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i



Abstract

Approaches that target software composition are becoming remarkably im-
portant with the gradual enlargement of software systems. Together with the
adoption of component-based programming to cope with software complex-
ity, extra-functional properties are playing a more important role. This work
deals with the problem of insufficient adoption of extra-functional properties
among a variety of component models. It builds on the assumption that such
insufficient adoption consequently limits the adoption of component-based
programming itself. It is particularly noticeable in industrial applications.
As a suggested solution, this work proposes a comprehensive mechanism en-
abling the use of extra-functional properties in existing systems. Thanks to
this mechanism, extra-functional properties may be independently applied
into the systems that have not contained the properties before. It should
lead, among things, to the wider use of component based programming. The
mechanism is based on other state-of-the-art approaches. The presented the-
sis provides their analysis, formally defines the mechanism, and describes
its implementation in Java-based technologies. Main building blocks of the
mechanism are a layered properties repository, a model assigning the prop-
erties to a variety of systems, and an evaluation algorithm. Application of
the mechanism to industrial component models, namely Spring and OSGi,
as well as a case-study presenting one of the practical applications is also
part of this work.
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Abstrakt

Metody zlepšuj́ıćı modulárńı tvorbu software se stávaj́ı stále v́ıce d̊uležité,
tak jak se stále zvětšuje software. Společně s využit́ım komponentově ori-
entovaného programováńı, jako prostředek řeš́ıćı komplexnost software, mi-
mofunkčńı charakteristiky hraj́ı stále d̊uležitěǰśı roli. Problém adresovaný
v této práci zahrnuje nedostatečné použit́ı mimofunkčńıch charakteristik
v existuj́ıćıch systémech. Tato práce stav́ı na předpokladu, že toto ne-
dostatečné použit́ı zároveň omezuje využit́ı komponentově orientovaného
programováńı jako takového. Jako možné řešeńı, tato práce představuje
robustńı mechanismus, který umožňuje zavést mimofunkčńı charakteristiky
do již existuj́ıćıch systémů. Dı́ky tomuto př́ıstupu, mimofunkčńı charakter-
istiky mohou být mnohem rychleji zavedeny v praxi, což vede také k větš́ı
rozš́ı̌renosti komponentového programováńı. Uvedený systém je založen na
existuj́ıćıch řešeńıch, formálně definován a naprogramován v Javě. Základńı
stavebńı bloky tohoto systému jsou univerzálńı úložǐstě charakteristik, mech-
anismus umožňuj́ıćı přǐradit tyto charakteristky k r̊uzným komponentovým
systémům a algorimus pro vyhodnoceńı charakteristik. Uvedené řešeńı je im-
plementováno do pr̊umyslových systémů Spring a OSGi. Př́ıpadová studie
ukazuj́ıćı možnou aplikaci tohoto systému je také součást této práce.
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Chapter 1

Introduction

Current software products increase in their size. Together with the effort
to let computers manage more and more complex information, the software
expands to very complicated systems.

Despite that a lot of current software is still created from scratch. It is
obvious different applications use the same parts of logic or work-flow. For
that reason, partial solutions have been invented to avoid repetition of the
same code. One of the solutions are software libraries in a form of source
or binary code. Developers use the libraries, though the core functionality
must be still hand coded. The amount of libraries and they relations causes
that the developers must learn overwhelming amount of information.

On the other hand, software vendors want to decrease the time-to-market as
well as the price of the software. It contrasts with the amount of information
people involved in the software development must acquire and implement.
Therefore, a fast and reliable software development process should solve (i)
the inefficiency of the current development process and (ii) decrease the
amount of information developers must learn.

As a result, more sophisticated solutions have been invented. Two of the ap-
proaches aiming at solving this problem are component based programming
and service oriented architecture. A common idea behind both of them is
the composition of final functionality from components or services without a
need of a “glue” code. The underlying benefit is that components or services
may first be prepared by developers who are experts in a particular domain.
Then a system architect needs to learn only an overall structure to com-
pose the system. It consequently distributes informations among different
persons involved in the software process.

Since no additional code is written and software parts are re-used, the devel-
opment time and thus the price are decreased. In addition, the re-used parts
are prepared by particular experts and they are used and verified among
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Chapter 1. Introduction

several applications. This process increases their stability and reliability.
Despite all these benefits, other issues keep to arise.

1.1 Problem Definition

If any technology composing software from pre-existing parts, either com-
ponents or services, is adopted, compatibility verification is more important
than before. The use of pre-existing software parts requires a strong quality
assurance. A bug in a software part would be rapidly distributed to a lot
of applications as this software parts is distributed. Additional verification
of the composition itself is nonetheless important. The reason is that even
a bug free component may not be working in cooperation with other com-
ponents. As a result, precisely verified isolated components (services) as
well as the verification of their composition can guarantee a fully working
system.

The functionality of a software is often divided into functional and extra-
functional (also referred to as non-functional) characteristics. While the
functional characteristics denote fundamental purposes a component or ser-
vice has been developed for, the extra-functional characteristics denote qual-
itative aspects of how the components or services do their functionality.

Current research invests considerable effort to describe, implement and use
both functional and extra-functional characteristics leading to strong com-
patibility verification. Since the functional characteristics are not a new
concept in software development, they are well supported in current indus-
trial systems. For instance, the provided and required side binding is used
in OSGi while WSDL describes web-services in the service oriented archi-
tecture. On the other hand, extra-functional characteristics are still a topic
undergoing current research.

A lot of research has been done to address extra-functional properties, how-
ever, there is still a limited application to industrial component models. As
long as developers have no routine support of the extra-functional prop-
erties, weak compatibility checks cause slow adoption of component base
programming. It leads to connected issues in which developers do not adopt
this innovative technique because of its problems while the technique itself
cannot improve because of its slow adoption. As a result, this problem limits
third-party sharing of either components or services with the consequence
that they are still not a mainstream in software development.

Therefore, the main problem addressed in this work is the slow application of
extra-functional properties into routinely used industrial component models.
Although the industrial component models are widely used, the components
exchange across organisations is still rare. This work uses the assumption

2



Chapter 1. Introduction

that this problem is caused by weak compatibility checks caused literally by
the weak extra-functional properties support in respective industrial com-
ponent models.

1.2 Goal of the Work

There have been several attempts at providing extra-functional property
support for software systems. They start from describing extra-functional
properties [26, 50] through their applicability to other systems and end in
the development of complex systems embedding as their part either extra-
functional properties [76, 15] or quality of service specifications [101, 38].

A considerable number of approaches to extra-functional properties exist.
Although these approaches have already shown directions leading to the
successful implementation of extra-functional properties, only a little work
has been done to their industrial application. As far as we know, industrial
component frameworks with no extra-functional property support such as
Spring or OSGi are widely used while industrial frameworks with extra-
functional property support are rare. A question remaining open is why,
despite their high number, research works in this area are slowly acquired
by the industry.

In this work, we try to propose a new approach to this problem. Rather
than creating a new complex model which natively supports extra-functional
properties, the first goal is to propose an independent mechanism which ex-
tends existing systems with extra-functional properties. The rationale is
that even a basic extra-functional property support is beneficial for indus-
trial component frameworks. In addition, these frameworks as well as the
properties may evolve independently.

A second goal is to base this new mechanism on the existing state-of-the-
art and thus it should not be a breakthrough in terms of extra-functional
property definition, application and evaluation. The novelty should lay in
the innovative applicability to a variety of existing systems instead.

Since the mechanism should cover a wide range of existing systems, a uni-
fied sharing and an independent usage of extra-functional properties is a
consequent goal.

Finally, a last goal is to implement the output of this work as a toolbox
providing an instant applicability of the output to practise. It supports the
practical usage and verifies the approach.

The following parts are organised as follows: Chapter 2 overviews fundamen-
tals of component-based software engineering followed by Chapter 3 bringing
the survey of the state-of-the-art related to extra-functional properties. The

3



Chapter 1. Introduction

description of the main contribution of this work is given in Chapter 4 while
its implementation is described in Chapter 5. A practical application of
the approach is demonstrated on a case-study in Chapter 6 followed by a
discussion and future work in Chapter 7.
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Chapter 2

Background: Component
Architectures

2.1 Motivation

Current research and industry adopt Component Based Software Engineer-
ing (CBSE) as a promising approach to software development with several
benefits that will be summarised in this section.

The overall idea of CBSE has been inspired in other industrial areas. For
instance, different houses are build from unified concrete blocks, different
cars use unified parts of engines, different types of electronics embed unified
chips. Although these industrial areas adapt sharing of pre-building blocks
without difficulty, the industrial area of software development often builds
software from scratch.

Hence, the goal of CBSE is to adopt the whole idea of building a product
from a pre-build blocks – components. The same way as an electronic chip
provides a set of pins with a well defined inputs and outputs, the aim of
components is to provide well defined input and output allowing to put
the components into a system and run. There is a lot of approaches to
implement this idea and some of them will be detailed in following sections.

Before the deeper explanation of concepts and terms such as a component,
a component model and a component framework, which will be detailed in
Sections 2.2, let us start with several motivations of CBSE mentioned by
Bachman [11]:

• Independent extension – Legacy non-component software is difficult to
extend. A new functionality must be inserted directly to the source
code and a whole application must be rebuild, because legacy software
is often developed as one monolithic system. In opposite, when com-
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Chapter 2. Background: Component Architectures

ponents are used, a new functionality may be added by adding a new
component or an existing functionality may be updated by an updated
component. In addition, an extension mechanism is defined by a com-
ponent model which effectively decrease a possibility of side effects (e.g
misused communication protocol in two stand-alone systems).

• Component markets – Component models themselves define standards
for components. Together with component frameworks, it defines
mechanism of component’s deployment, running and usage. That is,
no explicit definition of how to install, run, uninstall etc. repeated for
each components (which is typical for stand-alone programs) is needed.
The definition of these standards lead to unified components that may
be distributed via a common market.

• Reduce time-to-market – A component developed for specific func-
tionality contains only code for the functionality itself. A component
framework provides other runtime means commonly needed by com-
ponents. For that reason, each component may simply use them and
do not have to e.g. allocate system resources. It increases the devel-
opment speed.

• Improve predictability – When a problem with functionality of a com-
ponent appears it certainly means that the component itself contains
a defect. All general design rules and patterns of the whole system are
defined by the component model and it is thus enforced to each com-
ponent. For that reason, it is unlikely to incorrectly design technical
system structure.

2.2 Components

The definitions of components vary and, so far, there is not only one general
definition of what a component is [17]. It is obvious we build components to
compose a variety of final applications. Hence, a one of empirical definitions
would say a component is a unit of a composition.

This empirical definition is, however, not sufficient. There is a lot of vari-
ants of how the components may look, how they are created and how they
compose a final product.

The very term “component” is also used for different areas of software which
have a little common characteristics together. On the one hand, a bean de-
fined in Enterprise Java Bean (EJB) [33] or a bundle created for OSGi [85]
actually encapsulate functionality that may be repeatedly used in different
systems. For that reason, the empirical definition fits to the mentioned
empirical definition. On the other hand, vendors of software time-to-time
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promote components of an application, but the application itself is a mono-
lithic one. The distinction to components is, in this case, only a logical or a
commercial one.

Considering discrepancy of terms and understanding, it is desired to find a
preciser definition. One of the often used definition is in Szyperski’s book
[96]. It reads:

“A software component is a unit of composition with contractu-
ally specified interfaces and explicit context dependencies only.
A software component can be deployed independently and is sub-
ject to composition by third parties.”

However, other authors also tried to answer the question of what a compo-
nent is. Therefore another definition proposed by Bachman [11] and men-
tioning three important points reads:

The component is:

1. an opaque implementation of functionality,

2. subject to third-party composition,

3. conformant with a component model.

Finally, the third definition shown in this section has been proposed by
Meyer [71]. It reads:

A component is a software element (modular unit) satisfying the
following conditions:

1. It can be used by other software elements, its “clients.”

2. It possesses an official usage description, which is sufficient
for a client author to use it.

3. It is not tied to any fixed set of clients.

Reading these three definitions it may be realised their are partly equivalent.
Although these definitions do not present common understanding of compo-
nents and CBSE, they have been selected to express the understanding used
across this work. Due to the fact this work aims at improving partial as-
pects of CBSE and does not aim at covering all research around CBSE, other
component understanding (e.g. modules activated and deactivated based on
licensing) will not be provided here.

The rest of this work deals with software components in terms of mentioned
definitions. It namely means (1) a software component is assumed as a unit,
typically prepared by a third-party, of a software composition, (2) which has
a precisely defined communicating counterpart elements (e.g. interfaces) and
(3) is deployed into a software system.

7



Chapter 2. Background: Component Architectures

2.2.1 Components and Object-Oriented Programming

For better understanding of components Szyperski [96] provides a relation
of the components with object-oriented programming. Namely, unlike a
component as a unit of deployment, an object is a unit of instantiation.
Each object has assigned a state together with an identifier. An object is
instantiated and later destroyed in any time of an application run. The state
of the object may be observed while an instance of the object exists.

In opposite, the component is started (or is activated) when the whole appli-
cation is started and runs until the application runs. The component should
not have any observable state and it has no sense to have more copies (in-
stances) of one component in the application. Another benefit of a stateless
component is its re-entrance. Since there is no state while a component runs,
each call of component’s methods is independent and it is thus re-entrant.
In contrary to these rules, component frameworks such as EJB, Spring [94]
or OSGi allow to run more copies of one component.

Object-oriented languages such as Java or C# may be used to define a
component as an object or a set of objects. For instance, Spring defines one
component as one Java class while a component in OSGi is a set of classed
packed in one JAR file. On the other hand, a component may be defined in
non-object languages such as C.

2.2.2 Black-box and White-box

Black-box is generally a program which provides a functionality and users
know only its inputs and outputs. The users call the functions with inputs
and expect outputs. The inner implementation of the functionality remains
hidden. Moreover, the black-box software parts often provide a contract re-
stricting input data for which the software parts are capable of guaranteeing
their outputs.

If the user of the program is able to look to the source code, it is a white-box.
The white-box is generally more problematic to replace an old program by
a new one [96]. Once a user may study the source code of the program he
or she tends to adjust client programs to use any “hidden” benefits of the
code. A client may e.g. change a sequence of calls, modify somehow input
and even output values to reach e.g a maximal performance of the program.

White-box representation of a program poses problems when the program
is replaced by another version. Although the new version may work well,
some clients may rely on the inner representation of the older version. For
that reasons the black-box program better suites for future replacement.

Taking components into account, the black or white-box nature remains

8



Chapter 2. Background: Component Architectures

valid. All components designed as black-boxes are more suitable for future
replacement. Since the components primary goal is to be replaceable, it
even more highlights the need for black-box components. Therefore, this
work aims at treating components as black-boxes.

2.2.3 Component Interconnections

Considering a component as a unit of deployment, the component needs
to communicate with other components. Different systems use different
approaches to connect components. Interfaces, events, shared memory, con-
nectors, etc. are used for components to exchange data.

Often, components use the provided and the required role of communicat-
ing counterpart elements where compatible provided and required pairs are
matched together to establish communication channels. This understanding
will be used in this work.

Another question raised with the contract definition is how many functions
should a component publish and how many the component should require.
An ideal component is fully re-usable with only a set of useful functions. It
is, however, often in contradiction. When a component provides a too wide
set of functions, it is barely re-usable. On the other side, a widely re-usable
component may offer only a very limited set of functions or even only a one
function. Szyperski summarises [96]:

Maximizing reuse minimizes use.

Every component should offer the right set of functions with minimal de-
pendencies on other components.

2.3 Component Models

If we removed the third rule of the components definition form Section 2.2
saying: “a component is conformant with a component model”, we could
claim that any two stand-alone programs are components. They are opaque
implementation of functionality, independently deployable and often use
means to communicate with each other. For that reason, the conformance
with a component model is the most important addition to the world of
components.

Definitions of what the component model is have been proposed by other
authors. First of all, let us cite the work presented by Bachman [11]. It
targets a role of a component model in terms of types compatibility, compo-
nents interaction and resource allocation. The definition says the component
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model should impose:

• Component types. They are expressed by interfaces the component
implements. When the component implements more interfaces it is of
the type of all implemented interfaces. In other words the component
is polymorphic with respects to all implemented interfaces.

• Interaction schemes. The component model should specify a com-
ponent location (e.g. where component are stored and deployed), a
protocol to communicate and may also define which quality of services
are achieved.

• Resource binding. Each deployed component is bound to some re-
sources. A resource is provided by a framework the component is
deployed in, or by other components. The component model describes
which components are available and how and when the components
bind to them. Consequently, the component model drives the life cycle
of components and manages resources assignment.

Another definition addresses a semantic and syntactic role of the component
model together with the role of a composition arbiter. The definition has
been proposed by Lau [70] and it reads:

A software component model is a definition of:

• the semantics of components, that is, what components are
meant to be,

• the syntax of components, that is, how they are defined,
constructed, and represented, and

• the composition of components, that is, how they are com-
posed or assembled.

Let us continue with a definition presented by Crnkovic [30] concerning
properties and mechanism of component composition. It reads:

A Software Component is a software building block that con-
forms to a component model. A Component Model defines stan-
dards for (i) properties that individual components must satisfy
and (ii) methods, and possibly mechanisms, for composing com-
ponents.

As a last definition of this section, let us mention the Weyuker’s work [99]
highlighting a composition arbiter role of the component model. Their def-
inition says:

10
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A [component is a] software element that conforms to a compo-
nent model and can be independently deployed and composed
without modification according to a composition standard.

Summarising these definitions, the component model gives a uniformity to
components and their composition. The component model prescribes com-
ponent communication means, deployment, binding, resource usages, etc.
The component model ensures the components are correctly bound once de-
ployed to a system, the communication means are established and resources
allocated.

Another use of the component model is to ensure sufficient quality. The
component model may define typical software requirements e.g. a deadlock
free computation, manages race-conditions, synchronization etc. The com-
ponent model may also support requirements such as performance, memory
consumption, etc. generally covered by extra-functional properties that are
of the main concern of this work.

A success of CBSE depends on a component market [11]. When developers
produce a component it is published by a vendor to a marker where it may
be bought by an architect of a final application. It is expected that the
component works equivalently in an original developer environment as well
as in a customer environment. A degree of such assurance depends on a
component model and a degree a component model is capable of verifying
the conformance.

2.4 Component Framework

A component framework is essentially an implementation of a component
model. It supports all mechanisms such as deployment, synchronization, life-
cycle, communication of components as long as a component model supports
them.

Component framework works like an operating system [11]. It also manages
processes (components), life-cycle, receives resource requests and decides
their assignment. The framework also allows components to communicate
with each other the same way as an operating system does. Operating
systems typically run all the time while the processes are variously started
and stopped.

Although a lot of component frameworks also run all the time compo-
nents are started and lately stopped, it is not necessary needed. A com-
ponent framework may be also an implementation of functionality which
components explicitly invokes. In contrary, Bachman [11] says: “The trend
in component technologies seems to be towards framework as independent
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implementation, making the operating system analogy quite apt.”. Conse-
quently, this claim is also supported by practically used frameworks such as
Java EJB, Spring, OSGi, which are consistent with the operating systems
analogy.
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Chapter 3

Extra-functional Properties

While the previous chapter has described fundamentals of component pro-
gramming, this chapter details extra-functional properties (abbreviated as
EFPs) as an important aspect of software development. Although they are
used in other fields of software development this work targets mainly their
relation to CBSE. This section overviews motivation of taking EFPs into
account first, then several definitions and references concerning EFPs are
mentioned.

A research concerning EFPs is considerably wide. Purpose of following
sections is, therefore, to summarise only a limited set of selected approaches.

3.1 Motivation

Section 2.3 has shown that a component model ensures the component com-
patibility in different environments as long as the components are confor-
mant with the component model. However, current industrial component
models typically guarantee components will work in customer environment
only in terms of functional aspects such as correct using of communication
channels, resources binding, component’s life-cycle etc. that is insufficient
for a reliable conformance verification.

Extra-functional aspects such as (1) performance properties: speed, response
time, memory consumption or (2) user requirements: marketability, price,
regular updates, technical support or (3) behaviour properties: synchronisa-
tion, concurrent access, deadlock free computation should be also taken into
account.

Typically, these properties should be taken into account in the phase of
component binding and therefore included in the process of verifying compo-
nent compatibility. Then, a combination of functional and extra-functional
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aspects provide verified and compatible components meeting user require-
ments. In following sections, extra-functional properties attempts will be
shown in a form of stand-alone frameworks, languages or formalisations.

3.2 What Others Say

Let us start by pointing out that the very term extra-functional properties
lacks unified understanding. The definitions available, so far, are vague and
varied. However, attempts to collect and classify EFPs have been done. For
instance, M. Glinz collected some definitions in his work [42]. Some of them
are shown in Figure 3.1 (provided at the end of this Chapter).

In addition to these definitions, Glinz focuses on a main problem of EFPs.
The main problems are in definition, classification, and representation:

• Definition problem - there is, so far, terminological and also conceptual
misunderstanding. Other works use concepts of properties, character-
istics, attributes, qualities, constraints and performance, however, they
denote incompatible concepts.

• Classification problem - there is also no general understanding. The
classification problem is in the work [42] summarised as:

Davis [31] regards EFPs as qualities and uses Boehm’s qual-
ity tree [14] as a sub-classification ... The IEEE standard
830-1998 [49] sub-classifies non-functional requirements into
external interface requirements, performance requirements,
attributes and design constraints, ... The IEEE Standard
Glossary of Software Engineering Terminology [48] distin-
guishes functional requirements on the one hand and de-
sign requirements, implementation requirements, interface
requirements, performance requirements, and physical re-
quirements on the other. Sommerville [93] uses a sub-
classification into product requirements, organizational re-
quirements and external requirements.”

• Representation problem - each application of non-functional require-
ments is usage dependent. Another problem is a lack of consensus
where to document non-functional requirements. It may be a separate
chapter in the software requirements specifications. The Rational Uni-
fied Process [52] recommends to define the requirements in use-cases.

Distribution of EFPs presented in another Glinz’s work [41] considers clas-
sification and concerns. It suggests a classification of the requirements into
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groups: kind, representation, satisfaction, role. In addition, requirements are
denoted by concerns divided into groups: (1) project requirements, (2) sys-
tem requirements and (3) process requirements. System requirements build
on other sub-concerns: (1) functional requirements, (2) attributes and (3)
constraints.

Furthermore, classification of EFPs has been developed by Bachman in his
work [11]. It defines three main groups of extra-functional properties:

• Behavior concerns the outcome of operations. Each call of a method
and the outcome of the method vary depends on a call of other meth-
ods. For instance, the Eifell language allows to define pre-conditions
and post-condition to capture conditions which must hold to guarantee
a result of the computation. The other example is a usage of assert
commands in languages such as Java. It typically guards whether
input parameters of methods contain valid values. In any case, the
behaviour characteristics concern sequential ordering of methods call.

• Synchronization concerns all aspects connected with multi-threaded
computation. Although modern programming languages contain
means to deal with synchronisation – they allow programmers to define
semaphores, monitors, lock shared resources, etc. – an explicit verifi-
cation checking whether a component is thread-safe and synchronised
is barely supported.

• Quality of service typically concerns attributes limited by hardware or
any other technical means. Quality of service includes attributes such
as maximum response time, delay, average response, memory usage,
processor speed demands, precision. They are mainly relevant in re-
solving whether the whole component system will work with available
platform properties.

These selected definitions show that there is a lot of understanding, defi-
nitions and applications of EFPs. Another detailed survey and attempt to
classification has been presented by Chung [27]. A unified definition which
would be general but still valid for multiple areas does not exist. Therefore,
research tries to address these areas independently. Some of the areas are:

1. a transformation of user requirements, expressed in a natural language,
to a formal language: Hussain [47], Nordin [66];

2. a language or any other formalisation of EFPs allowing their general
automatic processing: Aagedal [3], Gu [44];

3. systematic way computing how EFPs are influenced by other EFPs:
Zschaler [104], Defour [32];
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4. a relevance of EFPs to a concrete area of usage: Lammana [63];

5. a simulation or measurement of EFPs: Potužák [87].

The first point covers the domain of collecting and processing user require-
ments. Since users specify their requirements to a system in a natural lan-
guage, techniques mining EFPs form the specifications are targeted.

The second point covers a formal writing of EFPs allowing its invocation in
the same manner as ordinal source code is compiled and run.

Obviously, a lot of characteristics depend on other characteristics. Perfor-
mance of one part of a system depends on other parts. For that reason, the
third point covers the dependency of EFPs with each other.

The fourth point is important for components. Some qualitative aspects
often vary for different usage and EFPs may be relevant in one context
while they are barely relevant in another one. For that reason, the context
in which concrete EFPs are deployed should be taken into account.

The fifth point covers an area of component measurement to obtain EFPs.
It is an alternative approach to model precise behaviour of the components,
in which a component is a block-box and its characteristics are explicitly
obtained by its measurements and simulations. Such an approach leads to
approximated characteristics, however, it prevents a need for a lot of detail
behaviour models.

To conclude this section, let us state a new definition of extra-functional
properties developed for the purposes of this work:

An extra-functional property is an attribute holding any infor-
mation, explicitly provided with a software system, to describe
characteristics of the system apart from the system’s genuine
function, to extend system’s contract, supported by technical
[computational] means.

3.3 Extra-functional Languages

This section introduces current research approaches to definitions of extra-
functional properties expressed as specialised languages. There is a group of
languages targeting specialised area of usage. They typically suit specialised
components for specialised software. A context of usage is less important.
On the other hand, there are other approaches working with general EFPs.
They are typically more suitable for general components and their context-
independent usage.
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This section first focuses on several approaches which define EFPs for con-
crete areas of usage. They generally better succeed in specialised applica-
tions, though their application to general components is limited.

Furthermore, this section provides an overview of more general languages.
They are typically stand-alone notations that may be used by various sys-
tems ranging from general components, through web-services to specialised
systems.

3.3.1 HQML

A Hierarchical QoS Markup Language (HQML) [44] is designed as a XML-
based language targeted at the Service Oriented Architecture. HQML uses
a XML language for its simplicity and popularity.

It uses three layer structure:

• User Level – defines quantitative criteria in textual representation (e.g.
“high”, “low”, “average”), an attention (“clarity”, “smoothnest”) and
a price from a user point of view. This level is used during runtime
when the best suitable service is matched.

• Application Level – this layer serves as a specification of all kinds
of application QoSs (e.g frame rate, resolution, size). It also allows a
connection of a distributed application expressed in an oriented acyclic
graph. The main use of this level is for middle-ware entities of the
system independently of underlying resources such as hardware, OS,
etc.

• System Resource Level – defines different resource requirements. When
a concrete resource is available it allows to associate it.

Each of these layers have respective elements in the XML writing. For
instance, a user requirement (User Level) to a “smoothness” video playback
may be written as:

<UserLevelQoS> high </UserLevelQoS>

<UserFocus> smoothness </UserFocus>

<Price unit = "$"> 1 </Price>

<PriceModel> flat rate </PriceModel>

An application (Application Level) providing a video playback may provide
a set of characteristics:

<Range unit = "fps">

17



Chapter 3. Extra-functional Properties

<UpperBound> 40 </UpperBound>

<LowerBound> 30 </LowerBound>

</Range>

The application may run on a system (Resource Level) defining the set of
resources:

<Delay unit = "ms"> 100 </Delay>

<LossRate unit = "%"> 3 </LossRate>

<Jitter unit = "ms"> 10 </Jitter>

Although the HQML [44] provides a rich description of the XML elements
allowing the writing shown above, it is not detailed how these characteristics
are evaluated. For that reason, it is unclear how user requirements are
mapped to the provided application level together with provided resources.

The XML representation is translated to in-memory representation where
it is processed by QoS-proxies which provide generic middle-ware represen-
tation of QoS-services (negotiation, adoption, ...). The transformation of
XML data into memory is provided by the HQML Executor that conse-
quently cooperates with QoS-proxies in QoS negotiation. HQML Executor
works in following steps:

1. The HQML Executor interprets user requirements (from User Level)
and contacts QoS-proxies to discover current application resource
availabilities. The request is sent to a server.

2. Web/HQML server searches in HQML Profiles (which is Application
Level) to find a profile matching user requirements. It returns infor-
mation about suitable services or returns an error if the matching does
not exist. The result is returned back to the user.

3. In a case more than one profile matches the user is asked for a selection.
When the suitable profile is selected, the selected service is invoked
together with allocating demanded resources (described by Resource
Level).

Together with the HQML language, they propose a tool called QoSTalk
covering the presented solution.

HQML seems to serve as a comprehensive language which targets different
level of an application. Although the paper [44] addresses a mechanism of
evaluation of defined properties mediated by QoS-proxies, it does not explain
how the QoS-proxies work to define a precise evaluation mechanism. It is
desirable to know whether the HQML mechanism directly compares values
provided on each level, or matches the best suitable services. The former
one is easy to cope with while the latter one is challenging.
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3.3.2 SLang

SLang [63] stands for a Language for Service Level Agreement (SLA). The
language is targeted at systems concerning web services providing data
among systems, component-based middle-ware and containers accessing sys-
tem resources and data storages. SLang aims at capturing different scales of
extra-functional properties for different tiers of an application and different
scales of the properties among applications.

Slang first captures inter-organisation EFPs with respects to a storage, net-
work, middle-ware and an application level. It second captures EFPs be-
tween a service provider and a client.

It defines a horizontal layer which basically respects a layered structure of
classic applications. It separately defines EFPs for each layer: layer of web
services, middle-ware components and a container. The rationale behind it
is that each layer may use the same EFPs, but they differ among layers. For
instance, a web service may offer a throughput as well as a database may
do so, but scales of values for both layers differ. The other, a vertical layer,
concerns EFPs of the same layers for different systems, e.g. the properties
of two web services of two communicating applications or two components
on the middle-ware layer. It expresses EFPs a server must meet to satisfy
clients.

The main goal of SLang is (i) to express qualitative and quantitative features
of a service with the high degree of accuracy, (ii) make easy the comparison
of offers. They define a set of main concepts to reach both goals:

• Parametrisation – each SLA is parametrised by values that quantita-
tively describes a service.

• Compositionality – since services may be cascaded or aggregated, SLAs
of the services must be also composable in order to express an offer of
the composed service.

• Validation – a syntax and validity of SLA must be feasible.

• Monitoring – SLA should be able to provide automated monitors show-
ing which service levels are met.

• Enforcement – an execution must be enforced when service levels are
agreed.

The work [63] describes in detail the language itself, however, these points
are barely developed in details which limits understanding of how they would
be reached.
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The two layers (horizontal and vertical one) of SLang contain seven different
kind of SLA – four for the vertical layer and three for the horizontal layer.

The vertical layer uses the SLA of kinds: (1) Application – between appli-
cation or web services and components, (2) Hosting – between a container
and components, (3) Persistence – between a container and a storage, (4)
Communication – between a container and network providers.

The horizontal layer uses the SLA of kinds: (1) Service – between compo-
nents and web services, (2) Container – between containers, (3) Networking
– between network providers.

For instance a Persistence layer may be written using SLA as follows:

<Provision disk_space="400"/>

<Availability>97%</Availability>

<Reliability>90%</Reliability>

<Maintenance recovery_time="1" scheduled_outages="17"

routine_maintenances="24"/>

<Query_response_time average="30" maximum="48" minimum="21"/>

<Data_integrity>97%</Data_integrity>

<Security encrypted_storage="true" encryption_method="DES"

certificate="false"

user_authentication="true" intrusion_detection="true"

virus_scanning="false"

eavesdrop_prevention="true"/>

SLang targets different scales of values in terms of (i) values used in different
layers of an application and (ii) values used among applications in which
each domain covers different scales of values. Although SLang allows to
bind properties to a concrete feature in which properties are valid, the work
[63] does not explain a mapping of values with each other. Since concrete
feature contains its values, it seems the matching would be performed with
incompatible values and for that reason a re-mapping would be desired.

3.3.3 TADL

An Architecture Description Language for Trustworthy Component-Based
Systems (abbreviated as TADL) [72] is a specialised language describing the
whole architecture of a system. TADL is a language specialised for trust-
worthy systems and explicitly concerns extra-functional properties as part
of an architecture of systems. It specifically targets structural, functional
and extra-functional properties to define a system architecture.

In addition to structural and functional characteristics of the system, TADL
defines safety and security representing extra-functional properties. The
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detailed specification of an architecture is denoted by explicit specification
of services, data parameters, contracts and architectures at the interface
level.

The services are provided via interfaces which is typical for other approaches
but it, in addition, explicitly defines data parameters expressing a data
coming through services. The benefit of an explicit definition of data is
a possibility of guarding a validity of values. It is used for increasing the
security of the system and also allows the system to react to specific values.

Services may include constraints that are invariants defined as first-order
predicate logic. Specifically, the safety contract is reached by a different
kind of services:

1. Regulating service: enables real-time scheduleability. The response of
a component is regulated by time constraints. Time constraints guard
the time consumed by the execution of the service and do not allow
to exceed a set value.

The definition of the constraint where the maximum time must be up
to 40 looks like:

TimeConstraint TC {

// other definitions related to this time constraint

float maxSafeTime = 40;

}

2. Restricting service: all data coming through services are restricted by
data constraints, which decide a request that should be sent.

The Example shows the constraint where the temperature must be in
the range (10, 50〉 (inspired by the example shown in [73]):

DataConstraint DC {

CurrentTemperature current;

// other definitions related to this data constraint

10 < current.temperature <= 50;

}

3. Filtering service: a response is filtered according to the security rules.
A request is maintained by a component’s service or a response is
provided by a component’s service only if the user has the right access
privileges.

Example (from [73]):

Security {
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Administrator admin; // user

Operator operator; // user

SwitchOn switchOn; // user privilege

SwitchOff switchOff; // user privilege

ON on; //service

OFF off; //service

Privileges-for-services(on, switchOn, admin);

Privileges-for-services(on, switchOn, operator);

Privileges-for-services(off, switchOff, admin);

}

The last three lines associate the user privilege for the user admin
or operator. The user gains privilege switchOn or switchOff for the
service on or off.

TADL deals with extra-functional properties at a design time of an appli-
cation. However, due to the targeting of TADL to trustworthy systems, the
set of supported extra-functional properties is limited. As a result, it defines
only two types of EFPs: security and safety.

3.3.4 NoFun

The NoFun [36] language is a representative of a structured extra-functional
property definition approach, stemming from the component field but ap-
plicable to general software systems. The authors of NoFun have identi-
fied three concepts of extra-functionality: Non-functional attribute, Non-
functional behaviour and Non-functional requirement. The meaning is as
follows.

Non-functional Attributes These are attributes of any kind which can
be used to describe or measure a software system. Every attribute belongs
to a data type which determines the set of valid operations and values.
The available data types are standard types such as Boolean, Integer, Real,
String, plus structured types Enumeration and Mapping.

Attributes may be basic or derived where derived attributes are derived
from basic ones. Basic attributes belong to the data type which defines
them while derived attributes are computed by the equation: Ci ⇒ P = Ei.
The meaning of the formula is that the value P is a derived attribute which
is equal to an expression Ei if the boolean condition Ci is true. In addition,
Ei yields a value in a P ’s domain (the domain is a data type of the value).

The example showing the computation of the derived attribute reliability
depending on two simple attributes: error recovery and fully portable looks
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like:

not error_recovery and not fully_portable => reliability = none

error_recovery and not fully portable => reliability = low

...

Every attribute may be bound to the whole component or only to an indi-
vidual operation. An attribute may be also the derived one in the meaning
that this attribute is composed of basic attributes bound to all operations
of the component.

Non-functional Behaviour NoFun separates the definition of extra-
functional attributes from their application on a particular component. This
is allowed by the behaviour specification in which particular attributes are
bound to a component.

This way separates the definition of extra-functional attributes from the
demand of the concrete component described by the behaviour specification.
In addition, it allows reusing definitions of non-functional attributes for other
components.

Example showing a definition of the behaviour specification is:

behaviour module for IMPL_LIBRARY

behaviour

time(list_all_members) = n_members

time(check_out) = log(n_books)

end

Let us point out the exact meaning of the lines of the example shown above is
not clearly explained in [36]. List all members and check out are operations
and n members and n books are any measurable units. N members holds
the number of members and n book holds the number of books. However, a
finite set of these variables and operations is not given.

Non-functional Requirements These are used in the situation in which
components are assembled. If the component has the behaviour specification
and needs any other component to work together, the component must spec-
ify which behaviour it demands from the behaviour specification of the other
component. These demands are specified by non-functional requirements.
In essence, non-functional requirements say which EFPs are demanded on
the required side of a component.

To sum up, NoFun provides ideas of which information should an EFP
contains. It makes NoFun a rich base for developing other more sophisticated
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solutions. Although NoFun provides a description of assignment of EFPs to
components as well as expressing a demands among other components, only
overall ideas are explained in [36]. Operators and functions in the notation
are not briefly defined and hence the semantics and the complete set of
allowed operators and functions remains unclear.

3.3.5 QML

A language called QML [37] is specialised for all systems that comply with
an object-oriented approach. It attaches QoS specifications to interfaces and
it is designed to conform with objects, interface and inheritance features of
object-oriented programming.

QML aims at fulfilling these goals: (1) a specification of QoS is separated
from the code of an existing system, (2) it allows to specify provided and
required QoS properties, (3) it provides mechanisms to determine whether
the client needs for QoS are fulfilled, (4) it supports a refinement of QoS,
because the object-oriented approach uses inheritance and inherited objects
may need to work with modified QoS. QML allows to inherit and modify
QoS properties of inherited objects.

The main building blocks of QML consist of

• Contracts and Contract Types – A contract contains a list of con-
straints. Each constraint is associated with a dimension selected from
a set of enum, numeric, set. A constraint is a tuple consisting of
a name, an operator and a value (e.g. memory < 100). A name is
typically the name of a dimension.

• Aspects – Aspects are used to characterise measured values over a
time period. The predefined aspects are: percentile, mean, variance,
frequency.

• Definitions of Contracts and Contract Types – It binds a name to the
value of a contract or a contract type.

• Profiles – A profile holds the QoS properties for services. The profile
is specified for an interface and the interface may assign more profiles
for different implementations. A profile is used for expressing provided
and required QoS of the interface.

• Definitions of Profiles – It is used for assigning a profile to a service
and gives the profile a name.

• Conformance – QML defines conformance for profiles, contracts and
constraints. A general rule is that a stronger rule conforms to a weaker
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rule. A target is to find a service witch suites a client rather than exact
match. To achieve this goal QML uses an ordering of set, increasing
or decreasing ordering of numbers etc.

The example of Reliability expressed in QML looks like (Example from [37]):

CallServerReliability = Reliability contract {

MTTR {

percentile 100 <= 2;

variance <= 0.3

};

TTF {

percentile 100 > 0.05 days;

percentile 80 > 100 days;

mean >= 140 days;

};

availability >= 0.99999;

contAvailability >= 0.99999;

failureMasking == { omission };

numOfFailure <= 2 failures/year;

};

QML binds profiles to interfaces statically. In addition, QML allows to
define QoS-aware objects which may use statically defined QoS, but may
also define QoS dynamically. The dynamic creation of QoS is achieved by
QRR (QML-based QoS Fabric) which creates QoS properties at runtime
while QML does it so statically.

QML is a comprehensive language covering creation of EFPs and attaching
them to objects. They provide a run-time mechanism of constructing EFPs.
Although they target different run-time environment by defining different
profiles for each environment, the profiles must be manually re-attached.
The QRR seems to be able to dynamically attach EFPs for individual en-
vironment, but they do no describe a mechanism to configure objects auto-
matically for different environment.

3.3.6 QML/CS

The work [103] introduces comprehensive formal approach to EFPs par-
tially implemented as the language called quality modelling language for
component-based systems – QML/CS.

That approach introduces formalisation in a form of Temporal Logic of Ac-
tions (TLA+) [64] that specifies a system as a set of behaviour consisting of
states with traces among the states. The goal of the approach is a semantic
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framework allowing to describe EFPs on components and then describe how
these components are used.

Providing a certain level of abstraction the framework works with five spec-
ification types: (1) services are units of functionality with EFPs that may
be influenced with each other, (2) components compose services or other
components ans thus compose also EFPs, (3) resources are provided by
runtime environment, (4) container is component’s runtime providing EFPs
the components require to work properly, (5) measurements represent EFP
dimension of a system.

Having a set of measurement M a non-functional property is a set of all
formulas ΠNf (M) constraining the values in M . For instance, a system that
guarantees each execution is maximally two times slower than the previous
execution may look like: t

′
execution ≤ 2texecution. The texecution property

refers to the previous execution time of the state automate while t
′
execution

refers to the current execution state.

An extra-functional property is defined as a constraint over measurement
with several measurement specifications: (1) intrinsic is used for constraints
valid for a component implementation, (2) extrinsic is used for single services
to express user expectation, (3) resource and (4) container are used for
expressing EFPs of required resources and EFPs provided by a container
respectively.

Consequently, evaluation of a whole system is a validation if a combination of
intrinsic, resource and container specifications implies extrinsic specification.
A system fulfilling it is called a feasible system. The work [103] furthermore
details how all these basic concepts are defined and evaluated using TLA+
that we do not detail here.

Although the work [103] developed very strong formal framework, the trans-
formation to a practical QML/CS language is not complete and only partial
approach is provided. The formal model behind may provide accurate re-
sults, though a lot of models required to describe each service, component,
resource, etc. may burden developers and prevent practical usage.

3.3.7 Ontologies

In the field of Service Oriented Architectures where quality of service (QoS)
and Service Level Agreement (SLA) are an important issue, the community
aims at providing different kinds of ontologies that captures EFPs. Ontolo-
gies allow to express EFPs with respects to their semantics and relations to
each other.
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For instance, [98] extends the Web Service Modelling Ontology (WSMO)1

to better support EFPs and proposes a service comparison method using
quality characteristics.

Another work proposed by Garćıa [38] develops a reasoning framework in
which a user query is evaluated by a selected engine. The user first inputs
a query concerning QoS and a scheduler selects the most suitable engine.
The engine then evaluates the query into a result. The result may possible
be an empty set, the best offer, or an ordered list of offers by an optimality
criterion. The scheduler works with a knowledge base which caches results
to improve performance of the reasoner.

The constraint programming in combination with logic programming is used
in [39]. They use WSMO to express QoS. The WSM language (WSML) ax-
ioms are used for defining EFPs. Each EFP has attached a number express-
ing its importance – a weight of the property. A user may express EFPs in
both terms: logical programming rules and constraint programming. Both
of them are separately evaluated. The results are sorted and the most ranked
service is selected.

Our work follows similar goals using more traditional means.

3.3.8 CQML

An approach proposed by Aagedal is the CQML [3] language. He has de-
scribed a complete syntax of an EFPs language and introduced a UML
profile for quality attributes. The CQML approach is a language usable for
general description of EFPs. The language defines basic data types: Num-
ber, Enum or Set. There is no complex type (record) provided. CQML also
provides derived properties, but they are meant only to extend an existing
simple property or to compose a derived property from other ones without
any further definition of how this composition is treated.

CQML defines a few basic constructs concerning EFPs:

QoS Characteristics is a basic building block. One QoS characteristic
represents one EFP. It contains a unique name and a data type of the prop-
erty. Depending on the data type, it may contain additional information
such as a restrictive interval for values, ordering of enums, measuring unit,
etc. Additionally, it may define invariants for values of the property. Values
are passed through as input parameters. However, it is not stated how one
can define an input parameter of a property when the property is defined
independently of a targeted system. Consequently, an input value may not

1Available at: http://www.wsmo.org/ (2012)
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exist in the time the QoS characteristic is being developed. For instance, a
characteristic with a frame output property may look like:

quality_characteristic frameOutput {

domain: decreasing numeric milliseconds;

mean;

}

QoS Statement assigns constraints to QoS characteristics. A constraint
is expressed using logical rules. There may be also added other modifiers
e.g. best-effort, compulsory, threshold to complement the constraint. Each
statement is enhanced with the name and encapsulates a set of constraints
for a set of QoS. A set of QoS with their constraints is then refereed by this
name. For instance a QoS statement may be defined:

quality high {

compulsory best-effort frameOutput > 25 with limit 20;

threshold best-effort delay < 5 with limit 8;

}

QoS Profile is used for aggregating a set of QoS statements into one
record with a unique name. A component links a profile to attach the QoS
that the component works with. QoS profile defines with QoS statements are
used or provided by the component. The benefit of this solution is that the
profile may be re-used by other components and the underlying definitions
of EFPs may not be repeated. On the other hand, a need for the same
EFPs and their constraints by more components seems to be rare, and a
separate profile must be defined for each components even if one EFP or
its constraint differs. For instance, the above examples may be stored in a
profile:

profile goodCamera for myFastCamera {

provides high;

}

CQML assigns a profile to a component. The profile contains a set of quali-
ties with a set of QoS properties. The quality allows to encapsulate context
dependent values, but assuming we have c contexts and n QoS properties
it may produce up to 2n quality records and 22

n
different profiles. In addi-

tion, each profile must be created for c contexts. This may lead to a hardly
manageable number of records.
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3.3.9 CQML+

Components are designed to use or serve to other components. For that
reason, the typical relation in a component world is the relation to other
components. However, resources available in different environments indeed
influence components running in and thus the relation to the environment
should not be avoided.

The CQML mentioned before has been extended by other authors. An
extending language proposed by Röttger and Zschaler is called CQML+ [90].
They aim at explicit definition of resources needed by components. They
consider not only demands between components but also demands between a
component and a system (framework or hardware) called as resources. As a
result, their work allows an explicit expression of relations to the deployment
environment.

As an addition to CQML, they propose a meta-model including an abstract
Resource class. The class may be instantiated by concrete resources such
as memory, CPU, network etc. This allows a user to define an infinite
set of different resources, but CQML+ lacks of describing a mechanism of
evaluation these resources. This is a potential weakness as long as different
resources require different treatment.

They introduced another extension to CQML that is a definition of a tuple
that allows to associate more resources in a one condition. The semantics is
that all resources in the tuple must be available concurrently. An example
of a resource with the tuple is pressented in [90]:

resource cpu {

quality_characteristic cpu_demand (r: Resource) {

domain: tupel {

period (r),

execution_time (r)

};

invariant: execution_time < period;

}

To conclude, CQML+ extends syntax of original CQML rather than pro-
viding a more generalised mechanism of expressing the resources between
components and environment.

3.3.10 Deployment Contracts

Deployment Contracts [68] presented by V. Ukis are focused on detecting
possible conflicts among components or a component and its execution en-
vironment.
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Deployment Contracts (DCs) define a comprehensive set of meta-data de-
scribing (i) environmental dependencies of components and (ii) components’
threading models. The description of (i) consists of specification which re-
sources a component requires and how it accesses them (e.g. read-write
exclusive access or read-only shared access to a file). The description of
(ii) includes various aspects of a component regarding threading issues and
concurrency (e.g. whether a component spawns a thread, or whether a com-
ponent assumes to be executed in a single thread). These meta-data have
the form of parametrised attributes that can be attached to a component, a
component method, a method’s parameter or a return value. In the proto-
type of DC, meta-data are implemented as .NET annotations. For instance,
a method may marked as spawning one thread:

public class A {

[SpawnThread(1)]

public void Method1(...) {...}

}

Components’ DC is checked against the specification of the execution envi-
ronment in component deployment phase in order to prevent possible run-
time conflicts.

DCs is presented in a form of .NET prototype implementation, however, no
generalisation of DCs is developed. As a result, DCs provide an implemen-
tation of about 100 different deployment contracts specified in [69] with an
algorithm of evaluating them. The algorithm, however, branches to eval-
uate every case of implemented DC rather than generalising in a general
purpose algorithm. In addition, the algorithm itself focuses on the conflict
prevention rather than selecting the most suitable component candidate.

3.4 Modelling of Extra-functional Properties

An important aspect of the development is a support of modelling. Current
applications are often modelled before they are developed. It allows better
understanding of a system, its parts and their connections. Inspired by the
classical modelling means, a lot of works aim at introducing a modelling
support of EFPs.

Since UML [83] has been acquired as a widely used modelling notation,
other works introduced the modelling based on it. UML provides the rich
palette of diagrams, but a class diagram is most often used. It leads others
to prepare diagrams based on UML’s class diagram with the UML concept
of stereotypes allowing to extend the basic UML elements to support EFPs.
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3.4.1 The UML Profile for CQML

Aagedal introduces [3], together with CQML, a UML profile covering the
expressiveness of CQML. He defines a set of stereotypes shown in Figure 3.2
that correspond to CQML keywords (including QoSStatement, QoSCharac-
teristics, QoSProfile, QoSQuality and QoSComponent). The introduction
of these stereotypes allows to model EFPs the same way as they are written
in the CQML’s language.

Figure 3.2: CQML UML Profile

3.4.2 The UML Profile for NoFun

Another work presented Guadalupe Salazar-Zárate and Pere Botella [91].
They introduced UML profile covering NoFun.

They first define a stereotype NF-attribute for non-functionality express-
ing an EFP. NF-attributes model simple properties as well as derived ones.
When a derived property is modelled, the stereotype import is used for im-
porting an aggregation of other properties to this derived one. Another
stereotype, OCL-expression, defines rules deriving the derived properly.
They secondly define stereotypes NF-Requirement and NF-behaviour with
an obvious meaning in terms of NoFun concepts. Furthermore, a set of EFPs
expressed in NF-behaviour is attached to a class labelled by the stereotype
ImplementationClass and the connection is marked by the stereotype has
behaviour.
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Figure 3.3: NoFun UML Profile Example

Figure 3.3 shows an example definition in which a HtmlBrowserImpl browser
component requires at least HTML in version 3.0 and a graphical UI library
to work. A behaviour of the component guarantees correct dynamic HTML
4.0 processing according to the OCL expression defined for its behaviour.

3.4.3 The Marte UML Profile

UML Profile for MARTE (The Modelling and Analysis of Real-Time and
Embedded systems) [82] has been introduced by the OMG group and has
already became a standard. It has been developed to replace an older profile
– the UML profile for Schedulability, Performance and Time – also issued
by the OMG group.

The profile serves for model-based development of real-time and embedded
systems. It consists of a lot of extensions of UML covering real-time and
embedded (RTE) applications. A considerable amount of the extensions
are targeted at non-functional aspects of RTE. Non-functional aspects are
classified to qualitative and quantitative ones. The aspects may be available
at different levels of abstraction. Finally, these aspects provide modelling or
analysis support or they may provide both.

MARTE is organised as a hierarchy of profiles and sub-profiles. The funda-
mental profiles comprise :

• Non-functional properties – it provides constructs for declaring, qual-
ifying, and applying non-functional aspects. Each EFP is modelled as
a UML data type. For the definition of EFP values, the Value Spe-
cific Language (VSL) has been proposed. VSL also defines potential
functional relations of EFPs.
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• Time – it allows the definition of the time and it also deals with time
representation in applications.

• Resources – it deals with resources the applications demand from the
system.

• Allocation Modelling – it is used for allocating functionality to a re-
sponsible entity.

These fundamental profiles are then used for a model-based design and a
model-based analysis.

The model-based design proceeds mostly in a declarative way. It means that
the users of MARTE annotate their models with RTE properties. They use
the High-level Application Modelling sub-profile. Notice that component-
based systems are explicitly supported by the Generic Component Model
profile.

The model-based analysis is allowed mainly by Quantitative Analysis Mod-
elling or by its two refinements (SAM or PAM ) used for Schedulability
and Performance analysis respectively. The annotation mechanism uses the
UML stereotypes where the UML elements modelling an application corre-
spond to the analysing domain.

In contrary to already mentioned UML profiles, the MARTE profile is more
general. The previous UML profiles express the notation of respective
languages while MARTE is not coupled with a concrete language. Still,
MARTE is not fully general and it is targeted particularly at the domain of
real-time systems.

3.4.4 The OMG’s Quality of Service Profile

Another work, proposed also by the OMG group, aims at providing a general
model for Quality of Service (QoS). UML Profile for Modelling Quality of
Service and Fault Tolerance [81] provides the ability to model EFPs by the
means of UML. This profile introduces new stereotypes that covers elements
of extra-functionality and their relations.

The profile consists of several main building blocks.

QoSCharacteristic represent quantifiable characteristics of a service. It is ba-
sically an extra-functional property where the QosCharacteristic may first
have a set of parameters (QoSParameter). Each characteristic second has a
dimension (QoSDimension) that stores: a data type, ordering of the values,
a measuring unit and a so called statistical qualifier. The statistical quali-
fiers are: min, max, range, mean, variance, standard deviation, percentile,
frequency, moment, and distribution. A characteristic may furthermore be
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assigned to a category (QoSCategory) where the categories are used for di-
viding properties to groups. Each QoS characteristic is inherited from a
context (QoSContext) informing in which context the QoS characteristic is
valid.

Each QoSDimension has assigned a value (QoSValue) through a dimension
slot (QoSDimensionSlot) with an assigned constraint that evaluates its va-
lidity.

QoSConstraint defines constraints of the QoSCharacteristic and it limits val-
ues allowed for application requirements. There are other classes inherited
from QoSConstraint : QoSRequired, QoSOffered and QoSConcrat. Their us-
age is for application service requirement, offer and finally the agreement
between all constraints.

QoSLevel is used in situations where an application provides a variety of
extra-functional properties. For instance, an application may provide differ-
ent algorithms or configuration that lead to different properties. For that
reason, a set of QoSConstraints is bound to a set of QoSLevel allowing
to switch from one level to another one. This mechanism is furthermore
supported by QoSTransition that holds transitions between layers.

3.4.5 The Component Quality Model

In a case EFPs are described using any presented language or model, the
question remaining open is which properties to use. Since the general con-
sensus still does not exist, Alvaro [6, 7] categorises component quality char-
acteristics which can be used as EFPs.

The authors follow the standard terminology defined by ISO/IEC 9126 [50],
but they made a few modifications to better suit component-based develop-
ment. The resulting Component Quality Model (CQM) includes: (1) func-
tionality – the ability to provide the required service, (2) reliability – the
ability to maintain the specific level of performance, (3) usability – the abil-
ity to be understood, learned, used, configured and executed, (4) efficiency
– the ability to provide appropriate performance, relative to the amount of
resources, (5) maintainability – the ability to be modified, (6) portability –
the ability to be transformed across environment, (7) marketability – the
marketing characteristics.

The characteristics mentioned above are then split into more detailed sub-
characteristics and distinguished as either runtime or life-cycle ones.

According to ISO 9126 [50], an attribute is a measurable (physical or ab-
stract) property with defined metric. The metric defines both the measure-
ment method and the scale.
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The CQM uses the following metrics: (1) presence to indicate whether an
attribute is present, if so, the string value contains information of how the
attribute is implemented, (2) IValues to indicate exact values. It is described
by an integer variable and a string indicating the unit, (3) ratio shows
percentages measured from 0 to 100.

In addition to CQM characteristics, the authors have defined additional in-
formation linked to a particular component: Technical information (Compo-
nent version, Programming language, Patterns, Lines of code and Technical
support) and Organisation information (CMMI level and Organisation’s rep-
utation). The technical information is important for developers while the
organisation information is important for customers. The authors suppose
those information to be provided by the component vendor, usually as string
values.

3.5 Extra-functional Properties in Component
Models

The previous section has introduced several approaches expressing EFPs
mostly as stand-alone notations. This section will show component models
that include EFPs as their integral part. However, to our best knowledge,
none of the frameworks use any presented EFP languages. Why the existing
EFP notations are not applied in existing component systems, and if it may
point out their insufficiency, remains unclear.

Although a lot of important approaches to EFPs exist, this section shows
only several selected ones. The goal is to show important directions to deal
with EFPs while another rich survey may be e.g. found in the Crnkovic’s
overview [30, 29].

3.5.1 Palladio

Palladio [13] targets the development process in component-based devel-
opment. It includes a component developer, a system architect, a system
deployer and a domain expert. A system is modelled by a set of models
where each model covers different roles in the process.

EFPs express different roles as following: (i) a component developer imple-
ments a component and attaches parametric properties of behaviour, (ii) a
software architect estimates components EFPs from component specifica-
tion, (iii) a system developer models the resource environment to allocate
different resources for components in different environments, (iv) a domain
expert provides a usage model describing critical as well as typical parame-
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ters of the modelled system.

The detailed scenario is: a component developer annotates each provided
service of a component (a method of one of provided interfaces) with an
additional specification called Resource Demanding Service Effect Specifi-
cation (RDSES). RDSES is in practice a modified UML activity diagram.
Its use is to describe a simplified control flow of the service, it can express
the service’s dependencies on input arguments and resource demands on
abstract resource types stored in the global resource repository. RDSES de-
scribes the flow only for parts called by or calling other components. This
concept Palladio names as grey-box.

In further phases of system development, the resource types in RDSES are
parametrised by a resource model (the role of an system deployer), which
binds the abstract resource types to concrete service’s resource demands in
a target resource container.

For instance, a RDSES for a simple process loading users from a database
may be modelled as:

The UML note shows a stochastic expression specifying the resource demand
for a hard-disk (HD) resource. All states and their transitions are modelled
in the same manner to describe a Palladio system.

A domain expert role is to define a system usage, a workload or a behaviour
of the system. A usage model is used for describing service’s usage scenarios
and anticipated workload. In the end, all models composed together can be
used for component’s and system performance prediction.

Palladio focuses on performance-related EFPs for whose specification it pro-
vides a rich palette of models. Specifically, EFPs’ values defined as random
variables and taking usage profiles into account are strong concepts. On the
other hand, the necessity to create a number of detailed models imposes a
significant burden on system and component developers. Moreover, resource
platform specification in the form of a resource model has to be created for
each system from scratch since the resource repository contains only resource
types, not particular instances with performance characteristics.
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3.5.2 Robocop

The ROBOCOP model [76, 15] uses multi-layered components which con-
tain specifications, models, and executable code within the component dis-
tribution package. The approach allows performance analysis by combining
static analysis and simulation on the executable system model provided by
the development framework and the execution framework.

Development framework defines aspects of the development trading and
downloading of components. The developed components are generic in the
sense they must be tailored to fit in a concrete environment. Execution
framework defines the middle-ware layer of single devices.

A component in ROBOCOP consists of a set of models including a resource
model, a simulation model, an executable model. Extra-functional prop-
erties are contained in the Resource model. ROBOCOP components can
specify only processor or memory utilization on operations, with best, mean
and worst cases scenarios. This is a limited extent typical for the domain,
however, combined with the performance model of hardware blocks it allows
the above mentioned analyses.

For instance, a definition of EFPs comprising processor and memory char-
acteristics may in ROBOCOP look like:

load_img(imgdata)

referencecpu = RISC 600MHz

cycles 1234*imgdata worst-case, 300+imgdata best-case

memory claim 250B mean-case, release 20B mean-case

To sum up, the ROBOCOP provides a comprehensive support in the field
of specialised embedded devices demanding mostly system resources.

3.5.3 ProCom

An approach to integrate EFPs in component models using structured at-
tributes is presented in [92] and implemented in the ProCom component
model. ProCom’s attributes comprise multiple values, each of which is fur-
ther composed of data, meta-data and validity conditions parts. The data
part contains the actual value of a measured EFP of the type specified in
the attribute definition in the Attribute Type Registry. The meta-data part
is used for distinguishing a particular attribute value and for its description
(e.g. the source of a value, a degree of importance). Validity conditions spec-
ify in which contexts an attribute value is valid in terms of platform, usage
profile or inter-attribute dependencies. The attributes are stored in a gen-
eral repository that aims at avoiding duplicity of attributes and providing a
unified storage.
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For instance, two values may be assigned to a static memory usage property.
Additional meta information distinguishes these values:

Static Memory Usage

1) value: 15, kB, version: 2, timestamp: 080220 #10:00,

source: measurement, platform: X

2) value: 10, kB, version: 1, timestamp: 080120 #17:44

source: estimation

The proposed structure of attributes can lead to complex EFP descriptions
that are hard to manage without extensive tool support. The authors try to
address these problems by introducing a language for defining which values
are valid based on the current configuration (so-called configuration filters).
However, this makes the whole system even more complicated.

Furthermore, while ProCom attributes are meant to be used during the
whole system life cycle, which motivated introducing multi-valued at-
tributes, we are interested in describing EFPs of the final black-box com-
ponents. The most interesting idea in ProCom is the usage of registries
storing EFPs. The main reason for introducing registries is to gather at-
tribute types.

3.5.4 Enterprise JavaBeans

This part discusses the type of support for extra-functional specifications
that can be expected from an enterprise component framework. It is in-
tuitively clear that the needs in this area are different from those e.g. in
embedded and real-time domains. The emphasis in this class of systems is
on “horizontal” aspects such as security and (transparent) distribution.

In particular, the Enterprise JavaBeans [95] component model is one of the
strongest industrial frameworks, used in the application and data layers
of enterprise applications. Despite a focus on the functionality of these
applications, the model works with several properties that can be classified
as extra-functional:

• Locality – a global property of a component. It is whether its oper-
ations can be accessed remotely or only by clients local in the same
container.

• State – a session bean (which clients use to invoke functionality in a
synchronous manner) can be either stateless or stateful, with conse-
quences for the client’s view of the operations behaviour and for bean
pooling in the container.
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• Transaction demarcation – for a bean’s operation, it defines the level
of transaction support expected, ranging from never to required and
mandatory in which the client must provide a transaction context for
the operation. This holds for a container-managed demarcation, the
other option is that the bean handles transaction contexts internally.

• Security – involves the definition of client roles and their access to
bean’s operation; plus a bean can be designated to run under a differ-
ent identity than that of the original request.

The technology uses a combination of XML-based specification of the EFPs
(in the bean’s deployment descriptor) and annotation-based specification in
the bean’s source code. There is no formal model that would underpin the
property specifications, and the values can be seen as being of boolean or
enum types (when abstracted of the form in which they are specified).

For instance, a shopping cart may be state-full and transactional JavaBean
where a user in a role “Customer” may call the beans’s initProduct

method:

@Stateful // state

@Local // locality

@Transaction(REQUIRES_NEW) // transaction

public class ShoppingCartImpl implements ShoppingCart {

@PersistenceContext(type=EXTENDED)

EntityManager em;

private Product product;

@RolesAllowed("Customer") // security

public void initProduct(String name) {

product = (Product) em.createQuery("select p from Product p

where p.name = :name")

.setParameter("name", name)

.getSingleResult();

}

}

Enforcement of the properties is done partly by design of the EJB applica-
tion, partly on the part of the container (both as implementation artefacts
it generates and run-time checks it uses).
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3.5.5 Koala

Koala component model [28] [97] is used for embedded systems such as TV
sets with late binding of interfaces of reusable components. To maximise
re-usability, Koala strictly separates components and configuration.

A component is a unit of design with a specification and an implementation.
It consists of Interface Definition Language (IDL) to define interfaces, Com-
ponent Definition Language (CDL) to define components and Data Defini-
tion Language (DDL) to specify data in components. The definitions created
in Koala are compiled to a programming language, for instance, C.

Several explicit means are used to maximise reuse: (1) compounded compo-
nents are hierarchical components where one component consists of other
ones, (2) module is a interface-less component used to glue component in-
terfaces. It, in essence, serves as a kind of adapter where the module im-
plements all functions of all interfaces, (3) functional binding allows to bind
interfaces with different names. The binding is allowed as long as a pro-
vided interface fulfils all method required on a bound (provided) interface,
(4) switches covers a special type of functional binding in which conditions
decide interface to be bound.

Although the Koala documentation [97] does not explicitly mention EFPs,
Fiukov shows in his work [35] the implementation of the static memory usage
property in Koala. This property is provided through an additional analytic
interface created and filled for each component existing in the design.

3.5.6 KobrA

Since KobrA [10, 9] is not a formal language, it is not possible to precisely
state what KobrA can handle. KobrA is rather a set of principles applicable
to mainstream modelling languages such as UML. Hence, there is a certain
degree of flexibility of principles which KobrA may be applied to.

One of the advantages of applying KobrA to UML is the reduction of the
complexity of each diagram. Here, KobrA introduces a set of views separat-
ing concerns and explains which models should be created, what the model
contains and how they are related.

Furthermore, KobrA encourages uniform representation of components re-
gardless of their granularity and the concrete location in the component
hierarchy. Each component is required to be described at the same level of
abstraction.

Since an important aspect of software systems is the ability to define EFPs,
KobrA comes with two separated approaches: (1) extra-functional require-
ments and (2) extra-functional properties. Requirements cope with speci-
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fication while properties with realisation. A requirement is a statement a
component developer must fulfil. A property is a fact which must be true
on a certain component.

There are two ways of adding extra-functionality to KobrA. They can be
added to an existing view as constrains or annotations or they can be defined
as a separate extra-functional view.

3.5.7 SOFA 2.0

First-class entities in SOFA 2.0 [23] are components and connectors and the
key abstraction is meta-modelling using MOF [80]. Main advantage of such
an approach is a possibility to automatically generate components, models,
editors, a repository etc.

As a lot of other approaches, components in SOFA communicate via pro-
vided and required interfaces or connectors. A distinction of components is
to grey-box and black-box entities.

The black-box is refined as a component frame representing a set of com-
ponent interfaces. In addition, the component frame includes definitions of
component’s behaviour which means tracing of events determined by the
method calls between provided and required interface pairs.

The grey-box is a component specified as an architecture implementing com-
ponent frames. SOFA is a hierarchical component model which has two types
of architectures: (1) primitive and (2) composite.

The primitive architecture is in essence the direct implementation of the
component in programming language while the composite architecture is a
composition of other subcomponents. The execution of interfaces of com-
posite elements is delegated to subcomponents.

Connectors allow to explicitly model different architectural and communi-
cation styles. Connectors create all links among interfaces where a set of
interfaces may be connected to a one communicating link (a bus architec-
ture).

SOFA also allows the controlled evaluation via a set of predefined evolu-
tion patterns: (1) factory pattern uses one component as a factory for other
components, (2) removal pattern controls destroying of dynamically created
components and (3) service access pattern allows an access to external ser-
vices.

The component life-cycle in SOFA supports all typical phases: (1) compo-
nent development, (2) system assembly, and (3) deployment with execution.
The development process starts with creating and committing components
into the repository. The architecture of a system is described mainly by
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frames. The frames are refined by particular architectures in the phase of
the system assembly. The whole process works in the top-down manner
in which top components are recursively composed from other components
until the primitive ones are reached. Finally, an application is assembled
together with definitions which components have to be executed and con-
nectors are generated.

On the one hand, SOFA does not contain explicit EFPs, on the other hand,
SOFA has advanced design elements such as automatic reconfiguration, be-
haviour specifications on interfaces or dynamic evaluation of an architecture
at runtime. These aspects stay behind a simple functionality of services and
may be understood as certain extra-functionality.

3.5.8 UML2.0

UML2.0 [83, 25] has been extended of a possibility to model component
systems. A component is a modular unit of a system with well-defined
interfaces. Behaviour of components is defined by the required and provided
interfaces. UML2.0 models the provided interfaces by a lollipop while the
required interfaces are sockets.

The advantage of UML2.0 is in a visual modelling provided by several tools in
which a software system is composed of components connected via provided
and required interface pairs.

In addition, UML2.0 distinguishes between two types of connectors: (1)
assembly connector (lollipop connected to socket) is used to connect the
required interface with its provided counterpart, (2) a delegation connector
(arrow) is used to forward required and provided interfaces from inner com-
ponent to outer components. It is well applicable for hierarchical component
models.

UML2.0 does not directly support EFPs, however, EFPs may be added via
UML profiles extending fundamental modelling means.

3.5.9 PECOS

PECOS [40, 79] is a system in which a component is a unit of design. The
component has a form of specification and implementation. Connections of
components are made via ports where connectors are connected to the ports.

A component is a computational element with a name, a number of property
bundles and ports, and a behaviour. The ports represent data to be shared
among components. The behaviour of a component consists of a procedure
that reads and writes data available at its ports.

42



Chapter 3. Extra-functional Properties

PECOS furthermore distinguishes between two kinds of components: (1) leaf
component is a black-box implemented in the host programming language
and not defined by the model, (2) composite components contains a number
of connected subcomponents comprising internal and external ports. The
external ports are connected to appropriate internal ports while the sub-
components are not visible outside the composite containing them.

In addition, components are of three types: (1) passive components do not
own threads and must be explicitly scheduled by the active components.
They encapsulate pieces of short behaviour running synchronously, (2) active
components do own their threads and perform long-lived activities, (3) event
components are used to model hardware emitting events.

Ports are shared variable allowing components to communicate. A port
specifies: (1) a name which is unique for one component, (2) a type which
characterises the data type, (3) a range of values that can be passed on
the port, (3) a direction of three kinds “in”, “out” and “inout” indicating
whether the component reads, writes, or reads and writes the data.

A system designed in PECOS uses Petri nets to model timing and synchro-
nising behaviour of the system. This may be understood as a certain kind of
extra-functionality where developers explicitly model behaviour to prevent
dead-locks, broken synchronisation etc. Each component may be simulated
with Petri nets separately first, then a scheduler is generated as components
are composed to coordinate each Petri net. In addition, each component
explicitly sets information such as ordering in which it should be invoked
or worse-case execution time and this information is used to generate the
scheduler.

3.5.10 Fractal

A component in Fractal [20, 21] is an encapsulated and distinct run-time
entity with a set of interfaces. Interfaces have two forms: (1) server interface
which accesses incoming operations and (2) client interface which accesses
outgoing operations.

Fractal is composed of a membrane, which supports interfaces to introspect
and reconfigure its internal features, and a content, which consists of a set
of other components.

The membrane can have external and internal interfaces. External interfaces
are accessible from outside a component. Internal interfaces are accessible
only within a component for communication of subcomponents.

The membrane typically contains a set of controllers which superpose a
control behaviour of subcomponents. In addition, controllers play the role of
interceptors to export the external interfaces of subcomponents as external
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interfaces of the upper-component.

Two means to describe the architecture of an application are supported.
First is the nesting of components leading to a hierarchical component sys-
tem. Second is binding of components via interfaces. Fractal allows two
kinds of bindings: (1) primitive binding and (2) composite binding.

The primitive binding is used for communication between client and server
interface pairs in the same address space (may be, for instance, created using
pointers or Java references). The composite binding denotes a communica-
tion path between an arbitrary number of connected interfaces.

In contrary to other component models, Fractal allows to share one compo-
nent among several other parent components.

Furthermore, Fractal provides two level of controls: (1) the lowest level rep-
resents a black-box components that do not provide any introspection capa-
bility, (2) upper level exposing internal structure of components. Different
introspective features are provided: (1) attribute controller accessing at-
tributes of components via a set of getters and setters, (2) binding controller
allowing to bind and unbind client interfaces from respective server inter-
faces, (3) content controller allowing to add and remove subcomponents,
(4) life-cycle controller including methods to start and stop the execution
of components.

Fractal component model does not contain means to explicitly define EFPs
on components, however, an extension FractalBPC [22] was created to port
the SOFA behaviour protocol to Fractal. Hence, Fractal may explicitly
define behaviour limitations on interfaces that are certain kind of EFPs.

Feljan [34] mentioned another mean to define EFPs on Fractal components
through the notion of attributes. An attribute is a configurable property of
a component that may hold any information including EFPs.

3.5.11 Component Systems Constructed From Require-
ments

The process of construction software systems typically collects user require-
ments. The requirements must be in CBSE transformed to components and
their connections. Although manual developer’s interaction traditionally
embodies this transformation, Azlin [66] in her work aims at an automatic
transformation of the user requirements into a final application composed
of components.

The fundamental idea of this process is an incremental transformation of
the requirements into components. The components are repeatedly being
added to a systems being build until the system is completed. Achieving
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this process, they use the component model [65, 67] allowing the incremental
composition. This component model allows the incremental composition in
terms of: (1) the addition of components into existing architecture, (2)
behaviour and properties within the incremented architecture is presented.

Fundamentally, the transforming algorithm consists of analysing of verbs
and nouns in the requirements. Verbs are divided into three groups: (1) a
computation verb denotes a data transformation, (2) a state verb for com-
putation denotes states, (3) an event verb denoting an event that trigger
computations. Furthermore, nouns are divided into four groups: (1) a con-
ceptual component noun abstracts a candidate component, (2) a state noun
is used for finding data and (3) a computation noun expresses transformation
to be done by components.

In addition, the most important phrases are found in the requirements: (1) a
descriptive expression expressing specific operations, (2) a control structure
indicating a flow of a control and (3) a predicate phrase to identify true/false
expressions.

Analysing requirements, the system is incrementally composed in several
steps: (1) it identifies nouns and verbs to find out components and actions
respectively, (2) once a set of components is identified, the control flow
of the components is created, (3) first two steps are used for composing
partial architecture, (4) this partial architecture is incrementally added to
an existing one, (5) the final architecture is finished and optimised.

The steps used in this process targets mainly functional aspects of require-
ments, however, the user requirements typically contain also extra-functional
properties. Hence, there is a considerable opportunity to extend the algo-
rithm to support extra-functional properties.

3.6 Summary of EFP Languages and Component
Models

Figure 3.4 summarises the survey of the presented approaches. Columns in
the table shows several aspects of these approaches:

• Specialisation – it shows whether EFPs express only specialised or
general properties,

• Semantics – it shows whether EFPs provide explicit means to express
the semantics of the EFPs itself or their values,

• Composition – it marks an ability of EFPs to be composed with each
other,
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• Dependency – it summarises whether EFPs may be parametrised ac-
cording to different deployment environment.

3.7 Evaluation of Extra-functional Properties

The purpose of this section is to overview some approaches targeting eval-
uation of EFPs. The evaluation is in this section understood as a process
in which EFP values are compared, any formulas concerning these values
computed and the result of the comparing is returned. Despite the fact the
component models from previous sections contain EFP evaluation means
and the fact the evaluation means have been mentioned, the purpose of this
section is to more focus on the evaluation process. The rationale is to high-
light complexity of the evaluation process arising once EFPs are taken into
account.

3.7.1 EFP Comparison and Selection

QoS Negotiation

A run-time selection of a component or a service based on its Quality of
Service (QoS), is denoted as QoS negotiation.

Mulugeta and Schill introduce in their work [75] a QoS negotiation frame-
work that defines EFPs using CQML+. The main architectural block of the
framework is Negotiator. In order to select a service, the Negotiator needs a
reference to: (i) QoS specifications of all cooperating components, (ii) user
QoS requirements and preferences, (iii) available resources, (iv) network and
container properties, and (v) policy constraints.

To achieve these needs, the framework contains other architectural blocks.
QoS for all components are stored in profiles implemented as CQML+
QoSProfile. Network channels expressing a communication between com-
ponents are explicitly modelled by Connectors. It provides Negotiator with
information about QoS of communication links that may also have an im-
pact to the service selection. Furthermore, the framework allows to model
Resources where any change in a resource may trigger re-negotiation. User
requirements are expressed in user profile. The user profile is constructed
by the run-time system after obtaining the user’s requests for the services.

When QoSProfiles and a user profile are established, Negotiator tries to
find an appropriate service. The task is to find an appropriate service and
select the best one in a case there is more suitable services. Negotiator
relies on Constraint Satisfaction Optimization Problem (CSOP) comprising
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variables, constraints and objective functions. The task is to assign a value
to each variable to satisfy all constraints. All suitable results that satisfy
the constraints are first mapped to the ordered set of numbers expressing
the weight of the result. The most suitable service is then selected among
the mapped number.

When a selection of an appropriate service is finished, Contract is estab-
lished. Contract holds mainly information about the selected client profile,
the server-side profile and the user profile.

The QoS-Based Web Service Discovery

Yan’s work [101] proposes an extension of UDDI (Universal Description
Discovery and Integration) of the selection of the most suitable web services
based on an algorithm concerning QoS and a ranking mechanism. The
fundamental idea is to enrich web services in UDDI of QoS characteristics
first, then user requirements are matched with the QoS taking a relevance
factor into account. The matching results in two normalised matrices with
QoS offers and QoS requirements. Finally, differences of each element is
computed and a service with the lowest difference is selected.

In detail, QoS offers are attached to services in a form of attribute name,
attribute type, attribute value, attribute unit and constraints. QoS require-
ments are expressed using the same attributes with three additions: weight
indicating an importance for a user, direction is an expected tendency of the
value, and relationship is used for expressing relations between attributes.

Once QoS offers are stated on services and requirements are stated by users,
the matching algorithm starts. The algorithm works with the matrix of
provided QoS: AP which is the m × n matrix meaning that m QoSs are
attached to n services. Another matrix AR is the 1 × n matrix (vector)
expressing n user requirements. In a real situation, a size of required and
offered QoS vector is not the same. The work [101] solves this problem by
normalisation mechanism which is omitted here.

Taking both matrices AP and AR, a difference vector is computed between
the matrix AR and each row of the matrix AP taking the weight into account:

diffj(AP , AR) =
√∑m

i=1W (APi,j −AR1j )
2 where j = 1..n. It results in a

vector of differences and a service with a lowest difference is selected.
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3.7.2 EFP Dependencies

The EFPs Dependency in CQML

Zschaler introduces in his work [104] a preliminary approach to model EFPs
by functions that are evaluated at run-time. The mechanism allows to com-
pute concrete values of EFPs from input parameters. For instance, they
proposed an example based on the CQML language in which the input pa-
rameter determines resulting value:

profile response_times for ImageStreamEncoder {

qos_dependency

response_time (encodedImages.getNextImage) =

response_time (unencodedImages.getNextImage) + 5;

}

In addition, they noticed a weakness of this solution that is the concrete
value “5”. As a solution they suggested an improvement that uses intervals.
The improved example looks like:

profile response_times for ImageStreamEncoder {

qos_dependency

response_time (encodedImages.getNextImage) =

response_time (unencodedImages.getNextImage) + [5,10];

}

The second example shows an important aspect. When EFPs are defined, it
may be preferred to use approximated values rather than precise numbers.
For instance, when a system requires a service with a response time equal to
5ms, it may also accept a response time equal to 6ms. This rationale leads
to an idea of defining intervals, or – in other worlds – limiting values.

Properties Synthesized from Components

Hamlet [45] summarises in his work several methods of synthetically obtain-
ing EFPs form components. Firstly, the work points out that the depen-
dency of components must be taken into account when calculation EFPs.
For instance, behaviour of one component depends on its input provided
from another component.

It is proposed to divide a major function of a component into a set of sub-
domains with probabilities of each sub-domain. A set of steps a component
developer must do: (1) the developer must decide appropriate sub-domains,
(2) the runtime characteristics of sub-domains are measured, (3) a handbook
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with all sub-domains and their measurement is created, (4) a system devel-
oper calculates connection of components, (5) a first component is run and
the propagation of values in the connected component is observed, finally
(6) weighting behaviour of each combination of components the behaviour
of the final system is estimated.

The Extra-functional Contract

The work [32] proposes a new language called QoSCL created as an extension
of UML 2.0. It allows to explicitly describe EFPs and their dependencies.
The main features of this language are: (1) definitions of qualities on ser-
vices, (2) a level of the quality on the required and provided side of the
service, (3) the dependency of EFPs on a provided side influenced by the
required side.

The main building blocks of QoSCL are: ComponentQoSCL is an extension
of the UML2.0 Component Model containing provided and required Con-
tractType. ContractType is a specialized interface having attributes with
Operations and Dimensions. Operation specifies behaviour of each compo-
nent while Dimension specifies measurement of the quality level. Further-
more, dimensions allow to define pre-condition, post-condition and a body
of the contract. It may optionally include its own ContractType expressing
EFPs dependencies with other qualities.

The QoSCL allows to express three kinds of relations: numerical constrains,
mathematical functions, or empirical rules. Dependencies of EFPs may be
expressed using functions of the provided properties on required properties.
For instance, a mathematical function determines the resulting provided
property depending on a required property: memory consumptionprov =∑N

i=Omemory consumptionreqi + 10.

3.7.3 Treatment of EFPs from Design to Run-time

Ainger [5] overviews in his work EFPs from the earliest phase when com-
ponents are being developed to run-time when EFPs of the components
are evaluated. At design-time they first proposed to use CQML+ to define
EFPs. When the defined EFPs will be evaluated at run-time, they then
introduced the transformation of CQML+ notation into the XML notation.
Furthermore, the XML notation is used by a container to evaluate EFPs.
The work [5], however, does not detail this evaluation and provides only
an example with response time instead. Unfortunately, the provided ex-
ample does not show how it could be generalised to a general evaluation
mechanism.
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References of extra-functional properties

IEEE 610.3-1989 [1] The degree to which [a component] meets require-
ments or customer/user needs or expectations

IEEE 610, 9126 [1, 50, 6] EFPs are qualified: “quality characteristic, factor
and/or attribute”

IEEE 830 [2] The terms “performance” and “attributes” are used

Franch, NoFun [36] It uses the name extra-functional characteristics

Anton [8] EFPs describe the non-behavioural aspects of a sys-
tem, capturing the properties and constraints under
which a system must operate

Alan [31] The required overall attributes of the system, includ-
ing portability, reliability, efficiency, human engineer-
ing, testability understandability, and modifiability

Jacobson [52] A requirement that specifies system properties, such as
environmental and implementation constraints, per-
formance, platform dependencies, maintainability, ex-
tensibility, and reliability. A requirement that speci-
fies physical constraints on a functional requirement

Kotonya [62] Requirements which are not specifically concerned
with the functionality of a system. They place restric-
tions on the product being developed and the devel-
opment process, and they specify external constraints
that the product must meet

Mylopoulos [77] Global requirements on its development or operational
cost, performance, reliability, maintainability, porta-
bility, robustness, and the like. (...) There is not a
formal definition or a complete list of non-functional
requirements.

Ncube [78] The behavioural properties that the specified func-
tions must have, such as performance, usability

Robertson [88] A property, or quality, that the product must have,
such as an appearance, or a speed or accuracy property

Wiegers [100] A description of a property or characteristic that a
software system must exhibit or a constraint that it
must respect, other than an observable system be-
haviour

Glinz [42] A non-functional requirements is an attribute of or a
constraint on a system

Figure 3.1: Overview of approaches referring EFPs
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Approach Specialisation Semantics Composition Dependency

NoFun General Logical for-
mulas

NoFun Be-
haviour

CQML General
CQML+ General Resource def-

initions
Ukis’s DC Specialised Static values

TADL Specialised First-order
predicate
logic

Architecture
per usage

HQML Specialised
Named
values

System re-
source level

SLang Specialised
Named
values

QML/CS General Models Constrain
satisfaction
optimisation
problem

Resource
model

Palladio Specialised Models RDSES
Robocop Specialised

ProCom General
Validity
constraints

Attribute
composition

Validity Con-
straints

EJB Specialised
Koala Specialised
KobrA Specialised Views UML Inheri-

tence, aggre-
gation

Architecture
per usage

SOFA Specialised Behaviour
protocols

PECOS Specialised Petri nets +
scheduler

FRACTAL Specialised

Figure 3.4: Important attributes of existing approaches
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An Independent
Extra-functional Property
Mechanism

The survey of the state-of-the-art has shown that a lot of approaches define
how an extra-functional property may look. A structure of an EFP has been
presented by means of specialised languages such as QML, CQML or HQML.
Other approaches have instead addressed EFPs as part of component appli-
cations. Namely, there are component models such as Palladio, Robocop,
ProCom, etc. Additionally, several approaches entail mainly evaluation and
dependencies of extra-functional properties.

One of the drawbacks of all these approaches is their slow application and
integration with existing industry frameworks. The proposed approach is
more targeted at a direct integration with existing and widely used com-
ponent frameworks. It consists of several modules, described later in this
chapter, and generally named Extra-Functional Property Featured Com-
patibility Checks abbreviated as EFFCC. The EFFCC abbreviation will be
used within the next sections to refer this approach.

4.1 The Type-Based Evaluation Approach

Current approaches vary from those verifying whole component composi-
tions to those separately verifying each component connection (binding).
Although the whole component assembly testing is widely used (e.g. in
Palladio, Pecos, QML/CS), techniques determining compatibility on each
component binding promise rapid and straightforward development process.
The tests of the whole assemblies is the time and computational resources
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consuming task in which it is difficult to check every individual state of a
complex system. On the other hand, the testing of each binding is a linear
process with a fast computational time.

For instance, in Palladio example, system behaviour evaluation requires de-
velopers to prepare a considerable amount of behaviour models with pa-
rameters to be filled later depending on the concrete application of the
components. The complex models are then evaluated to verify the whole
component system. Type-based conformance [12, 19] does not target the
behaviour of each component, which is in essence a detailing of the inner
implementation, but it uses public interfaces as contracts between the com-
ponents. The type-based conformance explicitly describes which behaviour
a component guarantees on the provided interfaces once the assumptions
on the required interfaces are fulfilled. Hence, the type-based conformance
preserves the black-box nature while the behaviour based evaluation does
not.

The main obstacle of the evaluation of the behaviour based on models is the
computational complexity – the state space explosion problem. In contrary,
the type-based evaluation has relatively low resource needs [12].

The mentioned reasons lead us to follow the type-based approach. It typ-
ically matches two components as compatible ones if interfaces are of the
same types or sub-types. In this work, the compatibility of interfaces in-
cludes (i) the compatibility of method signatures: e.g. service names, input
and output parameters and (ii) the compatibility of extra-functional prop-
erties attached to the interfaces. The compatibility of interfaces in terms of
method signatures has been addressed in [12] or [19].

The rationale behind taking EFPs into account is to improve compatibil-
ity checks of components. The basic idea is shown in Figure 4.1 in which
the compatibility of a few components is examined. The figure shows the
component A and three other components X, Y, Z expressing the question
whether the interface of one of these three components is compatible with
the interface of the component A. In this work, the compatibility of the
components is based on the compatibility of their types supplemented by
EFPs, expressed on the communicating elements.

The type-based approach is sufficient for the connections of components
where only connected component interfaces need to be considered for the
evaluation. However, EFPs need to take complex component graphs into
account as long as the behaviour of one component may influence any other
component in the graph. A problem of some presented languages is that
they treat EFPs independently of each other. However, EFPs are typically
influenced by EFPs connected through other components. Therefore, the
approach presented in this work allows to express the graph dependencies of
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Figure 4.1: Type-based Binding Motivation

EFPs. A mechanism allowing to describe EFPs dependency using composing
formulas will be introduced. Although it slightly limits the pure type-based
approach, involving behaviour specification on components, it still provides
this information stated on the communicating interface as part of the type.

This work aims at a mechanism consolidating discrepancy of existing ap-
proaches. For that reason, a lot of aspects of the solution were simply
re-used from other approaches presented in this work. Other sections of
this work describes EFFCC as a set of modules consolidating approaches of
other works in a system aiming at a direct application to existing industrial
component models.

4.2 The Mechanism Overview

Component-based development comprises several typical phases and activi-
ties which should be also covered by a comprehensive extra-functional prop-
erty mechanism.

Components Repo Assembly

Component 
Developer

System Developer

EFP Assignment

EFP Repository

EFP 
Types

EFP Assignment Types

EFP ClientDomain 
Expert

EFP Evaluator

EFP Data

Control

Module

Legend

Data 
Structure

Registry

Figure 4.2: EFFCC Overview
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The phases may be summarised in several steps. A domain expert or archi-
tect first designs the extra-functional properties to be used across a range
of components and applications. In traditional component-based program-
ming, this role comprises a domain expert developing components for a
concrete domain. Afterwards a developer defines the concrete properties of
components and estimates the ranges of their values. It is the same role
as the role of a component developer in the traditional component-based
programming. Finally, when the component software is being composed,
an application assembler needs to verify the compatibility of components
which should form the application. This role is equivalent to the software
assembler in the traditional component-based programming.

Actually, EFFCC proposed here allows to manage all these phases. It allows
to (1) declare EFPs for a domain of usage, (2) store their definitions and
values in a repository concerning the domain, (3) assign EFPs to particular
components by a component developer and (4) evaluate their compatibility
by the system assembler.

Achieving the mentioned goals, EFFCC is a modularised system where the
conceptual structure of EFFCC consists of four modules as depicted in Fig-
ure 4.2.

Domain definitions of EFPs are hold in a Repository. The Repository stores
EFP definitions and is accessed by other modules to obtain, create or modify
the properties. There is a domain expert who role is to fill in the repository
defining existence of EFPs in a domain. We assume a per-domain repository,
because there would be probably impossible to consolidate EFPs through
all domains. A set of domain specific repositories e.g. domain of schools,
automotive, libraries may exist.

The EFP Assignment module uses the Repository so it can attach the de-
clared EFPs to each component. It covers a role of a component developer
who prepares each component. He or she loads EFPs from the Repository
and attaches them to components. As long as all component developers
use properties from the same repository, they attach compatible properties.
Hence, the role of the Repository is to consolidate understanding of the
properties.

Once components are enriched with EFPs the EFP Evaluator takes care of
comparing attached EFPs when verifying component compatibility during
their binding process. It covers the role of a system assembler who composes
a final system. He or she uses EFPs to determine behaviour of the final
system in respect to functional and extra-functional properties. His or her
expectations of the final system are expressed in terms of the properties from
the repository and assigned to components. While the EFP Assignment
module works with separate components, the EFP Evaluator covers a set of
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components which compose a final component application.

The interchange of extra-functional properties between the modules of EF-
FCC requires shared understanding of EFP data. This is implemented by
the module called EFP Types. It expresses EFPs, their relations to one an-
other, their relation to a system of registries and the EFPs structure. Their
detailed form will be described in Section 4.3. Furthermore, a relation and
application of the EFP Types to particular components is implemented by
the EFP Assignment Types data structure. It is an aggregation of the EFP
Types covering the EFP data from the repository and meta-information of
each component to connect EFP and the components.

In the following sections, we respectively describe the details of the structure
of EFPs, the Repository, the structure of EFP Assignment Types and the
EFP Assignment module itself. In addition, the means the EFP Assignment
module achieves component framework linking will be presented. Finally,
the process of EFP evaluation is detailed in a form of an algorithm.

4.3 An Extra-functional Property Structure

The fundamental part of the whole EFFCC are extra-functional properties,
stored in Registry. The structure of extra-functional properties has been
created following other approaches. Namely extra-functional languages such
as NoFun [36], HQML [44], CQML+ [90] have been selected for their general
description of extra-functional properties.

4.3.1 An Extra-functional Property Formalisation

Providing a detailed information of extra-functional properties, this section
describes a structure of the properties in a precise formal manner. First of
all, let us formalise extra-functional property itself:

E = {e | e = (n,Ed, γ, V,M)} (4.1)

where

n is the name of a property,

V ∈ T = Tc ∪ Ts is a value type of a property,

Ts is a set of simple (primitive) types.
Ts = {real, integer, boolean, enum, set, ratio, string, interval},

Tc = {(T1, · · · , TN ) | N > 1, Ti ∈ T} is a set of complex types con-
taining non primitive values,
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γ : V × V → Z; Z = integer ∪ {“n/d”} is a function which compares two
instances x, y ∈ V of the property with type T , stating which of two
values is better. The meaning of the return values is:

Value Meaning

{−∞, · · · , 0} x is worse than y
0 x is equal to y

{0, · · · ,+∞} x is better than y
“n/d” not-defined.

The function may not be explicitly defined for each type T and then
the following implicit rules hold: (i) real, integer, ratio use mappings
-1: x < y, 0: x = y, +1: x > y, (ii) string uses mappings 0: x literally
equal to y else “n/d”, (iii) boolean uses mappings 0: x = y else “n/d”,
(iv) set, enum and complex use previous rules for each element and
the result is “n/d” unless each evaluation results in the same value.
When an explicit rule does not exist and the comparison cannot be
determined by the implicit rule, the value “n/d” is returned.

Ed ⊂ E, e /∈ Ed is a set containing other properties composing this EFP.
This set is empty for simple properties while it contains deriving prop-
erties for a derived property,

M is a record containing any additional information meaningful in the do-
main. Its elements are described by an extensible model which cur-
rently contains the items unit, names, where

unit : string is a measuring unit of the property,

names is an ordered enumeration containing every name for the values
of this property, allowed to replace the values.

The following example shows two simple extra-functional properties
time to process and data transferred of the integer data types measured in
milliseconds and mega bytes respectively. They do not contain any explicit
gamma functions and their values are assumed to be divided into groups
of “low”, “average” and “high” where the names denotes semantics of the
underlying values. Implicit gamma function will be used for their comparing.

(time_to_process, default-gamma, integer,

META {unit:‘‘ms’’, names: {low, average, high}})

(data_transferred, default-gamma, integer,

META {unit:‘‘MB’’, names: {low, average, high}})

According to these two simple properties, a derived property performance
may be defined. It has no measuring unit and its result is an item from an
enumeration with values poor, fine and good.
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(performance, {time_to_process, data_transferred}, default-gamma,

enum {poor, fine, good}, META {})

4.3.2 An Extra-functional Property Meta-Model

In this part, the extra-functional property structure is presented as a meta-
model shown in Figure 4.3. This model is basically a UML expression of the
mathematical formalization.

Following Figure 4.3, EFP is an abstract class that represents a general extra-
functional property. This class holds a name, a date type, comparing func-
tion γ and a block of meta-information mentioned as the set M in the
formalisation. The γ function is modelled by the class Gamma while the M
set is the class Meta. According to the design used in NoFun [36] the formal-
isation models simple and derived properties expressed in the meta-model
by classes SimpleEFP, DerivedEFP for simple and derived properties respec-
tively. According to the formalisation, the DerivedEFP adds an aggregation
to other deriving properties. The form of the properties allows also to define
deployment contracts [68], which express relations between components and
a runtime environment, since the deployment contracts are also mapped to
a name and a value of a certain data type.

Figure 4.3: Extra-functional Property Meta-model

Figure 4.4 shows a hierarchy of data types that may be assigned to an
EFP. Basic classes EfpNumber, EfpBoolean, EfpString, EfpNumber model
standard data types known from programming languages such as Java or
C++. Furthermore, additional data types were created to better suit EFPs.
EfpRatio models percentages, EfpSet is a simple set of other types and
EfpComplexType are pairs with names and data types. Let us also highlight
the type EfpNumberInterval implementing interface EfpInterval. It al-
lows to explicitly model generic intervals using the interface. Moreover, the

58



Chapter 4. An Independent Extra-functional Property Mechanism

EfpNumberInterval implements an interval of numbers using instances of
EfpNumber. Any other kinds of intervals are left for a future extension.

AbstractComparableType

EfpBoolean

EfpComplexType

<<interface>>

EfpInterval

EfpEnum

<<interface>>

EfpValueType

EfpString

EfpSetEfpRatio

EfpNumberInterval

EfpNumber

1 0..*

1
0..*

Figure 4.4: Data Types Meta-model

Comparing this hierarchy with other systems (e.g. data types in Java or
C++), it adds a considerable improvement – all types implement one inter-
face EfpValueType. Hence, all data types in the system belong to a unified
hierarchy and the user may extend this model to add a new type by imple-
menting one interface. The implementation of the interface forces the user
to define a gamma function or use a default one and thus each data type in
the hierarchy is comparable with another one.

<<interface>>

EfpValueType

<<interface>>

Gamma

compare(t1 : EfpValueType,t2 : EfpValueType) : int

userGamma

0..*

1

defaultGamma

1

0..*

11

Figure 4.5: Comparing Function Meta-model

Figure 4.5 details the comparing function gamma. The function simply
takes two instances of EfpValueType on input and compares them with
each other. Important is the way the function gamma is assigned to a con-
crete data type. The interface EfpValueType contains one method that
returns a default gamma function and one method that allows to inject
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a user defined gamma function. This mechanism guaranties that each in-
stance of EfpValueType has a default comparing function or a specific user
defined comparing function. Hence each instance in a system is comparable.
The class AbstractComparableType from Figure 4.4 implements the above
mentioned algorithms.

4.4 A Universal Extra-Functional Repository

This work proposes a novel idea that there should be shared understanding
of extra-functional properties among component vendors. It allows to work
with comparable properties. Following the component-based programming
with the components stored in repositories, we suggest to use a repository
also for EFPs. Apart from the use of standards such as the CQM [6], such
understanding can be helped by a technical infrastructure which comprises
a general repository containing all available properties in the domain. It
allows to assume that properties are defined before a component is created
and vendors can therefore use them to attach properties with the same
meaning to different components.

Component
1

Component
2

Component
4

Component
3

Repository of components (with equivalent functionality)

EFP1 EFP2 EFP3 EFP4

Development phase

EFP 
comparison

decision

component to 
be used

Component
selected

System under
development

Figure 4.6: EFP-based Component Selection

Let us demonstrate this idea in Figure 4.6. There, it is assumed that different
vendors provided components with the same functionality. The components
differ only in their extra-functional properties. Hence, the compatibility
decision is based on the properties. If each vendor used the properties de-
veloped on his own, the compatibility decision would not be meaningful.
The properties would likely hold incompatible values, measuring units or
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differ in their semantics. For instance, a property speed may have different
measuring units as km/h or mph or it may even differ semantically if one
property denotes internet connection speed measured in Mb/s. Prevent-
ing this discrepancy, the repository consolidates meaning of EFPs. Once
all vendors use EFPs from one repository, the possibility of misinterpreted
properties rapidly decreases. These all lead to more meaningful and accurate
compatibility decisions.

Consequently, the repository should (1) store unified properties, (2) encap-
sulate context-dependent values for each context (that may be also called a
sub-domain), (3) improve understanding of values to reach all the mentioned
requirements.

We invented a repository fulfilling all these requirements as a layered storage,
named Registry. Its core idea is shown in Figure 4.7.
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 Local Registry
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                                                         Environment/Framework

Deployment contract
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Figure 4.7: A Relation of Registries and Components in Contexts and a
Domain

Component based programming always deals with a domain for which the
components are developed and a set of particular contexts in which the
components may run. The domain is a particular area with specific tasks
and typical procedures to solve the task. Users involved in the domain have
specific needs related to any operations with the tasks. Therefore, each
domain most probably has its specific extra-functional properties.

Components developed for a particular domain solve the domain related
tasks, however, a certain variability within this domain may be required. In
other words, several contexts-of-usage may be found in one domain. Each
context may have specific requirements where some of them are more im-
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portant while some of them less. Therefore, a variability of extra-functional
properties in terms of their ranges, scales and meanings should be taken into
account.

A complex example covering the domain of Web Browsers with its different
usage contexts is provided in Section 6 as a case-study.

Global registry (GR) is a store with definitions of EFP. Its usage concerns
a domain where a domain expert defines existence of EFPs. The purpose is
to state which properties are meaningful in a domain, but not to consider
ranges of their values since they may differ for concrete usage. For that
reason, GR defines the properties without their concrete extra-functional
values. The properties are defined mainly in terms of their names and data
types.

Local registry (LR) is concerned with a contextual meaning of EFPs. Its
purpose is to attach scales and semantics to values for the properties from
GR. As a result, each context of usage is defined by LR with the value
definitions.

As it will be detailed in Section 4.4.1 the properties in GR and the values
in LR are linked via names. In practice, it creates symbolic names for
values giving them semantics and better understanding from a user point of
view. In addition, the names split continuous values to several disjunctive
intervals. The values from one interval may be understand as equivalent for
the evaluation.

One advantage of this solution is that it encapsulates context-dependent
values denoted by names. The names remain the same while concrete values
differ. E.g. a value labelled as “small” gathers very different numbers for
portable electronic devices and multi-core servers. However, a developer
may think of the semantics (the meaning of “small” is obvious) rather than
sorting out concrete values.

Another advantage of this solution is that continuous intervals of values are
divided into disjunctive sets of named intervals, values or subsets. Hence,
values in one interval may be treated as equivalent in the binding process
(e.g. memory consumption in an interval {1,+∞}GB may be considered
as “too high” for small portable devices. It does not mater whether the
real value would be 1GB, 1.2GB or 1.5GB – they all belong to one named
group).

The deployment contract holds a dependency of components on execution
environment or framework (e.g. a resource as a file in operating system, ac-
cess to hardware, an execution of other processes/binaries). The system of
registries does not distinguish between extra-functional and deployment con-
tract properties. They are defined equivalently and they are distinguished
when they are used on components.
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4.4.1 An Extra-functional Registry Structure

The same way as extra-functional properties structure, the repository is de-
veloped in a form of meta-model and formalisation described in this section.

An Extra-functional Registry Formalisation

In this section the structure of EFP registry is formalised providing a reader
with a precise details of the structure of the registry. Global Registry is
formally defined as a tuple:

GR = (id, name,E) (4.2)

where:

id : Integer is the registry’s unique identifier,

name : String is a human readable name of this GR,

E is a set of extra-functional properties (Section 4.3).

As it may be seen from the definition, Global Registry lists definitions of
extra-functional properties from Equation 4.1. Although the EFPs defined
in GR are defined simply by their names and data types with no explicit
semantic model, we assume each GR exists for a limited domain in which
semantics of the properties is implicitly known.

To complement the Global Registry definition, let us furthermore formalise
Local Registry. It is a tuple:

LR = (id,GR, name, LRA, S,D) (4.3)

where:

id : Integer is the registry’s unique identifier,

GR is Global Registry this LR is linked to,

name : String is a human readable repository name,

LRA = {LR1, LR2, · · · , LRN−1} is a set of other LRs (excluding the current
one) integrated in this LR. It allows to aggregate LRs in hierarchies.
The semantics is that a value from an aggregated LR is inherited unless
this LR overrides the value. All possible value clashes caused by the
aggregation must be resolved by overriding the impacted values. N is
a total number of all LRs valid in actual GR,
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S = {(e, name, v) | e ∈ E∧name ∈ String∧v ∈ V } is a set defining context
dependent values for simple properties,

e is a property from GR,

name is an assigned name of the value which must be selected from
the list of available names given in the M part of the definition
of the property in GR. Hence name ∈ names ∈M ∈ e,

v is an assigned value from a value type defined for a respective prop-
erty v ∈ V ∈ e,

D = {(e, f) | e ∈ E ∧ f : En
d × Sm → V } is a set of derived property

definitions, where each derived property e is governed by the function
f :

e is a derived property with a non-empty (Ed ∈ e) 6= ∅ set of deriving
properties,

f is a function which takes deriving EFPs from the Ed set on its input.
The dimension is n ≤ |Ed| meaning that all or only part of the
properties from Ed can be referred in the formula f . The set
of simple context-dependent values defined in this LR may also
go on the input. The dimension of the number of these values
is limited by a number of deriving properties and their simple
context-dependent value definitions in this LR: m ≤ |Ed| ∗ |{S′ ∈
S | (name ∈ S′) = (name ∈M ∈ e ∈ Ed)}|.
An output is a value from the e property value type. Notice that
the input of the function is abstract representation of an EFP,
because a concrete value of the property is not known in the time
the deriving rule is established in the registry. A concrete value
of a property will be known later when the property is applied
on a component. Therefore, a value is obtained by a function:

ν : E → V (4.4)

in the evaluation process when concrete values of all properties
are known. A value from the S set may be obtained directly
because it comes from the current LR. Taking it together a final
value is computed by the composition of the functions: f ◦ (S →
V )◦ν : V n → V transforming all values of the deriving properties
to a result value of the derived property. Hence, a list of deriving
properties determines a value of the derived property with respect
to the f and ν functions. While the function f is defined on the
EFP registry level, the ν function is a matter of the evaluation
process implemented by another module. The dimension is set to
n ≤ |T | because the maximal number of value types used in all
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Ed properties may be used. It also does not exceed the number
of currently existing types.

For instance, a logical formula f(secure) : true ⇔ protocol =
HTTPS may be assigned to the derived property secure where
protocol is a simple property with an enumerated type contain-
ing items [HTTP,HTTPS]. Obviously, a value of the protocol
property is not known in the time the formula f is defined in
the registry. Once the properties are applied on a component,
the function ν will return an assigned value. For this particular
example, the formula f is satisfied if and only if the security
property has a value HTTPS assigned on a component.

The range and semantics of a property in GR is in the formalisation defined
only by its name, data-type and a measuring unit. Whereas Yap [102]
attempts in his work to solve discrepancy of different measurement and
scales of values on the basis of transforming rules, technically defined in a
XML file, we attempt to solve the discrepancy limiting EFPs valid for a
domain with the same measuring unit for one GR and the scales divided
into sub-domains by LRs. As a result, it is assumed the properties and their
values are comparable in a concrete context-of-usage.

An Extra-functional Registry Example

For example, let us consider the properties from Section 4.3. Those def-
initions will be stored in a Global Registry. Then, a Local Registry for
smart phones with GPRS-only connection may contain the following value
definitions:

time_to_process: low = 10, high = 5000, ...

data_transferred: low = 1, high = 100, ...

while a Local Registry for desktop computers may require faster connections
with values:

time_to_process: low = 100, high = 50000, ...

data_transferred: low = 10, high = 1000, ...

This solution distributes different scales of the values among disjunctive LRs.
Each LR limits values for a sub-domain in which the values are meaningful
and have the correct scales.
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An Extra-functional Registry Meta-model

Providing another overview of the EFP registry, a meta-model has been
implemented according to the formalisations. The meta-model is shown in
Figure 4.8.
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Figure 4.8: Registry Meta-model

Only a brief description of each element is provided here because details of
all elements may be found in the formal Section 4.4.1.

The class GR represents Global registry that is a storage holding all EFP
definitions. GR collects instances of classes EFP from Figure 4.3.

The class LR represents Local registry that is a per-environment storage of
EFP values also mentioned in the formal block. Each LR may have a link to
its parent LR that it extends. Each LR has a link to its GR for which EFP
values are defined. In Local registry, values are assigned via an instance of
the class LrAssignment with two implementations for simple and derived
properties. Its purpose is to put an EFP, LR and a value into one relation.

The two assignment implementations represent classes
LrSimpleAssignment and LrDerivedAssignment respecting the sets
S and D from the formal definitions.

According to the definition of the S and D sets, the class
LrSimpleAssignment holds a value for the simple EFPs, the S set. The
value is of the same type as the respective simple EFP value type. In ad-
dition, this class holds a name for this value creating a context dependent
named value. This means that an EFP, a value and a name for the value is
stored in this simple assignment which in practice corresponds to the formal
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definitions.

Working with number intervals in simple assignments, a data type modelled
as EfpNumberInterval from Figure 4.5 is typically used. For instance, the
memory consumption property is modelled by EfpNumberInterval and split
to three sub-intervals with names: small, average, high defined for three
instances of LrSimpleAssignment. In practice, this interval is divided into
three named sub-intervals where a user may think of the semantics using the
names while an evaluation process works with the numbers encapsulated by
the names.

Let us note that, for evaluation of mathematical formulas with number in-
tervals, we use an interval computing with computation rules defined in
[74].

The other implementation of AbstractLrAssignment, the class
LrDerivedAssignment, represents an assignment of a derived value
for a derived EFP which is the model for the D set from the formal
definition. Its purpose is to hold a deriving formula for a derived EFP.
Since the requirement is to have a possibility to implement a variety of
formulas, an abstract interface LrDerivedValueEvaluator exists. The
implementation of this interface represents any kinds of formulas. For
instance, mathematical or logical formulas are representative examples of
possible implementations and they have been actually implemented in the
prototype. In practice, any implementing instances represent the function f
defined in the formal block. The way the function is written and evaluated
is up to a concrete implementation. A particular instance must only
implement the function evaluate shown in the model. As it may be seen,
the method evaluate uses another interface AssignedValueFinder on its
input. It is a call-back interface in which implementing classes represent
the function ν (Equation 4.4) also mentioned in the formal block.

The function ν has a simple definition in the AssignedValueFinder interface

public interface AssignedValueFinder {

EfpValueType findValue(EFP efp);

}

respecting its formal definition. An implementing class must assure the
value for a requested EFP will be returned from a particular compo-
nent which the evaluation is made for. Then, the implementation of
LrDerivedValueEvaluator may compute a result. The meta-model for the
registry contains only this interface while concrete implementation is made
by the evaluator module that has an access to values assigned to concrete
components.
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4.5 Application of the Approach to a Variety of
Systems

The previous section has described the repository as a stand-alone data
storage of EFPs. At this point, another part of EFFCC will be described.
It is a module managing application of EFPs to particular components.

Since EFFCC aims at applicability to a wide spectrum of component models,
this module contains a set of specialised means to reach this requirements.
Practically, this module uses two separate sub-modules shown in Figure 4.9
with the module itself called EFP Assignment.

EFP Assignment

EFP Mirror
[sub module]

EFP Storage 
[sub module] 

    CoSi          OSGi        Another       
                                    Component   
                                       model  Specific ModulesComponents

EFP

EFP Types

EFP 
Assignments 

Types

EFP Data

Figure 4.9: EFP Assignment Module

The EFP Mirror sub-module shown in Figure 4.9 represents an indepen-
dent part of the EFP Assignment module responsible for mirroring EFP
data between Registry and components. The reason is that in the phase of
attaching EFPs to a component, a developer loads EFPs from the remote
EFP repository and applies them to the component. It would be imprac-
tical to call the EFP repository every time the data are needed later on.
As a result, the EFP Mirror sub-module stores complete information of the
attached EFPs together with the component.

The benefit of this approach is that it creates a general mechanism usable
for all supported component models. The detailed structure of EFP data
is hidden from (or at least irrelevant to) the “plain” component framework
and this sub-module provides an interface transparently accessing EFPs in
a component model independent format. A small drawback is that a con-
siderable amount of extra information may potentially need to be stored
together with the component in case the EFPs are numerous or their struc-
ture is deep.
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The EFP Storage sub-module from Figure 4.9 provides an extension point
where implementations for supported component models are plugged. This
sub-module brings the desired flexibility and applicability for different com-
ponent models in a form of lightweight plug-ins. Obviously, components
look different in different component models. For that reason, each imple-
mentation decides (1) the location where and how to store EFP data, (2)
how to link the data with concrete features of the component.

The assignment of EFPs to components actually consists of two phases of
EFP manipulation. In the first phase a developer attaches EFPs to com-
ponents, loading the properties from the repository mirroring them on the
component. In the second phase, the EFP Assignment module provides the
previously attached EFPs to other systems (see Figure 4.9) loading them
from the mirror. Hence, this module connects extra-functional repository
from Section 4.4.1 and an evaluator described later in Section 4.6. The
form of transferred data are so called EFP Assignment Types introduced in
Section 4.5.1 below.

Two typical scenarios may be found. In the first one, developers integrate
EFP Assignment module into their application which allows to attach EFPs
to components in the phase of component development. In the other one,
developers integrate EFP Assignment module into application evaluating
components compatibility (e.g. component framework or tools evaluating
components) to enrich the process of the evaluation with extra-functional
properties.

The typical usage of this module is the cooperation together with extra-
functional repository from which it loads data. However, this module may
be also used independently of the repository where the only part attaching
and loading EFPs from/to components is used. It is useful, for instance, in
situations in which existing component frameworks do not need to rely on
the common EFP storage.

4.5.1 EFP Assignment Types

The purpose of this section is to introduce a mechanism of transferring data
between components and the evaluator.

Since the EFFCC aims at generality, EFP data assigned to components must
cover a wide spectrum of component models. For that reason, EFP Assign-
ment Types is the generic representation of EFPs attached to components.
It aggregates EFP Types and the information about assignments of EFP
values to components. The corresponding sub-module in EFFCC is able to
serve this data to its other parts; in particular, modules working with EFP
data on components receive the data from the EFP Assignment module via
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EFP Assignment Types while the data from EFP repository are transferred
in a form of EFP Types.

An EFP Assignment Formalisation

Providing a detailed information of a form of the EFP assignments, this
section lists a formal approach to the structure and application of EFP to
components in any component model. Let us also highlight that despite
the fact this work targets component and component programming, the
assignment formalisation is also usable in other software elements. So, it
may be as well used for services in a Service Oriented Architecture.

First of all, let us define EFP Assignment Types that are formally defined
as a set:

AT = F × E × (F × Ed × VA)n × VA (4.5)

where F is a set of all generic representations of component features. Compo-
nent models use a variety of communicating means such as Interface, Event,
Port, Component. All these elements serve as communicating interfaces the
compatibility of which should be checked when components are connected
in the binding process. Since there is not a finite set of such elements among
component models, the feature is capable of holding any such element in a
generic manner. The set of features is defined as:

F = {f | f = (name, type, role,mandatory)} (4.6)

with the following meaning of the tuple elements:

name : String is the name of the feature.

role ∈ {“required“, “provided“} expressing if the feature is put on the
required or the provided side of a component respectively.

mandatory : Boolean determines whether this feature is required to be
bound to another feature in the binding process. A missing mandatory
feature in the binding process should violate an error while a non-
mandatory one should be skipped.

type is the meta-type of the feature including a name (for instance, “in-
terface”, “package”, “component”), parameters (for instance, inputs
and outputs of methods). For instance, a component publishing its
interfaces provides a set of features with the type name Interface.

Very often, the type is extended with a version of the feature where
version = (s1...sN ), N > 1 and si is a scalar expressing part of a full
feature version information. Typical form of the version is a tuple
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concerning major, minor and micro change in interfaces together with
a release note. E.g. a version may read 1.0.1.RC1.

Splitting the set of features F into two disjunctive sets F = Fp∪Fr denoting
provided and required features respectively, a function matching the features
may be defined as:

µ : Fp × Fr → Boolean (4.7)

The purpose of this function is to determine which provided-required el-
ement pairs should be connected with each other. In other words, it says
which provided and required elements are connected in a component binding
process.

An implementation in our prototype defines the µ function as matching two
features only if following rules hold:

• Names are equal for both features,

• a provided feature matches only with a required one or vice versa,

• a mandatory required feature must have a provided counterpart,

• if the type compatibility is explicitly expressed as versions, then the
version on the provided side is equal or greater than the version on
the required side or vice versa.

However, a more sophisticated matching µ function can be provided. For
example, compatibility on interfaces using subtype relation [19, 12] would
reach more accurate results. In a nutshell, a required feature must be a
sub-type of the provided feature. It is reached by examining each interface
finding out whether their method headers match. Since instances of the
features come from the EFP Assignment module, the extension is straight-
forward: the re-implementation of a component-specific sub-module in the
assignment module provides different µ function while other algorithms re-
main unchanged.

Moreover, in a lot of situation the µ function will be defined separately from
EFFCC. Usually, component frameworks have their own means to bind
components. As long as EFFCC aims at applicability to existing frame-
works, the ideal approach is to let the matching function be implemented
by the host component framework. For instance, OSGi binding process is
quite complicated. However, a set of listeners and resolver hooks allows
to observe the binding process without the need of understanding or even
re-implementing it.

Another subset of the AT set is (F ×Ed× VA) that denotes the assignment
of deriving properties. This set is a non-empty set if the property e ∈ E
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is a derived one. Once a derived property is assigned to a component, its
deriving properties must be also assigned to the component. Hence, the
dimension n is n = |Ed| meaning that all deriving properties must be also
assigned to the component providing information to evaluate the derived
property in the evaluation process.

As long as the information of the assignments of the deriving properties is
stored, the function ν (Equation 4.4) may evaluate a concrete value assigned
to each property leading to the evaluation of each deriving rule.

Obviously, if a property is a simple one, the dimension n = |Ed| is 0 and no
deriving property is part of the assignment.

Continuing with the definition of EFP Assignment, E is a set of extra-
functional properties from Section 4.3 and VA is a set of values assigned to
the properties which has a following form concerning several possible values:

VA = V ∪ S ∪D ∪ C (4.8)

Where V ∩ S ∩D ∩ C = ∅. For a value v ∈ VA then holds:

if v ∈ V then the value represents a directly assigned value. Such a value
is typically independent of a context of usage and remains constant
independently of a runtime environment. In this case, V defines a
value type of the respective e property as it was stated in its definition.

if v ∈ S or v ∈ D then the value is valid for a particular context of usage
as defined by LR. The D and S sets are the same sets defined in
the LR formalisation in Section 4.4.1. A component can thus contain
multiple values of a given property for different contexts. Evaluating
components, one must select the context in which a result should be
computed for and the evaluator then uses only values valid for the
selected context.

if v ∈ C then it expresses a formula, declared directly at the component,
determining a value of an EFP from other EFPs. This kind of value
allows to compute EFPs on the provided side of components based
on those on the required side. In other words, it determines how an
output of a component is influenced by its inputs. This kind of value
is the most flexible one allowing to model situations where component
EFPs depend on other components bound in a component binding.

Crnkovic [29] overviews the complexity of composing EFPs that must
take other properties, runtime and configuration into account. For that
reason, the value v ∈ C is supposed to hold simple as well as quite
complex formulas and EFFCC is generic with possibility to implement
comprehensive composing rules.
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The C set is defined: C = {(f, e, h) | f ∈ Fprov ∧ e ∈ E ∧ h : Fn
req ×

Em → V } meaning that each feature and EFP assigned to this feature
has assigned a formula taking a value from a required feature and its
EFP and computing a resulting value. As it may be seen, the formula
is assigned to a provided feature and computing its result using a
required feature. This naturally follows the basic idea of computing a
provided side of a component from its required side.

The dimension n does not exceed the number of required features
actually existing on a component n ≤ |Freq| while the dimension m
does not exceed a number of EFPs defined in current GR m ≤ |{e ∈
E | E ∈ GR}|. This means that tuples for all required features and
all existing EFPs may be used in a formula to compute a value.

Notice that the usage of these formulas is similar to the usage of the
deriving formulas in Section 4.4.1. These formulas also work with ab-
stract EFPs instead of their concrete instances. In addition, the for-
mulas use features on the component required side, because provided
features on connected components are not know when the formulas
are defined. Therefore, the values are to be known in the time the
component is connected in a graph with other components.

According to rationale introduced for the deriving formulas, the same
way a function is defined for the assignment. Its purpose is to obtain
the values as they are available in the evaluation process:

νA : Freq × E → V (4.9)

Despite its simplicity, the νA function is crucial when the components
are bound. Its composition with the assignment function h allows to
evaluate a value: h ◦ νA : V m → V . While the h function is directly
applied on an assignment, the function νA comes from another module
responsible for the connecting and evaluating components in a graph.
Hence, the result is computed as soon as the components are bound.
In practice, equivalent mechanism is used for derived properties. The
dimension is m ≤ |T | because the maximal number of value types used
in all EFPs may be used.

For instance, a component may declare its speed-up by the Amdahl’s
law, defined as a h(s, a) function with an EFP s applied to a fea-
ture a: h(s, a) = 1

(1−P )+ P
sa

. P expresses the amount of a code which

may be paralleled and it is constant for a particular component (e.g.
30%). s is a number of processors depending on a runtime environ-
ment. Hence, the component claims its speed-up based on the input
parameter, which is a number of processors, from the runtime. The
writing sa is used for marking that a property s is assigned to a feature
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a. Therefore the EFP s is evaluated by the νA function once a com-
ponent is bound to a particular runtime and its value is known. Let
say the component is deployed to a system with a dual core processor.
Then, the formula is evaluated as h(s, a) = 1

(1−0.3)+ 0.3
νA(sa)

= 1
(1−0.3)+ 0.3

2

An EFP Assignment Example

Finally, let us demonstrate the assignment mechanism on an example. It
shows the EFP from Section 4.3 attached to a feature using several different
values:

( # feature

("DataAccess", "interface", "provided", true,

"matched-by-name"),

# EFP

(time_to_process, ... ),

# values

(LR.1::low, LR.2::average, direct::20,

math::(2 * DataAccess::data_transferred) )

)

In the example, matched-by-name denotes a function which matches two
features with the same names. Its definition would be defined using means
of concrete implementation language. For instance, it may be one method
in Java. LR.1 and LR.2 denotes two local registries identified by their IDs.
These IDs are loaded from the EFP repository. direct is a direct value
– 20ms in this example. The meaning is that time to process would have
attached this value for all contexts. math defines a math formula. It says
the time to process depends on data transferred.

Let us note that in a typical usage only one type of a value (either LR,
direct or formula one) is defined in an assignment. It is the purpose of this
example to show all the possibilities.

An EFP Assignment Meta-Model

This section summarises EFP Assignment Types in a form of a meta-model.
The meta-model is shown in Figure 4.10 where the class EfpAssignment

holds each assignment of extra-functional properties (class EFP) to fea-
tures (interface Feature) assigning values that are modelled as the
EfpAssignedValue interface.

The Feature interface denotes an abstraction of component communicating
counterparts used in a process of component binding. An initial abstract im-
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plementation AbstractFeature exists to have; the most typical attributes
of a lot of component models. Namely, it holds (1) a name, (2) information
of a required or provided role, (3) a version, (4) a type (it covers e.g. Inter-
face, Event, Port, Component), (5) a link to a parent feature (it is used for
grouping features to its parents. For instance, if two features representing an
interface have the same names but they are in different packages, they essen-
tially represent different features. The link to parents distinguishes them),
(6) the mandatory attribute saying whether a feature must be present in a
binding processes. These attributes practically follow a definition from the
formal section. Since a lot of component models may use extended infor-
mation of their features, it is generally expected that specialised subclasses
will be created.

Another element of the model is a value assigned to the feature and EFP
represented by the interface EfpAssignedValue. The assigned value has
three implementations made via sub-classing the convenient abstract class
AbstractEfpAssignedValue. The sub-classes represent three kinds of val-
ues for the direct, context-dependent and formula-computed values.

According to a formal definition, the class EfpDirectValue serves for con-
text independent values. For that reason, it only contains a value attribute
holding actually assigned value modelled as EfpValueType from Figure 4.8.

<<interface>>

Feature

AbstractFeature

name : String

role : AssignmentRole

version : FeatureVersion

representElement : String

parent : Feature

mandatory : boolean

EfpAssignment
EFP

<<interface>>

EfpAssignedValue

AbstractEfpAssignedValue

finder : RelatedAssignmentsFinder

EfpDirectValue

value : EfpValueType

EfpFormulaValue

evaluator : FormulaEvaluator

EfpNamedValue

lrAssignment : LrAssignment

lrParticipatingAssignments : LrAssignment[]

<<interface>>

FormulaEvaluator

evaluate(assignments : List) : EfpValueType

1 1

1

1

1 1

0..*

1

Figure 4.10: EFP Assignment Type Meta-Model

Another class, EfpNamedValue, holds a context independent value with a
lrAssignment attribute that actually holds a concrete LR-based value. The
class LrAssignment comes from the model in Figure 4.8. The attribute
lrParticipatingAssignments is used only for derived EFPs where it con-
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tains any LR-based values used in a deriving formula for respective EFPs.

The last and most comprehensive value described in the formal approach
is modelled by the class EfpFormulaValue allowing to use complex formu-
las computing EFPs from a set of dependent EFPs. The only attribute
of this kind of value is a reference to an evaluator modelled by the inter-
face FormulaEvaluator that takes a list of EfpAssignments on its input
and computes an EFP value EfpValueType. How a formula is written and
computed it is up to a particular implementing class, however, prototype
implementations for mathematical and logical formula have been created.
According to the formalisation, FormulaEvaluator models the function h
mentioned above.

In addition, as it has been mentioned in the formal approach, the function h
cooperates with the νA function to call-back values from other components
connected in a binding of components. This function is implemented by
the interface RelatedAssignmentsFinder also shown in the model. The
call-back method looks as follows:

public interface RelatedAssignmentsFinder {

EfpAssignedValue getConnectedAssignments(

Feature requiredFeature,

EFP requiredEfp);

}

This method takes a feature and an EFP on its input and loads a value as-
signed on a connected component. The connected components are connected
via their provided-required element pairs. Since the assignment module has
no information of connected components as long as it works only with iso-
lated components, a particular implementation of this interface is made by
another module (see Section 4.6) that works with all components connected
in a binding graph.

As a result, the composition of functions h and νA is modelled as the call
of methods from RelatedAssignmentsFinder and FormulaEvaluator in-
terfaces.

Notice that RelatedAssignmentsFinder is modelled on the level of
AbstractAssignedValue. Despite the fact that this interface is used only
by the EfpFormulaValue, it is actually put on the more abstract level. The
rationale is in a future extensibility where any other type of a value may be
added and be able to load values from connected components.
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4.6 An EFP Evaluation Process

This section complements the description of EFFCC introducing the last
module which is the evaluator of extra-functional properties.

The main purpose of the EFP Evaluator is to load a set of components
and verify their compatibility in terms of extra-functional properties. The
module first calls the EFP Assignment for each component to obtain EFPs.
The received data are then composed to a graph representing components
and their bindings, which serves the evaluator to find problems in component
compatibility. Shortly, binding problems have forms of missing edges in the
graph while EFP incompatibilities show as mismatches on respective edges.
Sections 4.6.1 and 4.6.2 provide more details.

Unlike other modules, the EFP Evaluator working with EFP Types is not
customizable for multiple component models. Instead it works on a generic
model of EFPs and component application architecture. The variability of
features and forms in component models is addressed by the EFP Assign-
ment module that is a customisation point of EFFCC. Once a user desires
to apply the evaluation process to another component model, he or she must
create a plug-in to the EFP Assignment module while the evaluating process
of the Evaluator remains unchanged.

The mechanism of component evaluation uses the EFP Assignment Types
from Section 4.5.1 and works in two steps: (1) the graph of components is
created by means of binding the components by their provided and required
counterpart elements (in the model denoted as Features) and (2) the evalu-
ator checks EFPs attached to the connected elements. It creates a sequence
in which the results of comparing are stored for all connected required and
provided elements. Therefore, an easy verification of compatible or incom-
patible connected pairs is allowed by checking results in the respective items
in the sequence.

Let us point out that the goal of the mechanism is not to prescribe which
steps should be taken for incompatible components. It is the decision of
a concrete application whether an incompatible result is e.g. written to a
log, prevents a component framework to start, sends warning message to an
administrator inbox etc.

4.6.1 The Structure of the EFP Graph

Once the EFP Evaluator obtains a set of EFP Assignment Types, it can com-
pose a graph representing the application structure annotated with proper-
ties. The graph contains components to be evaluated in which the compo-
nents, component features and extra-functional properties create vertexes
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while edges represent their binding.

The rationale behind composing components into graph is that it allows
to evaluate not only isolated EFPs but it also allows to evaluate EFPs
connected with EFPs on other components. Hence, the evaluation is capable
of providing more accurate results considering influences of EFPs with each
other.

Figure 4.11 shows an example graph generated by the algorithm in which
different shapes denote different kinds of vertexes.

Component  A

(Vi)

Feature A

(Vj)

belong

Component  B

(Vl)

Feature  B

(Vk)

belong

EFP A

(Vp)
belong

m a t c h EFP B

(Vo)

m a t c h

belong

Figure 4.11: Example Graph

Before the evaluation algorithm will be detailed, let us formalise the struc-
ture of the graph created by the evaluator. The evaluator generates an

oriented graph
−→
G = (V,E) where V is a set of vertexes and E is a set

of edges. In addition to the well know version of the oriented graph, the
algorithm used here introduces an extended definition based on specialized
types of vertexes and edges:

V (
−→
G) = Vcomponent(

−→
G) ∪ Vfeature(

−→
G) ∪ Vefp(

−→
G)

E(
−→
G) = Ebelong(

−→
G) ∪ Ematch(

−→
G) (4.10)

Three types of vertexes denote a component, a component feature and an
extra-functional property which compose the extra-functional graph. More
formally, the following rules hold for each vertex v:

if v ∈ Vcomponent(
−→
G) then the vertex v represents a component,

if v ∈ Vfeature(
−→
G) then the vertex v represents a feature,

if v ∈ Vefp(
−→
G) then the vertex v represents an EFP.

Furthermore, there are two types of edges. In the graph, different types of
vertexes are connected by different type of edges.

The first kind of edges represents the relation of components, component
features and extra-functional properties of one component. These edges
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express: (1) extra-functional properties attached to features of a component
and (2) features belonging to the component. The direction of the edges
denotes provided or required elements.

If a component has a set of features which have attached extra-functional
properties, they will appear as a cloud of vertexes connected by edges in the
graph.

Formally denoted, the following rules hold for each edge e:

e ∈ Ebelong(
−→
G) :



(vx, vy) | vx ∈ Vcomponent(
−→
G) ∧ vy ∈ Vfeature(

−→
G)

: required feature,

(vx, vy) | vx ∈ Vfeature(
−→
G) ∧ vy ∈ Vcomponent(

−→
G)

: provided feature,

(vx, vy) | vx ∈ Vfeature(
−→
G) ∧ vy ∈ Vefp(

−→
G)

: required EFP,

(vx, vy) | vx ∈ Vefp(
−→
G) ∧ vy ∈ Vfeature(

−→
G)

: provided EFP.

The vertexes connected by the Ebelong edges create isolated clusters of com-
ponents first.

The binding of the features and the extra-functional properties is based on
matching all provided and required feature pairs with one another. The
extra-functional properties are matched only with bound features. While
features are bound by the matching function µ (Equation 4.7 from Section
4.5.1), EFPs are matched via their names and their relation to a feature. It
means that one EFP may be attached to multiple features, but only once
to the same feature.

e ∈ Ematch(
−→
G) :


(vx, vy) | vx ∈ Vfeature(

−→
G) ∧ vy ∈ Vfeature(

−→
G)

: binding features,

(vx, vy) | vx ∈ Vefp(
−→
G) ∧ vy ∈ Vefp(

−→
G)

: matching EFPs.

Using this model, the EFP Evaluator generates the graph in several steps. It

first creates component vertexes (Vcomponent(
−→
G)) from a set of components

a user desires to evaluate. Secondly, the EFP Assignment Types are loaded

for each component. The vertexes for features (Vfeature(
−→
G)) and EFPs

(Vefp(
−→
G)) are added and the vertexes are connected using the belonging

edges (Ebelong(
−→
G)) to express which features and EFPs are attached to the

components. This way complete representation of one component is created.

The attempt to compare this graph with approaches used in industrial
Spring and OSGi has been made. However, both frameworks provide vague
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documentations of their implementation. Whereas OSGi provides at least
some examples in its documentation [84], Spring describes only its depen-
dency injection process. No hint of an internal structure is provided. Despite
that, this work assumes that the Vcomponent and Vfeature vertexes and their
connecting edges are sufficient to model the component binding. It should
cover a lot of practical applications built on the concept of having compo-
nents and means to express their dependencies. In addition, the Vefp vertex
allows to enrich the dependencies of EFPs. Typically, a subgraph consisting
of Vcomponent and Vfeature vertexes follows the structure of the respective
component model binding while the Vefp vertex is additional information.

4.6.2 Evaluation of EFPs

Having graph representation of component connections, the evaluation is
quite straightforward. The evaluator must go through the graph and find
possible problems in vertex connections first, then it uses the values attached
to EFPs to compare the value pairs of two connected EFPs.

Two components are incompatible in the following situations: (1) a required
feature or extra-functional property is not connected with a provided coun-
terpart or (2) values on connected EFPs are not compatible – it means the
function γ from Section 4.3 results in incompatible values.

Examination of the EFP Graph

The algorithm which computes the values of attached EFPs as well as checks
the connection of components with one another uses a modified depth-first-
search graph algorithm. It has the following steps (let us use a notation
vx, exy where x, y ∈ I and I is a finite index set for indexing vertexes and
edges respectively). The indexing of the vertexes used in the algorithm is
also shown in Figure 4.11 to help the reader to understand the algorithm
properly:

1. Vcomponent(
−→
G), Vfeature(

−→
G) and Vefp(

−→
G) created, prev:= [], remain:=

Vcomponent(
−→
G), vi:= remain[0]

2. remain := remain− {vi}
for vj in Vfeature(

−→
G) {

if (vi, vj) ∈ E(
−→
G) goto 3

}

goto 5

3. vk := null
for vk in Vfeature(

−→
G) {

80



Chapter 4. An Independent Extra-functional Property Mechanism

if (vj , vk) ∈ E(
−→
G) goto 4

}

if vk == null and mandatory vj ERROR
if vk == null and not mandatory vj goto 2

4. for vl in Vcomponent(
−→
G) {

if (vk, vl) ∈ E(
−→
G) {

prev := {vi} ∪ prev
vi := vl
goto 2

}

}

5. // select EFPs connected to features

Vefpo := {vo ∈ Vefp(
−→
G) | ∀o∃k : eok ∈ E(

−→
G) ∧ vk ∈ Vfeature(

−→
G)}

Vefpp := {vp ∈ Vefp(
−→
G) | ∀p∃j : ejp ∈ E(

−→
G) ∧ vj ∈ Vfeature(

−→
G)}

// check all EFPs are connected by edges

if ∀p∃o : epo ∈ E(
−→
G) ∧ vo ∈ Vefpo(

−→
G) ∧ vp ∈ Vefpp(

−→
G) {

// evaluate EFPs on connected edges

evaluate {epo ∈ E(
−→
G) | ∀p∃o : vp ∈ Vefpp(

−→
G) ∧ vo ∈ Vefpo(

−→
G)}

Vfeature := Vfeature − {vj , vk}
goto 6

} else ERROR

6. if size prev == 0 {

if size remain == 0 END

else vi := remain[0]
else {

vi := prev[0]
prev := prev − {prev[0]}

}

goto 2

The algorithm verifies any inconsistency in the graph in terms of component
bindings: (1) all required mandatory features that are not connected to
any provided features, (2) all required EFPs that are not connected to any
provided EFPs.

A decision whether EFPs on connected vertexes are compatible is in the
algorithm denoted by the function named evaluate and detailed in the
following section.
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Evaluation of the EFP Values in the Graph

The set P = {(vx, vy) ∈ E(
−→
G) | ∀x∃y : vx ∈ Vefp(

−→
G) ∧ vy ∈ Vefp(

−→
G)}

contains EFP vertexes to be compared. A set of EFP values attached to
these vertexes is obtained applying the function:

value : V (
−→
G)→ V (4.11)

where V is a set of EFP value types the instances of which have been ob-
tained from the graph creation.

Having the AT set (Section 4.5.1, Equation 4.5) this function may be defined
as follows (for the sake of simplicity, let us assume all sets are associative
arrays, E and F were indexed by respective vertexes, AT by its subsets,
and tuple elements are accessible via the ’.’ notation. In addition, the asso-
ciative arrays allow wildcat selection resulting in sub-arrays with matched
elements):

// global declarations

LR := configuration parameter
E := array with all EFPs indexed by respective vertexes
F := array with all features indexed by respective vertexes
AT = {(e, f, va, ATd) | e ∈ E ∧ f ∈ F ∧ va ∈ VA ∧ATd ⊂ AT}

// start

value := func (x ∈ Vefp(
−→
G)) {

e := E[x]

f := F [y], y ∈ Vfeature(
−→
G) ∧ ((x, y) ∈ E(

−→
G) ∨ (y, x) ∈ E(

−→
G))

call σ(AT [e, f ]) }

// function resolving one assigned value -- called recursively

σ := func (x ⊆ AT ) {
for at in x {

val:=at.va
if val ∈ V return val // direct value

if val ∈ S and S ∈ LR return val.v // LR simple value

if val ∈ D and D ∈ LR {

// LR derive value

return call val.f(LR.S, {ν(val.e.ed1), · · · , val.e.edN )})
}

if val ∈ C {

// computed value

X := {AT [val.f, val.e, val]1.ATd, · · · , AT [val.f, val.e, val]N .ATd}
return call val.h({νA((x.f, x.e)1), · · · , νA((x.f, x.e)N ) | x ∈ X})

}

}
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return null

}

ν := func (e ∈ E) {
ep:= E[x, x ∈ E ∧ e ∈ x.Ed] // parent EFP

return call σ(AT [ep].ATd[e])
}

νA := func (f ∈ F, e ∈ E) {

fprov := F [E(
−→
G)[f ].vy]

return call σ(AT [e, fprov])
}

A function γ : V × V → Z (from Section 4.3, Equation 4.1) compares value
pairs, returning a numeric result. As a result, the set of vertex pairs is
transformed to a set of numbers using a composed function.

γ ◦ value : V (
−→
G)× V (

−→
G)→ Z (4.12)

This composed function applied to connected vertex pairs results in a set of
numbers denoting quality on the respective vertex pairs.

A quality vector is generated from the input vertex set calling the functions
4.12 for each set item:

zk = γ(value(xk))), x ∈ P, k = 1..|P |

If a kth item (k ∈ 1..|P |) in the vector contains a non-negative number,
it means a quality has been satisfied. Consequently, non-negative values
on all items mean the quality of the whole component composition has
been satisfied. In any other case, EFPs attached to respective vertexes are
incompatible.

Formally, the evaluation of the quality results in a compatible decision if
and only if the following evaluation holds:

∀k∃zk : zk ∈ [0,∞), k = 1..|P |

An Evaluation Example

Let us conclude this section with an example. Suppose there is a prop-
erty time to process with numeric values and a γ function defined as:
γ(x, y) = x − y (shorter processing time is better). There are two direct
values attached to EFP vertexes. The values are: vp := 10 and vo := 30.
The evaluation mechanism calls the gamma function for these two vertexes:
γ(value(vp, vo)) = γ(value(10, 30)) = 10 − 30 = −20. Since the result is a
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negative number, the evaluation results in incompatible EFPs. For differ-
ent values vp := 40 and vo := 30 the evaluation succeeds with the result
γ(value(vp, vo)) = γ(value(40, 30)) = 40− 30 = 10.

Let us note that this simple example has been selected for the sake of brevity.
The evaluation of mathematical formulas or LR values leads to comparing
two instances of EFP data types the same way.

4.6.3 Resolution of Incompatible Components

Section 4.6.2 has introduced the algorithm finding incompatibility in a com-
ponent assembly. Since the approach is based on the depth-first-search graph
algorithm, it returns a result in a polynomial time. Despite that, incompat-
ibility found by the algorithm obviously requires a user to replace invalid
components. For a complete assembly, it leads to a time consuming opera-
tion.

Let us assume n components exist in a component repository from which m
components can be selected to compose an application. Despite the fact the
assembly may contain only one incompatible component, all m components
may have to be replaced to create a compatible assembly. Assuming only
one instance of one component may exist in the system, there is still n!

(n−m)!
variations of components to verify whether they fit to the assembly. Finding
compatible components, all these variations may have to be verified by the
algorithm from Section 4.6.2. As a result, the finding of a working assembly
has a time complexity O( n!

(n−m)!).

Dealing with the mentioned complexity, this part of the work introduces
an approach finding compatible components in a polynomial time. The
approach represents a heuristic rather than an exact method. It means that
the method does not have to find a solution though it may exist. On the
other hand, a solution found by this approach is always correct. It essentially
means the assembly composed and verified by this approach has compatible
components.

The core idea of the method is that each incompatibility is solved by replac-
ing one component. Although in a general case an incompatibility may need
to replace more than one component, in practical applications, it is assumed
that an incompatibility is resolved by changing one component.

There are at least two motivations for such an assumption. The first mo-
tivation is in a repository containing more versions of one component with
improving quality following the increasing versions. The idea is that new
versions of a particular component are released. Another case is a set of
components provided by competitive vendors where a particular component
has a better quality characteristics than components from other vendors.
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According to these facts, a replacement of one component by a “better“
component can solve any incompatibility.

The second motivation for replacing one component to solve one incompati-
bility follows a typical manual process in which a user replaces components
one-by-one to find a compatible assembly. The reason is obvious, a user can
hardly predict the impact of replacing multiple components, so he or she
tends to replace and verify each component in discrete steps. As a result,
this manual approach may be overtaken by a tool implementing the approach
presented here first. Then a user may manually solve the incompatibility
that this heuristic approach will not solve.

The method presented in this section consists of two approaches: (1) incre-
mental composition of components and (2) a reconfiguration of an existing
composition. However, both these phases may be used separately since they
do not depend on each other.

An Incremental Composition

In general, system composition [4][89] is an approach to build a system from
discrete parts to reach a final functionality. As it may be seen, this approach
has been overtaken by the CBSE concept. In addition, the incremental com-
position is an approach in which a system is composed in steps so that each
step consists of adding one part of a system followed by its verification. If
the verification succeeds the composition proceeds to the next step repeating
the same process until the application is completed [66].

The incremental composition is a linear process, in which each step creates
a verified sub-composition and it prevents the need to verify all variations of
candidate components. This process is depicted in Figure 4.12 in which sev-
eral components have been already added to a composition. The last compo-
nent to add is incompatible, causing other components from the repository
to be checked whether they can replace the incompatible component.

Let us define a sequence A = (C1, C2, C3, · · · , Cm) where Ci, i ∈
{1, 2, · · · ,m} are components composing an assembly and m is the total
number of components of the assembly.

The incremental process of the assembly creation consists of steps in which
all components already put in the assembly are verified and compatible. If
a new component is compatible with the components already being in the
assembly, this component may be added to the assembly. If the component
is not compatible, another component must be selected from the repository.

Formally, the assembly creation repeats in steps for j ∈ (1 · · ·m) so
that an assembly creation process incrementally creates a sequence A =
(C1, C2, · · · , Cj−1) ∪ {Cj} ∪ (Cj+1, Cj+2, · · · , Cm) where components with
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Repository
Replace ?

Increment steps

Figure 4.12: Incremental Composition

indexes from the set {1, 2, · · · , j − 1} have been verified and are compatible
components, the component with the index j is currently being added and
the components with indexes from the set {j+1, j+2, · · · ,m} will be added
in later steps.

Using the incremental composition, there are m components composing the
assembly. In each step of the composition, a total number of n components
in the repository is tried. As a result, the incremental composition needs
m× n steps to build a verified assembly. Hence the time complexity of the
method is O(mn).

The algorithm from Section 4.6.2 may verify newly added EFPs in each step
of the assembly creation instead of the evaluation of the complete assembly.

On the other hand, if a sub-composition has no compatible component to
be added, a re-configuration of the actual sub-composition may change the
sub-composition so that the new component happens to be compatible. It
leads to the method proposed in this work.

A Reconfiguration of an Existing Composition

Let us have a sequence of components A′ = (C1, C2, · · · , Cj−1) composing
a partial assembly. There is an attempt to add a component Cj to this
assembly. If the component Cj is not compatible with the assembly and
there is no other compatible component in the repository, the incremental
composition ends. However, a reconfiguration of the existing assembly may
solve the problem.

Whereas general reconfiguration of all current components would lead to
the mentioned time complexity O( n!

(n−m)!), this section introduces a different
approach with a lower time complexity.
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It is practical to have the components in the A′ sequence in the topology
order. It has positive impact known from the back-tracking algorithm: if a
component Ci is replaced, all components {Cj | j < i} cannot be affected
by the replacement while all components {Cj | j > i} may be affected. It
reduces the time complexity because only several components must be re-
verified if a replacement of the component Ci has its index i close to the
index j of the component Cj .

There are two ways of obtaining this sequence depending on the input assem-
bly: (1) if the assembly has been created using the incremental composition,
the sequence order is equal to the order in which the components have been
added to the assembly, (2) the topology order is the same as the order of
finished vertexes visited by the back-tracking algorithm.

Although a topology creation requires no circular dependency in a graph,
circular dependencies of the component features are not problematic. In
that case, the topology is simply created by putting the vertexes in the
order they were finished by the back-tracking algorithm. On the other hand,
circular dependencies of EFPs are problematic and the method presented
here cannot deal with them.

Let us assume a resulting sequence has compatible components
(C1, C2, · · · , Cj−1) ordered following their binding dependencies. There is
a component Cj that cannot be added because of its incompatibility and
it is attempted to replace one component of (C1, C2, · · · , Cj−1) to solve the
incompatibility.

Repository

Increment steps

Replace

c
j

c
j-1

c
i

c
1

c
new

Figure 4.13: Incremental Composition with Reconfiguration

A re-configuration process attempts to replace one component with the index
i ∈ {1, · · · , j − 1} in the assembly. The step in which one component is
replaced by another one from the repository is shown in Figure 4.13.

The algorithm expressed in pseudo-code is defined as follows (For the sim-
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plicity, the algorithm does not check extreme limits where e.g. a replaced
component is first or last in the sequence):

1. A′′:=(C1, C2, · · · , Cj−1)∪{Cj}, Repository is a component repository,
Cnew := null.

2. for i = j − 1 · · · 1 {

Ci := A
′′[i]

3. for k = 1 · · ·n− j, C ′ := Repository[k] {
if type_compatible C ′, Ci then {

4. if not efp_compatible C ′,Ci−1 then goto 3.

5. A∗:=(C1, C2, · · · , Ci−1, C
′, Ci+1, · · · , Cj−1)

for l = i · · · j − 1
if not efp_compatible A∗[l],A∗[l + 1] then goto 3

Cnew := Ci := C ′

goto 6
}

}

}

6. if Cnew == null then ERROR
else A′:=(C1, C2, · · · , Ci−1, Ci, Ci+1, · · · , Cj−1, Cj)

The method type_compatible represents the µ function from Section 4.5.1,
the method efp_compatible evaluates compatibility of EFPs using the
means from Section 4.6 and their bodies are omitted here.

If this algorithm finds a new Cnew component, it is replaced in the assembly
and the Cj component may be added. If there is a set of other incompatible
components (Cj+1, Cj+2, · · · , Cm) to add, the algorithm must repeat for
each component.

As it may be seen from the algorithm, it tries to replace each of j components
by n components from the repository. All j components are re-verified. All
of m components in the assembly may be potentially replaced. As a result,
the algorithm requires j×n× j×m steps and its time complexity is O(n4).

To sum up, this section has provided an overview of two methods allowing to
create a verified component assembly in the polynomial time. The method
is based on the assumption that each incompatibility is solved by the re-
placement of one component. Despite the simplification, it is assumed that
the method is usable in real scenarios since it follows a use-case replacing
and verifying components in discrete steps.
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Implementation and
Application

The whole EFFCC approach which has been, so far, presented using formal
means, is also implemented1. The purpose of this chapter is to present the
implementation over viewing main architectural decision to help a reader
to understand main concepts of the implementation. The implementation
serves as a proof of the concept, however, it is capable of application to
practise.

The following pages will respectively show the implementation of EFP
Repository Server, EFP Assignment and EFP Evaluator in Sections 5.1, 5.2
and 5.3,. Since these three modules represent core parts of EFFCC, several
important details about the implementation will be provided. In opposite,
Section 5.4 will not target an implementation design, but it will show graph-
ical tools from a user perspective. The rationale is to show how user may
work with the EFFCC rather than detailing common programming. Finally,
Sections 5.5.1, 5.5.2, 5.5.3 are brief introduction of the EFFCC application
to one research and two industrial component frameworks demonstrating a
practical applicability.

5.1 The EFP Repository Server

The EFP repository has been implemented as a web 3-tier server shown in
Figure 5.1.

From a technological point of view, the server stores EFP data in a rela-
tional database accessed from the DAO (data access object) layer which maps

1Source code available at: http://subversion.assembla.com/svn/efps/ (2012)
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relation data to Java objects using the Hibernate framework2. The Service
represents a business facade encapsulating computation upon EFP data and
transferring the data between the data and view layers.

Database

DAO

Service

Controller WS

Hibernate

Apache CXF

S
p

ri
n

g
 Io

C
Web Browser Client

EFP Registry Server

Figure 5.1: EFP Registry Server – Architecture Design

The view layer is implemented using two different means. A first possibility
to access the data is via a web browser using the Controllers layer. Its
purpose is to provide a modern fashioned and comfortable user access point
from a web browser. The other layer uses web-services (WS in Figure) al-
lowing to access the data from other applications. Its purpose is to have
an access point for other application. Currently the data from the repos-
itory are loaded by the EFP Assignment and the desktop client using the
web-services, however, any other application may connect and participate in
using the EFP common storage. Let us note the Apache CXF3 framework
is used for the implementation of the web-services.

Moreover, the implementation of the EFFCC is supported by the Spring
inversion-of-control and model-view-controller framework4. In practice, the
structure used for the server implementation is nothing more than the struc-
ture suggested by Spring.

According to fundamentals of the web-service technology, it produces raw
output via web services using the Service Oriented Architecture protocol
(SOAP). SOAP transfers a low-level XML data via standard HTTP protocol
with WSDL files describing a structure of the XML data.

2Available at: www.hibernate.org/ (2012)
3Available at: cxf.apache.org/ (2012)
4Available at: www.springsource.org/ (2012)
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On the one hand, the used technology allows a low-level access by several
clients working with the SOAP, on the other hand, the plain XML data
may be awkward for other modules. In order to solve this problem, we have
created a sub-module named the EFP Client, shown in Figure 5.2, which
basically turns XML data into EFP Types and vice versa. Hence, client
modules access data via EFP Client using familiar EFP Types first, then
the repository transparently receives XML data.

On the one hand, the current Java-based implementation limits the EFP
Client usage to other Java-based application, on the other hand, the pure
SOAP may be still used to integrate different platforms.

The repository serves as a generally usable storage of the extra-functional
properties. Although it is originally developed for other parts of EFFCC,
it may be as well used as a stand-alone storage available to third-party
applications.

EFP Client

Web services, SOAP

EFP Types
EFP Repository

Figure 5.2: Server-Client Communication

5.2 The EFP Assignment

The two modules for transferring data (EFP Types and EFP Assignment
Types) as well as the EFP Assignment module have been developed in Java.
Implementation design of the EFP Assignment follows the idea of splitting
component model to dependent and independent parts. A couple of inter-
faces to access EFPs on components by third-party applications are provided
with a convenient abstraction layer and a default out-of-the-box implemen-
tation.

In detail, a core part of the implementation design is shown in Figure 5.3.
Two interfaces ComponentEFPAccessor and ComponentEFPModifier are the
most abstract representation of the EFP Assignment module. They respec-
tively provide API to read and modify EFP data in a form of the EFP
Assignment Types. The former one is typically accessed by the EFP Eval-
uator module because the evaluator only needs to read the data while the
latter one is typically accessed by an assignment tool to modify the EFP
data on components.
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<<interface>>

ComponentEfpAccessor

getEfps(feature : Feature) : List

getAllFeatures() : List

getAssignedValue(feature : Feature,efp : EFP,lr : LR) : EfpAssignedValue

getLRs() : Set

close() : void

<<interface>>

ComponentEFPModifier

assignEFP(feature : Feature,newEfp : EFP,efpAssignedValue : EfpAssignedValue) : void

changeEfpValue(feature : Feature,efp : EFP,oldEfpAssignedValue : EfpAssignedValue,newEfpAssignedValue : EfpAssignedValue) : void

removeEFP(feature : Feature,efp : EFP,efpAssignedValue : EfpAssignedValue) : void

ComponentEFPModifierImpl

<<interface>>

MirroredDataManipulator

readLrAssignment(efp : EFP,lrId : int,valueName : String) : LrAssignment

readEFP(efpName : String,grId : int) : EFP

readParamObject(id : int) : String

addEfpAssignment(efpAssignment : EfpAssignment) : int

deleteEFP(efp : EFP) : void

deleteParamObject(id : int) : void

deleteLRAssignment(lrAssignment : LrAssignment) : void

XMLDataManipulator

<<interface>>

EfpDataManipulator

readFeatures() : List

readEFPs(feature : Feature) : List

assignEFPs(feature : Feature,efpData : List) : void

1

11

1

CoSiEfpDataManipulator OSGiEfpDataManipulator

EfpEvaluator
EFP Assignment Tool

1

1

1 1

11

BundleFilesManager

<<interface>>

EfpDataLocation

getComponentPath() : String

getEfpDataPath() : String

getEfpMirrorPath() : String

Figure 5.3: EFP Assignment – Core Architecture Design

Another model element, ComponentEFPModifierImpl is an out-of-the-box
convenient class and implementation of ComponentEFPModifier splitting
concerns of component model dependent and independent parts. Each re-
quest to load or modify EFP data on a component is captured in this class
and distributed to the dependent or independent part. The component
model independent part is an already mentioned EFP data mirror repre-
sented by the MirroredDataManipulator interface while an independent
part is represented by the EfpDataManipulator. For instance, once a user
attaches an EFP to a component, the ComponentEFPModifierImpl class di-
vides the data to part to be stored in the EFP mirror and to part to be
stored directly on the component. It is a task of concrete implementation of
correctly storing the data for concrete component model. Finally, the class
EfpDataLocation allows the EFP Assignment module to recognise where
the EFP data are persisted on the component (e.g. where XML files are).

Classes highlighted by the grey color represents the points where light-
weighted plug-ins are connected to extend the EFP Assignment for con-
crete component model. The XMLDataManipulator is a default implemen-
tation of the EFP data mirror persisting the data in XML files. This im-
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plementation may be used for most of component models, however, a de-
veloper is free to reimplement it for different kind of storage. Two classes
CoSiEfpDataManipulator and OSGiEfpDataManipulator are two example
implementations for CoSi [17] and OSGi component models. These two
implementations connect EFP data from the mirror to concrete features of
the component models. Together with CoSi and OSGi implementation, the
BundleFilesManager class is implemented to connect the EFP Assignment
with the CoSi and OSGi bundle structure.

<<interface>>

EfpAwareComponentLoader

loadForRead(component : String) : ComponentEfpAccessor

loadForUpdate(component : String) : ComponentEFPModifier

<<interface>>

ComponentEfpAccessor

<<interface>>

ComponentEFPModifier

creates 11

creates

11

CoSiComponentLoader OSGiComponentLoader

<<realize>>

<<realize>>

Figure 5.4: EFP Assignment Loader – Architecture

The implementation also provides a mechanism shown in Figure 5.4 cre-
ating EFP Assignment instance for concrete component model. Once a
developer prepares implementations for a concrete component model in a
form of classes mentioned above, he or she packs it together in an im-
plementation of the EFPAwareComponentLoader interface. Implementing
this interface a factory class is created. An implementation of the factory
may return classes directly implementing the ComponentEFPAccessor and
ComponentEFPModifier interfaces, however, in most situations convenient
implementations from Figure 5.3 are used with the advantage of implement-
ing very little piece of additional code. The Figure 5.4 shows two exam-
ple implementations CoSiComponentLoader and OSGiComponentLoader for
OSGi and CoSi component models.

As it has been demonstrated, an extension of EFP Assignment module basi-
cally means an implementation of three interfaces which instances are packed
together and returned by an implementation of a factory class.

5.3 The EFP Evaluator

The EFP Evaluator prototype is implemented in Java as a module embed-
dable to other Java-based component models. Together with the EFP As-
signment module, it composes a module seamlessly managing EFPs on any
component models which the EFP Assignment module has been prepared
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for. In this cooperation, the EFP Evaluator works with independent EFP
data abstraction while the EFP Assignment is customised for a concrete
component model.

Due to the fact the EFP Evaluator implements the algorithm from Section
4.6.2 it provides API following the same two steps algorithm: (1) construc-
tion of a component graph and (2) evaluation of the graph. Any application
integrating the EFP evaluator will therefore call this API to process the
algorithm the way it has been formalised in Section 4.6.2. The details are,
however, hidden for clients which only access the high level API .

A first method available in the API loads components and their EFP rep-
resentation via the EFP Assignment module. The method is stored in the
ComponentLoader class:

GraphCreator loadComponents(

List<String> components,

String assignmentModule,

Integer... lrID);

where the components argument represents a set of component identifica-
tions which are to be evaluated. These abstract component identifiers are
sent to the EFP Assignment module that loads concrete component repre-
sentation.

The assignmentModule argument expresses a name of a class implementing
the EfpAwareComponentLoader from Section 5.2. A class with this name
is instantiated as the module starts. This mechanism allows to customise
the EFP Evaluator module to operate with different implementations of the
EFP Assignment for multiple component models. This is, therefore, a point
in which the contract between EFP Assignment and Evaluator is stated.

The last argument, lrID, represents unique identifiers of LRs which all eval-
uation will be made for. Typically, these identifiers are loaded from configu-
ration remaining unchanged at runtime. The reason is that one installation
of a component framework obviously run in the same environment at all
the time. Therefore, each evaluation of components works with defined LRs
ignoring all values for other LRs. For instance, an OSGi installation in a
mobile phone will have installed LR for mobile devices ignoring values for
servers, desktops, etc.

A result of the method is a GraphCreator class which instance generates
the graph of the component binding. The graph is generated calling the
method:

DirectedGraph<GraphVertexRepr, DefaultEdge>

create(MatchingFunction matchingFunction);
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As a result of this method, the first part of the algorithm from Section 4.6.2
is finished. The component graph is created.

The interface MatchingFunction on the input of the create method rep-
resents the function µ (Equation 4.7 from Section 4.5.1). Therefore, users
may put any matching function on the input which essentially impacts the
feature binding in the graph creation. Either user defined or implicit func-
tion may be used, however, in a lot of situations a matching algorithm from
concrete component model is called. The function is simple:

public interface MatchingFunction {

boolean matches(Feature feature1, Feature feature2);

}

Two features on the input are examined and true is returned if they should
be bound.

Having graph representation, the second part of the algorithm starts. It
must evaluate the graph to find an incompatible binding and incompatible
EFPs. The evaluation is provided by the ComponentEvaluator class with
the method:

List<EfpEvalResult> evaluate(

DirectedGraph<GraphVertexRepr, DefaultEdge> graph);

As may be seen, the method takes the graph created by the method above
on its input. The output is a set of EfpEvalResult classes that hold the
evaluation result in a structured form allowing its later processing by other
tools. Each EfpEvalResult comprises of the compatibility decision and an
aggregation of EFP pairs together with components and features the EFPs
are attached to. In addition, any incompatibility decision is expressed in
terms of missing required elements or incompatible values on matching EFP
pairs. Receiving the information of affected EFPs and components, a user
may easily determine incompatibility.

Taking it all together, the EFP Evaluator API provides clients with the
compatibility algorithm in a short sequence of method calls:

List<String> components = ... // a list of components to load

Long lrID = ... // a LR ID from configuration

// a specific component model implementation

// An OSGi implementation provided here

String module = OSGiComponentLoader.class.getName();

MatchingFunction mu = ...; // mu function

ComponentLoader loader = new ComponentLoaderImp();
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GraphCreator creator = loader.loadComponents(

components, module, lrID);

DirectedGraph<GraphVertexRepr, DefaultEdge> graph = creator.create(mu);

ComponentEvaluator evaluator = new ComponentEvaluatorImp();

List<EfpEvalResult> result = evaluator.evaluate(graph);

// ’result’ has a list of compatibility decisions

A part of the implementation working with the graph uses the third-party
library JgraphT5 for both creating and discovering vertexes of the graph. It
has lead to an easier implementation of the evaluating algorithm.

5.4 Tools

Since core modules composing EFFCC aim at being used in other systems,
their direct access by users is not assumed. Therefore, a management of
EFPs in terms of their manipulation either in the repository or on the com-
ponents should be supported by tools. For that reason, tools offering com-
fortable graphical interfaces have been developed.

Figure 5.5: EFP Repository Tool

The first tool shown in Figure 5.5 works with the EFP repository to provide

5Available at: www.jgrapht.org/ (2012)
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control upon the repository data. The implementation is a Java JFC Swing
client communicating with the server via web-services.

A rich palate of edit controls of the tool follows structure of EFPs and
registries. Forms to edit EFPs in GR, their values in LR, management of
existing GRs are essential parts of the application.

Although the web client is also part of the EFP repository server, the choice
to developed also a desktop client has been practical for test purposes, be-
cause the process of the development simultaneously tests the web-services.

Figure 5.6: EFP Assignment Tool

The other tool shown in Figure 5.6 is a Java JFC Swing client accessing
the EFP Assignment module. The client’s main functionality is to show
EFPs available in the repository and to attach them to components. The
users drag-and-drop EFPs from the panel with all EFPs to the other panel
with component features. Moreover, each drag-and-drop operation opens
a dialogue to select an EFP value. Either direct, context-dependent or
computed values may be selected.

Since the EFP Assignment module may be implemented for different com-
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ponent models, the tool is also capable of switching to a particular imple-
mentation. A list of all implementations is configured in a properties file
first, then a user selects a concrete implementation once the tool is starting.

5.5 Application of the Approach

So far, EFFCC has been introduced using both formal means and meta-
models with implementation details. Due to the fact the main goal is to
embed EFFCC to existing component models, a few prototype applications
have been developed. For that reason, this section aims at showing the
ability of EFFCC to be applied to other system consequently fulfilling the
main goal.

5.5.1 EFPs in the Spring IoC Container

One of the widely used component frameworks is Spring. Components in
Spring have forms of, so called, Beans where one Bean is one Java class.
Dependencies between components are explicitly expressed in configuration
XML files which in essence define a so called Application Context [94].

Let us note that the XML file based configuration comes from the very first
versions of Spring. A configuration of Beans in XML files provides a static
dependency binding configuration that is established before an application
starts. Later versions of Spring added the support of a dynamic binding
configuration expressed in XML files or even newer versions allow a config-
uration in the Bean source code using Java 1.5+ annotations.

For the sake of clarity, this section shows the application of the EFFCC using
the most traditional XML-based configuration. Application of EFFCC to
other Spring’s extensive configuration means will be omitted. An extension
of the presented approach to support e.g. the annotation driven configuration
is a straightforward re-implementation of the approach to respective parts
of the Spring framework, however, the principles remain the same.

In addition, Spring allows either a setter or a constructor injection of the de-
pendencies. Since the setter injection is a recommended approach in Spring,
it will be used also in this section. An implementation considering also the
construction injection would follow the same principles to be presented here
for the setter injection.

Spring Beans defined in the application context may be considered as pro-
vided features in terms of the component binding. Each setter of a Bean
denotes the required side. Hence, the binding of the provided to required
side is equivalent to the examination of values (objects) injected into the
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setters of the Bean.

Extending Spring of extra-functional support, several steps must be taken
to integrate EFFCC. First of all, the EFP Assignment module must be
extended to attach EFPs to Spring Beans.

Working with the Spring XML-based configuration, the EFP extension may
be achieved by extending Spring’s XML configuration files using XML name-
spaces. Then the XML configuration file will contain other elements declar-
ing EFPs for each Bean. In addition, we suggest a solution in which the
EFP data mirror is a stand-alone XML file – as it has been mentioned in
Section 5 – and the links between the mirror and Spring Beans are stored
in the extended Spring XML files.

The main advantage of this solution is that the new XML tags do not clash
with existing ones and the Bean definition is separated from the definition of
EFPs. Hence, the Application Context configuration is enriched with EFPs
without touching original implementation of Spring.

Example of the solution based on the extended XML files:

<bean id="data"

class="cz.zcu.kiv.example.DataAccess" >

<property name="jdbc" ref="jdbcDriver" />

<efp:name="response-time" property="jdbc">

<efp:values>

<efp:lr id="1" value="average" />

<efp:direct value="100" />

</efp:values>

</efp:name>

</bean>

If the annotation driven configuration is used in Spring, a different approach
should have to be used. For instance, standard Spring annotation can be ex-
tended of new annotations expressing EFPs. Either new annotations may be
implemented or even existing approaches may be integrated. E.g. JSR 305
[46] (Java Specification Requests 305) is already targeting annotations con-
cerning a few extra-functional properties with annotations such as @NotNull.
Although it targets only simple annotations.

In order to evaluate EFPs attached on Spring Beans, the EFP evaluator
must be aware of the Bean binding. To obtain the binding information
directly from the Spring framework, the suitable solution is to participate
in the container life-cycle. Spring contains a set of so called Bean Post
Processors providing developers with a rich spectrum of call-back methods
allowing to observe and even modify the container life-cycle.

Although there is a wide spectrum of the Bean Post Pro-
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cessors, for the purposes of components matching, the
InstantiationAwareBeanPostProcessorAdapter is the most suitable
one. It allows to observe which Bean has been instantiated and which
values have been injected via setter methods.

The implementation of a Bean Post Processor evaluating EFPs on Spring
Beans is here introduced in a sequence of steps:

1. A class extending the InstantiationAwareBeanPostProcessorAdapter
is created:

public class EfpAwareBeanPostProcessor

extends InstantiationAwareBeanPostProcessorAdapter {

/** A map of all beans represented as EFP Assignment features. */

private Map<String, Feature> beanFeatures =

new HashMap<String, Feature>();

/** This map holds all bound features. */

private Map<Feature, Feature> boundFeatures

= new HashMap<Feature, Feature>();

/** A local registry ID from the configuration. */

private Integer lrId;

The map beanFeatures holds all Beans instantiated in the Applica-
tion Context while the map boundFeatures holds information of Bean
bindings. While the former map will be used to inform the EFP Eval-
uator which Beans to evaluate the latter map will be used for imple-
menting a matching µ function. A property lrId is a pre-configured
identifier for LR.

2. A method inherited from the super class is created:

public PropertyValues postProcessPropertyValues(

final PropertyValues pvs,

final PropertyDescriptor[] pds,

final Object bean,

final String beanName) {

Input parameters contain complete information of a one Bean binding.
Namely, pvs contains a list of values to be set to the bean with the
name beanName. pds is a list of descriptions for each value to be set.
This description holds among others the name of each attribute to be
set.
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3. A Bean may generally have a setter to set another Bean as well as
another Java value (e.g. an Integer number). Any attribute does not
even have to be set remaining null. Since the EFP evaluation process
is interested only in the Bean binding, the implementation must skip
all null or non-Bean reference values. On the other hand, all injected
Beans must be concerned.

for (PropertyDescriptor pd : pds) {

PropertyValue prop = pvs.getPropertyValue(pd.getName());

// a property has no value to be set.

if (prop == null) { continue; }

Object value = prop.getValue();

// we are interested only in a bean binding

// we omit e.g. value binding.

if (value instanceof BeanReference) {

Feature firstBean = findBeanFeature(beanName);

String featureName = prop.getName();

Feature required = new BasicFeature(

featureName, Feature.AssignmentSide.REQUIRED,

"service", true, firstBean);

BeanReference secondBeanRef = (BeanReference) value;

Feature secondBean = findBeanFeature(

secondBeanRef.getBeanName());

Feature provided = new BasicFeature(

featureName, Feature.AssignmentSide.PROVIDED,

"service", true, secondBean);

boundFeatures.put(required, provided);

}

The presented code skips all null values first, then all values only
being instances of Beans are processed. Having a Bean and another
Bean to be injected to this Bean, the respective EFP Features are
created. In the presented code, two features are created so that both
features have the same name as the name of the bound attribute. The
feature on the Bean holding the attribute to be injected is the required
one while the feature of the Bean to be injected is the provided one.
Finally, these two features are put to the boundFeatures map as a
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matching pair.

The method findBeanFeature creates an EFP Feature Bean repre-
sentation for the input Bean and stores it in the beanFeatures map.
It stores information which Beans are actually in the Application Con-
text. As a result, this information is later passed to the EFP evalua-
tion. Using these steps, both the information of Beans existing in the
Application Context and information of their binding is obtained.

The presented code shows the process of obtaining information of
Beans running in the system together with their binding. The bind-
ing information is then used for the implementation of the µ function.
The implementation itself is straightforward: each input feature pair
is tried to be located in the binding map. If the pair is found, the
features are bound and the matching function results true.

4. Creating the EFP evaluating mechanism, values obtained in previous
steps are passed to the EFP Evaluator. Hence, the same class has an
evaluating method calling the EFP Evaluator:

public List<EfpEvalResult> evaluateEfps() {

List<String> beans = new ArrayList<String>(

beanFeatures.keySet());

return EfpComparator.evaluate(

beans, SpringAssignmentImpl.class.getName(), mu, lrId);

}

As it may be seen, the Beans obtained from the Application Con-
text are passed to the EFP Evaluator. The SpringAssignmentImpl

class is the EFP Assignment plug-in for Spring. The matching func-
tion implementation (a variable mu) is omitted here, however, an
implementation has been summarised in the previous step. The
value lrId is an already mentioned pre-configured LR identifier.
EfpComparator.evaluate is a simple facade method internally calling
sequence of methods from Section 5.3.

To sum up, the implementation of EFP Assignment plug-in and the Bean
Post Processor will enable EFP support in Spring. Every time a Spring-
based application is started the Bean Post Processor determines Bean bind-
ing and passes this information to the EFP Evaluator. To enable this mech-
anism, the Bean Post Processor must be defined in the Application Context
the same way as any other Bean is defined. Hence, the mechanism is non-
intrusive and providing the EFP support only if it is needed with the option
of enabling or disabling it.
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The implementation using the XML-based Application Context configura-
tion with the setter injection supports a static Bean binding where all Beans
and their relations are defined before the application starts. In a lot of areas,
EFPs are more suitable for dynamic binding (in Spring called autowiring).
In the dynamic binding a Bundle only states required types (in terms of
Bean types) and the framework automatically binds dependencies accord-
ing to all available types. In this process, more than one type may satisfy a
particular dependency. In that case, a user must manually resolve the depen-
dency clash (removing or qualifying the duplicated types). These manual
corrections may be partly replaced using the EFPs that serve as another
qualification influencing the binding. On the other hand, the static bind-
ing is most traditional and most often used in Spring and the overall idea
of integrating EFPs to Spring is still the same. For that reason, the EFP
integration has been explained on the traditional XML-based static config-
uration while this approach preserves generality applicable to other parts of
Spring framework.

5.5.2 EFPs in OSGi

The OSGi framework [86] components are called Bundles, distributed as
Java JAR files. Bundles may register a set of services (Java classes) that
other Bundles may call. Bundle services are grouped into packages which in
OSGi must be explicitly imported (required) or exported (provided). The
specification of each Bundle, exported and imported packages, is written in
a text form as part of the manifest file.

Considering information stored in the manifest files, a first option to extend
OSGi by EFPs is to supplement the content of the manifest file. For instance,
a database layer of an application may be enriched with extra-functional
information as follows:

Manifest-Version: 1.0

Bundle-Name: Data

Export-Package: cz.zcu.kiv.osgi.example.dao;

efp:=1.db_engine=LR.2.memory

meaning that a property db_engine from GR with the identifier 1 has as-
signed a name memory from the context of a LR with the identifier 2. It
is assumed that the meaning of these identifiers is stored separately in the
EFP data mirror attached to the Bundle. A suitable storage for the EFP
data mirror is a XML file stored as part of the Bundle in the META-INF
folder where also the manifest file is located. Therefore, the distribution of
Bundles will also contain EFP data information.
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This concept is similar to OSGi capabilities (OSGi release 4 specification
[86]) which use name-spaces in similar manner to LR value names and EF-
FCC is even capable of implementing OSGi’s capabilities since they are
nothing more than name-value pairs with restricting formulas covered by
our deriving formulas. However, the capabilities lack unification such as
provided by the Registries. Moreover, both approaches may be too coarse-
grained since the provided and the required elements are on the package
level. Therefore, this EFP assignment option does not necessarily prevent
incompatible services (Java classes in practice) to be run.

Another innovative concept of the OSGi 4 are Declarative Services (DSs).
DSs provide Bundles with a fine tuned declaration of particular services
stored in XML files. Hence, EFPs can be in detail defined for services using
the idea equivalent to the XML name-spaces, developed in this paper for
Spring, applied to DSs.

Extending the manifest file with a link to a Declarative Service specification

Manifest-Version: 1.0

Bundle-Name: Data

Service-Component: OSGI-INF/dao.xml

the dao.xml file contains the declaration of one particular service
DataAccess implemented by a DAImplHSQL class. This can be enhanced
with EFPs:

<component name="dao">

<implementation class="cz.zcu.kiv.osgi.app.dao.DAImplHSQL"/>

<service>

<provide interface="cz.zcu.kiv.osgi.app.dao.DataAccess"/>

<efp:name="response-time" gr_id="1">

<efp:values>

<efp:lr id="2" value="average" />

</efp:values>

</efp:name>

</provide>

</service>

</implementation>

</component>

According to the principles mentioned already for Spring, the evaluation
process of Bundles enriched with EFPs would take part in a component life-
cycle. OSGi provides a BundleListener which may be used by a Bundle
to observe changes (starting, stopping, installing, etc.) of other Bundles.
Hence a Bundle invoking the EFFCC modules for each Bundle will determine
compatibility in the phase of starting or installing other Bundles [18].
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5.5.3 EFPs in CoSi

CoSi [17] is a research component model developed in a respect to several
motivations: (1) strong black-box components, (2) minimal feature speci-
fication, (3) very simple infrastructure (no distribution, remoting, security,
dynamic updates, ...), (4) support of weakly typed languages (Groovy). In
addition, the model follows ideas from OSGi with components represented
as Bundles and provided and required elements stated in the manifest file.
Whereas the distribution form is the same as the OSGi form, some short-
comings of OSGi has been eliminated as much as possible.

The main mean to have a strong black-box component model is achieved
so that every provided and required elements to be bind must be explicitly
defined in the manifest (manifest.mf) file. The most significant distinction
from OSGi are definitions of provided and required services on the level of the
manifest file. Whereas OSGi allows to export and import packages with a set
of service, CoSi requires all services to be explicitly imported and exported
(although OSGi has brought the concept of declarative services). In the
binding process, only these services are connected and no other services
are accessible. Other features: types, attributes, events must be explicitly
specified in the manifest in order to be accessible as well.

Since a complete Bundle contract is defined in the manifest file, it is also
worth putting the EFP definitions here. The same way as it has been intro-
duced for OSGi, the EFP data mirror are stored in the META-INF directory
in a form of a XML file while the linkage of the data to concrete features
goes to the manifest file.

First, the manifest file has been extended to hold EFP information. A simple
extension of the header definitions is defined by the grammar:

header ::= header-def (’,’ efp-assign)*

efp-assign ::= ’efp=’ gr-id ’.’ efp-name ’.’ efp-value

efp-value ::= direct-value || lr-value || formula-value

direct-value ::= ’V{’ id ’}’

lr-value ::= (’LR{’ lr-id ’.’ efp-value-name ’}’)*

formula-value ::= ’C{’ id ’}’

efp-value-name ::= String

gr-id, lr-id, id := Integer

header and header-def are original headers of the CoSi manifest file [16]
that are extended of the EFP assignment efp-assign option. Each EFP
assignment consists of a GR identifier gr-id a name of an EFP efp-name

and a concrete assigned value efp-value. According to three types of ex-
isting values, the manifest may hold a direct direct-value, LR lr-value

and computed formula-value value. Since direct or formula values may
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have a long form, they have only an identifier id in the manifest file while
the value itself is stored in the XML data mirror. A LR value has assigned
its name efp-value-name and an identifier lr-id of LR this name comes
from.

For instance, a line of the manifest file with a response_time property and
a formula assigned to the PersistenceIf service may look like:

Provide-Services:

cz.zcu.kiv.cosi.example.inventory.inventorydata

.PersistenceIf;efp=(462.response_time=C{3})

Secondly, a plug-in for the EFP Assignment module has been developed to
use the module in connection with CoSi. The plug-in is capable of unpack-
ing a CoSi Bundle to read the XML data mirror and the EFP data from the
manifest. It in practice respects component model dependent and indepen-
dent part of the EFP Assignment module as it has been already explained.
The plug-in implements pre-prepared interfaces to open and modify the EFP
data. The implementation itself will not be detailed here.

Finally, the evaluation of EFPs on Bundles has been implemented. CoSi has
a rich support of listeners to observe a life-cycle of each Bundle. Therefore,
a suitable way is to call the EFP evaluation for each bundle installed in
the system. As a result, a simple Bundle that listens Bundles life-cycle
and calls the EFP Evaluator has been implemented. The implementation is
straightforward:

public class StartEvaluationListener extends BundleListener {

private BundleContext context;

public StartEvaluationListener(BundleContext context) {

this.context = context;

}

synchronized public void bundleChanged(BundleEvent event)

throws BundleListenerException {

if (event.getType() == BundleEvent.AFTER_INSTALL_OK) {

Integer lrId = loadLR();

SystemService service = (SystemService) context

.getService(SystemService.class.getName());

List<String> components = toList(service.getBundles());

MatchingFunction mu = MatchingFunction.DEFAULT_MATCHING_FUNCTION;
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List<EfpEvalResult> results = EfpComparator.evaluate(

components,

CosiAssignmentImpl.class.getName(),

mu, lrId);

// any processing of the results

}

}

The class presented in the code implements BundleListener and for each
installed bundle it calls the EFP evaluation. The LR identifier lrId is loaded
from a configuration first, then a list of components running in the system
is obtained and transformed to a list of Strings. Finally, the evaluation is
called. Due to the fact the design of CoSi does not allow to observe which
Bundle features are bound together from the outside, the default µ function
from Section 4.5.1 is used. However, its usage is sufficient for the CoSi
binding mechanism.

To sum up, this section has shown the ability of EFFCC to extend existing
component systems of extra-functional property support with only a little
of code to implement. The support is added without need to change or
re-compile the original systems and the EFPs may be enabled or disabled
as it is required.
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Case-study: A Web Browser
Product Line

Providing a complex approach, this section demonstrates a sample case-
study. The case-study detailed in this section has been inspired by the
Nokia’s successful adaptation of the product line developing their web
browser’s family [51]. While the Nokia product line consists of several soft-
ware modules written in C, the case-study presented here has been prepared
as a set of re-usable components. However, the rationale of using the product
line is the same in both cases. The first goal is to have a set of components
providing fundamental functionality needed in the field of web browsers,
then a set of browsers in different modifications may be developed.

6.1 Overview

Building the case-study, a typical structure of web browsers [43] has been
used to create fundamental components that the browsers consist of. The
components with their bindings are shown in Figure 6.1. In a complete im-
plementation, the components would probably be more complex with other
interfaces. However, several simplifications have been taken to keep sim-
plicity and clarity of the example. Moreover, a few components (e.g. the
connection to the network and the data storage) have been avoided not to
complicate the example.

The components named HTML, JS and CSS with their respective inter-
faces HTMLParser, JSParser and CSSParser provide functionality to pro-
cess HTML, CSS and Java Script elements of web pages from their textual
to program data representation. In addition, the JS component allows to
interpret Java Script code.
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Figure 6.1: Product Line Components

Using these three components, the component RenderingEngine loads
HTTP data via the Networking interface, processes HTML, CSS and Java
Script elements of the web pages and creates its program data representa-
tion. The processing of the pages is queried through the interface Rendering-
Query called by the BrowserEngine component to obtain the pre-processed
web pages. While the BrowserEngine component provides a high-level en-
gine to process the web pages in a form of the program data, the connected
component UserInterface turns this data into a user interface. The connec-
tion is created via the BrowserQuery interface. The component UIBackend
provides a low-level library allowing UserInterface to create complex user
interface calling the UI interface. The box labelled Environment is not
actually a component but it represents the environment in which the com-
ponents run. Its purpose is to show a possibility to model dependencies of
components on their runtime.

The presented components may create different web browser applications
replacing or customizing each component. For instance, a web browser for
desktop PCs would use a different UserInterface component than a web
browser for mobile devices. However, components parsing HTML, CSS and
Java Scripts would remain the same. Having a set of components with
different characteristics, browsers e.g. for PCs, mobile phones or tablets
may be created with the advantage of sharing common components.
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6.2 Extra-functional Properties

A variety of different browsers requires different characteristics. For in-
stance, a page rendering speed would differ among devices. A lower speed
would be expected on a small resource limited device while a faster speed
would be expected on a desktop PC. On the other hand, a lot of require-
ments would not vary. For instance, supported W3C standards put the same
importance on all devices.

As an example, several EFPs expressing some important characteristics in
the web browser domain have been created. The EFPs are shown in Figure
6.1 using the UML notes on respective interfaces. According to the exam-
ples mentioned above, groups concerning EFP applications and types have
been stated. These groups are summarised in Figure 6.2. Although there
may be likely found other EFPs for this domain, the selected EFPs aim at
demonstrating the advantage of the approach in modelling different EFPs
based on their concrete application.

Application EFP Type

Independent
html version

Simple
css version
js version

Device screen size

OS
dhtml Derived

ui library

Simple
System

css processing speed
js processing speed

html processing speed
network speed

web processing speed Computed

Figure 6.2: Product Line EFPs

Let us start with the group of EFPs following their application to a concrete
context of usage.

Independent The first area concerns EFPs that do not vary in their appli-
cations. Their values remain the same for the whole domain of web browsers.
As the members of this group, the properties html version, css version and
js version have been created to represent supported HTML, CSS and Java
Script versions respectively. Obviously, values of these EFPs would be the
same e.g. for a desktop PC as well as a mobile phone and thus are application
independent.
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OS The second area concerns EFPs differing among operating systems. As
a member of this group, the property ui library has been created. More pre-
cisely, this EFP is a deployment contract (DC) requiring a concrete graphical
library to draw UI elements. This property differs among OSs since different
OSs provide different libraries. For instance, Win32 API may be used on
MS Windows while the GTK or Qt library may be used on Linux. In addi-
tion, dhtml is also an OS depended EFP. It is a derived property depending
on ui library and stating whether a browser handles dynamic HTML pages.
Since the dynamic pages require both the Java Script support and a graph-
ical UI library to paint dynamic elements, the dhtml property depends on
concrete OS capability.

System The third area concerns EFPs differing among sys-
tems and system performance. The EFPs of this group are
css,js,html,web processing speed and network speed. The meaning of
the first four properties is to express a speed of processing CSS, Java Script,
HTML and a complete web page respectively. The last property expresses
the network speed also in Mb/s. Essentially, values of these properties
vary for different systems. For instance, an ARM processor based mobile
device is slower then an Intel i5 2.6GHz processor based desktop PC. On
the other hand, both devices may be considered fast from a user point of
view, though absolute performance values differ.

Device The last area concerns different devices a web browser may run on.
The EFP of this group is screen size denoting the display size of a device.
The meaning and the scale of such a property also vary among different
applications. For instance, a 24′′ LCD monitor may be considered high the
same way as a high 10.5′′ screen of a tablet. On the other hand, 10.5′′ screen
of a LCD monitor would be considered very small and for that reason these
values must be treated separately for a concrete application.

The other group follows types of EFPs defined in this work. They are
context-of-usage independent and depended values. Moreover, they are
EFPs with directly assigned values, values computed from deriving prop-
erties and values computed by formulas assigned on components. The dis-
tribution of the presented EFPs to these categories is denoted by the third
column of the table in Figure 6.2.

In terms of this work, different EFP applications are encapsulated in the
system of registries (Section 4.4.1). The tree structure of registries developed
for the browsers product line is shown in Figure 6.3. The vertexes of the
graph denote registries while the edges registries inheritance. The bottom
part of the graph is a legend mapping different applications to the tree
registry structure above the legend. It divides the graph into vertical layers
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GR LR PerformanceLR OSLR Device LR Systems

Web Browsers

Desktop

Mobile

Desktop Architectures

Mobile Architectures

Desktop OS

Mobile OS

Intel Dual Core, 2.8 GHz

Intel Core i5, 2.6GHz

AMD Sempron 3200+

MS Windows7

Ubuntu 11.10

MacOS 10

Nvidia Tegra 2, Dual-Core ARM
Cortex A9, 1GHz

Telechips 8902, 540MHz

RockChip 2808, 600MHz

A4, 1GHz

Symbian 4

Android 4.x

iOS 4.x

Figure 6.3: Product Line Registries

where the left one shows GR and other layers show LRs for the applications.

Web Browsers is the name of GR defining all EFPs for the browser domain.
Two sub-domains for Mobile and Desktop applications are created as two
LRs representing different kinds of devices. Whereas these two LRs con-
tain values for the whole area of mobiles and desktops respectively, other
specialised sub-domains are created to have values for Mobile OS, Desktop
OS, Mobile Architectures and Desktop Architectures. The Mobile OS and
Desktop OS hold values for different operating systems while Mobile Archi-
tectures and Desktop Architectures hold values for different systems. Such
a distribution fits the distribution shown in Figure 6.2. Since EFP values
for different operating systems as well as different architectures may widely
vary, a set of fine-grained LRs complements the graph. Their names (e.g.
Intel Dual Core, 2.8 GHz or Android 4.x ) should be self explaining.
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6.3 Distribution of the Properties to Registries

This section will show EFPs defined in GR and values assigned in LRs. A
pseudo-code will be used for expressing the definitions in a textual form.

The EFPs must be first defined in GR in terms of their names, data types
and value names. In the example, it is assumed all EFPs use the default
comparing function:

GR: name "Web Browsers"

ui_library: enum {GTK, Qt, Win32API, curses},

names {"graphical", "textual"}

html_version,

css_version,

js_version: number

html_processing_speed,

css_processing_speed,

js_processing_speed,

network_speed : number-interval, unit "Mb/s",

names {"fast", "average", "slow"}

display_size: number, unit "inches",

names {"high", "average", "low"}

dhtml: boolean, derived {js_version, ui_library}

Secondly, a set of LRs containing concrete values is defined. Only a sub-set
of definitions is provided to prevent long listings difficult to read.

The LRs for Device-dependent values contain values of the display size prop-
erty:

LR: name "Mobile", parent-gr "Web Browsers"

display_size : low [0..5), average [5..9), high [9..15)

LR: name "Desktop", parent-gr "Web Browsers"

display_size : low [10..18), average [18..21), high [21..30)

The LRs for OS-dependent values may, in short, contain values of the
ui libray and dhtml properties. The dhtml property is in GR generally
defined according to a function f : js version× ui library → dhtml that is
in this example implemented as a logical formula:
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LR: name "Desktop OS", parent-lr "Desktop"

dhtml: true <=> js_version > 0.0 && ui_library == graphical

ui_library: null # to override

LR: name "Linux", parent-lr "Desktop OS"

ui_library: graphical {Qt, GTK}, textual {curses}

LR: name "MS Windows7", parent-lr "Desktop OS"

ui_library: graphical {Win32API}, textual {}

LR: name "Mac OS 10", parent-lr "Desktop OS"

ui_library: graphical {AppKit}, textual {curses}

The last group of LRs contains the values for different System configurations.
The values presented in this example cover performance characteristics that
may have been obtained e.g. from simulation and testing and thus they are
valid for the same or a similar configuration as a configuration described by
each LR. For instance, a shortened list of LRs may look like this:

LR: name "AMD Sempron 3200+, 1GB RAM",

parent-lr "Desktop Architecture"

html_processing_speed :

slow [0..5), average [5..50), fast [50..+inf)

css_processing_speed : ...

js_processing_speed : ...

web_processing_speed : ...

LR: name "Intel Core i5, 2.6GHz, 4GB RAM",

parent-lr "Desktop Architecture"

html_processing_speed :

slow [0..10), average [10..100), fast [100..+inf)

LR: name "Telechips 8902, 540MHz",

parent-lr "Mobile Architecture"

html_processing_speed :

slow [0..1), average [1..10), fast [10..+inf)

LR: name "Nvidia Tegra 2, Dual-Core ARM Cortex A9, 1GHz",

parent-lr "Mobile Architecture"

html_processing_speed :
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slow [0..5), average [5..50), fast [50..+inf)

6.4 Component Evaluation and Binding

Having EFPs and values defined in registries, the values may be assigned to
existing components expressing their capabilities. In the following part of
this section, four sample component bindings, which may occur according
to the four applications will be presented. The examples target the four
mentioned applications from Figure 6.2.

• Independent – Let us have a request to create a modern HTML 5
compliant web browser. Such a browser must have the Renderin-
gEngine component capable of processing HTML in the version 5, CSS
in the version 3 and Java Script in the version 1.8.5. For that reason,
the required interfaces HTMLParser, JSInterpreter, JSParser and
CSSParser would have attached the EFPs html version, js version,
css version to their respective interfaces with respective version val-
ues. The RenderingEngine component may guarantee a handling of
modern HTML 5 compliant pages as long as the bound components
provide the interfaces with EFPs with the required version informa-
tion. For instance, Figure 6.4 shows two HTML components where
the HTML-A is compatible while HTML-B incompatible. As a result,
HTML-A may be bound while HTML-B cannot.

Figure 6.4: Example Binding with HTML Version

• OS dependent – A light-weighted text-only web browser may want to
be created for system administrators accessing remote configuration
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of network devices in which configuration menus are created as simple
textual web pages. Such a system does not need the JS component
at all and the UIBackend component requires only a textual library
from its runtime. For that reason, UIBackend requires a value textual
(library) assigned to the UILibs interface via the ui library EFP. Since
network devices such as routers often run on Linux, the implementing
library may be in this case curses. Example of a component binding in
Figure 6.5 shows two environments for Linux and MaxOS where both
can be bound to the UIBackend component because they provide the
needed textual libraries.

Figure 6.5: Example Binding with UI Library

• Device dependent – Considering the cost of developing a web browser,
it may be decided to support only the most common devices with an
average screen size. For that reason, the UIBackend library would
provide the display size EFP via its UI interface having the value av-
erage. In this case, web page rendering will be optimised for 18′′ - 21′′

desktop screens and 5′′ - 9′′ mobile screens only. A binding to a User-
Interface component requiring a different screen size is inappropriate.
It is shown in Figure 6.6. UIBackend-A is bound while UIBanckend-B
is not recommended for the binding since the binding would cause an
incorrect page view.

• System dependent – The most complex characteristics represent per-
formance based on the system configuration and input data. For a con-
crete RenderingEngine component, it may be estimated that a speed
to process one HTML page depends on a speed of HTML, CS and JS
parsing together with loading of all resource (such as image, video or
music data) of the page. Such a dependency may be addressed from
a simple to a complex point. Although the goal of this work is to
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Figure 6.6: Example Binding with Display Size

propose a general mechanism to define complex EFP formulas rather
than defining the formulas themselves, some possible approaches to
this concrete problem will be shown in this section.

EFP Formulas: A Simplified Example

For a simpler writing, let us rename EFPs so that: n = network speed, h =
html processing speed, c = css processing speed, j = js processing speed
and w = web procesing speed.

A fundamental definition of a function computing the speed is: f : n× h×
c× j → w. Finding a concrete formula, it may be realised that the function
should consider number of CSS, Java Scripts and other resources included in
a page. Naming x, y and z number of CSS, Java Scripts and other resources
of a page respectively, the formula may look like this:

f(x, y, z, n, h, c, j) =
n+ h+ x(n+ c) + y(n+ j) + zn

2 + 2x+ 2y + z

The meaning is that n + h, n + c and n + j is a speed to load and parse
HTML, CSS and Java Script respectively. In addition, n+ c and n+ j must
be done x and y times according to the number of CSS and Java Scripts
in the page and other z resources must be loaded. The resulting value is
normalised by 2+2x+2y+z to obtain a speed unit per second. Let us note
that the formula omits the time needed by the RenderingEngine component
itself to process the data. An assumption that this component speed is not
changed based on the data is taken as long as this component delegates the
data processing to other components.

The most simple approach to deal with the formula is to expect ideal com-
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ponents that process all pages with the same speed. In that case the HTML,
CSS and JS component would claim their speed independently of a page
complexity. In other words, the complexity of a page does not impact the
speed. As a result, h, c and j are simple independent variables measured as
numbers. Since the page complexity does not matter a formula may treat
x, y and z as constants. For instance, x = y = z = 1. Taking it all together,
the formula is simple:

f(n, h, c, j) =
n+ h+ (n+ c) + (n+ j) + n

7
=

4n+ h+ c+ j

7

For instance, HTML, CSS and JS components provide their speed 1000,
3000, 4000 “Kb/s” respectively for interfaces HTMLParser, CSSParser and
JSParser, the network speed is “10Mb/s”, then the RenderingEngine com-
ponent claims to provide web pages with the speed:

w =
4× 103 + 1000 + 3000 + 4000

7
= 6.85× 103

This means that the binding of the RenderingQuery may be done only for
an appropriate required side of the BrowserEngine component requiring the
same or faster speed.

Assuming these values have been measured for LR “Intel Core i5, 2.6GHz,
4GB RAM”, the respective value name pairs are loaded from this LR. Com-
paring the values with their assigned names, the speeds to parse HTML, CSS
and JS would be considered slow and the network speed average. The result-
ing web processing speed on RenderingEngine is slow meaning that the only
BrowserEngine component requiring the slow web processing speed may be
bound. Such an example is shown in Figure 6.7 where BrowserEngine-A
can be bound while BrowserEngine-B cannot be bound because it requires
a faster speed.

EFP Formulas: A Realistic Example

Due to the simplicity of the previous evaluation, its application is limited to
idealised components. In practice, components are likely to differ in a speed
according to a page complexity. The complexity may be e.g. measured in
terms of a number, a type and a size of web page objects proposed in [24].
Moreover, this complexity may not be linear and even not increasing. One
component may be fast for processing simple pages and slow for complex
ones while another component may be optimised for better performance on
the complex pages instead of simple ones. The suggested solution to this
problem may be in using different speed values for different page complexity.
Still, the approach presented here assumes the components are enriched with
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Figure 6.7: Example Binding with Web Processing Speed

EFPs before they run in the runtime and before real web pages are loaded.
For that reason, a set of test pages concerning different complexity may be
defined for measuring the components first. Then the component claimed
speeds must be related to the set of the testing data.

Defining speed values for different web pages, a total number N of test-
ing pages is required where each page has a different complexity. Apply-
ing any simulation and measurement for these N pages, a matrix A =
[a1, a2, · · · , aN ] contains different speeds measured for different pages. Since
a model situation may contain permutations of all page counts processed
with their respective speeds, the m×n matrix B is defined. The dimension
m is the same as the number N and n is equal to N !. The first row of
the B matrix has a form B1 = [1, 2, 3, · · · , bN ] while other rows have column
permutations of the first one B2 = [2, 1, 3, · · · , bN ], B3 = [3, 1, 2, · · · , bN ] etc.

The multiplication of both matrices creates a 1× n sized matrix X ′ = BA.
Each item of the matrix contains a (denormalised) speed combining all page
counts with their respective speeds. E.g. an item X ′11 denotes a speed to
process a page containing one element with the speed a1, two elements
with the speed a2, three elements with the speed a3 etc. The next element
contains the speed of different permutation of page counts. Having a sum
s =

∑N
i=1 i a normalised speed matrix is computed:
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X =
1

s
BA =

1

s


1 2 3 · · · b1,N
2 1 3 · · · b2,N
3 1 2 · · · b3,N
...

...
...

. . .
...

bN !,1 bN !,2 bN !,3 · · · bN !,N


[
a1 a2 a3 · · · aN

]

Considering also a network speed taking a role in the evaluation, it may be
again assumed the speed depends on a page loading and its processing (pars-
ing). For that reason, a matrix AN = [n1, n2, · · · , nN ] is created containing
speeds measured for the same pages and the same order as it is in the matrix
A. A new (denormalised) matrix is computed considering two operations to
process a page: X ′ = B(A + AN ). Since two operations are needed, a new
normalising sum must be computed: s =

∑N
i=1 2i and a normalised matrix

is X = 1
sB(A+AN ).

Using the same rationale as in the simple example above, the processing of a
page consists of processing HTML, CSS and Java Script and other resources.
For that reason, the presented matrix computation may be separately ap-
plied to each component of the web page. Since all the page elements come
through the network in a form of a plain HTTP text, the matrix AN with
the network speed values may be considered still the same.

A new set of matrices Ac and Aj is created the same way as the ma-
trix A holding the speed for CSS and Java Scripts respectively. Other
resources on the page are expected to have the same speed equiva-
lent to the speed of the network all the time. It is practical to
have a number of test CSS, JavaScripts and other resources the same
as the number of test HTML pages. The benefit is that all ma-
trices have the same sizes. Taking it together, the speed matrix is
computed X = 1

s (B(A+AN ) +B(Ac +AN ) +B(Aj +AN ) +BAN ) =
1
sB(4AN +A+Ac +Aj) with the normalisation sum computed as s =∑N

i=1 7i.

In the binding process, the HTML, CSS and JS components provide ma-
trices A,Ac and Aj with the typical speed according to a page complexity
first. The component RenderingEngine then computes the matrix X using
these matrices together with the AN matrix provided via the Networking
interface. Furthermore, the matrix X must be compared with a require-
ment on the interface RenderingQuery. It would be probably impossible
to find an exact match of the required and provided matrices X in terms
of comparing each value. Instead, a difference of these two matrices may
be computed first. Then a result with a difference under a certain thresh-
old would be successfully matched. A similar approach concerning matrix
differences computation has been used in [101] where the lowest difference
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matches, however, without considering a threshold.

To sum up, this section has introduced a case-study from the area of web
browsers. The overview of the practical application of registries has been
demonstrated. The case-study has shown that registries may be beneficial in
the product lines where several related products are created from one group
of components. This means that each registry may describe a sub-domain
of each product or application. It has been demonstrated using registries
following device, operating system and performance dimensions. One of the
limitations is that a considerable amount of registries may have to be cre-
ated. This issue is, however, addressed by implementing a rich tool support.
In addition, the case-study has shown the application of EFPs concerning
both simple and complex evaluation. Whereas the simple evaluation con-
cerning constant value evaluating has been well developed, the complex one
concerning comprehensive formulas has been only partly developed as an
example. A question that needs to be asked in the future is whether the
complex evaluation could be generalised to a more unified process.
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Evaluation and Future Work

7.1 Evaluation

The approach presented in this work is divided into three main modules
where each of them is innovative in a certain way.

First of all, let us mention the extra-functional properties repository. Obvi-
ously, other approaches targeting extra-functional properties must also in-
clude means to store extra-functional properties. For instance, Palladio [13]
or ProCom [92] store extra-functional property definitions that are later
instantiated and applied to concrete components. Comparing it with our
work, they store properties usable among different instances of components,
but only for their own component models. The repository we have de-
veloped goes farther in its versatility and it provides the unified form of
extra-functional properties available to a broad range of existing systems.
Moreover, the repository does not target exclusively components. Its extra-
functional properties may be used in other systems, e.g. services in SOA.
We assume that the repository provides a faster adoption of extra-functional
properties since a lot of existing approaches may instantly start to use them.

Moreover, practical applicability of the repository has been proved by its
prototype implementation. Since the implementation uses the state-of-the-
art technologies based on JavaEE providing the repository data via web
services, it is actually usable by a lot of modern applications that are able to
make up a client according to WSDL files. In addition, a detailed structure of
the repository in a form of formalisation and models allows to re-implement
the repository to other technologies.

The repository design and the structure of extra-functional properties have
been inspired by other approaches. In a nutshell, the named values from
HQML [44], definitions of different values for different context-of-usage
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from SLang [63], simple and derived properties from NoFun [36], the extra-
functional properties structure and basic data types from CQML [3], value
intervals from the CQML extension [104], dependencies of a component sys-
tem and its runtime from Deployment Contracts [68] and a lot of other
approaches mentioned in Section 3 have been used. From this point of
view, the repository and the extra-functional property structure is not a
brand new concept, though it is innovative in its consolidation of a lot of
other approaches with the new concept of sharing extra-functional proper-
ties apart from components and concrete component models. To the best of
our knowledge, there is no other approach of such a repository.

One of the limitations of this work may be seen in the simple structure of
extra-functional properties. This simplification probably cannot model the
properties in a comprehensive manner such in QML/CS [103]. On the other
hand, we believe our approach is sufficient for a lot of practical applications
as it has been demonstrated in the case-study.

This work has also the addressed applicability of extra-functional properties
to different domains. To deal with the domains, the system of layers in the
repository has been proposed. The layers hold domain dependent properties
and their values in tree hierarchies. Although the layers allow to define
different values for different environments, the scalability of the approach
has been only partially targeted. As a partial solution, the layers may be
aggregated with one another. Although this aggregation allows to re-use
definitions from existing layers, it probably cannot prevent the creation of
considerably complex structures for components used in a lot of domains.

Another problem addressed in this work is quite a slow adoption of existing
extra-functional property approaches to industry. Although the existing
approaches are often quite complex with the broad range of functionality,
they are not adapted by the industry. For instance, in the world of Java, the
widely used industrial frameworks such as OSGi or Spring have no support
of extra-functional properties. They use only a few specialised means to
express extra-functionality. For instance, capabilities in OSGi or JSR 305
[46] implemented in Spring. They are still very simple comparing to the
existing research approaches.

Dealing with the slow adoption, we have created a system transforming
extra-functional properties between the repository, a concrete component
model and sending the properties to their processing. The system includes
a customisable EFP Assignment module.

The innovative part of the EFP Assignment module is its distribution to
component model dependent and independent sub-modules providing ap-
plicability of extra-functional properties to a variety of existing component
models. We assume it helps a better applicability of extra-functional prop-
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erties to industry thanks to its transparent and easy-to-use mechanism. Its
benefit is instant applicability. To our best knowledge, there is the only sim-
ilar solution Q-ImPrESS1 which targets research component models while
we target industrial ones.

Although the EFP Assignment module provides applicability of the ap-
proach to a wide range of existing systems, it still has some limitations.
It is assumed that this approach is used for component models with compo-
nents bound via required and provided elements and components are inde-
pendently deployable units. The approach is not targeted at systems where
components serve as units of architecture and the final application is mono-
lithic.

Reaching practical applicability, the approach uses several simplifications.
It is assumed that extra-functional property semantics is implicitly known
from a domain without formal definitions, type-based binding is preferred
in the evaluation process, approximated EFP values are used. These simpli-
fications may cause the weak usability of the approach in some applications.
Mainly the applications where a precise system behaviour or detail system
models are needed should use specialised approaches. On the other hand, the
simplifications were introduced to have as easy-to-use approach as possible,
still keeping benefits of acquiring extra-functional properties in applications.

The structure of the data provided by the EFP Assignment module in-
cludes basic values, context-dependent values as well as functions allowing
to compose extra-functional properties. The work presented here has in-
vested only little attention to complex compositions of the properties that
may cause problems when complex properties are needed. Since Crnkovic
[29] mentioned in his work the complexity of the extra-functional property
composition, this work proposes a generic mechanism. This mechanism
allows to implement wide varieties of the compositions. However, an ap-
proach to implement particular functions in an easy manner should be also
provided. This work have proposed prototype implementations of mathe-
matical formulas such as those used in CQML+ [90] or by Defour [32]. Since
these formulas suit only simpler cases, complex ones must be additionally
implemented in the future.

The EFP Assignment module provides the extra-functional properties in
one unified form. The processing of the properties is easier and implemen-
tation of evaluators is straightforward due to the same understanding of the
properties among different systems.

This work contains the implementation of the EFP Assignment module to
existing frameworks to prove its overall goal – its applicability to a variety of
other systems. The application of the implementation is, however, limited

1Available at: http://www.q-impress.eu/wordpress/ (2012)

124



Chapter 7. Evaluation and Future Work

only to Java based programs. This work provides the rich formal and model
approach that should allow re-implementation to other systems.

The last module of the approach is the EFP Evaluator. The evaluator tries
to minimise computational and model complexity that may be found in
other approaches. For instance, in QML/CS [103] a developer is required
to create a considerable wide set of models to define each extra-functional
property. These models provide the advantage of quite accurate results in
the process of the binding and evaluation. In our work, we propose the type-
based approach that compares only extra-functional properties attached to
communicating interfaces. The benefit of this solution is a fast computation
without the need of complex models. This solution should provide a simple
approach that developers may easily acquire.

A question raised with the type-based approach is where to obtain extra-
functional property values that are attached to component interfaces. This
work assumes the use of simulations (e.g. the simulation system proposed
by Potužák [87]) for obtaining approximated values. On the one hand, the
weakness of this solution is that it provides only approximated results. On
the other hand, the benefit of the fast computation and no complex model
needs is considerable. Avoiding this weakness, the extra-functional property
repository holds intervals of values divided to several sub-intervals. The
evaluation of the values consist of fitting a computed result to an interval.
This solution is probably impractical in specialised areas such as hard real-
time applications where specialised approaches would suit better. On the
other hand, using this solution, a user may check if a value overcomes a
certain threshold. It should be helpful in a lot of practical applications.

This idea has been also mentioned in Hamlet’s work [45]. In his work he
recommends to rely on measured and simulated values rather than describing
component’s behaviour using complex models. The citation reads:

Mathematical, analytical methods are in principle entirely cor-
rect, but difficult to apply in practice, where testing and mea-
surement [simulation] are the analysis methods of choice.

This work allows to model graph dependencies of extra-functional proper-
ties. The dependencies are modelled by already mentioned functions. The
problem of the graph dependencies is that one incompatibility may require
to change several components among the graph. It is a considerable draw-
back that has been only partly solved in this work. This work has proposed a
heuristic method allowing to create a graph of compatible component in the
polynomial time. This method is inspired in Lau’s incrementally composed
component model [67].

The evaluator mechanism can participate in the component binding of an
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underlying component framework. The advantage is that the component
graph used by the evaluator is the same as the component graph gener-
ated by the component framework. This approach is, however, not usable
for component frameworks that do not allow to observer their component
binding process. In such a case, the evaluator may use its default binding
to generate the graph. As a consequence, the produced results are limited
in their reliability. The reason is that the graph may differ from the real
component binding.

7.2 Future Work

This work has introduced a complete approach to deal with extra-functional
properties among a variety of industrial as well as research component mod-
els. However, several improvements of the approach are left for the future
work. The possible improvements touch both technical (implementing) and
research topics.

From the technical point of view, the approach has been implemented in
Java and applied to three component models: OSGi, Spring IoC Container
and CoSi. Currently, the application to Component Repository supporting
Compatibility Evaluation (CRCE)2 is in progress. CRCE is an advanced
repository of OSGi bundles allowing to verify the components in the repos-
itory so that all components obtained from the repository are verified and
compatible. The idea behind the CRCE approach is that resource con-
strained devices do not have to run resource consuming verification. For
that reason, the verification is pre-computed on the repository level. It
is the role of the mechanism presented in this work to enrich CRCE with
extra-functional property verifications and it should be finished in the near
future.

In addition, the application of the mechanism to other component models is
also desired. Despite the fact that the implemented prototypes have already
shown directions of how to use the mechanism, a routine usage should be
supported by implementations for a wide set of other component models. It
consequently verifies the approach is generic enough. For instance, support
for PicoContainer3, ArchJava4 and even pure Java .jar files is worth imple-
menting in the future. Moreover, re-implementation for other programming
languages is also worth considering.

Since the registry implementation is still a prototype proof-of-the-concept,
it does not deal with aspects such as user privileges, history or versioning.

2Available at: http://www.assembla.com/spaces/crce/ (2012)
3Available at: http://picocontainer.org/ (2012)
4Available at: http://archjava.fluid.cs.cmu.edu/ (2012)
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Once registries are applied in practice, it will most probably require setting
up an organisation structure determining persons and their roles for the
registries. It is our current ongoing implementation attempt that will be
finished in the near future.

Considering a long term usage of registries, they should be able to capture
any change requests. There will probably be situations when the values of
registries are to be changed. In these situations, a value cannot be simply
re-written because it may be used elsewhere. For that reason, versioned
values would allow to go back in the history.

Apart from these technical requirements, there are several research issues
that have not been finished yet.

The first issue is related with a way the EFP values are put into registries.
Currently, users must manually input values for every named value and
every registry. Despite the strong tool support, it is still a slow process.
However, a lot of kinds of values can be computed according to formulas.
The rationale is that users often need to put values in scales or ranges rather
than exact values.

For instance, a network speed property may be considered slow, average and
fast for respective values 10, 100, 1000 “Mb/s”. It most probably has no
sense to put not rounded values such as 9, 101, 999 respectively in registry.
As a result, a user may have to be asked to input only a formula (e.g.
xi = 10xi−1 starting from xi−1 = 1 in this example). Assuming these values
are valid for a registry with LAN Ethernet, it may be required to put values
for GPRS registry with values 1, 10, 100 “Mb/s”. Therefore, formulas re-
computing values among registries could also be used with the same benefit.
As a result, user would be asked only to input several functions with initial
values and all other values for all registries would be automatically computed
leading to better user comfort. Application, evaluation and testing of such
features are, however, left for future improvement.

The EFP mechanism allows the usage of formulas for EFPs. However, the
formulas have been presented on an abstract level with some practical imple-
mentation presented in the case-study. The abstract level provides a fairly
unlimited spectrum of formulas, though it would be practical to prepare a
limited set meeting most frequent user needs. For future research, more
concern will be taken to precise the formulas and implement most typical
ones.

The case-study has also shown one possible distribution of EFP values into
registries. It has essentially introduced its possible practical application,
though the problem may be seen in that the registries have been made up
ad-hoc. The distribution to the operating system, the device and the per-
formance sub-domains has been done by empirical observation to fit current
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needs. Such an approach is, however, not systematic and may prevent under-
standability among users. A solution may be in introducing typed registries
where it is explicitly said which kind of values each registry holds.

Section 4.6.3 has discussed possible solutions to be taken once the presented
mechanism discover an incompatibility. Due to the time complexity of ex-
isting general solutions, a heuristic method has been suggested. However, it
has been only empirically observed that such a method may be useful in a
lot of typical cases. For that reason, in our future work, a percentile number
of cases in which the approach is capable of resolving an incompatibility is
worth measuring.
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Conclusion

This work has pointed out a need for extra-functional properties to improve
current component based development. It has started by a rich survey in
the state-of-the-art of extra-functional properties. Despite the wide number
of existing approaches, this work has secondly realised that they have been
only scarcely applied in practice. It has been highlighted that such an insuf-
ficient usage of extra-functional properties prevents successful application
of component based programming. As a result, a solution to overcome the
discrepancy between industrial and research approaches has been suggested.
The proposed solution attempts to improve the adoption of extra-functional
properties in component based programming leading to better adoption of
component based programming itself.

Therefore, the main contribution of this work is the introduction of an inde-
pendent mechanism for working with EFPs in a comprehensive manner. To
reach the independence, the mechanism consists of a few separate modules.
The first module includes a repository of general extra-functional properties.
Its layered approach deals with extra-functional property definitions apart
from a concrete application in one layer and a set of application specific
definitions in inherited layers. The second module covers an application of
the general extra-functional properties to components. This module allows
the application to a variety of existing component systems. It splits com-
ponent model dependent and independent parts into two sub-modules. The
last module allows to evaluate extra-functional properties. In addition to
a generic evaluation of extra-functional properties, the evaluator is able to
integrate a binding mechanism of an underlying component model.

As a result, this approach enriches, but does not limit, current industrial
component frameworks. Instead, it aims at filling the gap between the appli-
cation of extra-functional properties and industrially used component frame-
works.
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Proving its practical applicability, the mechanism has been implemented
in Java, and applied to industrial Spring and OSGi component models.
Furthermore, its sample application in a form of a case-study has been
presented.

The Java-based implementation verifies integrity an practical usability of
the presented formalisations. Together with the prototype implementation
to OSGi and Spring, the goal of practical applicability has been reached.

The case-study focuses on a product line of web browsers, which provides
an example of a practical application of the approach. It has also shown one
of the suitable applications of the system of registries. A software vendor
may produce a variety of applications based on one set of components. The
vendor then prepares registries for all supported platforms and enriches the
components with respective properties and values.
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[30] I. Crnkovič, S. Sentilles, A. Vulgarakis, and M. R. Chaudron. A classifi-
cation framework for software component models. IEEE Transactions
on Software Engineering, 37:593–615, 2011.

[31] A. Davis. Software requirements: objects, functions, and states.
Prentice-Hall, Inc. Upper Saddle River, NJ, USA, 1993.
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[55] K. Ježek and P. Brada. Implementation of language for extra-
functional properties for reusable software components. In Proceed-
ings of 35th Euromicro conference Work in Progress session, Patras,
Greece, September 2009.
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Cépadués-Éditions, Toulouse, France, pages 57–66, 2003.

141



Appendix A

Author’s Publications

The following papers were published in conference proceedings:
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