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Abstract

This work deals with estimations of errors, which are a consequence of a finite spatial discretisation that appears
while solving differential equation numerically. More precisely, it deals with the estimation of errors that occur
while computing compressible inviscid fluid flow over 2D airfoil cascades. This flow is described by the 2D
Euler equations that are solved by the finite volume method in their conservative form. Numerical computations
are performed on structured meshes consisting of four blocks, so the number of cells in the mesh can be easily
adjusted. In this work, two estimation methods are used. Firstly, the grid convergence index is used to estimate
the amount of cells needed to obtain certain accuracy of the solution. Secondly, the Richardson extrapolation is
used to approximate the exact solution from a series of solutions obtained with meshes of different sizes. This
analysis is performed on a well-known compressor cascade, which is composed of NACA 65 series airfoils. The
obtained results should lead to a reasonable choice of the number of elements in a computational mesh based on
the required accuracy of the solution and therefore also to computational time reduction while performing airfoil
cascade computations. The results indicate that even for very precision demanding applications, 100 000 is a
sufficient number of cells in a mesh.
© 2023 University of West Bohemia.
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1. Introduction

Nowadays, when computational fluid mechanics has prevailed in the scientific and commercial
community as a tool for performance prediction and the design of various technical devices,
it is the right time to carefully study errors that occur while solving systems of partial differ-
ential equations related to fluid mechanics numerically. With the rapid increase in computing
power over the past decades, it is currently quite common to simulate complicated 3D turbulent
flows on computational meshes with the number of tens to hundreds of millions cells. This
widespread of technology, which became available to almost everyone, results in frequent ne-
glect of essential standard practices such as establishing the independence of the solution on the
computational mesh. This very important practice is described and applied in this work.

This paper deals with the research of discretisation errors that appear while solving 2D in-
viscid flow of compressible fluid through a compressor airfoil cascade using the finite volume
method. This flow problem could be presently considered obsolete, when many methods of
turbulence modelling are available, but there are several problems where this simplified view of
reality would be sufficient. Primarily, the cascades represent cylindrical sections with 3D blades
and their subsequent development into a plane. With this procedure, the flow through individual
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cascades can be simulated and the shape of the airfoils can be designed and optimised. Finally,
the resulting 3D blade can be assembled and interpolated from individual cascades. In com-
pressors, the effect of compressibility is generally more dominant than the viscous effects. This
supports the idea that, for example, the pressure distribution along the airfoil can be predicted
with good accuracy even by inviscid flow simulations. So when it comes to optimisation of
pressure distribution along the airfoil, it seems to be appropriate to use the system of equations
describing inviscid fluid flow. This system has several advantages for optimisation tasks, like
less consumption of computational power and fewer stability issues. However, this all depends
on whether the flow solutions are sufficiently accurate.

In this work, emphasis is placed on mesh convergence, which is a topic directly related to
the number of cells in a computational mesh. This further has a major effect on the compu-
tational time. Many papers examine the grid convergence in turbomachinery tasks. In [28],
Shin and Ragab simulated 3D incompressible flow with the Spalart-Allmaras turbulence model
through a highly staggered compressor cascade with a tip clearance on three different meshes.
In [1], Akçayöz studied performance increase and noise reduction in axial compressor cascades
with plasma actuation. The grid convergence study was performed for each cascade with three
meshes, both structured and unstructured. In [27], Schneider and Kožulović researched flow
characteristics of axial compressor tandem cascades at large off-design incidence angles and
performed a mesh convergence study on structured meshes. In [7], Busse et al. numerically
investigated effects of the steady wake and the tip clearance vortex interaction in a compres-
sor cascade, where a mesh convergence study was performed on multiblock structured mesh.
In [21], Li et al. defined effective end wall profiling rules for highly loaded compressor cascades
and performed mesh convergence study on three meshes. In [20], Li et al. used a blended blade
and established an end wall method in compressor cascades, six meshes were used in the mesh
convergence study. Giorgi et al. [9] compared different plasma actuation strategies for aeroe-
lastic control on a linear compressor cascade and supported their results by a mesh convergence
study. In [35], Yin and Durbin performed a detached eddy simulation of transition in a linear
compressor cascade and used several meshes to ensure mesh independence. Kiss et al. [19]
investigated transonic turbine cascade flow and studied mesh convergence on a C-shaped mesh.
In [14], Hildebrandt and Fottner performed a numerical study of the influence of mesh refine-
ment and turbulence modelling on the flow field inside a highly loaded turbine cascade. In [23],
Kumar and Govardhan studied the topology of flow in a turbine cascade and validated results
on three meshes.

There are also many applications other than in turbomachinery that use mesh convergence
for result validation. Warren et al. [33] dealt with mesh convergence of adaptive methods ap-
plied in supersonic flow around NACA 0012 airfoil. A mesh convergence study on this airfoil
was also performed by Vassberg and Jameson [30] and Diskin et al. [11]. In [4], Blain et al.
investigated the influence of mesh convergence on the prediction of hurricane storm surge. De
Sterck et al. [10] performed a characteristic analysis and mesh convergence study for mag-
netohydrodynamic flows with shocks. In [26], Salas presented several observations of mesh
convergence. Longest and Vinchurkar [22] studied effects of mesh style and mesh convergence
on particle deposition in bifurcating airway models. Ali et al. [2] published a mesh conver-
gence study for direct numerical simulations of flow around a square cylinder at low Reynolds
number. Hodis et al. [16] discussed mesh convergence errors in haemodynamic problems of
patient-specific cerebral aneurysms. Oliveira et al. [24] performed a mesh convergence study of
a cyclone separator using different mesh structures.

At the beginning of this paper, the system of partial differential equations describing 2D
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inviscid compressible flow is mentioned. Next, the finite volume method is briefly presented
and the used numerical flux is shown. It is also stated how to achieve the second order spatial
accuracy and the time integration method. In the following sections, the problem of compres-
sor cascades is formulated and the method of multiblock meshing is described. After that, the
methodology of mesh convergence study is stated. The penultimate section presents the results
of convergence study on the well-known NACA 65 series compressor cascade. Grid conver-
gence index is calculated for various angles of attack and inflow velocities. The way how to
use the Richardson extrapolation is shown and the number of cells needed for the precision of
individual results are estimated. Finally, the results are discussed and conclusions are drawn.

2. Governing equations

Using the laws of mass, momentum and total energy conservation, the system of Euler equations
can be derived by omitting viscous terms. The system can be found, for example, in [5, 15].
Since a 2D inviscid flow problem is considered in the present work, the 2D Euler equations can
be written in vector form as follows

∂W

∂t
+

∂F (W )

∂x
+

∂G(W )

∂y
= 0, (1)

where the individual vectors can be expressed as

W =


ϱ
ϱu
ϱv
ϱE

, F (W ) =


ϱu

ϱu2 + p
ϱuv

(ϱE + p)u

, G(W ) =


ϱv
ϱvu

ϱv2 + p
(ϱE + p)v

, (2)

where u and v are the components of the velocity vector. The variables ϱ, p, and E denote the
density, static pressure and total energy, respectively. As the previously mentioned system (1)
has more variables than equations, it is necessary to close it using some constitutive relation.
For this work, the perfect gas equation, firstly published by Clausius in [8], was chosen. It can
be written as

p

ϱ
= RspecT, (3)

where Rspec and T are the specific gas constant and the thermodynamic temperature, respec-
tively. It can be further modified with the Mayer’s relation into the following form:

p = (κ− 1)

[
ϱE − 1

2
ϱ
(
u2 + v2

)]
, (4)

which is the form used in the following.

3. Methods

The finite volume method is used in this paper. This method is obtained by integrating the
previous system of equations (1) over a general finite volume. Next, after the application of the
Green’s theorem and a few adjustments, it is possible to write the result as

dWij

dt
= − 1

∥Ωij∥

∮
∂Ωij

(Fnx +Gny) ds, (5)
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where the argument of the integral can be rewritten using the transformation matrix T as

Fnx +Gny = T−1F (TW )= F , T =


1 0 0 0
0 nx ny 0
0 −ny nx 0
0 0 0 1

. (6)

After substituting (6) into (5), admitting the fact that the volumes are quadrilaterals and by
replacing the physical flux F with the numerical flux F̃ , equation (5) can be rewritten as

dWij

dt
= − 1

∥Ωij∥

4∑
k=1

F̃k(Wij)∥Sk∥. (7)

The approximate rotated-hybrid Riemann solver published by Holman and Fürst [17] was cho-
sen for its favourable properties when solving inviscid physical fluxes. It is a combination of
the well-known HLLC numerical flux stated by Toro et al. [29] and the HLL numerical flux
published by Harten et al. [13]. This combination ensures accuracy because of the HLLC flux
and its three wave structure and also the absence of the carbuncle phenomenon due to the more
dissipative HLL flux.

In order to achieve a second order accuracy, gradients of variables were estimated by the
spatial least squares method using the neighbouring cells. These gradients were then used to
extrapolate values of variables from cell centres to wall centres. However, a solution defined
in this way would show non-physical oscillations, reconstructed quantities could go beyond all
limits and such a calculation would lead to misleading results. Therefore, it is necessary to limit
the values of gradients in some reasonable way which may be achieved by introducing a limiter
function. In this paper, the Venkatakrishnan’s limiter published in [31] was used. This is an
improvement of the Barth–Jespersen’s limiter [3]. Since this work seeks stationary solutions
using a time-dependent simulation, it is important to employ a time integration method. For
this purpose, the three-step Runge-Kutta method of second order accuracy was chosen [32].

4. Problem formulation and mesh topology

An axial compressor is a highly complex and sophisticated piece of turbomachinery, so it is
quite common to decompose simulations of flow through this machine into several subtasks,
which can be further simplified [12]. These simplifications are often used for design and verifi-
cation.

Fig. 1 schematically shows the conversion of a 3D compressor rotor problem in cylindrical
coordinates into a 2D airfoil cascade in the Cartesian coordinate system. Furthermore, the
inlet ΓI, the outlet ΓO and the periodic boundary conditions are shown on the right side of
Fig. 1. The conversion also means that a naturally transient problem is transformed into a
stationary problem, where the angle of attack and the velocity of incoming flow is set to match
the conditions in the compressor.

The axial compressor cascade, which is the subject of research in this work, is composed
of NACA 65-(12)10 airfoils. The geometry of this airfoil is described in [6]. The geometrical
specifications and numerical simulations performed on this cascade were published by Hwang
and Liu in [18]. The boundary conditions (BC) for the mesh convergence study are listed in
Table 1. It also follows that the study is carried out by the change of the incidence angle and the
outlet pressure.
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Fig. 1. Transformation of a 3D rotor stage into a 2D cascade

Table 1. Airfoil cascade boundary conditions

BC Variable Value Unit

ΓI

total pressure pI
0 101 325 Pa

total temperature T I
0 300 K

incidence angle αI 43÷ 47 ◦

ΓO pressure pO 88 500÷ 96 000 Pa

The topological structure of the computational mesh can be seen in Fig. 2a. The computa-
tional domain Ω is divided into four blocks. It starts with the aerodynamic profile around which
a hyperbolic O-shaped mesh Ω1 is generated. The block Ω3 is an elliptical mesh formed from
Ω1 in the opposite direction of the flow. Its right border is given by the block Ω1 and its left side
is the inlet boundary ΓI at a distance of one chord length from the aerodynamic profile. The
upper and lower limits are defined so that excessively skewed cells were not formed. The same
goes for the block Ω4, which points in the direction of the flowing fluid from the trailing edge
of the profile. The left edge is formed by the block Ω1 and the right one is formed as the outlet
boundary ΓO at a distance of two chords from the profile. The upper and lower sides are defined
similarly as in the case of block Ω3. The last block Ω2 has left and right borders defined in the
same way as the previous two blocks. The upper limit of the block is defined as the unification
of the lower sides of blocks Ω1, Ω3, and Ω4. In order to observe the periodicity, it is necessary
that the lower surface of this block is formed by a union of upper sides of blocks Ω1, Ω3, and Ω4

shifted in the y-direction by the distance of two neighbouring airfoils. As in the previous two
cases, this block is also generated elliptically. The computational domain Ω is thus formed as a
four-block mesh.

The boundary conditions are also shown in Fig. 2a. The linear periodicity ΓP is coloured
in red and the inviscid wall BC ΓW is gray. The blocks are connected by the connectivity
BC ΓC which is coloured in black. The inlet and outlet BCs are green and blue, respectively.
A generated multiblock mesh around the airfoil is shown in Fig. 2b.
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(a)

(b)

Fig. 2. Mesh topology description: (a) mesh block division and boundaries, (b) visualisation of the finest
mesh generated for the mesh convergence analysis

5. Mesh convergence study

The mesh convergence study is a straightforward method for determining the discretisation error
in a numerical simulation. The method involves performing the simulation on successively finer
meshes. As the mesh is refined, the spatial discretisation errors should asymptotically approach
zero, when excluding computer rounding errors.

Some scalar quantity must be specified for the purpose of this study. In this case, minimal
static pressure on the airfoil P was chosen. Three successively finer meshes were generated
with the refinement ratio r = 2, which means that the finer mesh has twice as many cells as the
coarser mesh in both spatial directions. All three meshes are listed in Table 2 together with the
number of cells.

Since the parameter r is a constant, the order of convergence O can be obtained directly
from three solutions as follows [25]

O =
ln
(

P1−P2

P2−P3

)
ln(r)

. (8)

After the evaluation of the convergence order, the Richardson extrapolation, described by Zlatev
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Table 2. Meshes generated and used in the convergence study

Mesh Coarse ’1’ Medium ’2’ Fine ’3’
Normalised mesh spacing 4 2 1
Number of cells 4 382 17 528 70 112

et al. [36], can be applied to the two finest meshes. It uses them to obtain an estimate of the
value of ’exact’ solution at zero mesh spacing as

Pext = P3 +
P3 − P2

rO − 1
. (9)

According to Roache [25], the grid convergence index (GCI) is a preferred way to estimate
discretisation errors. It is a measure of percentage the computed value is away from the value
of the asymptotic numerical value. It indicates an error band on how far the solution is from
the asymptotic value and how much the solution would change with additional grid refinement.
A small value of GCI indicates that the computation is within the asymptotic range. It can be
computed as follows

GCI =
FS|ε|
rO − 1

· 100, ε =
Pfiner − Pcoarser

Pfiner
. (10)

In [34], the safety factor FS is recommended by Wilcox to be FS = 1.25 when three or more
meshes are used. Two grid convergence indexes GCI12 and GCI23 can be obtained from three
meshes. Another important quantity can be estimated by using the grid convergence index. The
specific grid refinement factor r∗ can be estimated from the highest allowable error GCI∗ as

r∗ =

(
GCI∗

GCI12

) 1
O

. (11)

This enables to estimate a sufficient number of mesh cells for specific precision of the simula-
tion.

6. Results

A computational study of mesh convergence was performed by changing the incidence angles
and outlet pressures. The incidence angles were chosen as the cascade’s design incidence 45◦,
two negative incidence angles (44◦, 43◦), and two positive incidence angles (46◦, 47◦). Four
outlet pressures were chosen to explore the subsonic and lower transonic velocity regimes.
This should cover the standard working conditions of the studied cascade. The airfoil minimal
pressure P was observed in each of these 20 simulations for all three meshes. The results are
presented in Table 3.

Using the data from Table 3, the order of convergence O was estimated using (8) for each
combination of the incidence angle and the outlet pressure. The results are listed in the upper
section of Table 3. The order of convergence computed for each simulation is further dis-
played as a 3D graph shown in Fig. 3. From the data and the graphical representation, it can
be noted that the values of order of convergence oscillate around the number 2. This is the
expected result, because second order schemes are used. Furthermore, there can be also seen
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Table 3. Results of the minimal airfoil pressure P depending on the incidence angle αI [◦], outlet pressure
pO [Pa] and mesh; results of the convergence order O and the grid convergence indexes (GCI12, GCI23)
depending on the incidence angle and the outlet pressure

P1 O
HH

HHHHpO
αI

43 44 45 46 47 43 44 45 46 47

88 500 57 943 54 662 50 893 47 076 43 236 2.57 1.57 1.47 2.20 2.80
91 000 68 554 66 502 64 113 61 475 58 575 2.38 2.33 1.39 1.39 1.58
93 500 77 629 76 230 74 726 73 052 70 991 2.28 1.99 1.33 2.00 2.13
96 000 85 756 84 902 84 003 82 935 81 043 2.21 1.52 1.89 2.32 2.10

P2 GCI12
88 500 56 130 51 704 46 139 40 583 36 146 0.82 3.63 7.27 5.56 4.11
91 000 68 021 65 761 63 123 59 482 54 915 0.23 0.35 1.21 2.57 4.18
93 500 77 360 75 921 74 077 71 702 68 870 0.11 0.17 0.72 0.78 1.14
96 000 85 606 84 730 83 500 82 024 79 212 0.06 0.14 0.28 0.35 0.88

P3 GCI23
88 500 55 825 50 708 44 424 39 171 35 129 0.14 1.25 2.72 1.25 0.61
91 000 67 918 65 614 62 745 58 723 53 693 0.04 0.07 0.47 0.99 1.43
93 500 77 304 75 844 73 820 71 366 68 384 0.02 0.04 0.29 0.19 0.26
96 000 85 573 84 670 83 364 81 841 78 786 0.01 0.05 0.08 0.07 0.21

an interesting decline in the order of convergence while performing simulations with the design
incidence angle. Another interesting finding is the fact that the values of the convergence order
differ more while performing simulations with lower outlet pressures. This can be explained
by analysing the flow fields, where simulations with the incidence angle of (46◦, 47◦) in the
case of pO = 91 000 Pa and computations with the incidence angle of (44◦, 45◦) in the case of
pO = 88 500 Pa are very close to or are forming small supersonic regions. Then, the mesh can
easily change the characteristics of the flow, resulting in higher errors. On the other hand, in the

Fig. 3. 3D graph of the convergence order depending on the incidence angle and the outlet pressure
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(a)

(b)

Fig. 4. 3D representation of grid convergence indexes: (a) GCI12, (b) GCI23

case of αI = 47◦ and pO = 88 500 Pa, there is a fully developed supersonic region ending with
a shock wave and the order of convergence is the highest.

Using the data from Table 3, the order of convergence O from Table 4 and the formula (10),
the grid convergence indexes were computed between meshes 1–2 and 2–3 for each combination
of the incidence angle and the outlet pressure. The results of these calculations are given in the
middle and lower parts of Table 3. These data are also displayed in Fig. 4. From the graphical
representation of the data, it is clear that possible discretisation errors increase when the flow
transitions to a transonic regime. Furthermore, in both quantities GCI12 and GCI23, the errors

Table 4. Estimations of the number of cells needed to achieve a specific accuracy

GCI∗ 1 0.1 0.01 0.001
r∗ 1.415 2 0.444 0 0.146 2 0.049 9

Est. number of cells 8 751 88 912 820 122 7 037 854
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(a) (b)

Fig. 5. Example of the Richardson extrapolation used on simulations with the design incidence angle
and the highest outlet pressure: (a) graphic representation of the extrapolation, (b) plot of individual total
energy residuals for each mesh

are very low in the case of the negative incidence angle αI = 43◦ and the two highest outlet
pressures.

An example of the Richardson extrapolation (9) applied to the data obtained from the sim-
ulations with the design incidence angle and the highest outlet pressure is shown in Fig. 5a.
The solution obtained by the extrapolation is marked by a red dot and is theoretically of the
fourth order of accuracy. Individual total energy residuals associated with the usage of different
meshes in the previously mentioned simulation setup are plotted in Fig. 5b.

Additional view of the errors in the flow fields can be provided by Figs. 6 and 7. On the
left side of those figures, pressure fields are shown for the design incidence angle and outlet
pressures of (96 000, 88 500) Pa, respectively. On the right side of those figures, the field
of absolute values of pressure differences between the results obtained on mesh 2 and 3 is
displayed. In Fig. 6b, the main errors are located near the flow stagnation point, where the
pressure gradient is high, and between the suction and pressure sides of the airfoils. In the case
of Fig. 7b, the errors are to the greatest extent located in the forming supersonic region and
mainly in the place where the shock wave is formed.

At last but not least, equation (11) was used to estimate the specific refinement ratio to
achieve specific discretisation errors of 1, 0.1, 0.01, and 0.001 percent. It was computed with
the mean value of GCI12 from all performed simulations, by substituting it into (11). The
obtained specific refinement ratios and estimated numbers of cells can be seen in Table 4. From
these data, it follows that the number of cells needed for an order of magnitude improvement in
discretisation errors grows rapidly.

7. Conclusions

In this paper, a method for the estimation of discretisation errors during inviscid fluid flow
through compressor cascades was presented. Firstly, governing equations of the inviscid flow
were stated. Secondly, methods used in this paper to solve those equations numerically were
presented. After that, the compressor cascade problem was formulated and the meshing strategy
was explained. As the last theoretical section, the mesh study methodology was presented and
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(a) (b)

Fig. 6. Spatial visualisation of errors for the design incidence angle and the outlet pressure of 96 000 Pa:
(a) pressure contours, (b) absolute value of pressure error

(a) (b)

Fig. 7. Spatial visualisation of errors for the design incidence angle and the outlet pressure of 88 500 Pa:
(a) pressure contours, (b) absolute value of pressure error

meshes further used were defined. Finally, the results of the mesh convergence study were
presented both in tables and figures.

Several conclusions and recommendations can be drawn from the obtained results. The
order of convergence is the highest for negative incidence angles and in the case of a fully de-
veloped local supersonic region. Interesting features are the low values of the convergence order
for the design incidence angle. When it comes to GCI percentage errors, the results speak much
clearer. Again, there is a clear trend that the design angle errors are higher than the negative and
positive incidence angles. However, the more important finding is that in both GCI12 and GCI23
cases, the percentage errors increase with decreasing outlet pressures. Furthermore, an example
of the Richardson extrapolation and a comparison of individual residual plots using different
computational meshes was shown. This shows the computational complexity of simulations
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on meshes with a larger number of cells. From the graphical analysis of the errors in the flow
field, it can be concluded that refining the computational mesh makes a lot of sense only in the
space between the airfoils and, more precisely, only in the vicinity of the suction side. Finally,
the number of cells needed to achieve a certain accuracy of the calculations was investigated.
Based on the results, it should be possible to determine a reasonable number of cells for this
task. It seems that around 100 000 cells should be enough even for high precision demanding
applications.
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[1] Akçayöz, E., Performance increase and noise reduction in axial compressor cascades with plasma
actuation, Ph.D. thesis, École Polytechnique de Montréal, Montréal, 2012.
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