
A Resource Allocation Algorithm
for a History-Aware Frame Graph

Roman Sandu
Phystech School of

Applied Mathematics and
Computer Science
Moscow Institute of

Physics and Technology
Institutskiy Pereulok, 9
Dolgoprudny, Moscow

Oblast, 141701, Russia
sandu.ra@phystech.edu

Alexandr Shcherbakov
Faculty of Computational

Mathematics and
Cybernetics

Lomonosov Moscow
State University

Moscow, 119991, Russia
alex.shcherbakov@
graphics.cs.msu.ru

ABSTRACT
We consider the problem of memory consumption by a real-time GPU-accelerated graphical application. A history
of a resource is defined for a particular frame to be the final contents of such a resource at the end of the previ-
ous frame. When organizing a graphical application using a frame rendering graph approach, it makes sense to
implement automatic serving of resource history read requests of nodes. In absence of history resource requests,
allocating resources for a fixed frame graph is the classic problem of dynamic storage allocation (DSA). In this
paper, we formulate a generalization of DSA that enables memory reuse for resources with history requests and
provide a practical approximate algorithm for solving it.

Keywords
frame graph, dynamic storage allocation, resource aliasing, gpu memory reuse, dx12, vulkan

1 INTRODUCTION
Memory Reuse
A computation graph based approach, which has been
presented in previous works [ODo17; Wih19], can be
considered the current state-of-the-art in real-time ren-
der engine design. A typical implementation receives
a user-defined directed acyclic graph (V,E), a set of
resources R, and a resource usage function U : V →
2R, such that R =

⋃
v∈V U(v). We refer to the tuple

(V,E,R,U) as a frame rendering graph, or simply a
frame graph. Vertices in V are referred to as nodes and
represent tasks that dispatch GPU work. Elements of R
represent transient resources, temporary per-frame data
like the g-buffer, intermediate images during a blur, etc.
A node v ∈V may only use GPU resources from the set
U(v) during the dispatched work. The condition that R
is equal to the union across the image of U ensures that
every resource is used at least once. The implementa-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

tion then executes the nodes every application frame,
respecting the dependency order E, and allocates and
providing the requested resources to nodes. One of the
resources in R is considered to be the final frame image,
which is presented on the screen after the frame graph
finishes executing. In some cases, several resources are
considered to be the final result of a frame, such as
when CPU read-back is needed or when rendering in
stereo for a VR application.

This approach has been shown to offer significant ad-
vantages. Leaving aside numerous architectural bene-
fits, we focus on memory reuse. Prior to the availabil-
ity of modern low-level graphics APIs such as Vulkan
Direct3D 12, applications usually had to resort to re-
source pooling when memory consumption of transient
resources became problematic. However, a pooling ap-
proach has limited memory reuse capabilities due to
the abundance of incompatible resource types in graph-
ics programming. In the simplest approach, even two
textures with different resolutions cannot be substituted
during execution, even though their lifetimes may be
disjoint. While certain engineering tricks may be em-
ployed to enable greater resource reuse, they are of-
ten error-prone, difficult to implement and may incur
a runtime performance penalty. Another memory reuse
strategy is to create and destroying GPU resources on-

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Journal of WSCG
http://www.wscg.eu

Vol.31, No-1-2, 2023

https://www.doi.org/10.24132/JWSCG.2023.7 63

demand, although this approach has also proven to be
inefficient due to various driver and allocator induced
overheads. In presence of a modern graphics API and a
frame graph, however, an application runtime is able to
take a more nuanced approach to memory reuse.

Related Works
Let {vi}n

i=0 = V be the node execution order chosen
by the runtime and {ρi} = R an arbitrary indexing of
resources. For a resource ρi, define li = minρi∈U(v j) j,
ri = 1+maxρi∈U(v j) j the lifetime of this resource, and
si, its size in bytes. With a modern graphics API, we can
allocate memory heaps and place resources in them at
certain offsets, which are to be chosen such that no two
resources overlap in time and memory simultaneously.
In other words, memory reuse within such a system re-
duces to the classic problem of dynamic storage allo-
cation [GJ90, p. 226] (DSA), which in general is stated
as follows. For an arbitrary set of allocations (li,ri,si),
find an allocation function α(i) that assigns an offset
in memory to every resource, with the minimal value
of makespan = maxi α(i)+ si, subject to the following
restriction: for any i ̸= j, either [li,ri)∩ [l j,r j) = /0, or
[α(i),α(i)+ si)∩ [α(j),α(j)+ s j) = /0. Geometrically
speaking, given a set of axis-aligned rectangles on a
plane, minimize the used vertical sapace by only mov-
ing the rectangles along the vertical axis, such that no
two rectangles intersect. See figure 1 for an example of
gathering lifetime information and building an alloca-
tion schedule for a frame graph.

The DSA problem has been relatively well studied over
the years [Wil+95; Kie88; Kie91; Ger99; Buc+03]. In
the special case of all resources having unit size, the
problem trivially reduces to interval graph coloring and
is solved in polynomial time by a greedy online al-
gorithm. However, even the case of 2 different sizes
is NP-hard1, so approximate algorithms must be used.
Most research focuses on a special case of this problem,
called online DSA, where an algorithm must make a de-
cision on α(i) only based on resources 1..i. This special
case formalizes the well-known notion of an allocator
inside a language runtime, but it has been proven that
there is a lower bound on the efficiency of such an al-
gorithm. Define the load at time t for an instance of
DSA to be L(t) = ∑t∈[li,ri) si, the total load as LOAD =
maxt L(t), OPT to be the optimal makespan for that
instance, and smax,smin to be the largest and small-
est resource sizes respectively. A well-known result
[Rob71] of Robson shows that OPT/LOAD ⩾ 4/13 ·
(2+ log2 smax/smin). In the context of computer graph-
ics, the smax/smin ratio has been observed by the au-
thors to routinely reach values above 32, which makes
the bound be OPT/LOAD ⩾ 2. Furthermore, even in

1 Although unpublished, this result is due to Stockmeyer, 1976,
according to [Buc+03].

the unit-sized allocations case, OPT/LOAD is bounded
below by 3 [CŚ88], suggesting that the general case
lower bound of Robson may be improved. These re-
sults are also known as the fragmentation problem. Ho-
ever, when considering a render graph based system, we
are not, in fact, limited to online algorithms. The study
of offline DSA started off with reductions to interval
graph coloring [CŚ88], the simplest of which has been
proven to have a performance ratio, the upper bound
on makespan/LOAD, of 80 [Kie88]. After a more ad-
vanced reduction scheme [Kie91] was used to achieve a
ratio of 6, two consequent results by Gergov decreased
the best known ratio to 5 [Ger96] and then 3 [Ger99]. A
2003 paper [Buc+03] then presents an algorithm with
a performance ratio of 2 + ε , which is the best cur-
rently known result. Moreover, that paper presents a
polynomial time approximation scheme (an algorithm
with a ratio of 1+ ε) for the special case of smax being
bounded. This result is of particular interest to render
graph systems, as resource sizes usually do not exceed
a bound induced by the user’s display resolution.

Our Contribution
Although for a simple frame rendering graph runtime,
the memory reuse problem reduces to DSA, while im-
plementing such a system for Gaijin’s Dagor Engine,
we have identified a need for a generalization. Many
modern computer graphics algorithms use the notion
of a resource history, the data of a particular resource
as it was at the end of a previous frame. Such algo-
rithms, among others, include various screen-space ef-
fects like ambient occlusion [Jim+16] and reflections
[Sta15], temporal anti-aliasing [YLS20], and occlusion
culling techniques [Jim+16]. In fact, among the re-
sources currently tracked through the frame graph in
Dagor Engine, almost half require the history to be read
at some point while computing a frame. It is clear to
see that the previously described mathematical model
does not permit tracking such resources inside a frame
graph and reusing their memory while the resource is
not needed by any node.

Our contribution is as follows. First, we generalize the
DSA problem to cyclic time, repeating the same re-
source usage schedule across two frames. Second, we
present a best-fit greedy algorithm that solves this gen-
eralization in O(n logn) time with good practical per-
formance ratio. Finally, we show that no algorithm of a
certain natural class, similar to the classic interval graph
coloring algorithm, can guarantee an optimal solution
for the case of unit-sized resources.

2 RESOURCE HISTORY REQUESTS
Problem statement
We extend the (V,E,R,U) frame graph formalization
introduced earlier with the addition of resource history

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Journal of WSCG
http://www.wscg.eu

Vol.31, No-1-2, 2023

https://www.doi.org/10.24132/JWSCG.2023.7 64

Initial frame graph A: α

B: α

C: α

D: α,β

E: γ

F: β ,γ G: β

Resource lifetimes

α

β

γ

Allocation schedule

α

β

γ

Figure 1: A visualization of a sample frame graph compilation process. Nodes from A to G list the used resources
after a colon. Nodes are executed from left to right, and the horizontal axis represents time common to all 3
subfigures. Vertical guidelines represent moments between node executions, when resources start or end their
lifetimes. The middle subfigure shows segments that denote lifetimes of resources α , β and γ . Finally, on the
bottom, an example allocation schedule for these resources is shown, where the vertical axis represents memory
locations. This example can have the following interpretation. α is the g-buffer of an application, β is the final
picture, while γ is a low resolution temporary image for particles. Nodes A through D clear, draw things to and
resolve the g-buffer into γ respectively, node E renders particles into γ , node F blends γ into the final picture, and
G applies tone-mapping to β .

usage function H : V → 2R. With this addition, we
will need to start differentiating between the logical re-
sources in R and underlying physical GPU resources.
Nodes that read resource history usually use it to pro-
duce the same logical resource for the current frame. As
such, we create two physical resources for every logical
resource and alternate between them on even and odd
frames. Note that the sizes of the two physical resources
are the same and are determined by the logical resource.
We represent a lifetime of a physical resource as an ar-
bitrary pair of elements of Z2n, the cyclic group of order
2n, and build a resource (de)allocation schedule over
two consecutive frames (recall that n is the number of
nodes in the graph). Somewhat abusing the notation,
we denote such pseudo-intervals in Z2n as [l,r), and
for each frame graph resource ρi ∈ R the two corre-
sponding physical resources are [le

i ,r
e
i) and [lo

i ,r
o
i). Ge-

ometrically, we now need to place the 2 |R| axis-aligned
squares on an infinite cylinder Z2n×Z⩾0 with no inter-
sections, such that the taken vertical (along the infinite
axis) space is minimal. Although the previously defined
values li and ri are not applicable to our generalization,

for brevity, we define the even and odd frame lifetimes
in terms of them and a new value r′i = 1+maxρi∈H(v j) j:

le
i = li,

lo
i = n+ li,

re
i =

{
n+ r′i, r′i well-defined
ri, otherwise

ro
i =

{
r′i, r′i well-defined
n+ ri, otherwise

Note that r′i is well-defined iff there is at least one his-
tory request for i in H. See figure 2 for a visualization
of these lifetimes. Finally, we equate any such lifetime
pseudo-interval with the set of elements of Z2n they
contain: for [l,r), if l < r, the set is {l, ...,r− 1}, and
{0, ...,r−1}∪{l, ...,2n−1} otherwise. Note that for a
pair [x,x), the associated set is the entirety of Z2n. All
regular set operations apply.

We now are ready to state our generalization of DSA,
cyclic dynamic storage allocation (CDSA). Given a

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Journal of WSCG
http://www.wscg.eu

Vol.31, No-1-2, 2023

https://www.doi.org/10.24132/JWSCG.2023.7 65

Even frame Odd frame

A: α

B: α

C: α

D: α,β

E: γ

F: β ,γ G: β ,βh A: α

B: α

C: α

D: α,β

E: γ

F: β ,γ G: β ,βh

αe

β e

γe

αo

γo

β oβ o

Figure 2: Visualization of physical resource lifetimes for two consequent frames, notation analogous to figure 1.
Here, βh represents a logical resource history read request of a node, while greek letters superscripted by e and o
represent physical resources produced from corresponding logical resources on even and odd frames, respectively.

time

memory

A A

B

C
D

E
F

F

Figure 3: An optimal packing for an instance of CDSA.
Here, OPT = 5, while LOAD = 4. Note that resource A
has length 3 and wraps around to zero at the end of the
timeline.

timeline size T ∈ N, a set of arbitrary pairs of elements
of ZT , called allocations, denoted as {[li,ri)}m

i=1 and
each equipped with an integral size si > 0, find an al-
location function α : {1, ...,m} → N⩾0 that minimizes
the value makespan = max1⩽i⩽m α(i)+si, such that for
every pair of allocations i ̸= j either [li,ri)∩ [l j,r j) =
/0 (where the intersection is interpreted as explained
above), or [α(i),α(i)+ si)∩ [α(j),α(j)+ s j) = /0. See
figure 3 for an example of a solved CDSA instance.

Before proceeding to our analysis of this problem, let
us recall that for DSA, the load at time point t is de-
fined as L(t) = ∑t∈[li,ri) si, and the total load as LOAD =
maxt∈ZT L(t). These notions trivially extend to CDSA.
Note that for an instance of DSA with unit allocation
sizes, henceforth called UDSA for brevity (UCDSA for
unit CDSA respectively), the first-fit greedy algorithm
proves that OPT = LOAD.

Counterexamples
After stating CDSA, a question that arises naturally is
whether OPT = LOAD also holds for unit CDSA, and
whether first-fit can be extended to find this optimal so-
lution. To try and in some sense answer the second

question, consider an arbitrary greedy algorithm of the
following form (see algorithm 1).

Algorithm 1 General form of a greedy scanline algo-
rithm for solving UCDSA. Here, “arbitrary” means de-
termined by a concrete algorithm.

X ← the set of allocations
t← 0
Choose α for all allocations alive at 0 sequentially

and remove them from X
repeat

i← element of X with li− t mod T smallest
Choose α(i) arbitrarily such that no intersections

with previous allocations occur
Remove i from X
t← li

until no elements remain in X

The algorithm starts its scanline at time point 0. We ar-
gue that this is a reasonable assumption, as any other
strategy of picking the starting point can be defeated
by adding more resources to a counter-example. All
resources alive at the starting time point are allocated
sequentially, giving them the smallest α value that does
not cause intersections. The algorithm then proceeds to
scan the allocations in order of their lifetime start points
with respect to the overall starting position and choose
α for them using some arbitrary strategy, until no ele-
ments remain. Furthermore, we require that this strat-
egy depends only on the lifetime of the current element,
as well as the back profile and current front profile, de-
fined as follows. Consider the start of the algorithm,
where it choses the allocation function for all resources
alive at 0. For every such resource with α(i) = s, the
back profile is defined as pb(s) = ri. For all other values
of s, the back profile is defined to be 0. The initial front
profile is similarly defined to be p0

f (s) = li. After each
iteration of the algorithm, a new front profile is defined
in terms of the previous one as follows. If the allocation

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Journal of WSCG
http://www.wscg.eu

Vol.31, No-1-2, 2023

https://www.doi.org/10.24132/JWSCG.2023.7 66

decision made on iteration j is α(i)= s, then p j
f (s)= ri.

For all other values of s, leave p j
f (s) = p j−1

f (s).

Note that this generalized algorithm is applicable to
UDSA. In fact, if we restrict it to only UDSA, first-
fit becomes an instance of such an algorithm and gives
the optimal answer. Now consider two instances of
UCDSA shown in figure 4. It is clear that both the

Figure 4: Counter-example to optimality of the general-
ized greedy UCDSA algorithm. Front profile shown in
green, back profile in red, pending allocations in black.

front and back profiles, as well as the chosen resource
are equal on the first iteration of the algorithm for the
two instances shown. Therefore, the algorithm must
choose the same offset for both instances. Obviously,
picking the offset not depicted in the figure for either
of the instances cannot yield an optimal solution at the
end of the algorithm. Moreover, an analogous situation
can easily occur in less contrived instances of UCDSA.
Therefore, this demonstrates that the naive greedy ap-
proach does not in fact solve even UCDSA. Conse-
quently, none of the existing works that reduce DSA
to UDSA can be generalized to CDSA without loss of
effectiveness.

We now go on to show that in fact even UCDSA is
a harder problem than UDSA by proving that OPT ⩾
3/2 · LOAD for UCDSA. In fact, a stronger assertion
can be made: there are infinitely many instances of
UCDSA for which the inequality holds. This lower
bound obviously holds for general CDSA as well. The
proof consists of a single picture, see figure 5. By stack-

Figure 5: Instance of UCDSA where OPT = 3 but
LOAD = 2

ing the instance in the figure vertically n times, we get
an instance of size 3n where LOAD= 2n but OPT = 3n.
The result is evident.

Practical algorithm
We next present a greedy algorithm for CDSA that al-
though has unbounded error in the general case, shows
more than acceptable performance in practice. This is
because CDSA instances produced by a frame graph of-
ten have a very particular structure: most resources are
transient textures with sizes that are integral fractions
of the user’s monitor resolution. The algorithm (2) fol-

Algorithm 2 Proposed best-fit greedy scanline algo-
rithm for solving CDSA

X ← the input set of allocations
Y ← /0 – set of alive allocations
A← /0 – set of free

blocks (o f f set,size,until)
H← 0 – current heap size
t0← time point with smallest L(t)
t← t0
for allocation i alive at t do

α(i)← H
H← H + si
Move i from X into Y

end for
repeat

i← element of X with li− t mod T smallest
Move i from X into Y
for j ∈ Y do

if j is no longer alive then
Remove j from Y
until← r j if j is alive at t0, ∞ otherwise
Add (α(j),s j,until) to A
Defragment A

end if
end for
if picking from A will fail on next step then

Add a block (H,si,∞) to A
Defragment A
H← H + si

end if
a← block with smallest size ⩾ si in A such

that [li,ri)∩ [until, t0) = /0 or until = ∞

Remove a from A
α(i)← a.o f f set
if a.size > si then

Add (a.o f f set + si,a.size− si,a.until) to A
Defragment A

end if
t← li

until no elements remain in X

lows the general greedy scanline form from the coun-
terexamples section, but supports non-unit weights by
tracking free allocated blocks. The block to use for an
incoming allocation is chosen according to the best-fit
strategy. If no such block exists, a new one is allocated
at the current highest used offset. When a resource’s

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Journal of WSCG
http://www.wscg.eu

Vol.31, No-1-2, 2023

https://www.doi.org/10.24132/JWSCG.2023.7 67

lifetime ends, we return the block used for it to the free
list A. Every time a block gets added to A, we defrag-
ment the list by merging blocks adjacent in memory
into a single block. The non-trivial idea here is to ad-
ditionally store an “available until” marker on each free
block, that represents the back profile. When picking a
free block from the list for an incoming allocation, we
ensure that the allocation will not intersect with any of
the allocations that were alive at t0 by rejecting blocks
that become unavailable during the current resource’s
lifetime. It is also important that when defragmenting
the free list A, we never merge blocks with unequal
until markers. For this to not inhibit all defragmenta-
tion, only resources that were alive at t0 actually store
their ri in until. In all other cases the sentinel value ∞ is
used, that tells the algorithm that there is no “available
until” limit for a block. Note that the value t0 cannot
be used as the sentinel, as it conflicts with the case of a
[t0, t0) always-alive resource that is created at time point
t0.

Note that this algorithm obviously does not have a
bounded performance ratio even for DSA, as a simple
sequence of [i, i+2) allocations of size 2i, i = 0..n, will
lead to extreme fragmentation and makespan for the re-
sult will be 2n+1− 1, while load is 3 · 2n−1. However,
despite its theoretical limitations, we have observed that
the algorithm provides solutions of more than accept-
able quality in practice.

3 EXPERIMENTAL RESULTS
We implemented our algorithm in Gaijin’s Dagor En-
gine and ported a significant part of Enlisted’s render-
ing code into a frame graph system. As of May 2023,
the frame graph for Enlisted on ultra presets consists
of 81 nodes and tracks 27 resources, 14 of which have
their history read by at least one node. As one can see
from figure 6, a lot of resources alias with resources
that cross the frame boundary. This aliasing saves about
10% of memory, or 6 MB, when compared with allocat-
ing frame boundary crossing resources separately and
never reusing their memory. It must however be noted
that a lot of GPU resources are not managed by the ren-
der graph system in Enlisted yet, so we expect to see
an improvement in these numbers, as suggested by our
synthetic tests that follow. The implementation runs
in O(n logn) time, or about 20 µs on Enlisted’s frame
graph, which potentially enables mid-game changes to
the structure of the frame graph.

As our data set for measuring characteristics of the pro-
posed algorithm is extremely limited, consisting of sev-
eral quality presets in a couple of games, we borrow
the bootstrapping technique from statistics. Varying the
game and quality presets, we gathered discrete distri-
butions for the following data: resource lifetime length
|[li,ri)|, resource size si, and timeline length T . We as-

sume that lifetime length and resource size are indepen-
dent random variables, and that a resource is equally
likely to begin its lifetime at any time moment. Syn-
thetic tests for N resources were generated by resam-
pling these discrete distribution and choosing li uni-
formly. We then ran the algorithm on these synthetic
tests in two configurations, 2000 times each: with and
without prohibiting aliasing for resources alive at time
point t0. This simulates a naive treatment of history
requests, i.e. allocating resources with such requests
separately and never reusing their memory. With this
naive treatment, our algorithm becomes a variation of
an online greedy allocator, commonly employed by ren-
der graph implementations. Our results are presented in
figure 7. As can be seen from the plots, the algorithm
shows a competitive performance ratio of around 1.1 on
average, which is significantly better than what hand-
crafted counter-examples might suggest. A clear trend
can be seen in the plots with history reuse, see figure 8.
For inputs distributed similarly to real data produced by
a graphics application, the algorithm shows a consistent
improvement in memory reuse with increasing resource
count, both on average and in the 90th percentile. The
same does not hold true for tests with naive treatment of
history-requested resources: the ratio instead increases
with resource count.

4 CONCLUSION
We’ve presented a novel memory saving strategy for
real-time graphics applications based on a render graph
architecture. By treating resources that must outlive a
frame boundary due to history read requests uniformly
with all other frame graph resources and generalizing
the classic DSA problem, we are able to decrease the
competitive performance ratio by a significant margin
and save about 10% of memory on average. Even
though generally speaking CDSA is a harder problem
than DSA, as shown by our counter-examples, a greedy
approach can still yield good results in practice. We
suspect that the presented algorithm has bounded er-
ror when restricting it to inputs with bounded alloca-
tion size, but are yet to prove this. It must however
be noted that in no way can the presented algorithm
be considered optimal, even for the use-case of com-
puter graphics. Even small reductions in VRAM us-
age can have a significant impact on the performance
of large-scale high-performance applications, or appli-
cations running on memory-constrained devices, such
as smartphones, and the greedy nature of this algorithm
suggests that further research should be able to find bet-
ter algorithms to solve CDSA. Of especial interest is
generalizing the DSA algorithm from [Buc+03], as it
seems to have good performance characteristics on data
sets with bounded resource size and highly clustered
distribution of resource sizes.

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Journal of WSCG
http://www.wscg.eu

Vol.31, No-1-2, 2023

https://www.doi.org/10.24132/JWSCG.2023.7 68

Figure 6: Resource allocation schedule in Enlisted for an even frame on ultra graphics. Horizontal axis is time,
vertical axis is memory. Resources with history reads span outside of the 0-81 node range.

Further questions of interest include theoretical prop-
erties of the CDSA problem. General algorithms with
bounded performance ratio and algorithms for special
cases, especially polynomial approximation schemes,
are yet to be found. Furthermore, even for the uniform
CDSA case, it is not clear whether our lower bound of
OPT/LOAD ⩾ 3/2 is optimal, and whether an efficient
optimal algorithm exists.

5 REFERENCES
[Buc+03] Adam L. Buchsbaum et al. “OPT versus

LOAD in dynamic storage allocation”. In: Proceed-
ings of the thirty-fifth annual ACM symposium on
Theory of computing. 2003, pp. 556–564.

[CŚ88] Marek Chrobak and Maciej Ślusarek. “On
some packing problem related to dynamic storage
allocation”. In: RAIRO - Theoretical Informatics
and Applications 22.4 (1988), pp. 487–499.

[Ger96] Jordan Gergov. “Approximation algorithms
for dynamic storage allocation”. In: European Sym-
posium on Algorithms. Springer, 1996, pp. 52–61.

[Ger99] Jordan Gergov. “Algorithms for compile-time
memory optimization”. In: Proceedings of the tenth
annual ACM-SIAM symposium on Discrete algo-
rithms. 1999, pp. 907–908.

[GJ90] Michael R. Garey and David S. Johnson. Com-
puters and Intractability; A Guide to the Theory
of NP-Completeness. USA: W. H. Freeman & Co.,
1990.

[Jim+16] Jorge Jiménez et al. “Practical real-time
strategies for accurate indirect occlusion”. In: SIG-
GRAPH 2016 Courses: Physically Based Shading
in Theory and Practice (2016).

[Kie88] H. A. Kierstead. “The Linearity of First-Fit
Coloring of Interval Graphs”. In: SIAM Journal on
Discrete Mathematics 1.4 (Nov. 1988), pp. 526–
530.

[Kie91] Hal A. Kierstead. “A polynomial time approx-
imation algorithm for dynamic storage allocation”.
In: Discrete Mathematics 88.2 (1991). Publisher:
Elsevier, pp. 231–237.

[ODo17] Yuriy O’Donnell. “FrameGraph: Extensible
Rendering Architecture in Frostbite”. Game Devel-
opers Conference. 2017.

[Rob71] John Michael Robson. “An estimate of the
store size necessary for dynamic storage alloca-
tion”. In: Journal of the ACM (JACM) 18.3 (1971),
pp. 416–423.

[Sta15] Tomasz Stachowiak. “Stochastic Screen-Space
Reflections”. SIGGRAPH. 2015.

[Wih19] Graham Wihlidal. “Halcyon: Rapid innova-
tion using modern graphics”. Reboot Develop. 2019.

[Wil+95] Paul R Wilson et al. “Dynamic storage allo-
cation: A survey and critical review”. In: Memory
Management: International Workshop IWMM 95
Kinross, UK, September 27–29, 1995 Proceedings.
Springer. 1995, pp. 1–116.

[YLS20] Lei Yang, Shiqiu Liu, and Marco Salvi. “A
survey of temporal antialiasing techniques”. In:
Computer graphics forum. Vol. 39. 2. Wiley On-
line Library. 2020, pp. 607–621.

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Journal of WSCG
http://www.wscg.eu

Vol.31, No-1-2, 2023

https://www.doi.org/10.24132/JWSCG.2023.7 69

0 200 400 600 800 1,000 1,200 1,400 1,600
1

1.1

1.2

1.3

1.4

1.5

1.6

Res. count

m
ak

es
pa

n/
LO

A
D

Average, w/ history reuse
90th percentile, w/ history reuse

Average, w/o history reuse
90th percentile, w/o history reuse

Figure 7: Performance measurements for our best-fit greedy scanline CDSA algorithm. Cumulative over 2000
runs on synthetic tests, bootstrapped from production data.

200 400 600 800 1,000 1,200 1,400 1,600

1.1

1.12

1.14

1.16

Res. count

m
ak

es
pa

n /
LO

A
D

Average, w/ history reuse
90th percentile, w/ history reuse

Figure 8: Enlarged plots with history reuse from figure 7. Clear downward trend can be observed.

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Journal of WSCG
http://www.wscg.eu

Vol.31, No-1-2, 2023

https://www.doi.org/10.24132/JWSCG.2023.7 70

	J_WSCG-papers
	E71-full

