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Vectors in three-dimensional Euclidean space are a
fundamental concept in computer graphics and physics.
Linear Algebra provides the well-known operations of
adding vectors or multiplying vectors with scalars. To-
gether with matrix algebra this framework allows for
pretty much all operations that are needed for practical
work. However, this set of operations is inherently in-
complete such that not all operations known for scalar
numbers can be applied to vectors. Particularly we can
divide by numbers, but what does it mean to divide by
a vector? Such an operation is not defined in Linear Al-
gebra as there is no invertible product of vectors: There
is the inner (dot) product v · u and the exterior (cross)
product v∧ u, but neither of them is invertible. It was
the idea of William Kingdon Clifford to combine both
products, defining the “geometric product” thereby as

uv := v ·u+ v∧u ,

which turns out to be invertible, though at the cost of in-
troducing a higher dimensional space of so-called “mul-
tivectors”. This extension of Linear Algebra is known
as Clifford Algebra or Geometric Algebra (GA)[Hes03,
Hil13, DL03]. This formalism allows for a complete al-
gebra on vectors same as for scalar or complex numbers.
It is particularly suitable for rotations in arbitrary dimen-
sions. In Euclidean 3D space quaternions are known
to be numerically superior to rotation matrices and al-
ready widely used in computer graphics. However, their
meaning beyond its numerical formalism often remains
mysterious. GA allows for an intuitive interpretation in
terms of planes of rotations. This algebraic framework
extends easily to arbitrary dimensions and is not limited
to 3D, like quaternions. However, our intuition of more
than three spatial dimensions is deficient. The space
of colors forms a vector space as well, though one of
non-spatial nature, but spun by the primary colors red,
green, blue. The GA formalism can be applied here as
well, amalgamating surprisingly well with the notion
of vectors and co-vectors known from differential ge-
ometry: tangential vectors on a manifold correspond
to additive colors red/green/blue, whereas co-vectors
from the co-tangential space correspond to subtractive
primary colors magenta, yellow, cyan. GA in turn con-
siders vectors, bi-vectors and anti-vectors as part of its
generalized multi-vector zoo of algebraic objects. In

3D space vectors, anti-vectors, bi-vectors and co-vectors
are all three-dimensional objects that can be identified
with each other, so their distinction is concealed. In
particular, in 3D all three basis vectors are given by the
three primary colors red, green, blue. A bi-vector is the
outer product of vectors. The bi-vector given by the
x⃗ and y⃗ axis in Euclidean space is therefore the plane
spun by the xy plane. Three such planes exist in three
dimensions: xy, xz and zx (in cyclic notation). In the
color space those combinations of two basis color vec-
tors are then yellow=red∧green, cyan=green∧blue, and
=blue∧red. Same as in Euclidean space, where we can
identify a vector with a plane via the notion of a “normal
vector”, we can identify a color with a mixed color via
its complementary color. This identification may ease
some usage, but also leads to confusions, because the
underlying objects - a vector versus a plane, or a pure
color versus a mixed color - are inherently different.

Higher dimensional spaces exhibit the differences
more clearly. In four dimensions there exist four vectors
but six bi-vectors. Using space and time as the four
dimension space, the four basis vectors x⃗,⃗y,⃗z and t⃗ result
in the six possible combinations xy,yz,zx (three “spatial”
bi-vectors) and xt,yt,zt (three “temporal” bivectors). Ev-
idently, identifying every vector with every bi-vector is
no longer possible in 4D as it was in 3D. The distinction
between direction vectors and planes becomes unavoid-
able. Using colors instead of spatial dimensions we can
expand our intuition by considering "transparency" as
an independent, four-dimensional property of a color
vector. We can thereby explore 4D GA alternatively to
spacetime in special/general relativity. Here, we start
with red, green, blue and transparent as the basis vectors
and construct three non-transparent mixed colors yellow,
cyan, magenta and three transparent pure colors trans-
parent red, transparent green, transparent blue. Clearly,
there is no way to identify those six bi-vectors with the
six vectors in 4D space, not even via some complement.

However, even in 4D possibly confusing ambigui-
ties remain between vectors, co-vectors, bi-vectors and
bi-co-vectors: bi-vectors and bi-co-vectors - both six-
dimensional objects - are visually equivalent. A co-
vector in differential geometry is a linear, scalar valued
function on vectors. These functions form their own
vector space and can be seen as dual vectors. Visually
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we may interpret co-vectors as the complement of a
vector to form the full space: In 3D a plane comple-
ments a vector to form the full volume. Therefore a
co-vector is equivalent to a bi-vector. Both have three
components in 3D. In 4D a vector is complemented
with a tri-vector to form a four-volume, thus in 4D
co-vectors and tri-vectors are equivalent. Within the
concept of color-spaces the co-vectors play the role
of subtractive colors. Here, the basis co-vectors are
built by the CMY system yellow, cyan and magenta.
Their combination via light-subtractive filtering (ex-
pressed as the ∧-product) forms the bi-co-vectors green
= yellow∧cyan , blue = cyan∧magenta and red = ma-
genta∧yellow. The equivalence of bi-co-vectors with
vectors in 3D space is obvious: they are the same col-
ors. The basis co-vectors of 4D color space are con-
structed by “cutting off” a basis vector from the full 4D
“color-hypervolume” Ω := red∧green∧blue∧transparent.
transparent magenta, transparent cyan and transparent
yellow. For instance, “cutting off” red from Ω yields
green∧blue∧transparent, a 3D “color volume”, which
is equivalent to a transparent cyan co-vector. Four such
co-vectors exist in 4D: transparent cyan, transparent
magenta, transparent yellow and non-transparent white.
They are the set of all combinations with three properties.
A bi-co-vector is constructed by cutting off two proper-
ties from the color hypervolume Ω, for instance cutting
off the bi-vector red∧transparent yields the bi-co-vector
(non-transparent) cyan. It is visually identical to the bi-
vector (non-transparent) cyan because cyan is “blue and
green”, but can equivalently be described in 4D color
space as “not transparent and not red”. Both bi-vectors
and bi-co-vectors provided two color properties and are
thus visually indistinguishable in 4D. Higher dimensions
are needed for such an unequivocal distinctions.

Envisioning five-dimensional geometry is even more
challenging to the human mind than four-dimensional
geometry, which we can at least associate with space-
time. In color space we can add another property to
the three primary colors and transparency. For instance,
we can add “texture” or strikethrough text to constitute
a five-dimensional vector space. The five-dimensional
hypervolume is then

Ω5D := red∧green∧blue∧transparent∧strikethrough

as constructed from the five base color/texture vectors.
In 5D we have ten bi-vectors and ten bi-co-vectors.
The bi-vectors are built from the ∧-product of all ba-
sis vectors, there are ten possibilities to combine two
properties in 5D: three mixed colors cyan, magenta,
yellow, three transparent pure colors transparent red,
transparent green, transparent blue, three textured pure
colors red, green, blue, and one textured transparent el-
ement. In contrast, the bi-co-vectors are built from
all color elements that combine three properties in
5D, which are also 10 color space elements: one non-

transparent, non-textured element built from all three
colors, i.e. “white”, three transparent, textured col-
ors textured transparent red, textured transparent green,
textured transparent blue, three transparent mixed col-
ors transparent magenta, transparent cyan, transparent
yellow and three textured mixed colors cyan, magenta,
yellow. None of these bi-co-vectors is visually equiva-
lent to any of the bi-vectors in 5D. The three-property
color elements are distinct from the two-property color
elements. Thus, in this five-dimensional color space we
can see immediately that bi-co-vectors are distinct from
bi-vectors, a distinction that is not obvious in 4D or 3D.
While envisioning the same geometrically via five spa-
tial dimensions is hard, but using color space it is easy
to comprehend. This impression serves to demonstrate
that vectors, bi-vectors, co-vectors and bi-co-vectors
are actually different kinds of vectors, and they should
be treated as objects with different properties before
identifying them in special situations. An explicit dis-
tinction clarifies the meanings of algebraic objects in
3D Euclidean space such as “tangential vectors”, “axial
vectors” or “normal vectors”, which are just 3D names
of these vector quantities: a “tangential vector” is basis
vector in 3D; an “axial vector” is a bi-vector in 3D; a
“normal vector” is a co-vector in 3D. Confusing these
different algebraic objects in 3D unavoidably leads to
programming errors, such as applying a wrong coordi-
nate transformation (normal vectors transform inversely
to tangential vectors). A type-safe implementation that
honors the mathematical differences therefor allows for
better, clearer formulations of algorithms in 3D that are
less prone to implementation errors.

The ideas presented here are meant to inspire using
colors and beyond as alternative to spatial geometry.
We did not make use of the inner product which may
find its use in vision research to describe perceptual
intensity, for instance. Also, we did not make use of
the anti-symmetric property of the ∧ product such that
x∧ y = −y∧ x which introduces an orientation (this is
why the highest dimensional ∧-product was called “Ω”
in this text) to multivectors: with red∧green being a “left-
polarized” yellow versus green∧red yielding a “right-
polarized” yellow may open an approach to include more
properties of light into a mathematical framework. This
is left for future work and / or an inspired audience.
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