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ABSTRACT

The analysis and understanding of artifact properties and their relationships is a key objective in the archaeological
analysis of cultural heritage objects. There are many aspects of concern, including both shape properties of the
objects as a whole and appearances stemming from paintings and ornamentations on the object surfaces. To date,
experts consider those mostly holistically on a per-object basis. We present an approach for the interactive visual
exploration and correlation of shape- and ornament-based properties of a large collection of ancient vessels. Our
approach allows us to group objects by said properties, and to relate them in side-by-side and bipartite graph dis-
plays. To this end, we define an encompassing set of feature descriptors, which are leveraged to cluster the objects
by user-selected properties. Case studies show that a comparative overview of all objects effectively supports the
discovery of interesting co-occurrences of shapes and ornaments. This way, our tool opens new possibilities for
the domain analysis of cultural heritage object collections by data-driven visual exploration.
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1 INTRODUCTION

The analysis of ancient pottery is an essential task for
the understanding of ancient cultures and lifestyles. Of
particular interest are the lavish surface decorations ex-
hibited by the majority of pottery artifacts. These dec-
orations ± so called vase paintings ± comprise both
repetitive ornaments and motifs depicting mythological
scenes. They provide important information for an arti-
fact’s attribution to a specific epoch, culture, workshop
of even painter [ES16].

The concurrent exploration a large collection allows us
to reveal clusters of objects with common traits, if these
objects are appropriately arranged in a structured man-
ner, based on relevant properties. Potential properties
comprise intrinsic traits like shape, material, capacity
and such, such as well as derived traits like culture, dat-
ing, etc. However, also more complex traits describing
an object’s vase painting, e.g., variability, distribution
and positioning on the surface or colorization, can be
extracted automatically using customized data process-
ing techniques.

Within the scope of this paper, we focus on two of
the most important properties: (i) object shape and (ii)
vase painting. We present a novel visualization method
that groups similar elements along these properties and
presents the resulting groups in separate cluster visu-
alizations (Fig. 1). These are connected in a bipartite

graph, revealing relationships and co-occurrences be-
tween different shapes and paintings. The thickness of
graph edges between shape and painting clusters reveal
inter-cluster correlations in the collection. This visual-
ization is the core component of an overarching inter-
active exploration system, supporting various degrees
of visual granularity ± from a broad overview down to
closeup. To this end, we conceptualize and implement
tailored views for the individual levels with customized
object previews for different properties (e.g., positional
glyphs in Fig. 1, bottom, indicating the positioning of
patterns on the object surface).

The contribution of our paper is the interactive visual-
ization concept which we evaluate using prototype im-
plementation together with a real-world dataset of an-
cient pottery objects. Moreover, we present a novel
feature descriptor which is able to capture the arrange-
ment of repetitive patterns (e.g., regarding regularity) in
a quantifiable manner.

In the following, we report related visualization tech-
niques (Sec. 2), before defining the domain analysis
task (Sec. 3) relevant for experts. In Sec. 4 we dis-
cuss the proposed concept in detail, before we present
the major insights gained with this tool in Sec. 5. We
conclude the paper with a discussion (Sec. 6) including
feedback from archaeologists.
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Property Selection

Figure 1: A collection is explored along two selected properties, i.e., object shape and pattern position, which are
clustered individually (top and bottom row). Visual links in-between reveal correlations inter-cluster correlations.

2 RELATED WORK

One goal of Information Visualization (InfoVis) tech-
niques is to convert abstract information into visual rep-
resentations, and thus gain knowledge about internal
structures of a dataset. In cases where corresponding
data elements have inherent relationships among each
other, graph-based visualization techniques are com-
monly used. A graph visualization is often encoded by
a set of nodes and edges and allows the visual analysis
of structures and grouping of nodes and/or edges (Com-
pound Graph Visualization) [HSS15]. Further applica-
tion areas and examples of graph-based visualizations
are given in surveys [vLKS*11; TKE12].

Visualization techniques have also become important
tools for the research of cultural heritage (CH) objects.
Although many scientific visualization techniques in
the CH domain focus on the realistic rendering of 3D
objects, there is a growing number of interactive visual
systems for analyzing CH data [WFS*19]. In recent
works, systems and interface designs were introduced
that utilize InfoVis designs and Visual Analytics
approaches for representing multidimensional and tem-
poral information of CH collections. For instance, the
PolyCube framework by Windhager et al. [WSL*20]
uses space-time cube representations to visualize multi-
dimensional, time-dependent properties of collections.
By connecting different visualization techniques, like
map, set, and network visualizations, they revealed
spatial, categorical, and relational collection aspects.
Simon et al. [SIBdS16] introduce Peripleo, an open
source tool to explore the geographic, temporal and
thematic composition of distributed digital collections.
Lengauer et al. [LKK*20] present an interactive visual
exploration system for artifact collections, dubbed

Linked Views Visual Exploration System (LVVES),
that supports task-oriented analysis and exploration
along temporal, spatial, and shape modalities.

To visualize sets of images, the overall layout for ar-
ranging the images is often a crucial part. In this re-
gard, Brivio et al. [BTC10] propose a Voronoi-based
layout to visualize photographic campaigns in CH. In
Glinka et al. [GPD17] the authors show the potential
of details-on-demand techniques for the exploration of
large CH collections including images, keywords and
textual data. They employ a zoomable timeline visual-
ization to link a ªdistant-viewingº and ªclose-viewingº
mode for the exploration.

In Mauri et al. [MPCC13] a graph of actors and
projects is used to explore collaborations between ar-
chitects, while Tortora et al. [DPT*12] use graph views
to support archaeologist in finding new correlations
from ontology-driven metadata. An extensive survey
on visualization techniques for CH collection data is
given in [WFS*19].

As opposed to existing approaches, our proposed de-
sign should be particularly useful in revealing corre-
lations between different object properties. To this
end, we use a bipartite graph layout, connecting dif-
ferent similarity clusterings ± a design which has, to
our knowledge, not been used before. Moreover, we
provide two details-on-demand feature: a side-by-side
view for comparing two clusters from different traits,
and a closeup view for additional information on the
lowest level of visual granularity.

3 DOMAIN ANALYSIS TASKS

The prototype system is designed to be used by domain
experts having well-defined research questions. W.r.t.
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the analysis of repetitive patterns on ancient pottery
those include (but are not limited to): (1) How regu-
lar are the ornament patterns within a pattern class? (2)
Do similar ornament patterns exhibit similar spatial ar-
rangements? (3) Are ornament patterns correlated with
the vessel shape? (4) Are properties of ornament pat-
tern or other shape properties generally correlated with
each other?

To date, such questions are mostly answered using pair-
wise visual comparisons of artifacts. Based on this
established workflow, we define the following domain
analysis tasks, for which we support a domain expert
with customized visualizations: (T1) Select two prop-
erties and discover inter-trait correlations, (T2) Show
the detailed correlations between two selected clusters,
and (T3) Show the properties of a single record.

4 CONCEPT

In the following, our proposed design is discussed in
depth. After a broad overview of the idea (Sec. 4.1), we
present the dataset used in our experiments (Sec. 4.2).
In Sec. 4.3, we give a detailed formal description of
our descriptors designed for describing pattern arrange-
ments, while Sec. 4.4 discusses the employed shape fea-
tures for describing pattern shapes. Sec. 4.5 concludes
the section with a description of the applied clustering
as well as the similarity computation between clusters.

4.1 Overview

As the starting point for the visual exploration process,
we provide the user with a bipartite cluster view, for
which the user has to select two object properties via
respective drop-down dialogues (Fig. 1, green). The se-
lected properties are used to cluster the objects of the
given collection separately, e.g., by ‘vessel shape’ and
‘pattern positioning’ (Fig. 1, red and blue). Based on
the visual links between the two sets of clusters, a user
can derive the presence and strength of possible cor-
relations, e.g., between BOWL shapes and POSITION

CLUSTER 2 and 3 w.r.t. Fig. 1, and can further inves-
tigate which objects of a pair of clusters is responsible
for a correlation by hovering the mouse over the respec-
tive inter-cluster link. Clicking on such a link switches
the visualization to a side-by-side view of the respective
clusters (Fig. 2) and clicking an item in any of the clus-
ters switches to a closeup view (Fig. 3) of the object in
question. Return buttons allow one to undo such a tran-
sition and allow for a continuous exploration process.
Design details on these different views and information
on how they support the different domain analysis tasks
(T1±T3) are given in Sec. 4.6.

4.2 Dataset: Peruvian vessels

The dataset we use for our experiments stems from the
2021 SHREC track on ªRetrieval of cultural heritage

objectsº by Sipiran et al. [SLL*21], containing almost
1,000 3D models of ancient pottery artifacts. The real
artifacts are kept in the Josefina Ramos de Cox museum
in Lima, Perú, where they were digitized as part of a re-
search project1. The collection comprises objects from
several pre-Columbian cultures, like Chancay, Lurin or
Nazca, featuring varied geometry and surface decora-
tion. In a later documentation effort, the boundaries
of ornament elements were annotated and all occur-
ring surface patterns were grouped for a subset of the
collection, exhibiting well preserved and lavish vase
paintings. This annotation by Lengauer et al. [LSP*21]
is publicly available2 and contains detailed outlines of
all surface patterns, together with pattern-wise proper-
ties like orientation, scale, position on the surface, and
n-foldness, giving an encompassing data basis for an
attribute-driven exploration. In total, the dataset com-
prises 2,529 pattern entities from 82 textured models,
which are grouped into 102 distinct similarity classes
(referred to by pattern archetypes).

The dataset also comprises a varied collection of intrin-
sic and derived traits, such as vessel shape, pattern vari-
ability, colorization, etc., which we need to describe
quantitatively in order to cluster the objects by them.
The properties are defined at three different levels of de-
tail: (1) Per-object properties were provided by experts
via a categorization of the vessel shape (i.e., ‘bowl’,
‘basin’, ‘jar’, ‘vase’ and ‘pot’). Surface colorization is
also described on a per-object level through the compu-
tation of color histograms. (2) Per-archetype properties
comprise several carefully designed attributes describ-
ing the distribution of entities across the surface and
the relations among themselves (Sec. 4.3). On a (3)
per-entity level, we use an abstract description of a pat-
tern entity’s shape through established shape features
(Sec. 4.4).

4.3 Quantifying Pattern Arrangements

We design a set of custom properties pertaining to the
distribution, regularity, overall variability and other im-
portant traits of a pattern archetype. All properties are
given as scalar, normalized to the range [0,1), so that
they can be combined into a feature vector. Specifically,
we define and compute the following measures:

Occurrence Frequency. This value describes a pat-
tern archetype’s quantity of entities and is given by

ñp =

(

np −npmin

np

)α

, (1)

1 Project 02-2018-FONDECYT-BM-IADT-AV (Concytec-
Perú): Restoration and conservation of archeological pieces
using deep learning and convolutional auto-encoder on
graphs.

2 https://datasets.cgv.tugraz.at/

pattern-benchmark/ [Accessed 2023-04-26]
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with np as the absolute number of pattern entities,
npmin

= 2 as the minimal number of entities for an
archetype, and α = 3 denoting an empirically deter-
mined non-linear scaling factor. Note that ñp asymp-
totically approaches 1 for np → ∞ as there is no the-
oretical limit for the number of entities.

Fold Symmetry. The patterns’ n-fold symmetry (the
number of symmetry planes) is already provided by
the annotated dataset and is, similar to the Occur-

rence Frequency, normalized to [0,1).

Scale Variability. This property measures the varia-
tion of a pattern’s size among its entities. To this
end, a Normal distribution N (µ,σ2) is fitted to the
entity scales S = {si}i∈I , with I = [1 . .np] as the in-
dex set of a pattern archetype’s entities. S is also pro-
vided by the given annotation. Similar to the Occur-

rence Frequency, the variance σ2 is non-linearly
normalized to [0,1) by ñσ = σ2/(σ2 +1).

Regularity. This property aims to capture the amount
of ‘structure’ exhibited by the patterns’ distribution
on the surface. More specifically, this metric ranks
the distribution from completely random (i.e., no
perceivable structure at all, like in Fig. 3) to per-
fectly aligned in a grid-like manner (e.g., green pat-
tern in Fig. 4, top). To this end, we detect the
presence of rows and column arrangements in the
set of unordered pattern entities. They are deter-
mined based solely on the patterns’ center points
C = {⟨xi,yi⟩}i∈I ⊂ R

2. Rows and columns are ob-
tained independently by fitting Gaussian Mixture

Models (GMM) with an optimal number n of com-
ponents to the x and y components of C, respectively.
n is determined via the Bayesian Information Crite-

rion (BIC) [BK10], measuring how well a particular
GMM models the given data. To this end, we evalu-
ate the BIC for n ∈ [1 . .⌊|C|/nmin⌋], with nmin = 3 as
we require a row or column to feature at least three
pattern entities (fewer elements do not reflect a do-
main expert’s notion of rows or columns). If the BIC
exceeds an empirically defined threshold, it is as-
sumed no rows or columns are present in the pattern
layout.

We assume that the regularity of a distribution in-
creases with its number of rows and columns (nor-
malized quantity m̃) and decreases with the pat-
tern entities offsets from their respective rows and
columns (normalized error ε̃). Based on these as-
sumptions, we define the three tiers of regularity of
a distribution: (i) ‘has rows and columns’, (ii) ‘has
either rows or columns’, and (iii) ‘has no identi-
fiable arrangement’. Representatives of these tiers
are normalized within the intervals [0, 1

3 ), [
1
3 ,

2
3 ) and

[ 2
3 ,1) respectively. Let Y = {yk}k∈K ⊂ R+ be the y-

positions of rows K and X = {xl}l∈L ⊂ R+ be the
x-positions of columns L.

The normalized regularity r̃ is given by

r̃ =
1

3



















1
1+ ε̃

m̃

+2 |X |> 0 and |Y |> 0

1
1+ ε̃

m̃

+1 |X |> 0 or |Y |> 0
np

np+10 otherwise.

(2)

The normalized quantity m̃ we define as

m̃ =















|X |+|Y |
|X |+|Y |+10 |X |> 0 and |Y |> 0
|X |

|X |+1 |X |> 0
|Y |

|Y |+1 otherwise,

(3)

and the normalized error ε̃ as

ε̃ =
1

|I| ∑
i∈I















∥

∥⟨xi,yi⟩−⟨x̂i, ŷ⟩
∥

∥ |X |> 0 and |Y |> 0

∥xi − x̂i∥ |X |> 0

∥xi − ŷi∥ otherwise,

(4)
with x̂i = argminxl∈X∥xi − xl∥ and ŷi =
argminyk∈Y∥yi − yk∥ as a pattern entities offset
from its designated column and row respectively.

Alternatingness. Pattern entities exhibit an orientation
± or for an n-fold symmetry larger than one, even
multiple equivalent orientations ± provided by the
annotation. With the ‘alternatingness’ property, we
aim to quantify how a pattern’s orientation deviates
on average from its predecessor if an archetype’s
pattern entities exhibit any kind of sequence. The
rationale behind this is that patterns which appear in
an alternating fashion (e.g., always rotated by 180
degrees from one entity to the next) stand out from
those which have a uniform orientation or those
which have a completely random orientation.

Let Ik, Il ⊂ I denote the index sets of patterns belong-
ing to the k-th row and l-th column, respectively.
For a pattern archetype with n-fold symmetry n f and
O = {oi}i∈I ⊂ R+ as the orientations of its pattern
entities, we define the normalized alternatingness as

õ =







0 n f =∞

or |X |+|Y |=0
1

∆omax

(

∑k∈K
∆k

|Ik|
+∑l∈L

∆l

|Il |

)

otherwise.

(5)
Here, ∆o = 2π/n f denotes the maximum ori-
entation difference between consecutive pat-
terns with ∆omax = ∆o/2. The row-wise
and column-wise differences are given by
∆k = ∑ j∈[1..|Ik|]∠min(oIk[ j],oIk[ j+1 mod |Ik|]) and ∆l =

∑ j∈[1..|Il |]∠min(oIl [ j],oIl [ j+1 mod |Il |]), respectively,
where ∠min(a,b)=mini, j∈[1..n f ]{|a+ i∆o−b+ j∆o|}
defines the minimum angle between two ambiguous
pattern orientations
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The attributes for the given dataset, as well as the source
code used to extract them from the annotated dataset, is
available on the website hosting the pattern annotations.

4.4 Quantifying Pattern Entities’ Shapes

A description of a pattern’s shape is computed from the
polygon describing its silhouette. To obtain a fixed-
length numerical representation of this input, we em-
ploy the Shape Context feature descriptor by Belongie
et al. [BMP02], as it is invariant w.r.t. all affine trans-
formations. The underlying idea of this approach is to,
first of all, extract a small sample of a contour with a
roughly uniform sampling. For each of these sample
points, a histogram describing the directivity and dis-
tance to all other points is computed. This description
of a point by means of a histogram allows to determine
the similarity between two points using the χ2 metric.
The similarity of two input shapes with the same num-
ber of sample points can then be inferred from the as-
signment costs of assigning all point pairs in an optimal
fashion. This well-established minimization problem is
referred to as square assignment problem and can be
solved using, e.g., the Hungarian method [PS98]. As
this kind of assignment is computationally expensive,
we take a very small sample size of 20 sample points,
which however is sufficient for the task at hand.

4.5 Clustering

Different clustering algorithms are applied, depending
on the type of property (categorical, abstract) and level
of detail (per-object, per-archetype, per-entity). For the
object’s shape class and the fold symmetry, no cluster-
ing algorithm is necessary as these properties are al-
ready grouped into five and four classes, respectively.
For the pattern shape (Sec. 4.4) we employ a hierarchi-
cal clustering, since it has the advantage that we can
provide our own distance function, which is necessary
for our used feature descriptor. For all other properties
(Sec. 4.3) Lloyd’s K-means clustering [Llo82] is used
to obtain six similarity clusters.

4.5.1 Inter-cluster Similarities

For the bipartite cluster view (Fig. 1) we also require
a measure of the similarity between clusters obtained
from different properties, since we want to display how
strong the selection of objects between cluster-pairs
varies. For the similarity between clusters, which are
given as a set of objects we adopt the well known Jac-
card index [Jac01], such that a small cluster with a high
overlap with a large cluster still has a high similarity, to
account for unevenly sized clusters. Let ca, cb be two
clusters (sets of objects) obtained by clustering along
property a and b, respectively. We define the similarity
between ca and cb by

sim(ca,cb) =
1

2

(

ca ∩ cb

ca

+
ca ∩ cb

cb

)

. (6)

Figure 2: The side-by-side cluster view shows two
clusters obtained by clustering along different object
traits. The highlighting in different colors marks ob-
jects which appear in both clusters, with the same color
indicating common objects.

4.6 Visual Design

Our prototype visualization system comprises three ap-
propriate views, supporting different levels of visual
granularity as well as dedicated visualizations for some
of the pattern attributes. That is, the views, in descend-
ing order of visual granularity, are the following.

Bipartite Clusters Graph. This view (Fig. 1), which
is the centerpiece of our exploration system, sup-
ports the discovery of correlations between traits.
Hence, it is tailored to fulfill the requirements of task
T1. From two drop-down menus at the top, users are
able to select the two properties they want to com-
pare. Based on this selection, two groups of clusters
are presented in a row-wise manner. The clusters
are displayed as containers, framing their belonging
objects which are visualized (depending on the se-
lected attribute) as glyphs, which are arranged in a
grid-like layout. Depending on the number of ob-
jects within the cluster, the glyphs are scaled such
that the space within the container is optimally used.
Note, however, that the sequence in which the ob-
jects appear within a cluster is not deterministic in
our current implementation. Future work might in-
clude a sorting according to inner-class similarity or
other attributes. Containers also bear a label, which
is a class name, e.g., ‘bowl’, in the case of categor-
ical attributes like vessel shape, or an abstract term,
e.g., ‘position cluster n’, for derived properties. In-
between the two rows of clusters, we display visual
links whose color saturation and thickness are rela-
tive to the cluster similarities (Sec. 4.5.1).

Additional information regarding cluster similarity
is revealed through interaction. More specifically,
upon hovering over a link, all objects (common
across the clusters connected by the link) are high-
lighted. Since the appearance of the object can dif-
fer, pair-wise affiliations are established through a
qualitative color coding [Bre]. From this view, a
user can also transit to the side-by-side clusters view
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Stacked Pattern

Contours
Traffic Lights

Model Render Surface Rollout Position & Distribution Layout

Figure 3: Closeup view of a bowl object with the various object and pattern attributes being visualized with our
custom designs.

by clicking a link, or to the closeup view by clicking
any of the objects within a container.

Side-by-side Clusters. The side-by-side cluster view
(Fig. 2), addressing task T2, shows two clusters
from different traits side-by-side. The container rep-
resentation from the bipartite cluster graph is reused
and the connection between the items is similarly es-
tablished through the same color coding. From this
view, a user can either go back to the bipartite clus-
ters graph or move forward to the closeup view by
clicking one of the items.

Closeup. The lowest level of visual granularity, repre-
senting just a single object, is given by the closeup
view (Fig. 3). This view illustrates all the informa-
tion and properties, with their respective visualiza-
tions, available for a specific object as required by
task T3. From here, a user can return to the side-by-
side cluster view or the bipartite clusters graph.

Figure 4: The projected model surfaces of two objects
(left) blending over into the pattern position & distribu-
tion layout (right).

For some of the derived pattern attributes, dedicated
previews are devised for displaying them in the clus-
ters. Those comprise the following.

Model Rendering. For each 3D model, one static ren-
dering is generated, which is used as a thumbnail
image in the close-up view.

Surface Rollout. One visualization that is already
given by the used dataset is a surface rollout (Fig. 4,
left). Such a representation is able to visualize a
model’s surface as a whole and can be obtained by
fitting a proxy geometry to the 3D model, which
is subsequently projected, cut open, and flattened.
The rollouts used in our experiments are based on a
variant of the cylindrical unwrapping by Karras et

al. [KPP96].

Position & Distribution Layout. For the regularity
property we implement a glyph showing the posi-
tions, scales, and orientations of pattern entities but
omitting any distracting textual information (Fig. 4,
right). Starting from an empty image, with equal
size to the rollout, all pattern entities are drawn
as circular markers with the radii indicating their
respective sizes. Color coding is used to group
the patterns by their archetypes and the individual
orientations are visualized by an outwards pointing
straight line. Note that, in the case of an n-fold
symmetry larger than one, multiple such lines are
drawn for each of the equivalent orientations.

Stacked Pattern Contours. To visualize the variety
of shapes belonging to one and the same pattern
archetype, we conceptualize a stacked outline image
comprising the silhouettes of all its pattern entities
(Fig. 2). To this end, we leverage the polylines
marking the outline of a pattern entity, given within
the annotation. For a meaningful overlay, we
rotate them in the inverse direction of their given
orientation property and scale them relative to their
inverse scale property. All these registered polylines
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(a) Color (b) Occurrence Frequency (c) Regularity

Figure 5: Clusters resulting from clustering by the properties color (a), occurrence frequency (b) and regularity (c).

are then combined in an additive manner on an
empty image.

Traffic Lights. Other (abstract) pattern properties are
visualized with a traffic light analogy, after sorting
them globally into four bins ranging from ‘very low’
to ‘very high’ (Fig. 3, lower right half).

5 RESULTS

Our proposed visualization concepts are implemented
in an interactive prototype, allowing us to evaluate us-
ability and effectiveness aspects. In the following we
briefly describe the implementation (Sec. 5.1), before
we discuss some of the findings obtained with the sys-
tem (Sec. 5.2).

5.1 Implementation

For the prototype, we use a web-based implementation
relying on React3 for the visualization frontend and a
backend written in Kotlin4. Data processing as cluster-
ing and image processing, is conducted using Python
scripts, relying on the SciPy5 and OpenCV6 libraries.
Extracted feature descriptors, pattern attributes, and
cluster similarities are cached in a MySQL database.

5.2 Findings in the Dataset

In the following, we present some of the datasets’ in-
trinsic property structures and correlations, revealed by
our visualization. Firstly, the kind of clusters obtained
by clustering along a single object property. In this
regard, we have selected the three varied properties:
color, occurrence frequency, and regularity (Sec. 4.3),
which are illustrated in single cluster views in Fig. 5a,
5b, and 5c, respectively. All of them comprise ± de-
pending on the property in question ± different object
representatives (Sec. 4.6).

3 https://reactjs.org [Accessed 2023-04-26]
4 https://kotlinlang.org [Accessed 2023-04-26]
5 https://scipy.org [Accessed 2023-04-26]
6 https://opencv.org [Accessed 2023-04-26]

I.e., in the first example ± the color clusters (Fig. 5a) ±
the patterns are represented in their original state, seg-
mented from the unrolled model surface. Four differ-
ent color clusters are visible with the first one, com-
prising mostly greenish and yellowish patterns, while
the fourth features all the darker patterns. Cluster two
and three have mostly light-brown samples. The sec-
ond cluster view (Fig. 5b) shows the patterns clustered
by their occurrence frequency. Here, the stacked pattern
contours are employed to visualize the variety and fre-
quency of pattern shapes belonging to a common pat-
tern archetype. From this image, it can be seen that
some pattern classes are strongly correlated with the oc-
currence frequency. More specifically, it appears that
cross-like shapes generally have very few occurrences,
while staircase-shaped patterns have very many enti-
ties. Other shapes like rectangles, tears, circles, etc.
are somewhat in-between. For the third cluster view
(Fig. 5c), showing the regularity property, we use the
position & distribution layout. This helps us to easily
spot that the first cluster comprises mostly completely
random pattern distributions, while the fourth cluster
features clearly features several checkerboard arrange-
ments and other very regular layouts. The examples
from cluster two and three exhibit at least either row or
column structures.

In another case example, we look into inter-property
correlations which are revealed by the Bipartite Clus-
ters Graph. Six of the correlations found in the Peru-
vian pottery dataset have been selected and are given
in Fig. 6 with the side-by-side cluster view. It can be
seen (Fig. 6a) that the patterns on the bowl are strongly
correlated with the fourth color cluster. I.e., the patterns
on bowls generally exhibit darker hues. The bowl shape
seemingly also entails a high scale variability (Fig. 6b).
Two significant correlations are also established for the
pot objects. Firstly, the patterns on this shape are mostly
of the light-brownish hue found in color cluster three
(Fig. 6c). Secondly, the pot shape also strongly cor-
relates with shape cluster four, which is comprised to
a large extent of patterns with a staircase or pyramid-
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(a) Vessel Shape ∼ Color (b) Vessel Shape ∼ Scale Variability

(c) Vessel Shape ∼ Color (d) Vessel Shape ∼ Pattern Shape

(e) Color ∼ Occurrence Frequency (f) Color ∼ Scale Variability

Figure 6: Side-by-side cluster views showing the strongly correlated clusters between the properties (a) vessel
shape and color, (b) vessel shape and scale variability, (c) vessel shape and color, (d) vessel shape and pattern
shape, (e) color and occurrence frequency, as well as (f) color and scale variability.

like outline (Fig. 6d). Those pattern types, in particular,
seem to be characteristic for the pot shape.

Comparing the properties color and occurrence fre-
quency also yields a strong interdependency between
the color cluster three and the patterns with a very high
occurrence frequency (Fig. 6e). The last correlation is
between the color and the scale variability properties
(Fig. 6f), as it appears that patterns with the least scale
variability belong to the second color cluster.

6 DISCUSSION

The examples presented in Sec. 5 show that we are ±
even without being familiar with the explored domain
± able to easily spot several correlations and clusters in
the data, which are not revealed by simply looking at
the 3D models or images. Besides exploring the data
ourselves, we conduct a collaborative walkthrough and
subsequent discussion and feedback round with two ac-
tual domain experts from the field of archaeology. The

exploration workflow was very well received, and it
was established that the presented visualization and ex-
ploration techniques would also be a valuable tool for
other branches of archaeology. One thing that was par-
ticularly surprising was the amount of intrinsic object
information that could be revealed with basic feature
extraction and data processing techniques. Examples
for that are the occurrence frequency or scale variabil-
ity, which makes it easy to identify clusters within the
data.

7 CONCLUSION

We introduce an approach for the visual comparison of
different properties for sets of ancient pottery objects.
Links and color-highlighting allow for identifying re-
lationships between groups in terms of co-occurrence
of objects. Our approach supports domain experts to
understand vessel shape and ornament elements, and
eventually to draw conclusions and help with the in-
terpretation of digital vessel objects. We showed the
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principal applicability of our concept on a small-sized
annotated dataset. The proposed design, however, is
also suitable for larger object collections. Future work
includes the extension of the shape and ornament fea-
tures to use, and the inclusion of metadata and textual
descriptions of the objects. Data analysis methods as
frequent pattern mining, could be a valuable addition to
help domain experts search for interesting patterns in
large amounts of vessel objects.
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