) v v1−α
∣∣∣ dsdv

=
∫ ρ

0

∫ 1

0
(1− s)2 ∣∣u′′′(x + vs)v

∣∣ ds v1−α dv

≤
∫ ρ

0

∫ 1

0

∣∣u′′′(x + vs)
∣∣ v ds v1−α dv

≤
∫ ρ

0

∫ x+v

x

∣∣u′′′(t)∣∣ dt v1−α dv

=
∫ ρ

0

(∫ x+1

x−1

∣∣u′′′(t)∣∣ χ[x,x+v]dt
)

v1−α dv.

By using Hölder’s inequality, we have∫ ρ

0

(∫ x+1

x−1

∣∣u′′′(t)∣∣ χ[x,x+v]dt
)

v1−α dv ≤
∫ ρ

0
∥u′′′∥Lp([x−1,x+1])∥χ[x,x+v]∥Lp′ ([x−1,x+1]) v1−α dv

= ∥u′′′∥Lp([x−1,x+1])

∫ ρ

0

(∫ x+v

x
1p′ dt

)1/p′

v1−α dv

= ∥u′′′∥Lp([x−1,x+1])

∫ ρ

0
v1−α+1/p′ dv

= ∥u′′′∥Lp([x−1,x+1])
ρ2−α+1/p′

2− α + 1/p′
.

2Because we are calculating limit for ρ→ 0, we can use this restriction for ρ.
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For the second integral we have∣∣∣∣∫ 0

−ρ
v
∫ 1

0
(1− s)2u′′′(x + vs)ds |v|1−α dv

∣∣∣∣ = ∣∣∣∣∫ 0

−ρ

∫ 1

0
(1− s)2u′′′(x + vs) v |v|1−α dsdv

∣∣∣∣
≤
∫ 0

−ρ

∫ 1

0

∣∣∣(1− s)2u′′′(x + vs) v |v|1−α
∣∣∣ dsdv

=
∫ 0

−ρ

∫ 1

0
(1− s)2 ∣∣u′′′(x + vs)

∣∣ |v|ds |v|1−α dv

≤
∫ 0

−ρ

∫ 1

0

∣∣u′′′(x + vs)
∣∣ |v| ds |v|1−α dv

=
∫ 0

−ρ

∫ 1

0
−
∣∣u′′′(x + vs)

∣∣ v ds |v|1−α dv

=

∣∣∣∣∣ w = −v dw = −dv
L = ρ, H = 0

∣∣∣∣∣
= −

∫ 0

ρ

∫ 1

0

∣∣u′′′(x− ws)
∣∣wds |w|1−α dw

=
∫ ρ

0

∫ 1

0

∣∣u′′′(x− ws)
∣∣wds w1−α dw.

After introducing following substitution, we obtain∫ ρ

0

∫ 1

0

∣∣u′′′(x− ws)
∣∣wds w1−α dw =

∣∣∣∣∣ t = x− ws dt = −wds
L = x, H = x− w

∣∣∣∣∣
=
∫ ρ

0

∫ x−w

x
−
∣∣u′′′(t)∣∣ dt w1−α dw

=
∫ ρ

0

∫ x

x−w

∣∣u′′′(t)∣∣ dt w1−α dw

=
∫ ρ

0

∫ x+1

x−1

∣∣u′′′(t)∣∣ χ[x−w,x]dt w1−α dw.

Again, by using Hölder’s inequality, we have∫ ρ

0

∫ x+1

x−1

∣∣u′′′(t)∣∣ χ[x−w,x]dt w1−α dw ≤ ∥u′′′∥Lp([x−1,x+1])

∫ ρ

0

(∫ x

x−w
1p′ dt

)1/p′

w1−α dw

= ∥u′′′∥Lp([x−1,x+1])

∫ ρ

0
w1−α+1/p′ dw

= ∥u′′′∥Lp([x−1,x+1])
ρ2−α+1/p′

2− α + 1/p′
.

By that we have shown that (2.10) holds. Next, it remains to evaluate the remaining integral in
(2.7). One can easily calculate that

u′(x)
∫ ρ

−ρ
p.v.

v
|v|1+α

dv = 0,

due to the oddness of the function v
|v|1+α

.
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Combining all our results, we have shown that∫ ρ

−ρ
p.v.

u(x + v)− u(x)
|v|1+α

dv ≈ u′′(x)
ρ2−α

2− α
. (2.11)

To evaluate integral (2.5), we simply set ρ = h/2. We arrive at∫ h/2

−h/2
p.v.

u(x + v)− u(x)
|v|1+α

dv ≈ h2u′′(x)
1
hα

1
2− α

1
22−α

.

So far, we have evaluated the second integral of (2.4). Now, let’s focus on the remaining two
integrals. Firstly, we will evaluate the first integral∫ −h/2

−L1−h/2

u(x + v)− u(x)
|v|1+α

dv.

We can approximate this integral by the midpoint rule, getting

∫ −h/2

−L1−h/2

u(x + v)− u(x)
|v|1+α

dv =
N1

∑
m=1

∫ −h/2−mh

−h/2−(m−1)h

u(x + v)− u(x)
|v|1+α

dv

≈
N1

∑
m=1

u(x−mh)− u(x)
(mh)1+α

h

=
1
hα

N1

∑
m=1

u(x−mh)− u(x)
m1+α

,

where the approximation symbol means, that we are omitting the error of the midpoint rule∫ xk+1

kk

ϕ(x)dx = hϕ

(
xk +

h
2

)
+

h3

24
ϕ′′′
(

ξR
k

)
,

where ξR
k ∈ (xk, xk+1). In the same way, we can approximate the remaining integral∫ L2+h/2

h/2

u(x + v)− u(x)
|v|1+α

dv

of (2.4). We get

∫ L2+h/2

h/2

u(x + v)− u(x)
|v|1+α

dv ≈ 1
hα

N2

∑
m=1

u(x + mh)− u(x)
m1+α

.

Combining all the results from this section we arrive at

J3(x) =
∫ L2+h/2

−L1−h/2
p.v.

u(x + v)− u(x)
|v|1+α

dv

≈ 1
hα

N1

∑
m=1

u(x−mh)− u(x)
m1+α

+ h2u′′(x)
1
hα

1
2− α

1
22−α

+
1
hα

N2

∑
m=1

u(x + mh)− u(x)
m1+α

=
1
hα

(
N1

∑
m=1

u(x−mh)− u(x)
m1+α

+ h2u′′(x)
1

2− α

1
22−α

+
N2

∑
m=1

u(x + mh)− u(x)
m1+α

)
.
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By setting

σ =
1

2− α

1
22−α

,

we arrive at

J3(x) ≈ 1
hα

(
N1

∑
m=1

u(x−mh)− u(x)
m1+α

+ h2u′′(x)σ +
N2

∑
m=1

u(x + mh)− u(x)
m1+α

)
.

2.1.2 Calculation of J1(x) and J2(x)

It remains to evaluate the terms

J1(x) = −u(x)
∫ −L1−h/2

−∞

1
|v|1+α

dv,

J2(x) = −u(x)
∫ +∞

L2+h/2

1
|v|1+α

dv.

We will start with J1(x). By simple calculation we obtain

J1(x) = −u(x)
∫ −L1−h/2

−∞

1
|v|1+α

dv

= −u(x)
∫ −L1−h/2

−∞

1
(−v)1+α

dv

= −u(x)
[

1
α(−v)α

]−L1−h/2

−∞

= −u(x)
[

1
α(−v)α

]−h(N1+
1
2 )

−∞

= − 1
hα

u(x)
1
α

(
1

N1 +
1
2

)α

.

By introducing the following term

σ(q) =
1
α

(
1

q + 1
2

)α

,

we arrive at

J1(x) = − 1
hα

u(x)σ(N1)
.

By the same fashion, we get

J2(x) = − 1
hα

u(x)σ(N2)
.

Notice that in [25, pp. 55] the author of the book has approximations of the terms J1(x), J2(x),
compared to our equality. The reason is that the author is taking into the assumption general
boundary conditions, thus the term u(x + v) in the integrals is not in his case necessarily equal
to zero.
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2.1.3 Final evaluation of J(x)

So far, we have approximated the terms J1(x), J2(x), J3(x). Putting everything together, we have

J(x) = J1(x) + J3(x) + J2(x)

≈ 1
hα

(
−u(x)σ(N1)

+
N1

∑
m=1

u(x−mh)− u(x)
m1+α

(2.12)

+ h2u′′(x)σ +
N2

∑
m=1

u(x + mh)− u(x)
m1+α

− u(x)σ(N2)

)
,

where

σ =
1

2− α

1
22−α

,

σ(q) =
1
α

(
1

q + 1
2

)α

.

One can see that the two sums in (2.12) can be further rearranged as follows

N1

∑
m=1

u(x−mh)− u(x)
m1+α

+
N2

∑
m=1

u(x + mh)− u(x)
m1+α

=
−1

∑
m=−N1

u(x + mh)− u(x)
(−m)1+α

+
N2

∑
m=1

u(x + mh)− u(x)
m1+α

=
N2

∑ ′

m=−N1

u(x + mh)− u(x)
|m|1+α

= −u(x)
N2

∑ ′

m=−N1

1
|m|1+α

+
N2

∑ ′

m=−N1

u(x + mh)
|m|1+α

,

where the prime after the sum means that the singular term for m = 0 is omitted. After intro-
ducing the following notation

S(x) =
N2

∑ ′

m=−N1

u(x + mh)
|m|1+α

,

ϕ(N1,N2)
=

N2

∑ ′

m=−N1

1
|m|1+α

,

the equation (2.12) can we rewritten as

J(x) ≈ 1
hα

(
−u(x)σ(N1)

+ S(x) + h2u′′(x)σ− u(x)ϕ(N1,N2)
− u(x)σ(N2)

)
. (2.13)

Further more, second derivative on the right-hand side of (2.13) can be approximated by second-
order centered finite-difference formula

u′′(x) ≈ u(x− h)− 2u(x) + u(x + h)
h2 . (2.14)

As before, the approximation symbol means that we are omitting the error term of the second-
order centered scheme. Depending on the smoothness of u, we can either expand u at x as
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follows

u(x− h) = u(x)− hu′(x) + h2 u′′(x)
2
− h3 u′′′(ξ1)

6
,

u(x + h) = u(x) + hu′(x) + h2 u′′(x)
2

+ h3 u′′′(ξ2)

6
,

where ξ1 ∈ (x− h, x), ξ2 ∈ (x, x + h). By adding these terms together, we arrive at (2.14) with
an error term

h
u′′′(ξ2)− u′′′(ξ1)

6
.

In the case, in which u is even smoother, we can use following expansion

u(x− h) = u(x)− hu′(x) + h2 u′′(x)
2
− h3 u′′′(x)

6
+ h4 u(4)(ξ1)

24
,

u(x + h) = u(x) + hu′(x) + h2 u′′(x)
2

+ h3 u′′′(x)
6

+ h4 u(4)(ξ2)

24
,

where ξ1 ∈ (x− h, x), ξ2 ∈ (x, x + h). Again, by adding these terms together we arrive at (2.14)
with an error term

h2 u(4)(ξ1) + u(4)(ξ2)

24
.

After the substitution of (2.14) into (2.13), we get

J(x) ≈ 1
hα

(
−u(x)σ(N1)

+ S(x) + σ(u(x− h)− 2u(x) + u(x + h))

−u(x)ϕ(N1,N2)
− u(x)σ(N2)

)
. (2.15)

For more compact way, which also gives us a hint how the matrix for the disretized fraction
Laplacian will look like, we can rewrite (2.15) into the final form

J(x) ≈ 1
hα

N2

∑
m=−N1

A(α)
m u(x + hm), (2.16)

where

A(α)
0 = −ϕ(N1,N2)

− 2σ− σ(N1)
− σ(N2)

, (2.17)

A(α)
±1 = 1 + σ, (2.18)

A(α)
m =

1
|m|1+α

. (2.19)

Elements A(α)
0 represent self-contribution, elements A(α)

±1 represent nearest neighbor contribu-

tions and A(α)
m represent contributions from the rest of the grid-points. Putting everything to-

gether, we have

(−∆)α/2u(x) = c1,α

∫ +∞

−∞

u(x + v)− u(x)
|v|1+α

dv = c1,α J(x) ≈ c1,α
1
hα

N2

∑
m=−N1

A(α)
m u(x + hm). (2.20)
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Figure 2.2: Relation between index i and N1, N2.

2.2 Construction of the matrix for discretized fractional Laplace operator

With the help of previous section, where the discretization of the fraction Laplace operator was
discussed, the matrix of the operator will be constructed. To obtain the matrix, we will use
equation (2.16) together with (2.17), (2.18), (2.19).

Recall that in our work we are considering equidistant spatial discretization of an interval
(L, R), where −∞ < L < R < +∞, with a number of nodes N ∈N and step

h =
R− L

N
.

Because of this discretization, we are solving for a vector

u = (u1, u2, . . . , uN),

where
ui = u(L + (i− 1)h) for i = 1, . . . , N.

Values of the fractional Laplace operator in these discrete values have then the form

ū = (ū1, ū2, . . . , ūN),

where
ūi = (−∆)α/2u(L + (i− 1)h) for i = 1, . . . , N.

Then, following discrete form of the fractional Laplace operator holds

ū = c1,α
1
hα

Ã(α) · u, (2.21)

where Ã(α) ∈ RN×N . To be able to utilize relations (2.17), (2.18), (2.19) we need to realize that
for our situation, in which we have N nodes, for ith equation of (2.21), which corresponds to ith
node, these relations hold

N1 = i− 1, (2.22)

N2 = N − i, (2.23)
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for i = 1, . . . , N. This situation is depicted in Figure 2.2. Substituting (2.22), (2.23) into (2.17),
(2.18), (2.19) we get

A(α)
i,i = −ϕ(i−1,N−i) − 2σ− σ(i−1) − σ(N−i), (2.24)

A(α)
i,i±1 = 1 + σ, (2.25)

A(α)
i,j =

1
|i− j|1+α

for j = 1, . . . , i− 2 (2.26)

and j = i + 2, . . . , N,

where

ϕ(n1,n2)
=

n2

∑ ′

m=−n1

1
|m|1+α

, (2.27)

σ(q) =
1
α

(
1

q + 1
2

)α

, (2.28)

σ =
1

2− α

1
22−α

. (2.29)

Apart from the matrix Ã(α) being a square matrix, another important property of the matrix
Ã(α) is it being symmetrical. This can be easily seen directly from the terms (2.25), (2.26).

Finally, using (2.24), (2.25), (2.26), (2.27), (2.28), (2.29) the matrix Ã(α) can be constructed.
Please, note that as a final step there is a need to multiply the constructed matrix by −1, that is

A(α) = −Ã(α),

because the author of [25] works with

∆α/2u(x),

while we are working with

(−∆)α/2 u(x).

This final matrix A(α) is then the core for all the methods which will be described in following
sections of this text.

In our implementation we are actually computing the normalized matrix A(α), that is matrix
multiplied by the normalization constant c1,α. For further purposes, let’s introduce following
notation

A(α)
c = c1,αA(α), (2.30)

where as introduced before

c1,α = α
2α−1
√

π

Γ
(

1+α
2

)
Γ
( 2−α

2
) .

Our Matlab written function which computes the matrix A(α)
c is called frac lap scaled matrix 1D.m.

Pseudocode describing the algorithm follows.
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Input:
n ∈N (number of interior nodes in partition of interval [L, R])
α ∈ (0, 2) (fractional order of (−∆)α/2)

Output:
A (matrix corresponding to discretized fractional Laplacian)

Begin
01 Calculation of Adiag

% Calculation of the diagonal part of the matrix
02 Calculation of Asub super diag

% Calculation of the subdiagonal and superdiagonal part of the matrix
03 Calculation of Arest

% Calculation of the remaining upper part of the matrix
04 Calculation of Arest ← Arest + A′rest

% Calculation of the lower part of the matrix (using symmetry)
05 Calculation of A← Adiag + Asub super diag + Arest

Putting calculated matrices together
06 A← −c1,αA
07 Return A

End

Example 2.1. To have an idea how the matrix of the discretized fractional Laplacian looks like
and how it differs for different values of fractional order α, let us assume several scenarios, one
for which the value of α is close to 0, one for which the value of alpha is in the middle of the
fractional order interval and one for which the value is close to 2. We will assume an interval
(−1, 1), that is L = −1, R = 1, N = 8, together with fractional orders α = 0.001, α = 1 and
α = 1.99. By the usage of (2.24), (2.25), (2.26), (2.27), (2.28), (2.29) together with multiplying
obtained matrix A(α) by a coefficient c1,α, that is

A(α)
c = c1,αA(α),

which is implemented in our function frac lap scaled matrix 1D.m, one will get following matri-
ces

A(0.001)
c =



1.0002 −0.0006 −0.0002 −0.0002 −0.0001 −0.0001 −0.0001 −0.0001
−0.0006 1.0001 −0.0006 −0.0002 −0.0002 −0.0001 −0.0001 −0.0001
−0.0002 −0.0006 1.0001 −0.0006 −0.0002 −0.0002 −0.0001 −0.0001
−0.0002 −0.0002 −0.0006 1.0001 −0.0006 −0.0002 −0.0002 −0.0001
−0.0001 −0.0002 −0.0002 −0.0006 1.0001 −0.0006 −0.0002 −0.0002
−0.0001 −0.0001 −0.0002 −0.0002 −0.0006 1.0001 −0.0006 −0.0002
−0.0001 −0.0001 −0.0001 −0.0002 −0.0002 −0.0006 1.0001 −0.0006
−0.0001 −0.0001 −0.0001 −0.0001 −0.0002 −0.0002 −0.0006 1.0002


,
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A(1)
c =



1.4786 −0.4775 −0.0796 −0.0354 −0.0199 −0.0127 −0.0088 −0.0065
−0.4775 1.3725 −0.4775 −0.0796 −0.0354 −0.0199 −0.0127 −0.0088
−0.0796 −0.4775 1.3673 −0.4775 −0.0796 −0.0354 −0.0199 −0.0127
−0.0354 −0.0796 −0.4775 1.3664 −0.4775 −0.0796 −0.0354 −0.0199
−0.0199 −0.0354 −0.0796 −0.4775 1.3664 −0.4775 −0.0796 −0.0354
−0.0127 −0.0199 −0.0354 −0.0796 −0.4775 1.3673 −0.4775 −0.0796
−0.0088 −0.0127 −0.0199 −0.0354 −0.0796 −0.4775 1.3725 −0.4775
−0.0065 −0.0088 −0.0127 −0.0199 −0.0354 −0.0796 −0.4775 1.4786


,

A(1.99)
c =



1.9996 −0.9939 −0.0012 −0.0004 −0.0002 −0.0001 0.0000 0.0000
−0.9939 1.992 −0.9939 −0.0012 −0.0004 −0.0002 −0.0001 0.0000
−0.0012 −0.9939 1.9918 −0.9939 −0.0012 −0.0004 −0.0002 −0.0001
−0.0004 −0.0012 −0.9939 1.9918 −0.9939 −0.0012 −0.0004 −0.0002
−0.0002 −0.0004 −0.0012 −0.9939 1.9918 −0.9939 −0.0012 −0.0004
−0.0001 −0.0002 −0.0004 −0.0012 −0.9939 1.9918 −0.9939 −0.0012
0.0000 −0.0001 −0.0002 −0.0004 −0.0012 −0.9939 1.992 −0.9939
0.0000 0.0000 −0.0001 −0.0002 −0.0004 −0.0012 −0.9939 1.9996


.

As mentioned, we can see that the matrix is indeed symmetrical. This property is useful while
constructing the matrix, because we can just compute half of the elements of the matrix. By
that we are saving computational time. On the other hand, we observe that our matrix is a
full matrix, that is all elements are nonzero, which require O(N2) memory to store. Moreover,
for solving linear equations with full matrices, Matlab uses an algorithm that is of O(N3) time
complexity. In contrast, the matrix corresponding to ordinary Laplace operator has the banded
sparse form

B =



2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2


,

and time and memory efficient algorithms can be used. Thus, problems involving fractional
Laplacian are much more difficult to treat numerically compared to problems involving classical
Laplacian. Further more, let us note that the matrix A(1)

c , which corresponds to discretizaton of
fractional Laplacian (−∆)1/2, is not matrix B taken to the power 1

2 . Indeed,

B
1
2 =



1.3582 −0.3879 −0.0644 −0.0231 −0.0108 −0.0056 −0.0030 −0.0013
−0.3879 1.2938 −0.4110 −0.0752 −0.0288 −0.0138 −0.0069 −0.0030
−0.064 −0.4110 1.2830 −0.4166 −0.0782 −0.0301 −0.0138 −0.0056
−0.0231 −0.0752 −0.4166 1.2800 −0.4179 −0.0782 −0.0288 −0.0108
−0.0108 −0.0288 −0.0782 −0.4179 1.2800 −0.4166 −0.0752 −0.0231
−0.0056 −0.0138 −0.0301 −0.0782 −0.4166 1.2830 −0.4110 −0.0644
−0.0030 −0.0069 −0.0138 −0.0288 −0.0752 −0.4110 1.2938 −0.3879
−0.0013 −0.0030 −0.0056 −0.0108 −0.0231 −0.0644 −0.3879 1.3582


.

Finally, let us point out that for the fractional order α going to zero, the fractional Lapla-
cian goes to identity operator and on the other hand, for the fractional order α going to 2, the
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fractional Laplacian goes to ordinary Laplacian operator, i.e.,

lim
α→0+

(−∆)α/2u = u,

lim
α→2−

(−∆)α/2u = −∆u,

as shown in [31, Proposition 5.3.]. This can be observed on the matrices A(0.001) and A(1.99),
where we can see that the former is close to a unitary matrix and the latter is close the matrix
corresponding to the ordinary Laplace operator. This agreement with theoretical fact is a kind
of numerical verification that our discretization procedure was done correctly.

2.3 Stationary problems with fractional Laplacian

So far, we have been focusing on discretizing the fractional Laplacian. We have constructed
the matrix A(α)

c , which will be in the core of our numerical algorithms described in this and
following section of the text. In this part of the text, stationary problems will be solved. Firstly,
we will start with a problem with a right-hand side of the form f = f (x). After that, we will
move on to a problem with more general right-hand sides which will be dependent on the
solution u itself and a parameter. More specifically, we will be working with the right-hand
side of the form f = λ f (x, u), where λ ∈ R is the parameter. For solving this type of problem,
Newton’s method will be used. Also, for this type of the right-hand side, bifurcation diagrams
will be introduced, from which we will be able to see how the solution changes with respect to
the parameter λ. For generating these bifurcation diagrams, simple continuation algorithm will
be implemented.

Please, note that for problems involving fractional Laplacian the solution is not known in
general, only for special cases, see e.g. [4, 11, 13]. Because of that we cannot really compare
every solution of the numerical experiment obtained by our methods with the exact one, thus
we cannot always directly evaluate the error of the methods.

2.3.1 Right-hand side independent of u

We will start with a case for which the right-hand side has the form f = f (x), that is we are
solving the following problem

{
(−∆)α/2u(x) = f (x) in Ω,

u(x) = 0 in R\Ω,

where α ∈ (0, 2), Ω = (L, R) for −∞ < L < R < +∞. Our Matlab written function for this type
of problem is called frac laplace 1D.m. This function calls the function frac lap scaled matrix 1D.m,
which was introduced in the previous Section 2.2. Pseudocode describing the Matlab function
follows.
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Input:
L (left boundary of the domain)
R (right boundary of the domain)
n ∈N (number of nodes in partition of interval [L, R])
f = f (x) (source term f )
α ∈ (0, 2) (fractional order of (−∆)α/2)

Output:
solution (solution vector)
grid (vector of the gridpoints)

Begin
01 h← (R− L)/n
02 grid← (L + h/2) : h : (R− h/2)
03 A← frac lap scaled matrix 1D(n,α)
04 A← 1

hα A
05 b← f (grid)
06 solution← A\b
07 Return solution, A, grid

End

As mentioned before, we can see that we are indeed calling our function frac lap scaled matrix 1D.m
to obtain the matrix corresponding to the frational Laplacian. After that we are simply calculat-
ing the vector of the right-hand side and only then we solve the disretized system.

To get better understanding how the fractional Laplacian behaves, we will start with a sim-
plest case, namely f (x) = 1, on which we will observe how the solution changes with respect
to fractional order α ∈ (0, 2). Since the solution is known explicitly in this case, we can compare
numerical solution with the true solution given by explicit formula and verify correctness of
our numerical approach at least for this very special case.

Example 2.2. As said, let us solve the following problem{
(−∆)α/2u(x) = 1 in (−1, 1),

u(x) = 0 in R\(−1, 1).
(2.31)

In this case we will solve for N = 200 and for α = 0.001, α = 0.1, α = 1, α = 1.9. Solutions
for these values of α are plotted in Figure 2.3. Explicit solutions are known by [4, Eq. (5.4.)],
[13, pp. 89] and are given by the following formula

u∗(x) =
Γ
(

1
2

)
2αΓ

(
1+α

2

)
Γ
(
1 + α

2
) [1− x2

] α
2

+
, (2.32)

in our notation.
We can see that with α close to zero, the solution looks square-like and is close to the right-

hand side, as can be seen in figure where the orange curve describes the right-hand side of our
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Figure 2.3: Solutions for different values of α of (2.31) together with the right-hand side (orange
curve) and with the solution for the ordinary Laplacian problem (2.33) (green curve).

problem. The reason for that is that, as mentioned before, for α close to zero, the fractional
Laplacian goes to the identity operator. Also, we can observe that the derivatives at the bound-
aries for α close to zero go to plus, or minus, infinity because of the zero boundary condition.
With increasing values of α, the derivative at the boundaries decreases, in absolute value. Also,
the solution is getting closer to the solution of the problem with the ordinary Laplacian, that is{

−∆u(x) = 1 in (−1, 1),

u(x) = 0 for x = −1, x = 1,
(2.33)

as can be seen in figure, where the green curve corresponds to the solution of the (2.33).
Also, in Figures 2.4, 2.5 we are providing the absolute error, that is

eabsolute = u∗ − u,

where u is our numerical solution and u∗ is the exact solution given by (2.32). Together with the
absolute error we are providing the relative error given by

erelative =
u∗ − u

u∗
.

For the second example, we will choose more interesting right-hand side for which the solu-
tion for smaller values of α will behave in more interesting way. Let us note, that we do not have
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Figure 2.4: Absolute error for different values of α of (2.31).

any explicit formula for this solution and we also do not know if the solution is in C3(−1, 1).
So we cannot claim anything about accuracy of the approximation of the true solution by our
numerical solution.

Example 2.3. Let us take a look at the following problem{
(−∆)α/2u(x) = x2 + 1 in (−1, 1),

u(x) = 0 in R\(−1, 1).
(2.34)

Again, we are solving for N = 200 and for α = 0.001, α = 0.1, α = 1, α = 1.99. Solutions are
plotted in Figure 2.6.

Again, for the derivatives close to the boundaries we can see similar behavior as in the previ-
ous example. For the cases α = 0.05, α = 0.1, we can see that the shape of the solution resembles
the shape of the right-hand side of the problem (orange curve), as it was expected. However,
the values of the solution tend to zero at the boundaries due to Dirichlet condition enforced by
the outside of domain (−1, 1). For the solutions for α = 1, α = 1.99 we are expecting to obtain
results which are close to the solution of the same problem with the ordinary Laplacian, that is
the following problem {

−∆u(x) = x2 + 1 in (−1, 1),

u(x) = 0 for for x = −1, x = 1.
(2.35)

Solution corresponding to the problem (2.35) is also plotted in Figure 2.6 with a green color.
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Figure 2.5: Relative error for different values of α of (2.31).

2.3.2 Nonlinear right-hand side dependent on parameter

In this section we consider right-hand side of the form f = λ f (x, u), where λ ∈ R is a parameter.
The problem we are solving has the following form{

(−∆)α/2u(x) = λ f (x, u) in Ω,

u(x) = 0 in R\Ω,
(2.36)

where α ∈ (0, 2), Ω = (L, R) for −∞ < L < R < +∞, λ ∈ R.
As mentioned at the beginning of this chapter, for solving this problem involving u on the

right-hand side, Newton’s method will be used. Firstly, we need to discretize (2.36). Using the
finite differences method, we arrive at

1
hα

A(α)
c u = λF(u), (2.37)

where u ∈ RN is a vector of values of the solution u evaluated at the N ∈ N discretization
points belonging to Ω, A(α)

c is given by (2.30) and F : RN → RN corresponds to the right-hand
side function f by the following formula

[F(u)]j = f (xj, u(xj)),
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Figure 2.6: Solutions for different values of α of (2.34) together with the right-hand side (orange
curve) and with the solution for the ordinary Laplacian problem (2.35) (green curve).

where [F(u)]j stands for j-th component of the function F : RN → RN and

xj = L + (j− 1)h +
h
2

for j = 1, 2, 3, . . . , N.

After rearranging (2.37), we get

1
hα

A(α)
c u− λF(u) =: g(u) = o,

where g : Rn → Rn. Now, we have reformulated our original problem into a form for which the
Newton’s method can be used, producing successive approximations of our original problem
(2.36). The successive approximations are then given by

uk+1 = uk − Jg(uk)
−1g(uk),

where Jg is the Jacobian matrix of g. Further more, the Jacobian matrix Jg is given by

Jg =
1
hα

A(α)
c − λJF,

where A(α)
c is our matrix corresponding to dicretized fractional Laplacian and JF is the Jacobian

matrix of f .
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Regarding the Newton’s method, let us point out that the method is sensitive to the initial
guess u0. Meaning, if the initial guess u0 is far from the solution, the successive iterations of
the method may not converge to the solution. On the other hand, if the initial guess u0 is close
enough, the method converges quadratically (under some assumptions) to the solution of the
problem.

Our Matlab written solver for problems of the type (2.36), implementing the Newton’s
method (lines 11, 25, 40), is called frac laplace newton 1D.m. Pseudocode of this algorithm, which
was inspired by [7], will follow.

Input:
L (left boundary of the domain)
R (right boundary of the domain)
n ∈N (number of nodes in partition of interval [L, R])
λmiddle (parameter λmiddle, λmiddle < λmax)
λmax (upper boundary of interval for λ parameter)
m1 ∈N (number of discretization points for partition of interval (λbi f , λmiddle),

where λbi f is defined in the algorithm section)
m2 ∈N (number of discretization points for partition of interval (λmiddle, λmax))
6 < r < 15 (10−r is the tolerance in the Newton iteration)
f = f (x, u) (source term f )
fu = fu(x, u) (derivative fu of source term f )
uinit = uinit(x) (initial guess for Newton method for λ = λmiddle)
α ∈ (0, 2) (fractional order of (−∆)α/2)

Output:
S (matrix of parameters λ (first column) with norms of

corresponding norms of the solutions |u|∞ (second column))
U (matrix of solutions (each column corresponds to a solution for each λi))
grid (vector of the gridpoints)
λbi f (bifurcation point)

Begin
01 h← (R− L)/n
02 grid← (L + h/2) : h : (R− h/2)
03 A← frac lap scaled matrix 1D(n, α)

04 A← 1
hα A

05 uinit ← uinit(grid)
06 λbi f ← min(eig(A))

07 Creation of matrices S1, S2, U1, U2

08 [b]j ← f (xj, uj) for j = 1, . . . , n
09 u← uinit
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10 res← Au− λmiddleb
11 While |res|∞ > 10−r do

% Newton loop for λ = λmiddle

12 [JF]i,j ← fu(xj, uj) for j = 1, . . . , n
[JF]i,j ← 0 for i ̸= j, i, j = 1, . . . , n

13 J← A− λmiddleJF

14 udi f f ← J\(−res)
15 u← udi f f + u
16 [b]j ← f (xj, uj) for j = 1, . . . , n
17 res← Au− λmiddleb
18 EndWhile
19 S2 ← Append(S2, (λmiddle, |uλmiddle |∞))

U2 ← Append(U2, uλmiddle)

20 For i := 1 : m2 do
% Apply Newton iterations to Au− µiF(u) = o for µi ∈ (λmiddle, λmax]

21 µi ← λmiddle +
i(λmax−λmiddle)

m2

22 u← ui−1

23 [b]j ← f (xj, uj) for j = 1, . . . , n
24 res← Au− µib
25 While |res|∞ > 10−r do

% Newton loop for λ = µi

26 [JF]i,j ← fu(xj, uj) for j = 1, . . . , n
[JF]i,j ← 0 for i ̸= j, i, j = 1, . . . , n

27 J← A− µiJF

28 udi f f ← J\(−res)
29 u← udi f f + u
30 [b]j ← f (xj, uj) for j = 1, . . . , n
31 res← Au− µib
32 EndWhile
33 S2 ← Append(S2, (µi, |ui|∞))

U2 ← Append(U2, ui)

34 EndFor
35 For i := 1 : m1 do

% Apply Newton iterations to Au− µiF(u) = o for µi ∈ [λbi f , λmiddle)

36 µi ← λmiddle −
i(λmiddle−λbi f )

m1

37 u← ui+1

38 [b]j ← f (xj, uj) for j = 1, . . . , n
39 res← Au− µib
40 While |res|∞ > 10−r do

% Newton loop for λ = µi

41 [JF]i,j ← fu(xj, uj) for j = 1, . . . , n
[JF]i,j ← 0 for i ̸= j, i, j = 1, . . . , n

42 J← A− µiJF

43 udi f f ← J\(−res)
44 u← udi f f + u
45 [b]j ← f (xj, uj) for j = 1, . . . , n
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46 res← Au− µib
47 EndWhile
48 S1 ← Append(S1, (µi, |ui|∞))

U1 ← Append(U1, ui)

49 EndFor
50 S← Append(S1, S2)

51 U← Append(U1, U2)

52 Return S, U, grid, λbi f ,
End

Our Matlab written function for creating bifurcation diagrams requires that the function
F : RN → RN is twice continuously differentiable, since we use Newton’s method.

Let us note that if F(0) = 0, then u = 0 is a solution of (2.37) for any λ ∈ R. This is the so
called line of trivial solutions. It may happen that nontrivial solutions bifurcate (separate) from
this line of trivial solutions. If this bifurcation happens at a particular value of λ, this value of
λ is called bifurcation point, see [9, Def. 1.1] for exact definition. Let, moreover, the function
F satisfy the following additional assumptions F(u) = u + H(u) and H : RN → RN is twice
continuously differentiable, H(0) = 0, and

lim
|u|→0

H(u)
|u| = 0 .

Let λ0 ̸= 0 is a bifurcation point of nonzero solutions of (2.37). Then, under above stated addi-
tional assumptions, λ0 is an eigenvalue of the matrix 1

hα A(α)
c , [9, Lemma 3.2]. Our continuation

algorithm is designed in such a way that it is checking if the least eigenvalue of 1
hα A(α)

c is a bifur-
cation point. This is motivated by the fact that bifurcations of positive solutions are of particular
interest in practice and at the same time bifurcation of positive solutions of the original problem
(2.36) usually happens at λ1, which is the principal (smallest) eigenvalue of the corresponding
eigenvalue problem for (−∆)α/2 on (L, R) [7, pp. 19] and [14]. We numerically approximate λ1
as the smallest eigenvalue of the discretized fractional Laplacian (notice that in the sixth step of
the algorithm λbi f is computed as least eigenvalue of A, which is 1

hα A(α)
c , indeed).

We mentioned that for the problems for which the right-hand side is dependent on a pa-
rameter, there will be a bifurcation diagram for which the simple continuation algorithm will
be used. The simple continuation algorithm can be seen in the pseudocode. Notice, that we are
going through two For cycles (starting at line 20 and line 35). In the first cycle, solutions for
λ ∈ (λmiddle, λmax] are being calculated. In the second cycle, solutions for λ ∈ (λbi f , λmiddle] are
being calculated. Before these two cycle, the solution for λ = λmiddle is calculated as a starting
point for the calculation of the solutions for remaining lambdas.

The idea of our simple continuation algorithm is that for a calculation of a solution for λ =
λi, we are using solution corresponding to the neighboring value of λ, either λ = λi−1 or
λ = λi+1, as an initial guess. As said before, firstly we are going through a For cycle which
calculates solutions for λ ∈ (λmiddle, λmax], that is we are going in the positive direction for
the values of λ. Because of that, for finding a solution for λ = λi we are choosing solution
corresponding to λi−1 as the initial guess. In the case of the second For cycle, that is solutions
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for λ ∈ (λbi f , λmiddle], we are going in the negative direction for the values of λ. Thus, we are
taking the solution corresponding to λi+1 as the initial guess.

For the first two numerical experiments we will take a look at right-hand side

f (λ, x, u) = λu(1− u),

which can be found in [7, pp. 22].

Example 2.4. Consider the following problem{
(−∆)0.9u(x) = λu(1− u) in (0, 1),

u(x) = 0 in R\(0, 1).
(2.38)

As in previous examples, we will solve for N = 200. Then, we set λmiddle = 10, λmax = 60,
m1 = 50, m2 = 30, r = 7, uinit(x) = 1. For the fractional order we will set α = 1.8.

In the Figure 2.7 we can see the bifurcation diagram for the problem (2.38). As described
before, firstly we calculate the solution for λ = λmiddle, which in figure corresponds to point
number 1. After that, we are calculating solutions for λ ∈ (λmiddle, λmax]. Some of these solu-
tions are depicted in figure by points 2, 3, 4, 5, 6. After that, we are calculating solutions for
λ ∈ [λbi f , λmiddle), in figure points 7, 8. Please note, that we are plotting only nontrivial solu-
tions, that is in Figure 2.7 is missing line which coincides with x-axes. Solutions corresponding
to the points highlighted in the bifurcation diagram 2.7, can be seen in Figure 2.8.
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Figure 2.7: Bifurcation diagram for the problem (2.38).
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Figure 2.8: Solutions of (2.38) for different values of λ.
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For the next example we will consider the same setting as for the previous example with a
difference in the choice of the fractional order α. For this case we will set α = 0.1.

Example 2.5. Consider the following problem{
(−∆)0.05u(x) = λu(1− u) in (0, 1),

u(x) = 0 in R\(0, 1).
(2.39)

Again, we will solve for N = 200. Then, we set λmiddle = 10, λmax = 60, m1 = 50, m2 = 30,
r = 7, uinit(x) = 1. For the fractional order, we will set α = 0.1.

For this example we are choosing the sames values of λ to be highlighted in the bifurcation
diagram and to be plotted as solutions corresponding to those values of λ as for the previous
example. In Figure 2.9 we can see the bifurcation diagram corresponding to our problem (2.39).
We can see that the highlighted points 1− 8 moved closer to each other compared to the previ-
ous example. This corresponds to the fact, that with decreasing value of fractional order α the
norm of the solution grows faster with increasing value of parameter λ. This can be directly
seen in Figure 2.10.
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Figure 2.9: Bifurcation diagram for the problem (2.39).
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Figure 2.10: Solutions of (2.39) for different values of λ.
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2.4 Evolutionary problems with fractional Laplacian

In this section, we will consider time dependent (evolutionary) problems. That is, we are look-
ing at the following problem

∂u(t, x)
∂t

+ (−∆)α/2u(t, x) = f (t, x, u) in (T0, T)×Ω,

u(t, x) = 0 in (T0, T)× (R \Ω),

u(T0, x) = uinit(x) in Ω,

where α ∈ (0, 2), Ω = (L, R) for −∞ < L < R < +∞, T0 < T. As in the stationary case,
we will divide the problem into two cases. For the first case, we will consider a right-hand
side of the form f = f (t, x) and for the second case we will consider right-hand side of the
form f = f (t, x, u). For the former problem, we will develop linear solver based on implicit
Euler method. For later case, we will combine this linear solver with the method of monotone
iterations. The method of monotone iterations requires that f (t, x, u) ≤ f (t, x, v) whenever
u ≤ v ( f is nondecreasing in the third variable).

2.4.1 Right-hand side independent of u

As mentioned in the beginning of this section, we will firstly assume a right-hand side of the
form f = f (t, x), that is we are solving following problem

∂u(t, x)
∂t

+ (−∆)α/2u(t, x) = f (t, x) in (T0, T)× (L, R),

u(t, x) = 0 in (T0, T)× (R \ (L, R)),

u(T0, x) = uinit(x) in (L, R),

(2.40)

where α ∈ (0, 2), −∞ < L < R < +∞, T0 < T. By expanding u = u(t, x) into a Taylor series

u(t + τ, x) = u(t, x) + τ
∂u(t, x)

∂t
+

τ2

2
∂2u(ξ, x)

∂t2 ,

for ξ ∈ (t, t + τ), where τ > 0 is a temporal step, we are able to express time derivative as
follows

∂u(t, x)
∂t

=
u(t + τ, x)− u(t, x)

τ
+

τ2

2
∂2u(ξ, x)

∂t2 . (2.41)

Substituting (2.41), together with omitting the error term, into (2.40), we arrive at

u(t + τ, x)− u(t, x)
τ

+ (−∆)α/2u(t + τ, x) ≈ f (t + τ, x). (2.42)

Furthermore, by introducing A(α)
c , which we defined as

A(α)
c = c1,αA(α),

as the discretized fractional Laplacian, together with the introduction of the following notation

un := u(t, x),

un+1 := u(t + τ, x),
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we can rewrite (2.42) as

un+1 − un

τ
+

1
hα

A(α)
c un+1 = f (t + τ, x). (2.43)

We can see that from the previous equation (2.43) we can explicitly express the term un+1, get-
ting (

I +
τ

hα
A(α)

c

)
un+1 = τ f (t + τ, x) + un. (2.44)

As a last step, we multiply (2.44) by (
I +

τ

hα
A(α)

c

)−1
.

Finally, we obtain

un+1 =
(

I +
τ

hα
A(α)

c

)−1
(τ f (t + τ, x) + un) . (2.45)

At this point, we are able to solve our original problem (2.40). Our Matlab written solver for
this problem is called frac laplace evolution 1D.m. Pseudocode follows.

Input:
T0 (initial time)
T (end time)
τ (temporal step)
uinit(x) = u(T0, x) (initial condition)
L (left boundary of the domain)
R (right boundary of the domain)
n ∈N (number of nodes in partition of interval [L, R])
f = f (t, x) (source term f )
α ∈ (0, 2) (fractional order of (−∆)α/2)

Output:
solutions (matrix of solution (each column contains solution for certain time))
grid (vector of the gridpoints)

Begin
01 h← (R− L)/n
02 grid← (L + h/2) : h : (R− h/2)
03 A← frac lap scaled matrix 1D(n, α)

04 A← 1
hα A

05 j← (T − T0)/τ

06 Calculation of B← (I + τA)−1

07 Creation of matrix solutions
08 solutions← Append(solutions, uinit)

09 For i := 2 : j + 1 do
% Calculation of the solution for each time step
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10 solutions(i)← B (τ f (grid, T0 + iτ) + solutions(i− 1))
11 EndFor
12 Return solutions, grid

End

As for the stationary case with the right-hand side independent of u, we can see that our Matlab
written function frac lap scaled matrix 1D is called in order to obtain the matrix for the disretized
fractional Laplacian (line 03). Main calculation is done on tenth line, where we use the formula
(2.45).

As previously, examples will follow. The examples will concern simple right-hand side,
namely a constant right-hand side. For both of these example the setup will be similar with
only difference in the choice of fractional order α and the endtime T.

Example 2.6. As mentioned above, we will solve a problem with a constant right-hand side
together with constant initial condition. We are solving following problem

∂u(t, x)
∂t

+ (−∆)0.95u(t, x) = 1 in (0, 10)× (−1, 1),

u(t, x) = 0 in (0, 10)× (R \ (−1, 1)),

u(0, x) = 2 in (−1, 1),

(2.46)

where we set α = 1.9, T0 = 0, T = 10, L = −1, R = 1. As for previous examples, we are setting
N = 200. For a temporal step we are choosing τ = 0.01.

Solution of (2.46) for different time steps together with the solution of stationary version of
the problem, that is {

(−∆)0.95ũ(x) = 1 in (−1, 1),

ũ(x) = 0 in R \ (−1, 1),
(2.47)

can be seen in Figure 2.11. We can see that with increasing time the solution of (2.46) approaches
the solution of the stationary version of the problem, as one would expect. This can be also seen
in Figure 2.12, where the norm of the difference of

udi f f (x) = u(t, x)− ũ(x) in x ∈ (−1, 1) for t ∈ (0, 10) fixed,

where u solves (2.46) and ũ solves (2.47), is plotted. We can see that with increasing time the
norm is approaching zero. Because of the error terms introduced by the numerical method, the
difference will never reach zero completely.
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Figure 2.11: Solution of (2.46) at different time steps (blue curve) together with the solution of
(2.47) (green curve) and with the right-hand side (orange curve).
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Figure 2.12: Norm of the difference udi f f = u− ũ, where u solves (2.46) and ũ solves (2.47).

Example 2.7. For the next example we will assume similar scenario with a difference in a choice
of the fractional order α and T. Let’s set α = 0.1 and T = 15. The reason for setting larger value
of T is, that in the case of lower α it takes longer to reach the steady state of the problem. Putting
everything together, we are solving following problem

∂u(t, x)
∂t

+ (−∆)0.05u(t, x) = 1 in (0, 15)× (−1, 1),

u(t, x) = 0 in (0, 15)× (R \ (−1, 1)),

u(0, x) = 2 in (−1, 1).

(2.48)

Solution of the problem is plotted in Figure 2.17. As in the previous example, we are also
plotting the solution of the corresponding stationary problem{

(−∆)0.05ũ(x) = 1 in (−1, 1),

ũ(x) = 0 in R \ (−1, 1).
(2.49)

Also, in Figure 2.18 we are including a plot the following difference

udi f f (x) = u(t, x)− ũ(x) in x ∈ (−1, 1) for t ∈ (0, 15) fixed,

where u solves (2.48) and ũ solves (2.49).
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Figure 2.13: Solution of (2.48) at different time steps (blue curve) together with the solution of
(2.49) (green curve) and with the right-hand side (orange curve).
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Figure 2.14: Norm of the difference udi f f = u− ũ, where u solves (2.48) and ũ solves (2.49).

2.4.2 Right-hand side dependent on u

In the last section related to the one dimensional case, we will consider evolutionary problem
with more general right-hand side which can be dependent on u, i.e. f = f (t, x, u). The problem
under consideration is of the form

∂u(t, x)
∂t

+ (−∆)α/2u(t, x) = f (t, x, u) in (T0, T)× (L, R),

u(t, x) = 0 in (T0, T)× (R \ (L, R)),

u(T0, x) = uinit(x) in (L, R),

(2.50)

where α ∈ (0, 2), −∞ < L < R < +∞, T0 < T.

To solve this kind of problem, method of monotone iterations will be used. For that, let’s
reformulate (2.50) as a sequence of initial-boundary value problems


∂um(t, x)

∂t
+ (−∆)α/2um(t, x) = h(t, x) := f (t, x, um−1) in (T0, T)× (L, R),

um(t, x) = 0 in (T0, T)× (R \ (L, R)),

um(T0, x) = uinit(x) in (L, R),

(2.51)

where the subscript m ∈ N indicates the index related to the sequence of solutions. Related
to the method of monotone iterations, let us introduced so called upper and lower solutions,
denoted as u and u, respectively. Please note, that u can be also called as a supersolution and u
as a subsolution. To call a function as an upper solution following inequality must hold


∂u(t, x)

∂t
+ (−∆)α/2u(t, x) ≥ f (t, x, u) in (T0, T)× (L, R),

u(t, x) ≥ 0 in (T0, T)× (R \ (L, R)),

u(T0, x) ≥ uinit(x) in (L, R),
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for the lower solution opposite inequality holds, that is
∂u(t, x)

∂t
+ (−∆)α/2u(t, x) ≤ f (t, x, u) in (T0, T)× (L, R),

u(t, x) ≤ 0 in (T0, T)× (R \ (L, R)),

u(T0, x) ≤ uinit(x) in (L, R).

It can be shown (this theory is quite complicated and exceeds possibilities of this master’s thesis,
see, e.g., [3]), that if certain assumptions are fulfilled, then there exists a solution u of (2.50)
which satisfies following inequality

u(t, x) ≤ u(t, x) ≤ u(t, x) in [T0, T]× (L, R).

As an initial guess for the solution one can use

u1 := u.

Then one proceeds iteratively obtaining um from um−1 by solving linear problem (2.51) with
right-hand side independent of um. Since we assume here that f is nondecreasing in the third
variable, the maximum principle (see, e.g., [19]) yields the following ordering for the iterated
sequence of solutions

u = u1 ≤ u2 ≤ u3 ≤ · · · ≤ u.

Under certain conditions, this sequence is converging to a solution (see, e.g., [3]).
For practical purposes, one can set a tolerance ϵ > 0 for the stopping condition of the

method, that is the iteration method stops if

∥ui+1 − ui∥∞ < ϵ,

where i = 1, 2, 3, . . . .
Because of the complexity of the evolutionary problem and because of our abilities, we are

not able to fully described the theory behind the monotone iteration method for the evolution-
ary problem of a reaction-diffusion type with fractional order operator. To get more detailed
and precise description, we refer interested reader to the following literature [3, 19].

As in the previous section, after discretization we obtain

un+1
m =

(
I +

τ

hα
Aα

c

)−1
(τ f (t + τ, x, un

m−1) + un
m),

where the subscript m ∈ N denotes m-th element of the sequence of solutions of the problem
(2.51) and n ∈N denotes n-th node of the grid.

Our solver for problem (2.50) written in Matlab is called frac laplace lin parabolic solver 1D.m.
As usually, pseudocode follows.

Input:
ϵ (tolerance for the monotone iterative method)
T0 (initial time)
T (end time)
τ (temporal step)
uinit(x) = u(T0, x) (initial condition)
usubsolution(t, x) (subsolution for the monotone iterative method)
L (left boundary of the domain)
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R (right boundary of the domain)
n ∈N (number of nodes in partition of interval [L, R])
f = f (t, x, u) (source term f )
α ∈ (0, 2) (fractional order of (−∆)α/2)

Output:
solutions (matrix of solution (each column contains solution for certain time))
grid (vector of the gridpoints)

Begin
01 h← (R− L)/n
02 grid← (L + h/2) : h : (R− h/2)
03 A← frac lap scaled matrix 1D(n, α)

04 A← 1
hα A

05 j← (T − T0)/τ

06 Creation of the matrix F
% Each column correspond to the values at discretization grid points at certain time

step of right-hand side f
07 For i := 1 : m do

% Calculation of the right-hand side for each time step
08 F← f (grid, T0 + iτ, usobsolution(grid, T0 + iτ))
09 EndFor
10 Calculation of B← (I + τA)−1

11 Creation of matrix solutions
12 solutions← Append(solutions, uinit)

13 While ∥solutionsm+1 − solutionsm∥∞ > ϵ do
14 For i := 2 : j + 2 do
15 solutions(i)← B (τF(i− 1) + solutions(i− 1))

% Main calculation
16 EndFor
17 For i := 1 : m do
18 F← f (grid, T0 + iτ, solutions(i))

% Update of the matrix F corresponding to the right-hand side
19 EndFor
20 EndWhile
21 Return solutions, grid

End

Example 2.8. In this example, we are choosing starting time T0 = 0 as in the previous examples.
For the endtime we are setting T = 5. The temporal step is set as in the previous examples, that
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is τ = 0.001. Different domain on which the problem is solved is assumed, specifically we are
choosing L = 0, R = 1 with the same number of nodes N = 200. For the initial condition we
are choosing constant function equal to zero. The subsolution is equal to the initial condition.
The right-hand side function has the form f (t, x, u) =

√
|u|+ 1. For the tolerance we are setting

ϵ = 10−6. Finally, for the fractional order we are choosing α = 1.9. Combining all together, we
are solving 

∂u(t, x)
∂t

+ (−∆)0.95u(t, x) =
√
|u|+ 1 in (0, 5)× (0, 1),

u(t, x) = 0 in (0, 5)× (R \ (0, 1)),

u(0, x) = uinit(x) := 0 in (0, 1).

(2.52)

It is straightforward to check that the constant function u(t, x) = 0 is subsolution of (2.52). We
can choose solution of the following stationary problem(−∆)0.95ũ(x) =

√
|ũ|+ 1 in (0, 1),

ũ(x) = 0 in R \ (0, 1),
(2.53)

as supersolution u(t, x) = ũ(x) for any t ∈ [0, 5) and x ∈ (0, 1). This solution exists, it is
nonzero and nonnegative by similar argument as in [3]. By a straightforward calculation, we
can see that the equation and boundary condition in (2.52) are satisfied. For initial condition,
we get u(0, x) = ũ(x) ≥ 0 for any x ∈ (0, 1). So our function u(t, x) = ũ(x) for any t ∈ [0, 5)
and x ∈ (0, 1) is supersolution of (2.52).

Solutions for few time steps can be seen in Figure 2.15. As in the section concerning the evo-
lutionary problem with simple right-hand side, we are also plotting solution for the stationary
version of the problem (2.52).

As expected, we can observe that with increasing time the solution of (2.52) is approaching
the solution of the corresponding stationary problem (2.53). This fact can be also seen in Figure
2.16, where we are plotting the norm of the difference

udi f f (x) = u(t, x)− ũ(x) in (0, 1) for t ∈ (0, 5) fixed,

where u solves (2.52) and ũ solves (2.53).
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Figure 2.15: Solutions of (2.52) at different time steps (blue curve) together with the solution of
(2.53).
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Figure 2.16: Norm of the difference udi f f = u− ũ, where u solves (2.52) and ũ solves (2.53).

Example 2.9. In this example, we will change the fractional order to α = 0.1 together with final
time T, which we set to T = 15. Problem we are solving has the following form

∂u(t, x)
∂t

+ (−∆)0.05u(t, x) =
√

u + 1 in (0, 15)× (0, 1),

u(t, x) = 0 in (0, 15)× (R \ (0, 1)),

u(0, x) = uinit(x) := 0 in (0, 1),

(2.54)

together with the subsolution u(t, x) = 0. As in the previous Example 2.8, we can choose
solution of the problem (2.55) as a supersolution u(t, x) = ũ(x) for any t ∈ [0, 15) and x ∈ (0, 1).

The solution of the problem is plotted in Figure 2.17, together with the solution of the corre-
sponding stationary problem(−∆)0.05ũ(x) =

√
|ũ|+ 1 in (0, 1),

ũ(x) = 0 in R \ (0, 1).
(2.55)

As before, we observe that the solution for the evolutionary problem (2.54) is approaching the
solution of the stationary problem. The norm of the difference

udi f f (x) = u(t, x)− ũ(x) in (0, 1) for t ∈ (0, 15) fixed,

is then plotted in Figure 2.18.
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Figure 2.17: Solutions of (2.54) at different time steps (blue curve) together with the solution of
(2.55).
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Figure 2.18: Norm of the difference udi f f = u− ũ, where u solves (2.54) and ũ solves (2.55).



Numerical study of
Fractional Laplacian in

bounded domains in two
dimensions 3

This chapter of the text is devoted to the study of the fractional Laplacian in two dimensions.
As in the previous chapter, the main source used for writing this chapter is the monograph [25,
Chapt. 6]. Again, we are taking over the process of discretizing the operator. Although, in the
two dimensional case, we are not as thorough as in the one dimensional case. The reason for
that is that because of the higher dimension, the Taylor expansions in higher dimensions would
be necessary which would lead to lengthy calculations. Instead of this lengthy calculations, we
borrow the formulas from [25] and focus on domains other than rectangle. The implementation
details for handling such domains are not provided in [25]. Thus we implemented them by
ourselves with some help of [21], where such domains were considered in connection with the
usual Laplacian. Moreover, because of the error of the discretization is not even discussed in the
monograph [25], we will not be able to comment on the errors introduced by the discretization
process.

As in the previous chapter, first section of this chapter will concern discretization of the
fractional Laplace in two dimensions. As mentioned, we will not arrive at formulas describing
each of the elements of the matrix. We will arrive at an equation, from which it is possible to
construct the matrix.

Next section will be then devoted to study of stationary problems involving the fractional
Laplacian, namely {

(−∆)α/2u(x, y) = λ f (x, y, u) in Ω,

u(x, y) = 0 in R2\Ω,

where α ∈ (0, 2), λ ∈ R, Ω ⊂ R2. Again, we will start with the case, where right-hand side
does not depend on the solution u itself and the parameter λ. That is, we will be looking at{

(−∆)α/2u(x, y) = f (x, y) in Ω,

u(x, y) = 0 in R2\Ω.

51
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As in the previous one dimensional case, for this type of problems, in the core of the numerical
method is the construction of the matrix corresponding to the fractional Laplacian, discretizing
the right-hand side and only then solving the system of linear equations. In the following sec-
tion, the original nonlinear problem involving λ and u on the right-hand side, will be studied.
Again, we will be implementing Newton’s method with the simple continuation algorithm.

Lastly, the following evolutionary problem will be of our interest
∂u(t, x, y)

∂t
+ (−∆)α/2u(t, x, y) = f (t, x, y, u) in (T0, T)×Ω,

u(t, x, y) = 0 in (T0, T)× (R \Ω),

u(T0, x, y) = uinit(x, y) in Ω,

where where α ∈ (0, 2), Ω ⊂ R2, T0 < T. Firstly, we will be interested in the problem
∂u(t, x, y)

∂t
+ (−∆)α/2u(t, x, y) = f (t, x, y) in (T0, T)×Ω,

u(t, x, y) = 0 in (T0, T)× (R \Ω),

u(T0, x, y) = uinit(x, y) in Ω,

for which the right-hand side is independent of u. For this problem, Euler method will be used.
Lastly, the original problem will be solved with the help of the method of monotone iterations.

As was the case for the one dimensional case, examples for each of the above mentioned
problems will be included. Because the algorithms used for solving these issues are the same as
for the one dimensional case, we will not be including the whole pseudocodes. We will focus
only on the differences with respect to the pseudocodes from the previous chapter. The only dif-
ferences between one- and two- dimensional cases are in the inputs of respective pseudocodes,
since extra inputs related to the geometry of domain are needed in two dimensions (which was
not needed in the case of one dimension).

3.1 Discretization matrix for fractional Laplacian

We will start with problem which is not involving the solution u in the right-hand side, that is
following problem is considered{

(−∆)α/2u(x, y) = f (x, y) in Ω,

u(x, y) = 0 in R2\Ω,
(3.1)

where α ∈ (0, 2), λ ∈ R, Ω ⊂ R2. In our case, we are considering the domain Ω to be bounded
Lipschitz domain in R2. The domain Ω will be, in our case, divided into rectangular cells
with side lengths equal to ∆x, ∆y > 0. The solution will be then computed in the center of
each of the rectangle. Each of this center of the corresponding rectangle will have assigned
doublet of indices (i, j) for i = 1, 2, . . . , N1 and j = 1, 2, . . . , N2, as can be seen in Figure 3.1. As
we mentioned above, because of the lengthy calculations which would be needed in order to
obtain the discretization of the problem (3.1), we are directly introducing following equation
[25, Eq. (6.8.5)]

c2,α

(
π

2
1

2− α
ρ2−α(∇2u)i,j + Ac ∑ ′

m,n

um,n − ui,j

|xm,n − xi,j|2+α
− χi,jui,j

)
= fi,j, (3.2)
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where

πρ2 = Ac,

Ac = ∆x∆y,

xi,j = (xi, yj),

χi,j =
∫

Ωc

1
|x− xi,j|2+α

dx,

ui,j = u(xi, yj),

fi,j = f (xi, yj),

where Ωc in the integral stands for the complement of the domain Ω, that is Ωc = R2\Ω.
Furthermore, we can evaluate the value of χi,j by introducing an approximation [25, Eq. (6.8.9)]

χi,j ≈ Ac

(
Ψα − ∑ ′

m,n

1
|xm,n − xi,j|2+α

)
, (3.3)

where [25, Eq. (6.8.10)]

Ψα = ∑ ′

p,q=−∞,...,+∞

1
(p2∆x2 + q2∆y2)(2+α)/2

.

Substituting (3.3) into (3.2) and simplifying, we arrive at

c2,α

(
π

2
1

2− α
ρ2−α(∇2u)i,j − AcΨαui,j

)
+ Ac ∑ ′

m,n

um,n

|xm,n − xi,j|2+α
= fi,j. (3.4)

Furthermore, we can directly evaluate the term (∇2u)i,j as

(∇2u)i,j =
ui−1,j + ui+1,j − 4ui,j + ui,j−1 + ui,j+1

h2 , (3.5)

where h = ∆x = ∆y in a case of square cells. Furthermore, throughout this chapter we will
consider a situation, for which N := N1 = N2 together with equidistant grid. After substituting
(3.5) into (3.4) and rearranging, we arrive at

c2,α

(
1
2

1
2− α

πα/2(ui−1,j + ui+1,j − 4ui,j + ui,j−1 + ui,j+1)

+∑ ′

m,n

um,n

|(m− i)2 + (n− j)2|(2+α)/2
− Σαui,j

)
= hα fi,j, (3.6)

where

Σα = ∑ ′

p,q=−∞,...,+∞

1
(p2 + q2)(2+α)/2

.

Furthermore, we would like to emphasize, that terms up,q in (3.6) are equal to zero if the node
(p, q) lies outside of the domain Ω because of the zero Dirichlet boundary condition in (3.1).
Finally, after consolidating the terms involving ui,j, we get
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Figure 3.1: Two dimensional grid.

c2,α

(
−
(

2
2− α

πα/2 + Σα

)
ui,j

+
1
2

1
2− α

πα/2(ui−1,j + ui+1,j + ui,j−1 + ui,j+1)

+∑ ′

m,n

um,n

|(m− i)2 + (n− j)2|(2+α)/2

)
= hα fi,j. (3.7)

In the following section we will utilize the equation (3.7) for the construction of the matrix
corresponding to the discretized fractional Laplacian in two dimensions.

3.2 Construction of the matrix for discretized fractional Laplace operator

As mentioned before, the matrix corresponding to the discretized fractional Laplacian will be
constructed from an equation, specifically from the equation (3.7). We will firstly introduce
how the matrix is constructed on a square domain and after that we will consider more general
domain. Only then, the pseudocode will follow.

The final matrix will be as in the one dimensional case denoted as

A(α)
c ,

where as before, we will firstly arrive at the matrix

Ã(α),

which will be multiplied by −1, getting

A(α) = −Ã(α).

Only then, by multiplying the matrix A(α) by the coefficient c2,α, we will get the final matrix

A(α)
c = c1,αA(α).
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Figure 3.2: Indexing of the grid points.

Before obtaining the matrix Ã(α), we will firstly compute a matrix 0Ã(α). The meaning of this
matrix will be described later. By omitting certain rows and columns of 0Ã(α), we will obtain
the matrix Ã(α).

Firstly, let us assume that we have square domain, as shown in Figure 3.2, where part of the
grid for N = 6 is depicted. Assume, that of our interest is a value of u at the coordinates (xi, yj),
that is the value ui,j, as depicted in Figure 3.2 by a green point. From (3.7) we can see that for the
equation to hold, values at the neighboring cells (in Figure 3.2 red dots) need to be taken into
account together with the values at the remaining points of the grid. In our case, we have N2

grid points, meaning we have N2 equations of the form (3.7). Apart from the coordinates (i, j),
it is useful to introduce another labeling of the grid points. Let us introduces indices of the grid
points, such that each grid point has an index k for k = 1, . . . , N2. We are choosing labeling,
such that we are starting at the top-left corner and indexing by rows, as shown in Figure 3.2.
This labeling is useful for us, because kth grid point, where k = 1, . . . , N2, corresponds to kth
equation of the discretized system. Meaning, that in our case for which the grid point with
coordinates (2, 3) (green point in Figure 3.2) has an index k = 9, that is ninth equation of the
system corresponds to the grid point with coordinates (2, 3). Now, we are able to to construct
each row of the matrix corresponding to the discretized fractional Laplacian. Again, if we would
consider our situation depicted in Figure 3.2, ninth element of the ninth row would be equal to

Ai,j = −
(

2
2− α

πα/2 + Σα

)
,

then third, eighth, tenth and fifteenth element of the ninth row would be equal to

Ai,j+1 = Ai−1,j = Ai+1,j = Ai,j−1 =
1
2

1
2− α

πα/2,

and the remaining elements of the ninth row would be equal to

Am,n = ∑ ′

m,n

1
|(m− i)2 + (n− j)2|(2+α)/2

,
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Figure 3.3: General domain.

where in our case i = 2, j = 3. Proceeding similarly for every other grid point, we would arrive
at the matrix 0Ã(α).

Now, we will describe how the algorithm for construction of the matrix corresponding to the
general grid, for example the one shown in Figure 3.3, works. As mentioned at the beginning of
this section, the final matrix corresponding to the general grid, for example the one depicted in
Figure 3.3, to which we will arrive is denoted by A(α)

c . Meaning, that we do not need to solve,
or to be more specific we cannot solve, for all of the grid points of the general grid, in the case
of Figure 3.3 that is we cannot solve for all N2 = 36 grid points. The reason for that is, that
the right-hand side of the problem (3.1) is prescribed only on the domain Ω to which the green
points correspond. So, we do not know what the fractional Laplacian of u is equal to in the red
grid points, nevertheless the Dirichlet boundary condition is prescribed on these grid points, so
we know that the solution is equal to zero there. Because of that, we are not constructing matrix
of the size N2 × N2 (for the case depicted in Figure 3.3 that is 36× 36), but we are constructing
matrix of the size (N −M)2 × (N −M)2, where N ∈ N is the total number of grid points and
M ∈ N is the number of grid points which does not lie in the domain Ω (for the case depicted
in Figure 3.3 that is 24× 24).

Taking all the above described into the consideration, we firstly construct the matrix 0Ã(α) of
the size N2 × N2 (that is we are including the grid points for which the zero Dirichlet condition
is prescribed - red grid points) and then, we are omitting rows and columns corresponding to
the grid points for which the zero Dirichlet condition is prescribed, obtaining the matrix Ã(α)

of the size (N −M)2 × (N −M)2. Finally, we multiply the matrix Ã(α) by −c1,α, obtaining the

matrix A(α)
c . Again, if we would consider the case which is depicted in Figure 3.3, we would

construct the matrix of a size 36× 36 and only then, we would omit kth row and kth column,
where k is the index of the grid points lying outside of the domain Ω (red grid points), getting
a matrix of a size 24× 24.

Before introducing the reader to the pseudocode, there is a need to clarify our approach
to how the domain together with the grid is entered to the algorithm. We are considering
rectangular domain Ωsquare = [Lx, Rx]× [Uy, Ly], where −∞ < Lx, Rx, Uy, Ly < +∞ together
with Rx − Lx = Uy− Ly to ensure equidistant discretization, for which the domain Ω, on which
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Figure 3.4: General domain Ω as a subset of a square domain [Lx, Rx]× [Uy, Ly].

the problem (3.1) is solved, is a subset of Ωsquare, that is Ω ⊂ Ωsquare. This situation is shown in
Figure 3.4. Recall, that the number of grid points in the direction of the x axes is the same as in
the direction of the y axes, that is N = N1 = N2. Then, the spatial step is equal to

h =
Rx − Lx

N
=

Uy − Ly

N
.

The domain Ω can be described by a matrix G of a size N × N with the following structure

Gi,j =

{
1 if xi,j ∈ Ω,

0 otherwise.

For example, for the case depicted in Figure 3.4 the matrix G would have the following form

G =


0 0 1 1 0 0
0 1 1 1 1 0
1 1 1 1 1 1
1 1 1 1 1 1
0 1 1 1 1 0
0 0 1 1 0 0

 .

This approach can be also seen in [21, Figure 19]. Our Matlab written function which computes
the matrix A(α)

c is called frac laplace scaled matrix 2D. Pseudocode for the function follow.
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Input:
Lx (left boundary of the domain Ωsquare)
Rx (right boundary of the domain Ωsquare)
Uy (upper boundary of the domain Ωsquare)
Ly (lower boundary of the domain Ωsquare)
G (grid matrix)
α ∈ (0, 2) (fractional order of (−∆)α/2))

Output:
A (matrix corresponding to discretized fractional Laplacian)
x coordinates (vector of x coordinates of grid points which lie in Ω)
y coordinates (vector of y coordinates of grid points which lie in Ω)

Begin
01 Calculation of Adiag

% Calculation of the diagonal part of the matrix
02 Calculation of Aneighbors

% Calculation of the elements corresponding to the neighboring grid points
ui,j+1, ui−1,j, ui+1,j, ui,j−1

03 Calculation of Arest

% Calculation of the remaining elements of the matrix
04 Calculation of A← Adiag + Aneighbors + Arest

Putting calculated matrices together
05 Omitting rows and columns corresponding to the grid points which do not lie in the

domain Ω
06 Calculation of x coordinates, y coordinates
07 A← −c2,αA
08 Return A, x coordinates, y coordinates

End

Example 3.1. Assume, that we have a domain Ω = (−1, 1)× (−1, 1) with N = 3, as shown in
Figure 3.5. For the fractional order, we are choosing α = 0.01, α = 1, α = 1.99. Notice, that
matrix G corresponding to this domain and grid has the following form

G =

1 1 1
1 1 1
1 1 1

 .

Because of that, we are not omitting any rows or columns, thus the matrix 0Ã(α) equals to the
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Figure 3.5: Grid for Ω = (−1, 1)× (−1, 1) with N = 3.

matrix Ã(α). After multiplying the matrix Ã(α) by −c2,α, we obtain following matrices.

A(0.01)
c =



1.0069 −0.002 −0.0004 −0.002 −0.0008 −0.0003 −0.0004 −0.0003 −0.0002
−0.002 1.0069 −0.002 −0.0008 −0.002 −0.0008 −0.0003 −0.0004 −0.0003
−0.0004 −0.002 1.0069 −0.0003 −0.0008 −0.002 −0.0002 −0.0003 −0.0004
−0.002 −0.0008 −0.0003 1.0069 −0.002 −0.0004 −0.002 −0.0008 −0.0003
−0.0008 −0.002 −0.0008 −0.002 1.0069 −0.002 −0.0008 −0.002 −0.0008
−0.0003 −0.0008 −0.002 −0.0004 −0.002 1.0069 −0.0003 −0.0008 −0.002
−0.0004 −0.0003 −0.0002 −0.002 −0.0008 −0.0003 1.0069 −0.002 −0.0004
−0.0003 −0.0004 −0.0003 −0.0008 −0.002 −0.0008 −0.002 1.0069 −0.002
−0.0002 −0.0003 −0.0004 −0.0003 −0.0008 −0.002 −0.0004 −0.002 1.0069


,

A(1)
c =



2.0019 −0.3002 −0.0199 −0.3002 −0.0563 −0.0142 −0.0199 −0.0142 −0.007
−0.3002 2.0019 −0.3002 −0.0563 −0.3002 −0.0563 −0.0142 −0.0199 −0.0142
−0.0199 −0.3002 2.0019 −0.0142 −0.0563 −0.3002 −0.007 −0.0142 −0.0199
−0.3002 −0.0563 −0.0142 2.0019 −0.3002 −0.0199 −0.3002 −0.0563 −0.0142
−0.0563 −0.3002 −0.0563 −0.3002 2.0019 −0.3002 −0.0563 −0.3002 −0.0563
−0.0142 −0.0563 −0.3002 −0.0199 −0.3002 2.0019 −0.0142 −0.0563 −0.3002
−0.0199 −0.0142 −0.007 −0.3002 −0.0563 −0.0142 2.0019 −0.3002 −0.0199
−0.0142 −0.0199 −0.0142 −0.0563 −0.3002 −0.0563 −0.3002 2.0019 −0.3002
−0.007 −0.0142 −0.0199 −0.0142 −0.0563 −0.3002 −0.0199 −0.3002 2.0019


,

A(1.99)
c =



3.971 −0.9895 −0.0004 −0.9895 −0.0016 −0.0003 −0.0004 −0.0003 −0.0001
−0.9895 3.971 −0.9895 −0.0016 −0.9895 −0.0016 −0.0003 −0.0004 −0.0003
−0.0004 −0.9895 3.971 −0.0003 −0.0016 −0.9895 −0.0001 −0.0003 −0.0004
−0.9895 −0.0016 −0.0003 3.971 −0.9895 −0.0004 −0.9895 −0.0016 −0.0003
−0.0016 −0.9895 −0.0016 −0.9895 3.971 −0.9895 −0.0016 −0.9895 −0.0016
−0.0003 −0.0016 −0.9895 −0.0004 −0.9895 3.971 −0.0003 −0.0016 −0.9895
−0.0004 −0.0003 −0.0001 −0.9895 −0.0016 −0.0003 3.971 −0.9895 −0.0004
−0.0003 −0.0004 −0.0003 −0.0016 −0.9895 −0.0016 −0.9895 3.971 −0.9895
−0.0001 −0.0003 −0.0004 −0.0003 −0.0016 −0.9895 −0.0004 −0.9895 3.971


.

Recall the following limits[31, Proposition 5.3.]

lim
α→0+

(−∆)α/2u = u,

lim
α→2−

(−∆)α/2u = −∆u.
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We can see, that the matrix for α = 0.01 is close to the identity matrix, which agrees with the
limit above. On the other side of the spectrum, that is for α = 1.99, we should obtain matrix
which should be close to the matrix for the ordinary Laplacian on the domain Ω. Indeed, the
matrix B corresponding to the ordinary Laplacian has the following form

B =



4 −1 0 −1 0 0 0 0 0
−1 4 −1 0 −1 0 0 0 0
0 −1 4 0 0 −1 0 0 0
−1 0 0 4 −1 0 −1 0 0
0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −1 4 0 0 −1
0 0 0 −1 0 0 4 −1 0
0 0 0 0 −1 0 −1 4 −1
0 0 0 0 0 −1 0 −1 4


.

Comparing the matrix B with the matrix A(1.99)
c , we can see that the matrices are close to each

other. In this way, we numerically verified that our numerical approach is in reasonable agree-
ment with theoretical results.

3.3 Stationary problems with fractional Laplacian

As in the one dimensional case, we will start with the stationary problems. Firstly, we will con-
sider problems with right-hand side independent of the solution u. For this type of problem, we
will introduce several examples, for which we know the exact solution. Then, we will consider
problem with the right-hand side which can be dependent on the solution u together with the
right-hand side being multiplied by a parameter λ ∈ R. For this type of problem, we will be
again using Newton’s method together with the simple continuation algorithm for plotting the
bifurcation diagram.

3.3.1 Right-hand side independent of u

In this section, we will consider right-hand side of the form f = f (x, y). Problem we are then
solving has the following form{

(−∆)α/2u(x, y) = f (x, y) in Ω,

u(x, y) = 0 in R2\Ω.

Our Matlab written solver for this type of problems is called frac laplace 2D.m. Its pseudocode
follows.

Input:
Lx (left boundary of the domain Ωsquare)
Rx (right boundary of the domain Ωsquare)
Uy (upper boundary of the domain Ωsquare)
Ly (lower boundary of the domain Ωsquare)
G (grid matrix)
f = f (x, y) (source term f )
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Figure 3.6: Numerical solution of (3.8), exact solution of (3.8), absolute and relative error for the
solution.

α ∈ (0, 2) (fractional order of (−∆)α/2))
Output:

solution (solution vector)
x coordinates (vector of x coordinates of grid points which lie in Ω)
y coordinates (vector of y coordinates of grid points which lie in Ω)

Begin
01 n← size(G)

02 h← (Rx − Lx)/n
03 [A, x coordinates, y coordinates]← frac lap scaled matrix 2D(Lx, Rx, Uy, Ly,G,α)
04 A← 1

hα A
05 b← f (x coordinates, y coordinates)
06 solution← A\b
07 Return solution, x coordinates, y coordinates

End

Now, several examples, for which we know the exact solution, will follow. The knowledge
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Figure 3.7: Numerical solution of (3.9), exact solution of (3.9), absolute and relative error for the
solution.

of the exact solution allow us to evaluate and plot the absolute error together with the relative
error of the solution.

Example 3.2. Consider circular domain Ω = B1(0) := {(x, y) ∈ R2 : x2 + y2 < 1} together with
the fractional order α = 1.9. The number of grid points in the direction of both axes x and y is
equal to N = 120, that is the grid contains 14, 400 grid points. For the right-hand side we are
choosing f ≡ 1. The problem we are then solving has the following form{

(−∆)0.95u(x, y) = 1 in B1(0),

u(x, y) = 0 in R2\B1(0).
(3.8)

Recall, that this is a special case of problem considered in Example 1.3 on page 3 for d = 2,
α = 1.9. The exact solution of the problem (3.8) is given by

u∗(x) =
1

2αΓ
( 2+α

2
)

Γ
(
1 + α

2
) [1− |x|2]α/2

+
,

as shown in [4, Eq. (5.4.)], [13, pp. 89].
In Figure 3.6 we can see our numerical solution of the problem, together with the exact

solution. Also, we are providing the absolute error

eabsolute = u∗ − u,
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Figure 3.8: Numerical solution of (3.10), exact solution of (3.10), absolute and relative error for
the solution.

together with the relative error

erelative =
u∗ − u

u∗
.

Example 3.3. For the next example, we will consider similar scenario as for the previous example
with the difference of the choice for the fractional order α, where we set α = 0.1. Following
problem is being solved {

(−∆)0.05u(x, y) = 1 in B1(0),

u(x, y) = 0 in R2\B1(0).
(3.9)

As before, we are plotting the numerical solution together with the exact solution. Also, abso-
lute and relative error are plotted as well. Results can be seen in Figure 3.7.

For the next two examples we will consider right-hand side, for which the solution is known
as well. The behavior of the solution is more interesting, because on a certain part of the domain
the function is negative and on different part of the domain the function is positive. As before,
we will consider two cases with the same setting expect of the fractional order α.

Example 3.4. Again, we will have a circular domain Ω = B1(0) := {(x, y) ∈ R2 : x2 + y2 < 1}.
For the fractional order we are choosing α = 1.9. The numbers of grid points in the direction of
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Figure 3.9: Numerical solution of (3.12), exact solution of (3.12), absolute and relative error for
the solution.

both axes x and y are again equal to N = 120. We consider the following problem{
(−∆)0.95u(x, y) = −y Φ(4)

2, 1.9(|x|
2) in B1(0) ,

u(x, y) = 0 in R2\B1(0) ,
(3.10)

where the function Φ(d+2)
p,α was defined in Example 1.4. By [10, Th. 1] (cf. Example 1.4), the

solution of (3.10) has the following form

u∗(x) = y (1− |x|2)2
+ (3.11)

for d = 2 and x = (x, y). Numerical solution of the problem (3.10) obtained by our linear solver
together with the exact solution of (3.11) is plotted in Figure 3.8. Again, we are plotting the
absolute error uabsolute and the relative error erelative.

Example 3.5. Now, let us change the fractional order to α = 0.1. The problem we are solving is{
(−∆)0.05u(x, y) = −y Φ(4)

2, 0.1(|x|
2) in B1(0),

u(x, y) = 0 in R2\B1(0).
(3.12)

Solution of the problem (3.12) together with the exact solution, absolute error eabsolute and rela-
tive error erelative, are plotted in Figure 3.9.
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Figure 3.10: Solution of (3.13) for different values of α.

For the next example, we will demonstrate, that we are able to solve the problem involving
fractional Laplacian on quite general domains Ω ⊂ R2. More specifically, we will consider a
domain, which consists of two circles which are connected by a rectangular section (so called
dumbbell domain). This domain may be interpreted as a two lakes which are connected by a
channel, which allows migration between the lakes.

Example 3.6. Let us consider a domain Ω, which consists of two circles connected by a rectan-
gular section. The problem, we are then solving, has the following form{

(−∆)α/2u(x, y) = 1 in Ω,

u(x, y) = 0 in R2\Ω,
(3.13)

for α = 1.9, α = 1.2, α = 0.8, α = 0.1. Solutions of the problem for corresponding values of α
are plotted in Figure 3.10.

3.3.2 Nonlinear right-hand side dependent on parameter

This section of the text is dedicated to the right-hand side of the form f = λ f (x, y, u), where
λ ∈ R is a parameter. The problem we are solving then, has the following form{

(−∆)α/2u(x, y) = λ f (x, y, u) in Ω,

u(x, y) = 0 in R2\Ω.
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As in the one dimensional case, we will use Newton’s algorithm for solving this type of a
problem. The approach of deriving the Newton’s method is the same as for the one dimensional
case, thus we will not derive the iteration scheme again.

Our Matlab written function for solving the problem is called frac laplace newton 12.m. Re-
garding the pseudocode, it is not necessary to include the whole pseudocode, because the body
of the pseudocode is the same as for the one dimensional case with a difference, that corre-
sponding Matlab function frac laplace scaled matrix 2D.m for the assembly of the matrix corre-
sponding to the fractional Laplacian is called. Also, another difference is, that the right-hand
side function, the derivative with respect to u of the right-hand function are a functions of x,
y, u, instead of x, u. Lastly, the initial guess of the solution uinit is a function of x, y. Another
differences concern the inputs of the algorithm, thus for the pseudocode we will include only
the inputs of the algorithm.

Input:
Lx (left boundary of the domain Ωsquare)
Rx (right boundary of the domain Ωsquare)
Uy (upper boundary of the domain Ωsquare)
Ly (lower boundary of the domain Ωsquare)
G (grid matrix)
λmiddle (parameter λmiddle, λmiddle < λmax)
λmax (upper boundary of interval for λ parameter)
m1 ∈N (number of discretization points for partition of interval (λbi f , λmiddle),

where λbi f is defined in the algorithm section)
m2 ∈N (number of discretization points for partition of interval (λmiddle, λmax))
6 < r < 15 (10−r is the tolerance in the Newton iteration)
f = f (x, y, u) (source term f )
fu = fu(x, y, u) (derivative fu of source term f )
uinit = uinit(x, y) (initial guess for Newton method for λ = λmiddle)
α ∈ (0, 2) (fractional order of (−∆)α/2))

Also, the simple continuation algorithm is implemented the same way as for the one dimen-
sional case.

Example 3.7. Consider the following problem for α = 1.9{
(−∆)0.95u(x, y) = λu(1− u) in B1(0),

u(x, y) = 0 in R2\B1(0),
(3.14)

where again Ω = B1(0) := {(x, y) ∈ R2 : x2 + y2 < 1}. For the number of grid points, we
are solving for N = 100. Then, we set λmiddle = 10, λmax = 60, m1 = 40, m2 = 50, r = 7,
uinit(x, y) = 1.

We are including the bifurcation diagram, as depicted in Figure 3.11, together with a few
solutions for several values of λ. These solutions are plotted in Figure 3.12.
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Figure 3.11: Bifurcation diagram for the problem (3.14).
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Figure 3.12: Solutions of (3.14) for different values of λ.
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Example 3.8. Consider the problem solved in the previous example with a different value of the
fractional order, specifically α = 0.1. The problem, we are solving has the following form{

(−∆)0.05u(x, y) = λu(1− u) in B1(0),

u(x, y) = 0 in R2\B1(0).
(3.15)

Solution of the problem for several values of λ is plotted in Figure 3.14. The bifurcation diagram
is then plotted in Figure 3.13.
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Figure 3.13: Bifurcation diagram for the problem (3.15).
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Figure 3.14: Solutions of (3.15) for different values of λ.
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3.4 Evolutionary problems with fractional Laplacian

By introducing a transient term ∂u
∂t to the problem involving fractional Laplacian, we obtain

evolutionary problem. We will begin with the problem involving right-hand side independent
of u. For this type of a problem, Euler method will be used. After that, we will move on to the
problem, for which the right-hand side can be dependent on u. As for the one dimensional, for
that type of a problem, method of monotone iterations will be used.

3.4.1 Right-hand side independent of u

For the case of evolutionary problem with the right-hand side independent of u, we are solving
∂u(t, x, y)

∂t
+ (−∆)α/2u(t, x, y) = f (t, x, y) in (T0, T)×Ω,

u(t, x, y) = 0 in (T0, T)× (R2 \Ω),

u(T0, x, y) = uinit(x, y) in Ω.

(3.16)

Similarly as for the one dimensional case, we will use implicit Euler method for solving this
type of problem. By the same fashion, firstly we would discretize the problem, then we would
approximate the time derivative by the difference scheme and only then we would consolidate
the term un+1, which denotes the solution at the next time step, i.e. un+1 := u(t + τ, x, y), where
τ > 0 is the temporal step. Following this procedure, we would again arrive at

un+1 =
(

I +
τ

hα
A(α)

c

)−1
(τ f (t + τ, x, y) + un) .

Our Matlab written linear solver for the problem (3.16) is called frac laplace evolution 2D.m.
The main body of the pseudocode for the algorithm is the same as for the on dimension case,
thus we will not be including it, but as in the case of the stationary problem with right-hand
side dependent on u, we will include just the inputs of the algorithm.

Input:
T0 (initial time)
T (end time)
τ (temporal step)
uinit(x, y) = u(T0, x, y) (initial condition)
Lx (left boundary of the domain Ωsquare)
Rx (right boundary of the domain Ωsquare)
Uy (upper boundary of the domain Ωsquare)
Ly (lower boundary of the domain Ωsquare)
G (grid matrix)
f = f (t, x, y) (source term f )
α ∈ (0, 2) (fractional order of (−∆)α/2))

Two examples will follow. In each of them, we will consider the same right-hand side. For
the first example, fractional order close to 2 will be chosen, for the second example we will
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Figure 3.15: Norm of the difference udi f f = u− ũ, where u solves (3.17) and ũ solves (3.18).

set fractional order close to 0. We will plot the solution for several time steps, together with
including a graph of the norm of the difference of the solution for the evolutionary problem
and solution for corresponding stationary problem.

Example 3.9. Consider an evolutionary problem with the right-hand side f ≡ 1, together with
the fractional order α = 1.9. The problem has the following form

∂u(t, x, y)
∂t

+ (−∆)0.95u(t, x, y) = 1 in (0, 5)× B1(0),

u(t, x, y) = 0 in (0, 5)× (R2 \ B1(0)),

u(0, x, y) = 2 in B1(0),

(3.17)

where T0 = 0, T = 5, Ω = B1(0) := {(x, y) ∈ R2 : x2 + y2 < 1}. For the number of grid points,
both in the direction of x axes and y axes, we set N = 120, for the spatial step we set τ = 0.01.

In Figure 3.16 we can solution of (3.17) for several time steps. In the following Figure 3.15
we can see a norm of

udi f f (x, y) = u(t, x, y)− ũ(x, y) in B1(0) for t ∈ (0, 5) fixed,

where ũ solves the stationary problem{
(−∆)0.95ũ(x, y) = 1 in B1(0),

ũ(x, y) = 0 in (R2 \ B1(0)).
(3.18)
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Figure 3.16: Solution of (3.17) at different time steps.
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Figure 3.17: Norm of the difference udi f f = u− ũ, where u solves (3.19) and ũ solves (3.20).

Example 3.10. Let us consider the previous example with different value of fractional order,
specifically α = 0.1. Together with the fractional order, we set different value of T to T = 10.
Problem we are then solving has the following form

∂u(t, x, y)
∂t

+ (−∆)0.05u(t, x, y) = 1 in (0, 10)× B1(0),

u(t, x, y) = 0 in (0, 10)× (R2 \ B1(0)),

u(0, x, y) = 2 in B1(0),

(3.19)

Together with this problem, consider the stationary version of the problem, that is{
(−∆)0.05ũ(x, y) = 1 in B1(0),

ũ(x, y) = 0 in (R2 \ B1(0)).
(3.20)

Solution of (3.19) for several time steps is plotted in Figure 3.18. In Figure 3.18, we are again
plotting the difference of the solution of (3.20) and the solution of (3.20).



76 CHAPTER 3. FRACTIONAL LAPLACIAN IN TWO DIMENSIONS

Figure 3.18: Solution of (3.19) at different time steps.
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3.4.2 Right-hand side dependent on u

Lastly, we consider the evolutionary problem involving fractional Laplacian with right-hand
side dependent on the solution u, i.e.

∂u(t, x, y)
∂t

+ (−∆)α/2u(t, x, y) = f (t, x, y, u) in (T0, T)×Ω,

u(t, x, y) = 0 in (T0, T)× (R2 \Ω),

u(T0, x, y) = uinit(x, y) in Ω.

(3.21)

Similarly as for the one dimensional case, the method of monotone iterations will be used. As
before, we would firstly reformulate the problem (3.21) as a sequence of initial-boundary value
problems of the form

∂um(t, x, y)
∂t

+ (−∆)α/2um(t, x, y) = h(t, x, y) := f (t, x, y, um−1) in (T0, T)×Ω,

um(t, x, y) = 0 in (T0, T)× (R2 \Ω),

um(T0, x, y) = uinit(x, y) in Ω,
(3.22)

where m ∈ N indicates the index related to the sequence of solutions. Then, on the prob-
lem (3.22) the method of the monotone iterations would be used. Because the method was
introduced in the chapter concerning the one dimensional case, we will not be describing the
method again.

After discretizing the problem (3.21), we would arrive at

un+1
m =

(
I +

τ

hα
Aα

c

)−1
(τ f (t + τ, x, y, un

m−1) + un
m),

where the subscript m ∈ N denotes m-th element of the sequence of solutions of the problem
(3.22) and n ∈N denotes n-th node of the grid.

Our Matlab written solver for problems (3.21) is called frac laplace lin parabolic solver 2D.m.
Again, we will not include the whole pseudocode of the algorithm, because the algorithm is
the same as for the one dimension case. Nevertheless, we will list the inputs for the algorithm,
which differ from the one dimensional case.

Input:
ϵ (tolerance for the monotone iterative method)
T0 (initial time)
T (end time)
τ (temporal step)
uinit(x, y) = u(T0, x, y) (initial condition)
usubsolution(t, x, y) (subsolution for the monotone iterative method)
Lx (left boundary of the domain Ωsquare)
Rx (right boundary of the domain Ωsquare)
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Figure 3.19: Norm of the difference udi f f = u− ũ, where u solves (3.23) and ũ solves (3.24).

Uy (upper boundary of the domain Ωsquare)
Ly (lower boundary of the domain Ωsquare)
G (grid matrix)
f = f (t, x, y, u) (source term f )
α ∈ (0, 2) (fractional order of (−∆)α/2))

Examples for the right-hand side of the form f (t, x, y, u) = 1 +
√
|u|, which was also in-

cluded in the examples for the one dimensional evolutionary problem, will follow.

Example 3.11. Let us consider a problem on a circular domain Ω = B1(0) := {(x, y) ∈ R2 : x2 +
y2 < 1} with the right-hand side f (t, x, y, u) = 1 +

√
|u|. Further, we are setting ϵ = 10−6,

T0 = 0, T = 5, τ = 0.01, N = 120 and for the fractional order we set α = 1.9. Then, the problem
we are solving has the following form

∂u(t, x, y)
∂t

+ (−∆)0.95u(t, x, y) =
√
|u|+ 1 in (0, 5)× B1(0),

u(t, x, y) = 0 in (0, 5)× (R2 \ B1(0)),

u(0, x, y) = uinit(x, y) := 0 in B1(0),

(3.23)

together with subsolution u(t, x, y) = 0 and supersolution u(t, x, y) = ũ(x, y), where ũ is the
solution of the stationary problem (3.24). For further discussion regarding the subsolution and
supersulotin, we refer the reader to Example 2.8.

Solution of the problem (3.23) for several time steps is plotted in Figure 3.20. As for the
evolutionary problem with the right-hand side independent of u, we are also plotting a norm
of a difference of the solution for the problem (3.23) and it’s stationary version, i.e.(−∆)0.95ũ(x, y) =

√
|ũ|+ 1 in B1(0),

ũ(x, y) = 0 in R2 \ B1(0).
(3.24)

The norm can be seen in Figure 3.19.
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Figure 3.20: Solutions of (3.23) at different time steps.
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Figure 3.21: Norm of the difference udi f f = u− ũ, where u solves (3.25) and ũ solves (3.26).

Example 3.12. For this example, we consider the same scenario as for the previous example with
a different values of α, T, for which we set α = 0.1 and T = 15. The problem we are then solving
has the following form

∂u(t, x, y)
∂t

+ (−∆)0.05u(t, x, y) =
√
|u|+ 1 in (0, 15)× B1(0),

u(t, x, y) = 0 in (0, 15)× (R2 \ B1(0)),

u(0, x, y) = uinit(x, y) := 0 in B1(0),

(3.25)

together with the subsolution u(t, x, y) = 0 and supersolution u(t, x, y) = ũ(x, y), where ũ is
the solution of the stationary problem (3.26). Together with the problem (3.25) we are solving
it’s stationary version (−∆)0.05ũ(x, y) =

√
|ũ|+ 1 in B1(0),

ũ(x, y) = 0 in R2 \ B1(0).
(3.26)

Solution of the problem (3.25) for several time steps is plotted in Figure 3.22. Norm of the
difference of ũ, which solves (3.26), and u, which solves (3.25), is plotted in Figure 3.21.
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Figure 3.22: Solutions of (3.25) at different time steps.





Conclusion 4
In this work, we have implemented numerical algorithms for solving problems involving frac-
tional Laplacian with a zero Dirichlet boundary condition, that is

∂u(t, x, y)
∂t

+ (−∆)α/2u(t, x, y) = f (t, x, y, u) in (T0, T)×Ω,

u(t, x, y) = 0 in (T0, T)× (R2 \Ω),

u(T0, x, y) = uinit(x, y) in Ω,

in one and two dimension. At the end of each section, several examples were included. For
the most cases, we considered the examples in pairs, where the one example differed from the
other one in the choice of the fractional order α.

In Chapter 2, we studied one dimensional case. In Section 2.1 , we discretized the frac-
tional Laplacian (−∆)α/2, obtaining a matrix A(α)

c , for which we derived explicit formulas for
its elements. Furthermore, during the process of discretization we also discussed the errors
which were introduced by neglecting reminders of Taylor’s expansion. To test our discretiza-
tion procedure, we used the fact (see, e.g., [31, Proposition 5.3.]) that fractional Laplacian tends
to identity operator for α tending to zero and fractional Laplacian tends to usual Laplace oper-
ator for α tending to 2. After calculating the matrix A(α)

c (for particular choice of interval and
number of nodes) in Section 2.2, we observed that for the fractional order α close to zero, the
matrix is approaching unitary matrix and on the other hand, for the fractional order α close to
2, the matrix is approaching the matrix corresponding to the ordinary Laplacian, which agrees
with the aforementioned theoretical results from [31, Proposition 5.3.].

In Section 2.3, we study stationary problems. Firstly, in Subsection 2.3.1 we considered right-
hand side independent of u, that is we solved the following problem{

(−∆)α/2u(x) = f (x) in (L, R),

u(x) = 0 in R\(L, R).
(4.1)

At first, we tested our linear solver on the problem (4.1) for f ≡ 1 on Ω := B1(0) = (−1, 1). The
exact solution for this problem is given by [4, Eq. (5.4.)], [13, pp. 89], by the following formula

u∗(x) =
Γ
(

1
2

)
2αΓ

(
1+α

2

)
Γ
(
1 + α

2
) [1− x2

] α
2

+
.
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Thus, we were able to compute the absolute and relative error of our numerical solution. Based
on the absolute and relative errors, we found out that our solver gives satisfactory results. Al-
though, for values of α close to 2, the relative error was quite large near the boundary, which
was to be expected.

In Subsection 2.3.2, by using our solver for linear problems above, we also studied problems
with right-hand side depending on nonlinearly on u with a parameter λ ∈ R of the following
form {

(−∆)α/2u(x) = λ f (x, u) in (L, R),

u(x) = 0 in R\(L, R).

For this type of a problems, Newton’s method was used. Also, we implemented simple contin-
uation algorithm, which provided us with a results for values of the parameter λ in the range
[λmin, λmax]. Because of that, we were able to plot bifurcation diagrams, which plot the depen-
dence of the norm of the solution on the value of the parameter λ.

In Section 2.4, we studied evolutionary problems. In Subsection 2.4.1, we focused on a prob-
lem with right-hand side independent of u. The problem we were then solving had the follow-
ing form 

∂u(t, x)
∂t

+ (−∆)α/2u(t, x) = f (t, x) in (T0, T)× (L, R),

u(t, x) = 0 in (T0, T)× (R \ (L, R)),

u(T0, x) = uinit(x) in (L, R).

(4.2)

For this type of a problem, implicit Euler’s method was used. The solution for the initial value
problem (4.2) is not known even for a simple case where f ≡ 1 with a constant initial condition.
To be able to determine if our linear solver of the evolution problem works, we used the fact
that the solution for the stationary version of (4.2) is known for f ≡ 1 together with the fact
that the solution of the evolutionary problem converges to the solution of the stationary version
of the problem for t approaching infinity. We then computed the solution of the evolutionary
problem (4.2) together with the solution of the stationary version of the problem and computed
the norm of the difference of corresponding solutions. We observed that the norm tends to zero
for sufficiently large t, thus we considered our solver of the evolutionary problem sufficiently
tested.

In subsection 2.4.2, we solved the original evolutionary problem involving u on the right-
hand side, that is the problem

∂u(t, x)
∂t

+ (−∆)α/2u(t, x) = f (t, x, u) in (T0, T)× (L, R),

u(t, x) = 0 in (T0, T)× (R \ (L, R)),

u(T0, x) = uinit(x) in (L, R),

was solved. For solving the problem, method of monotone iterations was used. Again, several
examples followed.

Following Chapter 3 of the text is devoted to the two dimension case involving fractional
Laplacian with zero Dirichlet boundary condition. The structure of the chapter copies the struc-
ture for the one dimensional case. As of first, we started with discretizing the operator, obtain-
ing matrix A(α)

c . Unlike the one dimension case, we are not going through the discretization
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step by step, rather we overtook the disretized form of the problem{
(−∆)α/2u(x, y) = f (x, y) in Ω,

u(x, y) = 0 in R2\Ω,

where Ω ⊂ R2, from the monograph [25, Chapt. 6]. Our contribution is in a description of the
process of computation of the matrix for a general grid. Similarly as in the one-dimensional
case, we tested the discretization for limiting values of α. We used a particular choice of square
domain and number of nodes. Then we computed A(α)

c , for α close to zero, and obtained al-
most unitary matrix. On the other hand, for α close to 2, we obtained matrix close to matrix
corresponding to the ordinary Laplacian. Again in agreement with theoretical results from [31,
Proposition 5.3.].

Section 3.3 of Chapter 3 concerns stationary problems. In subsection 3.3.1, we tested our 2D
linear solver on two problems of the following form{

(−∆)α/2u(x, y) = f (x, y) in Ω,

u(x, y) = 0 in R2\Ω.
(4.3)

on the open unit disc
Ω := B1(0) = {(x, y) ∈ R2 : x2 + y2 < 1} .

The first example used for testing is for the right-hand side f ≡ 1, for which the solution is
known explicitly (see Example 1.3 on page 3) and is given by

u∗(x) =
1

2αΓ
( 2+α

2
)

Γ
(
1 + α

2
) [1− |x|2]α/2

+
.

The second example was studied on the same domain Ω. We considered (4.3) with sign-
changing right-hand side of the form

f (x) = −y Φ(d+2)
p,α (|x|2),

where

Φ(d)
p,α(x) =

Ad,−αB(− α
2 , p + 1)πd/2

Γ
(

d
2

) 2F1

(
α + d

2
,−p +

α

2
;

d
2

; x
)

,

and

Ad,−α =
2αΓ

(
α+d

2

)
πd/2|Γ

(
− α

2
)
|
.

In [10, Th. 1] was shown, that the solution for the problem with this right-hand side is given by
the following formula

u∗(x) = y (1− |x|2)2
+.

For both cases, we evaluated and plotted the absolute and relative error of the numerical solu-
tion. We found that in both cases the numerical solutions were in good agreement with known
analytical solutions. Only near the boundary, where the solution is nearly zero, the relative er-
ror was quite large. However, this phenomenon was to be expected. After the linear solver was
tested in this way, we solved a problem of the type (4.3) on a geometrically more complicated
region known as the dumbbell (two circular domains connected by a rectangular section).
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In Subsection 3.3.2 we used the tested linear solver to solve the nonlinear problems of the
form {

(−∆)α/2u(x, y) = λ f (x, y, u) in Ω,

u(x, y) = 0 in R2\Ω ,

where λ ∈ R is a parameter. Analogously as in the one-dimension case, Newton’s method to-
gether with the simple continuation algorithm were used to produce corresponding bifurcation
diagrams.

Section 3.4 of Chapter 3 was devoted to study evolutionary problem involving fractional
Laplacian in two dimension. In Subsection 3.4.1, we started with right-hand side independent
of u, i.e. 

∂u(t, x, y)
∂t

+ (−∆)α/2u(t, x, y) = f (t, x, y) in (T0, T)×Ω,

u(t, x, y) = 0 in (T0, T)× (R2 \Ω),

u(T0, x, y) = uinit(x, y) in Ω,

(4.4)

and developed linear solver based on the implicit Euler’s method. We computed several exam-
ples on the open unit disk. The solution of the initial value problem (4.4) is not known even
in the case of f = 1 and a constant initial condition. To test the linear solver of the evolution
problem, we used the fact that a steady state of 4.4 is known for f ≡ 1 and the fact that the
solution of the initial problem converges to a stationary state for t approaching infinity. Nu-
merically, we implemented this procedure by computing the solution of the initial problem for
sufficiently large t and comparing it with the corresponding steady states. We found that in
all the cases studied, the numerical solutions of the initial value problem were close enough to
the corresponding steady states for sufficiently large t. Thus, we considered the linear solver
of the evolution problem sufficiently tested. For the convenience of the reader, we included
the graphs of the norms of the difference of the solution of the initial value problem and its
stationary version.

Finally, in Subsection 3.4.2 of Chapter 3, we considered two nonlinear initial value problems
and solved them using the linear solver of initial value problems combined with the method of
monotone iterations.
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