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ABSTRACT
Energy consumption for computing and using hypersurface curvature in volume dataset analysis and visualization
is studied here. Usage in both the base case and when more energy-optimal strategies, particularly computational
(especially for linear algebraic steps) strategies, are the primary foci here and are considered for analysis tasks that
are precursors to visualization. Compilation-based effects on energy usage are a secondary focus. Efforts here are
on Intel x86, which is popular and has power measurement capabilities. Additionally, a first-time visualization of
hypersurface curvature distributions in a brain imaging scenario is exhibited. The work aims to advance under-
standing of computing’s energy footprint and to provide guidance for energy-responsible volume data analysis.
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1 INTRODUCTION

Energy consumption of data processing activi-
ties has recently received increased attention from
policy-makers, data center deployment planners,
and computing researchers. Methods to characterize
computing energy use thus has been one direction
for energy-related research in computing, with char-
acterization still an early-stage technology [Lan23].
In this paper, one of our focuses is characterizing
energy use for certain computations related to analysis
and visualization. Some computing environments,
like recent Intel x86 CPUs (our focus here), have
built-in power-monitoring features that are accessible
for inspection by software developers, making such
characterizations accessible to interested parties. Other
environments do not well-expose their power usage,
making characterization more challenging for them.
(Some reports involving use of external monitoring
systems to measure power consumption do exist (e.g.,
[Lin19]), though, and generic estimators based on
memory and core use also exist (e.g., [Lan21]). ) Some
of the characterizations have involved system-level
considerations, especially for large data centers, with
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those characterizations sometimes employed in setting
purchase specifications. A characterization of server
energy use has been reported by Fuchs et al. [Fuc20],
for example. Additionally, characterizing energy from
manufacturing of computing systems has also been
considered [Gup22]. One other area of investigation
has considered characterizations of competing com-
puting paradigms, such as opportunities using FPGA
computation (e.g., [EM20]). Comparative analyses of
many instances of a class of algorithms have also been
reported (e.g., [Hen20]).
Finally, another research theme has been creation and
examination of strategies that a given type of algorithm
can use to reach its solution in a more energy-optimal
manner. Such approaches offer great promise–they are
perhaps the “most productive...green computing activ-
ity” [Lan21]. They can be pursued either in an end-
device agnostic manner or with focus on a specific com-
puting device. Beckitt-Marshall [BM21], for example,
has examined compiler optimization strategies to deter-
mine best optimization settings to achieve low energy
usage for two file compression approaches, an ambient
occlusion renderer, and several other algorithms on a
widely-used type of CPU. Another strategy has been to
exploit cache properties to reduce energy usage (e.g.,
[Tit15]).
The effort here both characterizes power usage and ex-
plores energy-efficient strategies for a class of volume
data analysis algorithms, hypersurface curvature deter-
mination, and one volume visualization scheme, maxi-
mum intensity projection, run on Intel x86 (one of the
most popular end computing environments for volume
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data analysis). (Hypersurface curvatures are discussed
in more detail in Section 2.) As one of the first such
efforts for the volume data analysis arena, a limited se-
ries of strategies is considered here, although they are
applicable to many other volume data analysis and vi-
sualization approaches.

2 BACKGROUND
This section presents some necessary background. This
includes details about hypersurface curvature (includ-
ing its utility and the mathematics for computing it) and
details about the four hypersurface curvature determi-
nation methods considered in our energy usage experi-
ments (presented later). Finally, some details about the
aims and motivations of the work are presented.

2.1 Hypersurface Curvature
Curvature measures of 3D manifolds (often called hy-
persurfaces [Mon92]) have been found to be very use-
ful descriptors for a variety of tasks, especially in the
fields of geology (where such curvature measures are
useful for identifying faults or fractures [Bra10] and for
visualizing seismic phenomena [Ald14]) and medicine
(where such curvature measures are useful for clas-
sification of tumors [Hir18] and arterial measurement
[Suz18]). For such tasks, the three principal curva-
ture values, denoted κ1, κ2, and κ3 (ordered such that
κ1 > κ2 > κ3), are of value.

Hypersurface curvatures are also useful for surface
reconstruction [Pap07] and for classification of data
points within a volume, where such points can be
classified based on the relative, relative absolute, and
average values of these three principal curvature values
[Hir01].

Formally, hypersurface curvature can be defined as fol-
lows. Let (u,v,w) denote a grid (or sample) point within
a scalar volume (where 0≤u<Nu, 0≤v<Nv, 0≤w<Nw
for a volume of size Nu×Nv×Nw). The value at point
(u,v,w) is then denoted f (u,v,w) with f representing
the underlying function that generates the volume and
fu representing the partial derivative of f in the u direc-
tion. The hypersurface’s three principal curvatures (i.e.,
of f ) are then the eigenvalues of the matrix:

1
l

 fuu fuv fuw
fuv fvv fvw
fuw fvw fww

1+ f 2
u fu fv fu fw

fu fv 1+ f 2
v fv fw

fu fw fv fw 1+ f 2
w

−1

,

(1)

where

l =
√

1+ f 2
u + f 2

v + f 2
w. (2)

Thus, computation of κ1, κ2, and κ3 requires knowl-
edge of the first derivatives, second derivatives, and

mixed partial derivatives of f . Often, the continuous
form of f is unknown, because the data under consid-
eration was acquired via a sensor. In such cases, these
necessary derivatives must be estimated in order to cal-
culate κ1, κ2, and κ3 from Eqn. 1.

2.2 Hypersurface Curvature Determina-
tion Methods

Our studies consider four methods for determining hy-
persurface curvature from volumetric data. These meth-
ods all work by first estimating the necessary deriva-
tives and then computing the hypersurface curvature us-
ing Eqn. 1. These four methods have previously been
comparatively studied on the bases of their accuracy
and run time [Hau21]. Because the methods all differ
in their derivative estimation approach, all four meth-
ods exhibit varying run times, accuracies, and energy
usages. Here, we briefly describe the four methods con-
sidered.

2.2.1 Taylor Exp.-based Conv. Kernels (TE)

One hypersurface curvature determination method,
denoted TE, estimates derivatives using convolution.
Specifically, it uses convolution filters derived from
the Taylor Expansion along each axis to estimate all
the necessary derivatives. Once these derivatives are
known, the three principal curvatures are computed
as the eigenvalues of Eq. 1. The TE approach has
previously been used in determination of both sur-
face curvature [Kin03] and hypersurface curvature
[Hau19], where it was found to be a among the fastest
approaches.

The method’s filters are determined according to a
framework that allows construction of filters with
arbitrary accuracy and continuity. For our experiments
with the TE approach, we used filters with C3 conti-
nuity and fourth order accuracy, following prior works
(e..g., [Kin03]). At these continuity and accuracy
parameters, the first derivative kernel is size 5 and the
second derivative kernel is size 7.

2.2.2 B-Spline-based Derivatives (BS)

The BS hypersurface curvature determination method
uses f as the coefficients of a tricubic B-Spline
[Hau19]. This B-Spline represents a continuous
form that approximates f , and the derivatives of that
continous form, in conjunction with Eq. 1, are used to
determine the principal curvatures.

It is possible to configure the B-Spline in a number of
ways (e.g., with varying numbers of knots or varying
degree). For our experiments , we configured the B-
Spline similarly to other reports–with knot count the
same as input volume dimensions.
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2.2.3 Orthogonal Polynomials-based Convolu-
tion Kernels (OP)

Another hypersurface curvature method, denoted OP,
also uses convolution to estimate the necessary deriva-
tives and then computes the resulting curvatures via
Eq. 1. OP uses convolution kernels derived from or-
thogonal polynomials.

The OP method uses kernels of odd size N that are gen-
erated according to three functions b0(x), b1(x), and
b2(x):

b0(x) =
1
N

, (3)

b1(x) =
3

M(M+1)(2M+1)
x, (4)

b2(x) =
1

P(M)
(x2 − M(M+1)

3
), (5)

with M = N−1
2 . P(M) is:

P(M) =
8
45

M5 +
4
9

M4 +
2
9

M3 − 1
9

M2 − 1
15

M. (6)

From these kernels, derivatives are estimated via:

ai jk = ∑
u,v,w∈m×m×m

f (u,v,w)bi(u)b j(u)bk(u), (7)

where m = {−(N−1)
2 , ..., (N−1)

2 }. For example, the esti-
mate fu would be found using a100.

Aside from one set of supplemental experiments at the
end of Section 4, all of our experiments follow prior
works (e.g., [Hau19]) and use N = 7.

Since convolution with such kernels implicitly does a
least squares fitting [Fly89], OP results match those of
a linear regression-based local surface fitting (without
explicitly performing any linear regression).

2.2.4 Deriche Filter-based Convolution Kernels
(DF)

The DF hypersurface curvature determination method
also uses convolution to estimate derivatives and then
computes curvature via Eq. 1. It uses convolution ker-
nels based on three Deriche Filters ( f̂0 for smoothing
and f̂1, f̂2 to estimate the first and second derivatives,
respectively) [Der90]. f̂0, f̂1, and f̂2 are defined as:

f̂0(x) =c0(1+α|x|)e−α|x|, (8)

f̂1(x) =− c1xα
2e−α|x|, (9)

f̂2(x) =c2(1− c3α|x|)e−α|x|, (10)

where c0, c1, c2, and c3 are scaling factors defined as:

c0 =
(1− e−α)2

1+2e−α α − e−2α
, (11)

c1 =
−(1− e−α 3

)

2α2e−α(1+ e−α)
, (12)

c2 =
−2(1− e−α 4

)

1+2e−α −2e−3α − e−4α
, and (13)

c3 =
(1− e−2α)

2αe−α
, (14)

with α a smoothing term. Monga et al. [Mon92] noted
that smaller values for α are often required when esti-
mating second derivatives compared to when estimating
first derivatives.

Aside from one set of supplemental experiments at the
end of Section 4, we have set α = 1.0, since that same
value for α was used in a prior work ([Hau21]) that
explored the DF method.

2.3 Aims and Motivations
This work is motivated by prior work that considered
accuracy and computational performance of hypersur-
face curvature computation [Hau19].

Energy-efficient algorithm strategies for linear system
solutions has been one focus of prior work. Köhler and
Saak [Kö19], for example, have explored such strate-
gies, including: (1) combining certain evaluation activ-
ities (to save on data transfers); (2) use of a Newton-
type method to compute matrix sign; (3) use of Gauss-
Jordan elimination in lieu of LU-decomposition; and
(4) changing one internal storage scheme to improve
cache utilization.

Our strategies here, described later, also include efforts
aimed at saving on data transfers and improving cache
utilization, including in linear system components of
hypersurface curvature determination.

3 METHODS/STRATEGIES
The strategies to achieve energy efficiency in the hyper-
surface curvature computation, primarily involving im-
provements in linear algebraic computations and com-
piler products, are described in this section.

3.1 Linear Algebra Memory & Computa-
tional Improvements

Hypersurface curvature determination in volumetric
datasets using the methods previously reported in the
literature requires estimation of derivative quantities
in the dataset followed by steps including finding
inverses, determinants, and performing matrix multi-
plication. These operations implement the equations
described above. Standard solver libraries can be used
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to compute those, and we initially used the Armadillo
library [San16] for that. (Later, we report comparisons
versus use of Armadillo.) Armadillo has several
characteristics that are not energy-optimal, though,
for application here. For one, it uses its own internal
format for matrices, which incurs some overhead in
both time and energy consumption. Also, our core
matrices are symmetric (but not necessarily positive
definite). (N.B.: the matrix product is not symmet-
ric, though.) Inspection of the Armadillo library
functions revealed that the inverse and determinant
computation in them did not exploit matrix symmetry
for (non-positive definite) symmetric matrices, which
means that there are redundant computations in the
case of such matrices. Our approach avoids these
redundancies, thereby saving both energy and time.
Our approaches to improve energy efficiency of linear
algebraic-based computations for hypersurface curva-
ture determination involved replacement of Armadillo
with our own realizations that store matrices as standard
arrays and avoid unnecessary computations performed
in the Armadillo code. Some aspects of the savings
our realizations achieve for matrix determinant follow.
3×3 matrices of the form:a b c

d e f

g h i

 (15)

have determinants of the form:

a

∣∣∣∣e f

h i

∣∣∣∣− b

∣∣∣∣d f

g i

∣∣∣∣+ c

∣∣∣∣d e

g h

∣∣∣∣ . (16)

Computing such a determinant involves loading the 9
matrix entries into the control unit of the CPU and per-
forming 5 additions and 9 multiplies. Ultimately, Ar-
madillo realizes these same actions. Our linear algebra
strategy for determinant calculation, however, exploits
that in our symmetric matrices, d= b, g= c, and h = f.
Thus, for our hypersurface curvature computation the
determinant of the matrix shown in Eq.15 has the form:

a

∣∣∣∣e f

f i

∣∣∣∣− b

∣∣∣∣b f

c i

∣∣∣∣+ c

∣∣∣∣b e

c f

∣∣∣∣ . (17)

The Eq.17 can be reduced to a form such as:

(ei− ff)(a)− (bi−K)(b)− ecc, (18)

where K = 2cf, with K computed in our algorithm as
a two step process:
K = cf; K =K+K.
The net effect of our approach to finding the determi-
nant is a computation with 5 additions and only 8 mul-
tiplies that also only loads 6 matrix entries into the con-
trol unit of the CPU. Our approach thus reduces load-
ing, reduces register pressure, and can remove one in-
stance of the most expensive operation in the process.

This arithmetic approach extends comparably to the
computation of the inverse.

Our linear algebra strategy thus has four components
in all. They include: (1) avoiding special, generic ma-
trix storage formats (and unnecessary storage of those)
via use of standard matrix storage; (2) exploiting ma-
trix symmetry and size in determinant computation; (3)
exploiting matrix symmetry and size in finding matrix
inverses; and (4) exploiting knowledge of matrix multi-
plicand form in finding matrix products.

3.2 Compilation Improvements
We also considered and report here on two categories
of compilation-based approaches for energy reduc-
tion for the language environment we used, C/C++.
C/C++-based solutions are known to be among the
most energy-efficient [Per17]. The two approaches are
(1) the use of a very high optimization compiler setting
(our compiler was gcc, and its very high optimization
setting is the O3 one), denoted VH henceforth, and
(2) the use of the special mathematical operation
optimization setting (in gcc, this setting is called
ffastmath), denoted FM henceforth. (N.B., because
FM relaxes some floating point compliance within the
compiler, it can impact accuracy. In our experiments
on a real dataset, the average change in the curvature
values due to the use of FM was 2.8× 10−16 and the
maximum change in any of the curvature values due to
the use of FM was 1.5×10−14.)

(Automated loop unrolling, denoted Unroll henceforth,
was also considered and is reported later. It cannot
be considered a general improvement in application to
methods here, as discussed later.)

3.3 B-Spline Library-Related Improve-
ments

For the BS method, we implemented two variants of the
method. Our first variant, simply denoted BS, utilized
the header-only vspline library [kfj23]. The second
variant, denoted BSWM5, used the B-Spline function-
ality present in the larger WildMagic 5 library [Ebe04]
Our results, presented later, consider the energy us-
age of both of these variants of the B-Spline-based ap-
proach.

4 RESULTS
Next, results are reported. All results were determined
on a CPU similar to one used in some related work.
Here, the environment used one core of an Intel Core
i5-8279U CPU. The operating system used was Ubuntu
Server 22.04.1 GNU/Linux. All runs were built us-
ing the gcc compiler (version 11.3.0). (N.B., we found
that code compiled with gcc was consistently among
the best (in terms of energy usage) compared to both
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clang and icc.) Energy measurements and timings were
done via the Performance API (PAPI) software [Bro00],
which in turn measured energy via the processor’s Run-
ning Average Power Limit (RAPL) feature. RAPL,
which is supported on Sandy Bridge and newer Intel
CPUs [Kha18], allows measuring CPU power usage.
RAPL uses hardware counters in conjunction with fac-
tors such as temperature and leakage to estimate CPU
energy usage, and it supports measurement of energy
usage using different domains including package (total
CPU package energy usage), PP0 (CPU core energy us-
age), and DRAM (DRAM controller). A previous study
found RAPL measurements to be accurate while also
exhibiting negligible overhead [Kha18]. The governor
on the computer was set to the "performance" mode in
order to maintain more consistent clock rates, and all
code was run as the "root" user (in order to ensure ac-
cess to the RAPL hardware) using the taskset utility (in
order to ensure that all runs were done on the same pro-
cessor core).

To find the cost of determining hypersurface curva-
ture via canned library (i.e., Armadillo) based linear
algebraic routines, we performed timing and energy
use. For all experiments, five runs were taken and
the trimmed mean (i.e., discarding most and least en-
ergy usage run) was computed. For one experiment, a
256×256×256 volumetric dataset mathematically gen-
erated from a polynomial function used in other re-
ported work on curvature in volumes and called the
“Genus3” polynomial there ([Hau20], Eqn. 39) was
used. On such a dataset, the baseline (optimized) result
(i.e., compilation using gcc with -O2 on the system re-
ported above) for hypersurface curvature determination
using the OP method was found to use 776.9 J (for CPU
package energy) and take 46.6 seconds of CPU time.
Using the VH optimization improved energy use by a
factor of 1.066 and run-time by a factor of 1.075. Cou-
pling VH and FM resulted in total improvement factors
of 1.077 and 1.082, respectively. However, replacement
of Armadillo with our linear algebraic strategies cou-
pled with the VH compilation strategy resulted in both
energy and time improvement factors of 1.25. (N.B.,
the measured energy usage and time typically varied by
about 1% from run to run.)

A breakdown of individual linear algebraic-related
strategy time and (package) energy improvement
factors are shown in Table 1 (versus original baseline
(“Base”) energy use). To ensure that these experiments
consider the overall impact of the underlying libraries
in a wide cross-section of scenarios, we computed
these results on a randomly-generated 2563 volume,
without regard to the end curvature estimator used. (Of
note here: time savings does not always equal energy
savings.) Total energy and time improvements from
these strategies taken together are also shown.

Strategy Base Energy Energy Imp. Time Imp.
Storage 25.40J 11.98x 7.08x
Det. 6.26J 2.95x 2.54x
Inv. 11.27J 1.43x 1.37x
Mult. 11.12J 1.40x 1.49x
Total: 54.05J 2.70x 2.18x

Table 1: L.A. Strategy Energy Use (J) & Improvement

The numbers in Table 1 show the energy usage mea-
surements of these operations in isolation (i.e., not
when used in combination as part of a larger problem
solving task). When these operations are performed in
combination as part of larger task, such as curvature
determination, the improvements can be even more
substantial. In fact, the results in Table 1 account
for less than one-half the total net improvement in
time and energy. Such results for these optimizations
incorporated into curvature determination are described
next.
Table 2 shows overall energy usage results for the com-
plete curvature determination of the four methods when
applied to a 256×256×72 brain magnetic resonance
angiography (MRA) dataset. The BS Method library-
related results are compared in the last two columns
of the table. The entries marked “Custom” here refer
to the use of our linear algebraic strategies rather than
use of the Armadillo library. The two best choices here
are (1) VH with FM and the linear algebraic strategies
and (2) VH with FM and automated loop unrolling with
the linear algebraic strategies. Average energy con-
sumption improvement is 16.72% for the first choice,
which is equivalent to 1.20 times improvement. For the
second choice, average energy consumption improve-
ment is 15.91%, which is equivalent to 1.19 times im-
provement. Since the automated loop unrolling results
are, overall, yielding performance improvement about
the same as optimization without them, we recommend
the first choice here, however practitioners using the
DF curvature determination method would still benefit
slightly from its use, it appears.
Table 3 shows run times for the same dataset. The lo-
cations of the red cells differs between Table 2 and Ta-
ble 3, which is indicative of something that has also
been observed in prior studies: there is not always a
direct correspondence between run time and energy us-
age. Thus, as a general conclusion, results here (again)
indicate that optimization for energy consumption and
optimization for run-time may require different meth-
ods and approaches.
Fig. 1 shows a composite rendering of three maximum
intensity projections (MIP), one per principal curvature,
of the MRA dataset. (κ1’s MIP forms the red channel
of the composite here. κ2’s forms the green channel.
κ3’s, which was clamped to remove low values, forms
the blue channel.) MIP is popular for raw MRA data
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Method OP TE DF BS BSWM5
Baseline (Armadillo) 176.24 J 135.58 J 185.28 J 230.81 J 399.73 J
Baseline (Custom) -11.91% -17.75% -8.49% -10.24% -6.52%
Baseline FM (Armadillo) -0.84% -0.92% 3.91% -0.51% -0.35%
Baseline FM (Custom) -12.87% -17.56% -12.19% -10.65%
Baseline Unroll (Armadillo) 2.42% 0.03% -1.27% 4.86% -5.49%
Baseline Unroll (Custom) -15.02% -17.93% -10.86% -5.35% -12.34%
Baseline Unroll FM (Armadillo) 2.75% -0.61% -2.46% 3.11% 0.67%
Baseline Unroll FM (Custom) -15.35% -18.96% -9.65% -4.45% -10.41%
VH (Armadillo) -4.17% -3.49% -4.45% -0.99% -6.42%
VH (Custom) -16.86% -21.10% -17.21% -10.41% -10.57%
VH FM (Armadillo) -4.86% -4.54% -6.97% -3.38% -3.64%
VH FM (Custom) -17.53% -12.78% -14.17%
VH Unroll (Armadillo) -1.21% -3.39% -4.09% 0.64% 0.63%
VH Unroll (Custom) -16.14% -20.37% -16.16% -10.37% -11.94%
VH Unroll FM (Armadillo) -2.86% -3.61% -4.68% -0.16% -5.91%
VH Unroll FM (Custom) -16.75% -20.62% -9.91%

-11.08%

-17.57% -21.55%

-17.80% -14.47%
Table 2: Energy usage on the MRA dataset (trimmed means of five runs), relative to Baseline for each curvature
determination method in conjunction with the optimization strategies. Cell backgrounds are color mapped based on
energy usage relative to baseline. In each column, the bold entry indicates the approach with lowest energy usage
for that method and the yellow bordered entry indicates the approach with the fastest run time for that method.
Overall, best energy improvement averages about 1.20 times.

Method OP TE DF BS BSWM5
Baseline (Armadillo) 10.65 s 7.85 s 11.43 s 13.00 s 25.91 s
Baseline (Custom) -11.12% -18.02% -8.54% -10.45% -5.24%
Baseline FM (Armadillo) -0.42% -0.65% 3.53% -0.55% -0.47%
Baseline FM (Custom) -12.02% -17.85% -11.80% -11.49% -3.86%
Baseline Unroll (Armadillo) 2.45% -0.24% -1.63% 4.66% -0.23%
Baseline Unroll (Custom) -14.15% -18.33% -11.03% -5.69% -6.21%
Baseline Unroll FM (Armadillo) 3.15% -1.08% -2.31% 3.10% 0.81%
Baseline Unroll FM (Custom) -14.40% -19.12% -9.90% -4.88% -3.70%
VH (Armadillo) -3.92% -3.94% -5.05% 0.91% -0.91%
VH (Custom) -15.93% -21.45% -17.29% -8.08% -3.69%
VH FM (Armadillo) -4.69% -4.76% -7.91% -1.43% 1.93%
VH FM (Custom) -16.62% -21.96% -18.05% -10.22% -7.35%
VH Unroll (Armadillo) -1.13% -4.01% -4.97% 3.85% 0.70%
VH Unroll (Custom) -15.46% -21.10% -16.86% -6.78% -6.15%
VH Unroll FM (Armadillo) -3.29% -4.14% -5.75% 2.89% -0.86%
VH Unroll FM (Custom) -16.21% -21.35% -18.22% -7.12% -7.61%

Table 3: Run times on the MRA dataset (trimmed means of five runs), relative to Baseline for each curvature
determination method in conjunction with the optimization strategies. Cell backgrounds are color mapped based
on energy usage relative to baseline. In each column, the bold entry indicates the approach with lowest run time
for that method.

rendering. To our knowledge, this figure here is the
first MIP rendering of hypersurface curvature features
in MRA data, however. OP’s results were used to pro-
duce Fig. 1. The amount of energy used to produce the
rendering is 146.94 J on average (146.5 J for curvature
computation and 0.42 J for MIPs).

Table 4 presents the results of energy usage experiments
for two other sets of parameters for both OP and DF
versus the values used in the prior experiments. In this
table, OP N denotes application of OP with an estima-
tion filter of size N and DF α denotes application of DF
with a smoothing parameter of value α . As N increases,
the energy usage of OP increases. This is expected, as

larger N values require more computation. Despite OP
5 and OP 9 being 28% smaller and larger, respectively,
than OP 7, the energy differences are substantially less
than that. To some extent, this is to be expected, as
only some of the computation is related to the size of
the estimation filter. OP 5 uses about 0.95 times the
energy of OP 7 and OP 9 uses about 1.07 times the en-
ergy of OP 7, with energy usage scaling up more slowly
when all strategies are used. The energy differences are
much less noteworthy on DF. To some extent, this is
to be expected, as α does not substantially change the
amount of computation. We do note that running DF
with α = 0.5 uses slightly less energy than running it
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Figure 1: MIP: κ1, κ2, κ3 Composite, MRA Dataset.

with α = 1.0 and α = 2.0. Our hypothesized reason
for this is that the optimal filters used by DF rely on
the pow function, which can be more optimal for cer-
tain exponents, in particular ones like 0.5 and 2, which
appear to be exhibited more by the α = 0.5 than by the
α = 1.0 and α = 2.0 settings.

5 CONCLUSIONS
Most of our strategies exploit known properties of
the hypersurface curvature determination domain to
reduce energy consumption (and computation time!).
Our storage-based strategy yielded the largest energy
(and time) improvement for the linear algebraic com-
putational components of the hypersurface curvature
computation, achieving nearly a 12-fold improve-
ment in energy usage, when considered in isolation.
Overall, the linear algebraic computational strategies
achieved nearly a 3-fold improvement in energy usage
for those components of the hypersurface curvature
determination, when taken together.

For practitioners using a B-spline based method for hy-
persurface curvature determination, use of the vspline
library appears to enable significantly lower energy use
than use of the WildMagic 5 library; that results in about
a 1.73 times improvement in energy consumption.

For practitioners, the best generic advice for energy-
efficient hypersurface curvature determination is to use
the VH and FM compilation strategies coupled with the
linear algebraic strategies, which can result in about a
1.20 times energy improvement.

Our strategies can provide means for reduced energy
consumption for hypersurface-based volume data anal-
yses and visualizations. Data analyses and visualiza-
tions using them can thus extend battery life as well as
reduce their environmental impact.
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