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ABSTRACT
Surrounding lighting conditions cannot always be sufficiently controlled during videoconferences, yielding situa-
tions in which disturbing reflections might appear on the participants glasses. In this article, we present a retrained
neural network to convincingly reduce such reflections. For real time performance we propose an asynchronous
processing pipeline accompanied by a head pose-based caching strategy to reuse intermediate processing results.
The implementation as virtual webcam allows the system to be used with arbitrary videoconferencing systems.
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1 INTRODUCTION
In the last years video conferences have undergone a
huge rise in usage and popularity. Wearers of glasses
often experience reflections in their glasses that distract
their counterparts or could reveal sensible information.
The aim of this work is a reduction of these reflections
in real time. To achieve this we integrate an existing
neural network for reflection removal, that is not real-
time capable, in a real-time context.

Existing techniques for reflection reduction [LLY+23]
from a single input image are currently still far from be-
ing real-time capable, often reporting processing times
of approximately 400 ms. To remedy this, we propose
to reduce the computational load by extracting and pro-
cessing only the relevant part (glasses) of each frame,
and propagating the results to subsequent frames.

We detect the region of interest using a learning-based
face detection. The segment of the image that contains
the glasses is then processed asynchronously by the re-
flection removal network. Based on the current head
pose a reflection mask is applied to the current frame.
Through this optimization the processing time per im-
age is reduced to under 40 milliseconds on commodity
hardware.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

In Section 2 we introduce the neural network that is
used for the actual reflection reduction and differenti-
ate our approach from other methods. We present the
goals, approach, and realization of the components of
our method in Section 3. An evaluation of the methods
performance on multiple metrics is presented in Sec-
tion 4 before concluding in Section 6.

2 RELATED WORK
Reflection removal has drawn attention during re-
cent years, especially in the field of deep learning
[AST+22]. Reflection-aware guidance (RAGNet)
[LLY+23] is a neural network to remove reflections
from glass surfaces in real or synthetic images of fully
occluded objects or persons behind a glass panel. The
task of reflection removal under these circumstances
is similar to the presented task of reflection removal
from spectacle lenses, but not identical. The main
difference is the partial occlusion of the object and
the curvature of the spectacle lenses. The V-DESIRR
network [PSB+21] surpasses RAGNet in terms of
reflection removal quality and inference time but both
target solely reflections on plain glass. Neither the data
set nor the code of the V-DESIRR network have yet
been made available to the public, preventing its use in
any subsequent research. Another promising approach
was shown by Wan et. al. in [WSL+21] by removing
reflections from images containing partially occluded
persons behind a glass panel. Their approach focused
solely on faces and incorporated specific facial priors.
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The task is quite similar to the presented task, but the
missing open source implementation is again prevent-
ing its application in research. Besides single-image
reflection removal, multi image methods exist such
as [LCL21]. Those methods are not applicable to our
problem as we assume input from a single webcam.
The presented work differs from the aforementioned
works by focusing on the real-time aspect and the
curved surface of glasses.

3 METHOD
In this paper we investigate whether an existing reflec-
tion removal algorithm can be adapted to reduce reflec-
tions on a user’s glasses in real-time. For this purpose
we make use of RAGNet [LLY+23] an open-sourced
current state-of-the-art reflection removal method.
As input we assume a simple RGB image stream
from a 30 Hz live stream or input video of size
1920× 1080 pixels. The output is a video or a video
stream (virtual webcam) with a maximum resolution
of 1920×1080 pixels. We further assume, that there is
only one person in the image and the person is in focus
and decently illuminated.

3.1 Overview
In this section we give an overview of our technique.
The flowchart in Figure 1 shows the per-frame steps of
our proposed procedure, separated in two asynchronous
threads. The main thread reads the input image and
computes the position of significant features in the per-
sons’ face, usually referred to as facial landmarks. If
glasses are detected, the section of the image that con-
tains the glasses (further referred to as glass-section) is
extracted and scaled to a fixed resolution.
The glass-section and landmarks are fed to the the side
thread. There, the RAGNet generates two output im-
ages: the reflection map and the reflection reduced im-
age. The output images as well as the landmarks are
stored in a cache. The RAGNet distorts the original col-
ors of the image and a color correction has to be applied
prior to the storage process [RAGS01].
The main thread detects motion relative to the previous
frame. If no motion is recognized, the previously de-
tected reflection mask is reused. If, otherwise, motion
exceeds a certain threshold, the cache is searched for
previous results of a similar pose. If a matching pose
is found, the cached reflection mask is warped to fit the
current input image and is then applied to it. In favor of
a real time frame rate, the frame is left unchanged if no
matching pose was found in the cache.
For evaluation later on, we also implemented a syn-
chronous mode running the RAGNet on each frame
without motion detection and cache. Because of the
long processing time of the RAGNet this mode is not
real-time capable by itself.

scale glass-section
to defined format

movement
detection

search pose and 
reflection in cache

output

yes

no

reflection reduction
with RAGNet

color correction

and landmarks
glass-section

main thread

side thread

read and scale
input image

face and glasses
detection

face 
with glasses 
detected?

apply cached
reflection mask

storing results
in cache

Figure 1: Asynchronous processing pipeline

3.2 RAGNet
The neural network RAGNet follows a two step ap-
proach [LLY+23]. In the first step the network com-
putes a reflection mask. This mask together with the
original image form the input for the second step, where
the reflection reduced image is generated. One major
task of the second step is to “hallucinate” the content of
the image regions where the brightness of the reflection
is clipped by the image format limits, i.e., in overex-
posed regions. This behavior can be seen in Figure 2.

input image

reflection mask

reduced reflection

Figure 2: RAGNet hallucinates overexposed regions
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3.3 Glasses detection
As applying RAGNet is computationally costly, we ex-
tract the region-of-interest containing the glasses and
restrict further processing to this region only. The deci-
sion if glasses are present in the computed face is based
on the presence of edges, i.e., frames of glasses, in three
image regions: below each and in-between the eyes (see
Figure 3, right). These facial regions, identified based
on the landmarks [JBAB00, Tia19, Sid21].

The face detection is realized using DLIB [Kin09], a
well established library that robustly handles variations
in pose or illumination. Specifically, the landmarks
shown in Figure 3 (left) are acquired using the DLIB fa-
cial landmark detector [SAT+16, KS14]. The computa-
tion speed of the DLIB algorithms can be improved by
executing them on the graphics card using the CUDA
toolkit [NVI]. The performance can further be im-
proved by downscaling the input image. We empiri-
cally chose the resolution (1280×720 pixels) such that
the rate of correctly identified facial landmarks is nearly
equivalent and subsequent computations are not com-
promised.

The boundaries of the glass-section are determined by
the bounding box of the landmarks around the eyes.
This yields a robust, accurate and fast detection of the
glass-section (see Section 4).

Figure 3: 68 facial landmarks detected with DLIB (left)
and examined facial areas according to [Tia19] (right)

3.4 Refined RAGNet
The following sections describe our task-specific trans-
fer learning to optimize RAGNet towards glasses.

3.4.1 Pretrained weights
The pretrained RAGNet [LLY+23] removes reflections
from images where the content is fully covered by a
glass plane. We found that the quality of the reflection
removal is still acceptable for our scenario, where only
a small part of the image is covered by glass, but the
computation times are far from real-time, even when
focusing on the glass-section only.

The processing time as well as the quality of the
reflection removal depends strongly on the size of
the image. We, therefore, scaled the glass-section to
711×300 pixels to achieve stable yet satisfying results.

3.4.2 Recording of and training with synthetic
data

To improve the performance of RAGNet we addition-
ally trained it with synthesized training data that specifi-
cally resembles our use case more closely than the orig-
inal training data, i.e. persons with glasses. The synthe-
sizing process to create the training data was similar as
proposed in [FYH+17].

To train the RAGNet three images are needed, one that
remarks the ground truth and has no reflections in it,
one that represents the reflections in the image (reflec-
tion mask) and the last one that is the original image
with the reflections in it (see Figure 4). The unpro-
cessed training frames are extracted from a reflection
free video. The glass-sections are then extracted as de-
scribed in Section 3.3 and rescaled to the demanded
size. The reflections are randomly selected from a set
of handcrafted prerecorded reflection templates. Within
reasonable limits, these templates are randomly scaled,
rotated, and intensity-adjusted. In the last step the re-
flections are added to the ground truth and the edges are
smoothed with a Gaussian filter.

With this algorithm a dataset holding 3000 entries was
created and RAGNet was trained for 15 epochs with
the setup recommended by Li et al. [LLY+23]. The
validation was done based on the original loss function
and the mean peak signal-to-noise ratio (PSNR) on 20
validation data set entries. The training after 15 epochs
resulted in improved results, as depicted in Figure 5.

The results of RAGNet trained on the synthesized data
sets did not perform well on real test data. This behav-
ior was expected as it was observed by the authors of
RAGNet too when they used synthetic data originally
[FYH+17]. This could be due to overfitting or too un-
realistic artifacts. To resolve this problem the training
set was extended with real reflection images as follows.

reflection-free image

reflection mask

image with reflection

Figure 4: Example of the synthetic training data
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pretrained

synthetic training data

Figure 5: RAGNet original and retrained (synthetic)

3.4.3 Recording of stroboscope data
To generate real test data including images with and
without reflection for the same head pose, we used
the following setup. A person in front of a PC screen
watched a program that alternated a full screen output
between plain white and black. During each state, an
image of the person was acquired using a webcam. The
time between the state changes was chosen so that it en-
ables the light to set and the camera to produce a stable
picture but also short enough so that the person’s head
won’t move significantly. As previously mentioned the
training needs a third image per data set. The image
representing the reflection is calculated by subtracting
the reflection free image from the image with reflec-
tions. A set of the stroboscope images is displayed in
Figure 6.

To create viable test data it has to be assured, that the
room where the images are recorded doesn’t contain ad-
ditional reflection sources. The person the images are
taken of is ideally illuminated from above and no back-
ground light is disturbing the image. Otherwise the
whole face would be brighter if the white light of the
screen is turned on. If the light from above is too bright
the reflections on the glasses would not be significant
enough to be seen.

reflection-free image

reflection mask

image with reflection

Figure 6: Example of the stroboscope training data

3.4.4 Training with synthetic and stroboscope
data

To improve the results of RAGNet the data set was
extended by 1095 stroboscope entries and additionally

903 synthetic entries. The data was divided into 60%
training, 20% validation and 20% test data, resulting in
a training set with 2997 entries.

With this dataset the pretrained RAGNet was refined in
the following three steps.

First, the network was further trained for 55 epochs un-
til the loss started to converge. Second, to prevent train-
ing towards a local minimum, for which the first step
of the RAGNet produced a empty reflection masks, we
trained 30 epochs using a modified loss function that
included the reflection mask only, until the RAGNet
produced plausible reflection masks. Third, to miti-
gate errors in the reflection free images, the network
was trained until convergence for additional 70 epochs
with the original loss function, to finish the joint opti-
mization of reflection mask and reflection reduced im-
age generation.

After retraining, RAGNet produced plausible reflection
masks and eliminated reflections better than the original
version of the network when applied to images of faces
with glasses. The inference for a single entry of the
validation set is shown in Figure 7.

Since the reflection reduced images show a shift in their
color distribution, we extend their processing with an
appropriate color correction [RAGS01].

input image

reflection mask

reduced reflection

Figure 7: RAGNet retrained (synthetic + stroboscope)

3.5 Motion detection
To reduce temporal artifacts of the cached reflection
reduction, that become most noticeable during small
head motions, we perform a motion detection, to di-
rectly reuse the previous detection in these cases. Fur-
thermore, the motion detection reduces the frequency
of cache searches.

To detect motion, i.e., changes between successive im-
ages, we compare the current frame with its predeces-
sor via the structural similarity index measure (SSIM)
[WBSS04]. SSIM was chosen because it offers to com-
pute similarity only for the brightness of two images,
and reflections almost always affect image brightness.
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A threshold of 0.95 for the SSIM score was empirically
identified to give reliable results.

We further improve performance by computing the mo-
tion detection only for the eye region (see Figure 8).
The position and size of the region-of-interest around
the eyes is again computed based on the facial land-
marks, including a certain margin around the eyes to al-
low keeping the bounds unchanged for the SSIM com-
putation during slight head movements. It is automati-
cally updated only if the eyes reach the current bounds.

Figure 8: Section around eyes for motion detection

3.6 Asynchronous processing
Even for the size-reduced glass-section the RAGNet
takes 190 ms to process a single frame. Therefore, we
decided to move the RAGNet processing to a separate
thread. The main thread supplies the RAGNet thread
with the current frame and respective landmarks, as
shown in Figure 1. The RAGNet side thread then pro-
cesses the frame asynchronously and generates the re-
flection reduced image and the reflection mask. The
reflection reduced image is then color corrected. The
input images, output images and facial landmarks are
stored in the cache using a ring buffer scheme.

3.7 Pose-based cache search
For each input frame the main thread searches for a fit-
ting similar frame in the cache. The selection is based
on similarity of the facial landmarks of the current and
the cached frames. The search can be executed in 5 ms
for 50 cache elements using this approach.

Excluding mouth and eyes, 35 out of the 68 facial land-
marks are used for per-frame head pose encoding us-
ing a 2-column matrix, storing one position (x,y) per
row (Equation 1). The dissimilarity di between the ith
cached element’s facial landmark matrix Mi and the
current landmark matrix Mcurrent is determined by the
Frobenius norm F of their difference (Equation 2). The
cached element with the smallest di is selected, if it
is below the threshold tnorm (Equation 3), which is an
image size-normalized threshold with user-defined pa-
rameter t. A value of t = 15 was empirically found to
yield a good trade-off between cache hit rate and visu-
ally pleasing output.

M =

 y1 x1
...

...
y35 x35

 (1)

di = F(Mcurrent −Mi) (2)

tnorm = t · image width
1000

(3)

3.8 Cache-based reflection reduction
Mitigating the expensive, thus slow execution of RAG-
Net, cached results of preceding frames that were com-
puted by RAGNet already, are now employed to reduce
reflections on the current input image. As described
above, we retrieve the data of the cached frame that is
most similar to the current frame in terms of the de-
tected head pose, assuming no significant changes in
the background of the videoconference feed, i.e., the
user’s surrounding. To reduce the reflections in the cur-
rent input image, we use the cached reflection mask,
i.e., the difference between the cached input image and
the cached reflection reduced image.

To account for slight differences between the head pose
of the current and the cached frame, the reflection mask
needs to be adjusted accordingly. To this end, the fol-
lowing three approaches for reflection mask adjustment
were tested.

1. Homography transformation based on four facial
landmarks: the outermost points along the eyebrows
(17, 26) and the lower left and right parts of the chin
(6, 10).

2. Affine transformation based on three facial land-
marks: the outermost points along the eyebrows (17,
26) and the lowest point along the contour of the face
at the middle of the chin (8).

3. Correlation: Application of the cached reflection
mask at the location of highest correlation (nor-
malized mean shifted cross correlation) between the
glass-section of the cached frame and the current in-
put image.

Since reflections are no fixed parts of glasses, but may
instead change their position on the surface as the head
moves, they do not necessarily move uniformly with the
glasses. Thus, head motions may still result in some
artifacts in the form of brightness mismatches along the
edges of the cached reflection mask.

From the three tested approaches, correlation leads the
fewest artifacts and is therefore suggested to be used by
default. An exemplary result of the reflection reduction
using correlation is shown in Figure 9.

4 EVALUATION
In the following we evaluate the different components
of our proposed method.
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input image

cached image

cached reflection mask

reduced reflection

Figure 9: Cache-based reflection reduction

4.1 Glass-section detection
The face detection is evaluated on a test dataset of 2400
images. The test images originate from the recorded
webcam streams of four different web meeting partic-
ipants. The quality of the face detection is evaluated
for scaled and unscaled input images in Table 1. The
accuracy does hardly degrade for scaled images and is
sufficiently high.

Unscaled Scaled
Scale factor 1 0,3125
TP1 2372 / 2400 2369 / 2400
Accuracy 98.83% 98.71%

Table 1: Face detection accuracy on scaled images

The glasses detection was optimized on a subset of the
dataset. The quality of the algorithm was evaluated on
the rest of the dataset. As shown in Table 2, the pro-
posed glasses detection method performs similar to the
reference method by Fernández et al. [FGUC15]. It
should be noted, however, that different data sets were
used for validation, because there is no reference im-
plementation available for the comparison method.

Training
set

Test set Reference
method
[FGUC15]

TP 392 /
397

1935 /
1971

2959 /
3000

FP1 0 2 -
FN1 5 34 -
Accuracy 98.74% 98.17% 98,65%

Table 2: Glasses detection accuracy

1 TP: True Positives, FP: False Positives, FN: False Negatives

Since there is no reference glass-section cropping al-
gorithm, our approach is validated against a previously
manually selected image region. We use the excess im-
age area and the missing image area relative to the man-
ually selected area as metrics to determine the quality
of the automatic glass-section cropping algorithm. The
results are listed in Table 3.

Training set Test set
Images 400 2000

Excess area 14,21% 13,79%
Missing area 8,56% 9,55%

Table 3: Automatic eye region cropping

The overall relative error area is sufficiently small for
the subsequent processing stages. The sum of errors
is only sligthly increasing from the training to the test
set. This implies that the algorithm shows a good gen-
eralization and should be applicable to new previously
unseen images.

4.2 RAGNet performance
The different retrained instances of the network are
evaluated quantitatively by comparing their average
PSNR and SSIM [HZ10]. The disjoint test data set
consists of 1000 mixed stroboscopic and synthetic
images. Table 4 shows both metrics for the generated
reflection reduced output images.

Training set Epochs PSNR SSIM
RAGNet original 150 15.24 0.731
Synthetic data 15 23.80 0.880
Synthetic 55 28.86 0.935
+ stroboscope data
Reflection-only 30/70 27.39 0.937
+ joint training

Table 4: Performance per training strategy

The network instance with reflection-only pre-training
followed by full training, has the best average SSIM
score and reaches the second highest average PSNR
value. It is the only network computing a meaningful
reflection mask for our scenario.

The network robustly detects reflections on the con-
strained input data and convincingly reduces reflections
on single images. Even though very bright (clipped to
white) reflections in input images result in visible arti-
facts, their appearance is still reduced noticeably.

Given the RAGNet (in synchronous mode) would run
fast enough, it is only evaluated on individual frames
without incorporating temporal consistency, resulting
in a noticeable flickering. This directs towards future
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research on, e.g., temporal low-pass filtering the reflec-
tion mask output or extending the RAGNet architecture
to include recurrent layers for temporal context.

The reflection reduction works good on the constrained
data set of similar test data. The model has problems
generalizing on unseen footage. This limitation could
clearly be overcome with a more diverse training set.

4.3 Motion detection
The motion detection was subjectively tested for plau-
sibility. The estimated SSIM index correlates well with
the present amount of motion, i.e., the SSIM index
reaches values near one for non-moving persons.

4.4 Asynchronous processing
The temporal coherence and overall reflection removal
quality was verified subjectively. The asynchronous
processing introduces some additional flickering to the
resulting video stream, caused by remaining differences
between cached and current frames. While mismatches
due to peoples motion are limited to small offsets via
motion detection, changes in lighting are implicitly
compensated over time due to the ring-buffered cache.

Regarding the reflection mask adjustment, the homog-
raphy approach yields mediocre results. Even with
careful selected landmarks there were some clearly vis-
ible remaining artifacts when applying the transformed
cached reflection mask. Restricting the degrees of free-
dom by using affine transformations resulted in more
consistent and therefore more pleasing results. Best re-
sults were achieved using the correlation approach, re-
stricting the applied transformation even more, yielding
the temporally most consistent results. This resulted in
an overall visually more pleasing perception.

4.5 Execution time
The real time requirements require a strict optimiza-
tion of the different components. All performance tests
were performed using input videos with a resolution of
1920×1080 pixels on a system with an NVIDIA GTX
960 and an AMD RADEON VEGA 56. The glasses
detection is running on the former while the RAGNet is
running on the latter.

The largest performance improvement could be
achieved by executing the RAGNet asynchronously.
The reduction of the input resolution for the glasses
detection and the movement detection resulted in fur-
ther performance improvements. The mean execution
times for processing a single frame, averaged over 200
frames, is displayed in Table 5. Finally, applying some
common optimizations throughout the pipeline, such as
reducing the number of image copy operations, yielded
a final frame rate of 31.25 Hz.

Optimizations Execution time [ms]
Synchronous 410
Asynchronous 199
Asynchronous & scaled 38
Further optimization 32

Table 5: Average processing time per frame

The composition of the frame processing time for a sin-
gle exemplary frame is shown in Table 6.

Processing Step Execution time [ms]
Read Frame 1
Glasses detection 20
Motion detection 6
Cache search 4
Transfer to current frame 2

Table 6: Processing time per system component

5 DISCUSSION
The model generally strongly depends on the input
video stream. The best results are achieved under good
lighting conditions and for reflections in the upper half
of the glasses.

Generalizability. While using comparatively small
data sets, like in this work, typically implies little gen-
eralizability, building upon the far more diversely pre-
trained RAGNet mitigates this weak point for our ap-
proach. It should therefore also be possible to also re-
duce reflections from light sources other than screens,
e.g. ceiling lamps, and even under different lighting sit-
uations.

Moreover, the restriction of the processing to the glass-
section should further increase generalizability, as the
network does not need to learn (to ignore) arbitrary en-
vironments.

Limitations. Reflections which directly occlude the
eyes sometimes result in worse reflection removal per-
formance with stronger artifacts, as shown in Figure 10.

Figure 10: Artifacts for reflections covering the eyes

While strong variations in illumination will most likely
not break the approach, they might reduce the effective-
ness, resulting in, e.g., brightness or color mismatches.

Since both limitations arise from the limited data set,
it is reasonable to assume that the proposed system can
overcome them by extending the training to a larger and
more diverse data set, which we leave for future work
with a focus on robustness.
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6 CONCLUSION
This paper presents an approach to reduce reflections on
glasses in real-time. We showed that the RAGNet neu-
ral network can be arranged in an appropriate pipeline
to convincingly reduce reflections on glasses. For appli-
cation in live videoconference scenarios, we achieved
real-time capability by reducing the network input size
using the newly introduced glass-section detection and
the proposed asynchronous processing scheme. More-
over, temporal consistency is strengthened via robust
motion detection and color transfer.

While the goal of complete reflection removal was not
achieved, the synchronous mode would result in visu-
ally more pleasing reflection removal on selected in-
puts, but is not real-time capable. The real-time capa-
ble asynchronous mode introduces some artifacts and
flickering. Furthermore, some aspects of the imple-
mentation still offer potential for improvement, e.g.,
for multiple persons or handling of the remaining er-
ror cases, such as reflections largely occluding the eyes.
The method is currently still very resource demanding,
motivating further optimization, e.g., via motion com-
pensation for cached frames.

Also beyond videoconferences, the proposed method
could be a helpful tool for preprocessing videos in ap-
plications that use eye tracking or emotion analysis.
The method could also be reduced in scope, to be used
as a reflection detection.
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