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Abstract

This paper investigates the nonlinear dispersion of a pollutant in a non-isothermal incompressible flow of a
temperature-dependent viscosity fluid in a rectangular channel filled with porous materials. The Brinkman-Forch-
heimer effects are incorporated and the fluid is assumed to be variably permeable through the porous channel.
External pollutant injection, heat sources and nonlinear radiative heat flux of the Rossland approximation are
accounted for. The nonlinear system of partial differential equations governing the velocity, temperature and pol-
lutant concentration is presented in non-dimensional form. A convergent numerical algorithm is formulated using
an upwind scheme for the convective part and a conservative-type central scheme for the diffusion parts. The
convergence of the scheme is discussed and verified by numerical experiments both in the presence and absence
of suction. The scheme is then used to investigate the flow and transport in the channel. The results show that the
velocity decreases with increasing suction and Forchheimer parameters, but it increases with increasing porosity.
© 2023 University of West Bohemia.
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1. Introduction

The Brinkman system is a combination of linear momentum and mass conservation equations
for fluid flow in large pores. It is widely used as the basis for studying fluid flow in a wide range
of applications, including chemical engineering and pharmaceutical and cosmetic industries.
The Forchheimer law accounts for inertial effects in faster flows by including a nonlinear term,
but does not account for the Brinkman term [1]. The Brinkman-Forchheimer model adequately
models viscous flow in a porous medium and accounts for both inertial and viscous effects.

Convection in porous media is of great interest in areas such as geothermal systems, thermal
insulation, nuclear waste disposal and heat exchange systems. The material property, which
indicates the ability of fluids to flow through the material, is the permeability. Fluids flow more
easily through a material with high permeability. A variation of the permeability of a porous
medium may occur due to the orientation of the pores or due to the layered structure of the
forming grains of the porous medium [7].

Due to the various applications mentioned above, many researchers have studied related
work in the field of porous media flow. The finite element method was used to obtain the so-
lution of the Darcy-Brinkman-Forchheimer equation for an irregular channel flow [14]. The
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nonlinear Brinkman-Forchheimer-extended Darcy flow was investigated by an approximate an-
alytical solution in [5]. Three different physical situations governed by the nonlinear Brinkman-
Forchheimer-extended Darcy model were studied. Numerical simulation of flow and heat trans-
fer in a porous medium was investigated by the finite element method in [27] using the nonlinear
Darcy-Forchheimer drag force model.

A boundary layer approximation for a closed form solution of the Brinkman-Forchheimer
equation was presented in [30]. In [16], a closed form solution of Brinkman-Forchheimer equa-
tion is obtained; it involves an elliptic integral and is difficult to apply different boundary con-
ditions. A perturbation method was used to obtain the analytical solution for a fully developed
force convection in a porous duct on the basis of the Brinkman-Forchheimer model; however,
the validity of the solution is questionable for large values of the Forchheimer number [3]. The
Galerkin method was used to analyze the existence and uniqueness of the nonlinear Brinkman-
Forchheimer equation in a porous medium [6].

A convective flow over an exponentially stretching sheet embedded in a Darcy-Forchheimer
porous medium with heat radiation was investigated by numerical computation using bvp4c,
a MATLAB program [11]. An implicit-explicit finite difference scheme for the analysis of a
channel flow problem was developed by Nwaigwe [20], which studied transportation phenom-
ena with variable cross-diffusion and nonlinear radiation. The present work extends the work
of Nwaigwe [20] by incorporating Forchheimer effects, wall velocity suction (nonlinear con-
vection term), variable permeability, nonlinear pollutant injection, exponentially temperature-
dependent heat source [32] and an exponentially moving wall velocity. These conditions are
in addition to the existing flow and transport conditions, such as nonlinear radiation and the
nonlinear Soret-Dufour effects, considered in the original work of Nwaigwe [20]. Moreover,
we also extend the numerical scheme in [20] to account for the convective transport through the
use of upwind discretization. This endeavor has not be taken before, to best of our knowledge.

Some of the motivations of this work are as follows: In a double-diffusive convection, such
as thermohaline, the fluid density depends on both the concentration and temperature [15],
leading to their coupling – the cross-diffusion effect. Again, the temperature gradients may in
realistic cases result in viscous dissipation and radiation, see also [20]. Hence, a study that in-
corporates all these effects is essential. Moreover, deriving a mathematical model that describes
the combination of these complex processes and proposing, analyzing, implementing and ver-
ifying a correct and convergent numerical method for such a complicated mathematical model
is a great feat that would serve other researchers who may need such methods for their own
models and research. These facts motivate the study.

The non-dimensional form of the mathematical problem is presented in Section 2, while the
numerical approximation and convergence analysis are discussed in Section 3. The accuracy
and convergence of the proposed scheme are numerically verified for both with (A0 ̸= 0) and
without suction (A0 = 0) in Section 4. The model is applied to investigate the flow and the
results are presented in Section 5. Concluding remarks are made in Section 5.

2. Mathematical formulation of the problem

A nonlinear dispersion of a pollutant in a non-isothermal incompressible flow of a temperature-
dependent viscosity fluid in a rectangular channel filled with porous materials is considered.
Wall suction velocity and the Brinkman-Forchheimer effects are accounted for and the fluid
is considered variably permeable through the porous medium. Further, an external pollutant
injection and heat sources are assumed, the radiative heat flux is taken in the complete nonlinear
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Rossland formulation [20]. Nonlinear cross-diffusion effects, viscous dissipation and uniformly
applied magnetic field are equally considered. An external heat generation is assumed to follow
the Weli and Nwaigwe formulation [32]. At the initial time t = 0, the velocity, concentration
and temperature are functions of position y. Then, at subsequent times, one of the channel walls
is kept stationary and maintained at constant wall temperature and concentration, while the other
wall moves exponentially in time, with wall temperature that is sinusoidal in time and with
constant wall concentration. With these assumptions, the non-dimensional equations governing
the fluid velocity w(y, t) along the channel axis, the pollutant concentration ϕ(y, t) and the fluid
temperature θ(y, t) at the lateral point 0 < y < 1 and time t are given as follows [20]:
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∀(y, t) ∈ Ωyt = (0, 1)× (0, Tf < ∞),

subject to

w(y, 0) = (0.1 + αw)y, ϕ(y, 0) = 0.8y, θ(y, 0) = 1 + y(1− y) ∀y ∈ Ω̄y = [0, 1] (4)

and

w(0, t)= 0, w(1, t)= 0.1 + αwe
−t,

ϕ(0, t) = 0, ϕ(1, t) = 0.8,
θ(0, t) = 1, θ(1, t) = 0.5 +R2 sin(t) + 0.5 cos(t) ∀t ∈ Ω̄t = [0, Tf < ∞],

(5)

where
a(w)= A0e

−(1+w2)t,
Da(y)= Dâ + epe

−y (6)

are the suction velocity and variable permeability functions. Other parameters appearing in
(1)–(6) are specified as:

A0 – suction parameter β – diffusivity variation parameter
ep – permeability variation parameter Pr – Prandtl number
γ – heat source parameter Du – Dufour coefficient
α – viscosity variation parameter CF – Forchheimer number
M – magnetic field parameter γ0 – injection parameter
Dâ – Darcy number Br – Brinkman number
GT – thermal Grashof number R – thermal radiation parameter
Gc – solutal Grashof number R2 – nonlinear radiation parameter
Sc – Schmidt number λ – thermal conductivity variation parameter
Sr – Soret coefficient αw – wall velocity coefficient
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A detailed derivation and expressions for the non-dimensional parameters can be found in [20].
Equations (1)–(5) form a system of coupled nonlinear partial differential equations, whose

exact analytical solution cannot be found. Therefore, a numerical scheme to approximate the
solution is proposed in the next section.

3. Numerical scheme and analysis

The numerical procedure for approximating the solution of the proposed model is presented in
this section. The scheme is an extension of the implicit-explicit scheme published in [20]. The
convergence of the scheme is also discussed.

3.1. Formulation of the scheme

We choose Ny > 1 as a positive integer and define the mesh

Ωh = {yi|yi = ih, h = 1/Ny, i = 0, 1, . . . , Ny}.

Let ∆t and Nt be given such that Nt = T/∆t is a positive integer and tn := n∆t for n = 0,
1, . . . , Nt. We seek the following approximations for the grid point solution values:

wn
i ≈ w(yi, t

n), ϕn
i ≈ ϕ(yi, t

n), θni ≈ θ(yi, t
n).

To obtain a stable discretization of the convective terms a(w)∂w
∂y

, etc., we define the follow-
ing single-sign quantities:
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1

2
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)
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Observe that a(w)+ ≥ 0, while a(w)− ≤ 0. For convenience purposes, we define the following
function [20]:
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which will allow us to rewrite the sum of the first and fourth terms on the right hand side of (3)
to the following compact form:
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Also, we define the following notations for the grid point values for the transport properties

Γn
i := eαϕ

n
i , ηni := eβϕ

n
i , Ψn

i := Ψ(θni )

and the discrete derivative operators

δ±ui = ui±1 − ui.

Moreover, we use the short forms for the value of the transport properties at intermediate grid
points

Πn
i±1/2:=

Πn
i +Πn

1±1

2
for Π = Γ, η,Ψ.
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Therefore, we extend the scheme from [20] by incorporating the discrete convective and
source terms [32]. The convective (first derivative) term is discretized by using an upwind
approach [9,10,17,28,29,32], while the diffusion (second derivative) is approached by freezing
coefficients [20], see also [4, 8, 12, 13, 18, 19, 26]. The Forchheimer term is discretized by
freezing the non-positive coefficient at the previous time level tn, while the velocity factor is
evaluated at the new time level tn+1. This follows the same philosophy in the diffusion terms and
the purpose is to ensure stability of the resulting scheme. The source terms in the concentration
and heat equations are all evaluated at time levels tn. These lead to the following schemes for
the three governing equations:

velocity scheme

wn+1
i +∆t

wn+1
i − wn+1

i−1

∆y
a(wn

i )
+ +∆t

wn+1
i+1 − wn+1

i

∆y
a(wn

i )
−

= ∆t

[
Γn
i−1/2

(∆y)2
δ− +

Γn
i+1/2

(∆y)2
δ+ − Γn

i

Da(yi)
−M

]
wn+1

i + wn
i +∆t (GTθ

n
i +Gcϕ

n
i )

−∆t
CF√
Da(yi)

|wn
i |wn+1

i ∀(i, n), (10)

concentration scheme

ϕn+1
i +∆t

ϕn+1
i − ϕn+1

i−1

∆y
a(wn

i )
+ +∆t

ϕn+1
i+1 − ϕn+1

i

∆y
a(wn

i )
−

=
∆t

(∆y)2Sc

(
ηni−1/2δ

− + ηni+1/2δ
+
)
ϕn+1
i +

∆t Sr

(∆y)2
(
ηni−1/2δ

− + ηni+1/2δ
+
)
θni

+∆tγ0 sin
2((ϕn

i )
2) + ϕn

i ∀(i, n), (11)

temperature scheme
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subject to the following initial and boundary conditions:
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i = 0.8yi, T 0
i = 1 + (1− yi)yi ∀yi ∈ Ωh,
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3.2. Convergence analysis

The scheme proposed in (10)–(13) can be easily shown to converge to the exact solution of
(1)–(5) as we briefly discuss below. The numerical verification of this convergence property is
detailed in the next section via a grid convegence analysis.
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In the case of no convective terms, it was rigorously proved in [20] that the scheme (10)–(13)
converges with second order in space and first order in time. Hence, the remaining condition
to guarantee that the scheme is consistent, stable and convergent is to prove that the proposed
upwind discretization

wn+1
i − wn+1

i−1

∆y
a(wn

i )
+ +

wn+1
i+1 − wn+1

i

∆y
a(wn

i )
−

for the convective term a(wn
i )

∂w
∂y

is consistent, stable and also convergent. However, it is a
known and easily provable result in numerical analysis (see, e.g., [2, 9, 10, 28, 29]) that the up-
wind discretization of the first derivative is consistent, stable and has first order of convergence
in space, see also the recent paper [32]. Furthermore, since the coefficient in the first derivative
term is freezed (evaluated at time level tn), it means that the scheme is also first order in time,
see [32] for a proof of this. Therefore, we conclude that the scheme presented above is (i) first
order in both space and time when the convective term is present, but (ii) it is second order in
space and first order in time if the convective term is ignored. These convergence properties are
verified in the next section.

4. Numerical verification

This section verifies the proposed numerical scheme for both accuracy and convergence using
numerical test cases with (A0 ̸= 0) and without (A0 = 0) suction. The scheme is implemented
in an in-house C++ code developed and maintained by the first author of the paper and has been
extensively validated in earlier studies, see, e.g., [20–22, 31] and [32]. The following data is
used for the verification: α = 1.0, Sc = 1.0, β = 1.0, Sr = 0.000 1, Pr = 0.75, λ = 0.000 001,
Du = 0.000 1, R = 0.01, R2 = 1.0, αw = 1.0, Dâ = 0.1, M = 1.0, GT = 1.0, Gc = 1.0,
Br = 0.1, γ = 1.0, γ0 = 1.0, CF = 1.0, ep = 1.0, ∆t = 0.005. For no suction, we set A0 = 0,
while the case with suction uses A0 = 1.0.

The method of manufactured solutions is adopted [20, 21, 24, 25]; hence, we consider the
model equations with the functions fw(y, t), fϕ(y, t) and fθ(y, t) added to the right hand side of
(1), (2) and (3), respectively, where
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Further, we impose the initial and boundary conditions

w(y, 0) = cos(πy), ϕ(y, 0) = e−y2 , θ(y, 0) = 1 (14)

and
w(0, t) = e−t, ϕ(0, t) = e−t, θ(0, t) = 1,
w(1, t) = cos(π)e−t, ϕ(1, t) = e−1−t, θ(1, t) = e−ty.

(15)

Given the above initial-boundary value problem, it can be easily verified that the exact solution
is

w(y, t) = cos(πy)e−t, ϕ(y, t) = e−(y2+t), θ(y, t) = e−ty. (16)

The proposed scheme is used to solve the above problem. We compute the solutions on a
sequence of 2s grid points (s = 1, 2, . . . , 9) and for both A0 = 0 (no convective transport) and
A0 = 1.0 (with convection). The time step is computed as ∆t = h2/2, where h is the mesh size.
The error, in L2 norm, and the experimental order of convergence (EOC) are computed and tab-
ulated for each flow variable. The results for convective transport and non-convective transport
are shown in Tables 1 and 2, respectively. It is obvious that the numerical solution converges

Table 1. Experimental order of convergence (EOC) for the convective case: Ew, Eϕ and Eθ are two-norm
errors in w, ϕ and θ, respectively, while EOCw,EOCϕ and EOCθ are the computed orders of convergence

M Ew EOCw Eϕ EOCϕ Eθ EOCθ

2 0 − 0 − 0 −
4 1.737 72e−2 − 3.221 85e−3 − 1.980 31e−3 −
8 1.173 85e−2 0.565 945 1.633 10e−3 0.980 277 8.224 06e−4 1.267 80

16 6.661 18e−3 0.817 403 8.295 55e−4 0.977 205 3.627 55e−4 1.180 86

32 3.503 49e−3 0.926 985 4.142 55e−4 1.001 820 1.610 14e−4 1.17181

64 1.794 64e−3 0.965 100 2.069 49e−4 1.001 240 7.491 72e−5 1.103 82

128 9.076 16e−4 0.983 537 1.033 75e−4 1.001 390 3.591 50e−5 1.060 71

256 4.563 73e−4 0.991 871 5.166 13e−5 1.000 730 1.756 29e−5 1.032 06

512 2.288 20e−4 0.995 998 2.582 33e−5 1.000 410 8.680 44e−6 1.016 69

Table 2. Experimental order of convergence (EOC) for the non-convective case: Ew, Eϕ and Eθ are
two-norm errors in w, ϕ and θ, respectively, while EOCw,EOCϕ and EOCθ are the computed orders of
convergence

M Ew EOCw Eϕ EOCϕ Eθ EOCθ

2 0 − 0 − 0 −
4 6.003 10e−3 − 7.868 79e−4 − 1.885 44e−3 −
8 1.683 73e−3 1.834 05 1.969 69e−4 1.998 18 4.919 80e−4 1.938 23

16 4.427 14e−4 1.927 21 4.868 49e−5 2.016 42 1.262 75e−4 1.962 03

32 1.113 10e−4 1.991 80 1.213 31e−5 2.004 53 3.162 13e−5 1.997 60

64 2.790 65e−5 1.995 90 3.030 33e−6 2.001 40 7.916 23e−6 1.998 01

128 6.979 06e−6 1.999 50 7.574 26e−7 2.000 30 1.979 25e−6 1.999 86

256 1.745 07e−6 1.999 75 1.893 45e−7 2.000 09 4.948 56e−7 1.999 88

512 4.362 78e−7 1.999 97 4.733 53e−8 2.000 03 1.237 14e−7 2.000 00
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to the exact solution in both cases and at the correct orders of convergence; namely, first order
for the convective case and second order for the non-convective case. This observation verifies
theoretical convergence results as concluded in Section 3.2.. Hence, the proposed algorithm and
its implementation can be used to correctly simulate the flow problem being investigated in this
study.

5. Application

This section presents the results of the application of the scheme to a flow problem. The ve-
locity profiles are discussed in Section 5.1, those of concentration and temperature are jointly
discussed in Sections 5.2 and 5.3, respectively.

5.1. Velocity variations

Fig. 1 illustrates the variation of velocity profile with different values of the Forchheimer pa-
rameter (at t = 0.5). The results show that an increase in the Forchheimer parameter led to a
decrease in the velocity profile throughout the domain. Fig. 2 shows the effect of the permeabil-
ity parameter on the velocity profile (at t = 1.0). It is obvious that as the permeability parameter
increases, the velocity increases which is not surprising, because when the pores of a porous
medium are larger, the resistance to flow reduces. Fig. 3 displays the influence of the suction
parameter on the velocity distribution (at t = 0.5). The effect of increasing suction parameter
is to decrease the velocity. This is another physically realistic result because suction causes
fluid to be drawn into the pores of the channel wall, which is perpendicular to the direction of
the main flow direction (along the channel axis), thus, leading to a reduction in the main flow.
These results are in agreement with those presented in [23].

5.2. Concentration

Figs. 4–8 depict the variation of concentration profiles for various parameters. Fig. 4 shows
that the effect of increasing suction parameter (at t = 1.0) is to decrease the concentration of
the pollutant, while Fig. 5 shows that the concentration of the pollutant (at t = 1.0) increases
as the diffusivity parameter increases. In Fig. 6, it can also be seen that an increase in the
Soret parameter (at t = 0.25) led to a decrease in the concentration. Other observations include

Fig. 1. Variation in velocity with the change of the Forchheimer parameter CF
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Fig. 2. Variation in velocity with the change of the permeability variation parameter ep

Fig. 3. Effect of the suction parameter A0 on the velocity profile

Fig. 4. Effect of the suction parameter A0 on the concentration profile
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Fig. 5. Effect of the diffusivity variation parameter β on the concentration profile

Fig. 6. Effect of the Soret parameter Sr on the concentration profile

Fig. 7. Effect of the pollutant injection parameter γ0 on the concentration profile
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Fig. 8. Effect of the heat source parameter γ on the concentration profile

that the concentration (at t = 1.0) increases as the pollutant injection parameter increases –
a very realistic result, see Fig. 7, and an increase in the heat source parameter (at t = 1.0)
leads to a decrease in the concentration, Fig. 8, but this effect is mostly observed away from
the channel walls. This behavior also follows the physics in the sense that heat sources increase
the internal energy of the fluid, which in turn increases the diffusion of the pollutant (due to
cross-diffusion), thereby decreasing concentration. This has application in engineering systems,
where substances are injected into a fluid system to avoid corrosion. Then, heat can be injected
to cleanse the fluid of a substance.

5.3. Temperature variations

Figs. 9–15 demonstrate the influence of various flow parameters on the temperature profile.
Fig. 9 shows that the fluid temperature decreases as the Forchheimer parameter increases, while
Fig. 10 depicts that an increase in the suction parameter leads to a decrease in the fluid tempera-
ture in the region close to the stationary wall (y = 0), but increases in the region near the mobile
wall (y = 1). It is also observed that the temperature of the fluid increases due to increase in

Fig. 9. Effect of the Forchheimer parameter CF on the temperature profile
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Fig. 10. Effect of the suction parameter A0 on the temperature profile

Fig. 11. Effect of the permeability variation parameter ep on the temperature profile

Fig. 12. Effect of the Soret parameter Sr on the temperature profile
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Fig. 13. Effect of the Dufour parameter Du on the temperature profile

Fig. 14. Effect of the heat source parameter γ on the temperature profile

Fig. 15. Effect of the pollutant injection parameter γ0 on the temperature profile
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the permeability parameter, see Fig. 11. An increase in the Soret parameter led to an increase
in the fluid temperature, Fig. 12, which is to be expected, because the Soret parameter is asso-
ciated with the mass flux caused by the temperature gradient. The same effect is observed in
Fig. 13 when increasing the Dufour parameter. The effect of increasing heat source parameter
is to increase the temperature of the fluid, Fig. 14. This is also realistic since more addition of
heat should naturally increase the temperature. Finally, we also observed that an increase in the
pollutant injection parameter resulted in the decrease in temperature of fluid flow, see Fig. 15.
These results are in agreement with those presented [18].

6. Conclusions

The process of heat and mass transfer in a porous channel flow of a fluid with nonlinear transport
properties, variable permeability, nonlinear suction and nonlinear cross-diffusion was investi-
gated. The problem led to a nonlinear system of convection-diffusion-reaction equations, which
was numerically solved using upwind and conservative-type central schemes. The investigation
of the flow revealed that

(i) increasing the permeability parameter increases the fluid velocity,
(ii) increase in the suction parameter led to the decrease in fluid velocity and

(iii) increasing the suction parameter led to the decrease in pollutant concentration.
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