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ABSTRACT
The Blocky Volume Package (BVP) format is a distributed, platform-independent and API-independent format for
storing static and temporal volumetric data. It is designed for efficient transfer over a network by supporting sparse
volumes, multiple resolutions, random access, and streaming, as well as providing a strict framework for supporting
a wide palette of encoding formats. The BVP format achieves this by dividing a volume or a volume sequence into
blocks that can be compressed and reused. The metadata for the blocks are stored in separate files so that a client
has all the information required for loading and decoding the blocks before the actual transmission, decoding and
rendering take place. This design allows for random access and parallel loading and has been specifically designed
for efficient use on the web platform by adhering to the current living standards. In the paper, we compare the BVP
format with some of the most often implemented volume storage formats, and show that the BVP format supports
most major features of these formats while at the same time being easily implementable and extensible.

Keywords
Volume storage, volume compression, block-based format.

1 INTRODUCTION
Volumetric data are a type of data that describe the
properties or characteristics of a three-dimensional
space. Such data are used to represent a wide range
of physical phenomena, including but not limited to
density, temperature, pressure, and composition of a
particular region of space. Volumetric data play a sig-
nificant role in various fields such as medical imaging,
scientific visualization, and computer graphics.

Volumetric data can be represented in a number of dif-
ferent ways, depending on the specific application and
the type of data being represented. Some common
methods of representation include voxel grids, point
clouds, and signed distance fields. In this paper, we
will focus on storing volumetric data as voxel grids,
which we will refer to as volumes. Volumes are a popu-
lar representation of volumetric data due to their sim-
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plicity, flexibility, and ease of use. They can be ac-
quired through a variety of techniques, including com-
puter simulations, crystallography, electron microscopy
(transmission tomography [KM86], cryo-electron to-
mography [KK09]), computed tomography [KSKV90],
positron emission tomography [BMTV05], magnetic
resonance imaging [Fos84], and 3D ultrasound [NE93,
HZ17]. These techniques allow for the creation of
highly detailed and accurate data, making them a rich
source of volumes for a wide range of applications.
However, volumes also have a number of disadvan-
tages that limit their potential applicability. One ma-
jor disadvantage, which we address in this paper, is the
high memory usage required for storage and manipu-
lation, especially in applications where high resolution
is required. Additionally, operations on volumes, such
as rendering, filtering, segmentation, and registration,
can be computationally expensive and time-consuming.
In certain cases, alternative methods of representation,
such as surface meshes or point clouds, may be more
appropriate, but conversions to such representations in-
herently result in information loss, which is often unac-
ceptable.

For volume storage, compression plays a vital role
in managing large amounts of data by reducing stor-
age requirements while retaining the quality of the

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301 
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.25 213



data [RGG+13, BRGIG+14]. In computer graphics,
it alleviates the communication bottleneck problem,
resulting in faster and more efficient visualizations, as
well as reducing energy consumption which is critical
on mobile devices. While storage and compression
methods for two-dimensional images and videos have
been subject to considerable research and innovation,
which pushed the technology closer to theoretical
limits, the technology for compressing and storing
volumes has, in comparison, remained rather under-
developed [SW03, BRLP20], despite the significantly
higher storage requirements.

Existing volumetric data storage and compression for-
mats have several shortcomings. The first issue is the
lack of simple and effective compression solutions. Ex-
isting formats are either extremely simplistic and do not
offer any compression capabilities, or they are feature-
ful but difficult to understand and implement, making
them less accessible to a wider range of users. Addi-
tionally, there is poor support for different platforms,
as data types and endianness are often not specified,
causing compatibility issues. Finally, poor extensibil-
ity is a major concern, as there is a lack of extension
mechanisms, support for only a limited set of data for-
mats, and a lack of support for GPU-accelerated for-
mats. These problems highlight the need for better and
more accessible solutions for volumetric data storage
and compression.

As a potential solution to the listed shortcomings of the
existing formats, this paper presents the Blocky Volume
Package (BVP) format, a novel block-based format for
distributed volume storage, compression and transmis-
sion. Compared with the existing formats, it includes a
wide array of features and comes with a comprehensive
list of advantages:

• it supports distributed volume storage, compression
and transmission;

• it is agnostic to the underlying platform, storage
medium, and graphics APIs;

• it is geared towards applications that require fast
lookups and previews (e.g., rendering applications);

• it unifies concepts from several existing formats and
generalizes them to create a more comprehensive
and versatile format;

• it is simple to implement, integrate and extend.

2 RELATED WORK
There is a vast body of research on volumetric data
storage and compression formats [RGG+13, LMG+18,
LM14], covering a wide range of applications and use
cases. Due to the scope and breadth of this field, we
will focus specifically on formats for storing and com-
pressing dense, bounded volumes. This includes for-
mats such as DICOM [GPS05, MDG08, Clu21], and

NIfTI1, which are commonly used in medical imaging,
as well as formats such as VTI [SML06, HMCA15],
HDF5 [FHK+11, KR18], NRRD2 and Zarr3, which are
used in scientific computing and other fields. While
these formats may not be applicable to all types of vol-
umetric data, they represent a significant portion of the
volumetric data storage landscape and are relevant to a
wide range of applications.

Volumes have historically been stored in raw format,
which is a file format that stores data in its raw, un-
processed state, voxel by voxel. It is often used during
data acquisition, where large amounts of data prohibit
the use of on-the-fly compression. Because of this, raw
format files are typically very large and can be diffi-
cult to work with. Raw format files do not include any
information about the data type or endianness, which
can make them incompatible with different platforms or
software. Metadata for raw format files is usually stored
separately (MHD4, MRC [CHS96, CHM+15], NRRD,
PVM 5, VFF6, VOL7), and includes, among other infor-
mation, the resolution of the volume, its orientation and
data type. However, the lack of standardization makes
such metadata formats a poor choice for interoperabil-
ity. Despite these limitations, raw format is often used
as an intermediary format and as a format for offline
use. Some of the listed formats (MHD, MRC, NRRD,
VFF) include basic compression support, which is ap-
plied directly to the raw data without any transforma-
tions or spatial data structures.

In recent years, several new formats have been devel-
oped that address some of the limitations of raw format.
One such format is OpenVDB [MLJ+13, MAB19],
which is a hierarchical representation of sparse volu-
metric data. OpenVDB uses a voxel grid data struc-
ture and a tree-based topology to efficiently store and
manipulate sparse data. This allows for efficient data
access and manipulation, and makes it well-suited for
visual effects and simulation applications. However, it
may not be well-suited for dense volumetric data, as it is
optimized for sparse data, and can be significantly more
difficult to implement compared to other common for-
mats. NeuralVDB [KLM22, Cla22] is an extension of
OpenVDB that leverages the hierarchical data structure
of OpenVDB and enhances it with efficient deep neural
network compression capabilities. This makes it possi-
ble to store and manipulate large volumes in a way that

1 https://nifti.nimh.nih.gov
2 https://teem.sourceforge.net/nrrd/
3 https://zarr.dev
4 https://itk.org/Wiki/ITK/MetaIO/
Documentation

5 http://paulbourke.net/dataformats/pvm/
6 https://www.ventuz.com/support/help/
latest/DevelopmentVFF.html

7 http://paulbourke.net/dataformats/vol/
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RAW BVP MHD NRRD Zarr VDB MRC NIfTI DICOM VTI HDF5
Standard data types no yes no yes yes yes no yes no yes yes
Extensible formats no yes no no yes yes no no no no yes
Platform-independent no yes yes yes yes yes no no yes yes yes
Simple to implement yes yes yes yes no no yes yes no no no
Distributed storage no yes no yes yes yes no no no yes yes
Storage alternatives no yes no no yes no no no no no no
Format-agnostic operations no yes no yes yes no no no no no no
Physical dimensions no yes no yes no no yes yes yes no no
Extensions no yes no no no no no no no no no
Multiresolution no yes no no no no no no no no no
Animations no yes no yes no yes no no yes no no
Supercompression no yes no yes yes yes yes yes yes yes yes
GPU compression formats no yes no no no no no no no no no
Higher-dimensional arrays yes no no yes yes no no no no no yes
Sparse data no no no no no yes no no no no yes
Transformations no no no yes no yes no yes yes no no
General-purpose data yes no no yes yes no no no no no yes

Table 1: Features supported in different formats.

is both memory-efficient and fast. Since NeuralVDB is
built on top of OpenVDB, it shares many of its advan-
tages as well as downsides, especially implementation
complexity. NanoVDB [Mus21] is a lightweight GPU-
accelerated version of OpenVDB, which primarily tar-
gets rendering applications.

VTI is the image format of the Visualization Toolkit
(VTK). VTI is a general-purpose format that supports
a wide variety of data types and primitives, including
structured grids, unstructured grids, and polygons. As
a result, it shares some of the downsides with other
formats that are not optimized for volume storage.
Newer versions of VTI support parallel I/O along with
several compression options, including LZ4, LZMA,
and ZLIB, enabling efficient reading and writing of
large datasets. VTI supports only simple data formats,
and GPU-accelerated compression formats are not
supported. The data in a VTI file is described using
an XML document, which can be complex to parse.
VTI has the advantage of being widely supported and
used in the scientific and research communities, and
there are many libraries and tools available for working
with VTI data. However, due to the broad feature set,
implementing VTI can be a challenging task.

Another format that is gaining popularity is HDF5,
which stands for Hierarchical Data Format version 5.
HDF5 is a general-purpose data format designed to
store large, complex data sets in a hierarchical format.
It provides a rich feature set, including support for com-
plex data structures, metadata, and parallel I/O. HDF5
is widely used and supported in many scientific and re-
search communities, and has a wide range of libraries
and tools available for working with HDF5 data. How-
ever, it is more complex and can be significantly more
difficult to implement than other formats, and may not
be as well-suited for storing volumes because the for-
mat is not aware of their specific spatial structure.

Zarr is a similar format as HDF5, it is also a general-
purpose data format designed to store large, multi-
dimensional arrays in a hierarchical structure. Zarr pro-
vides a simple, easy-to-use Python API, and can be
used with a wide range of compression and encoding
techniques. It has been designed to support distributed
storage solutions, such as Amazon S3. However, it sup-
ports only a limited set of data formats, which does not
include GPU-accelerated formats.

DICOM is a standard for storage, communication and
management of medical images and related informa-
tion, such as MRI and CT scans. DICOM was created
to facilitate the exchange of information between dif-
ferent medical imaging devices and provide a standard
format for storing and transmitting images and meta-
data. It is primarily a container format, and storage and
processing information for each specific use case is pro-
vided in a separate specification document (e.g. there is
a separate specification for 3D ultrasound images). DI-
COM is a large and complex standard that encompasses
a wide range of use cases, with volume storage being
only a small part of it. Unsurprisingly, implementing
DICOM requires a significant investment of time and
resources.

NIfTI is a file format for storing medical images and
data, particularly in the field of neuroimaging. NIfTI
was created as an alternative to the popular Analyze
format and was designed to overcome some of the lim-
itations of Analyze. NIfTI provides basic compression
support through the use of DEFLATE, and it includes
spatial transformation information, such as the orien-
tation and size of the data. This information is stored
in the header of the NIfTI file, along with information
about the data type, data range, and measurement units.
The use of physical units ensures that the data is cor-
rectly scaled and can be used for quantitative analy-
sis. However, despite its advantages, NIFTI also has
some limitations. The set of data formats is limited
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and does not include GPU-accelerated compression for-
mats. NIfTI is also not a hierarchical format, which pro-
hibits efficient random access to the underlying data.
The BVP format addresses the downsides of the ex-
isting formats by unifying their advantages while fol-
lowing a simplistic design. One of the main advan-
tages of BVP is its simplicity, which greatly facilitates
integration and extension (e.g., as a plugin) of exist-
ing software. Unlike other formats, BVP additionally
supports GPU-accelerated compression formats, which
motivates its usage in rendering applications. For an
overview of the features of different formats, refer to
Table 1.

3 BLOCKY VOLUME PACKAGE
The main motivation behind BVP is its use on the
web platform, where platform independence, memory
safety, and efficient compression are crucial factors.
The web presents additional restrictions, such as limited
memory usage and restricted external file access. How-
ever, it simplifies some tasks, such as parsing JSON
documents and manipulating arrays.
Drawing from the best features of the existing formats,
we designed the BVP format with the following goals
in mind:
(G1) the format must enable efficient parallel random

access;
(G2) the format must support distributed storage and

access;
(G3) metadata must be stored separately to enable

clients to have all information about a volume
available before the actual transmission, decoding
and rendering take place;

(G4) data types have to support common use cases in a
wide range of applications;

(G5) common GPU-accelerated compression formats,
such as S3DC [YNV08], ETC [SAM05] and
ASTC [NLP+12], must be supported;

(G6) the format must support compression in the form
of reuse of parts of a volume or general-purpose
compression;

(G7) execution of common operations, such as crop-
ping and concatenation, must be possible without
knowledge of the data format;

(G8) the format must be able to store multiple modali-
ties, e.g. raw data and segmentation;

(G9) multiple resolutions of the same volume may op-
tionally be added to allow fast previews;

(G10) physical units must be used to scale the volume
correctly and enable quantitative analysis;

(G11) established data representation standards, such as
IEEE 754, UTF-8 and JSON, must be respected
throughout the format for it to be completely
platform-independent; and

(G12) an extension mechanism must be available to al-
low future enhancements.

Block

Placements

Microblocks

Figure 1: Blocks, microblocks and placements. A block
is represented as a 3D array of microblocks. The mi-
croblocks come from external sources or other blocks
copied into placements.

3.1 Overview
A BVP asset is built around 4 fundamental concepts:
formats, microblocks, blocks, and modalities. A mi-
croblock is a fixed and indivisible block of voxels, rep-
resented by a specific number of bytes. The dimensions
of a microblock, the number of bytes representing it,
and the interpretation of these bytes are described by
a format. Microblocks are assembled together to form
a block as shown in Fig. 1. The data for a block may
come from different sources, including external files
and other blocks (G2). Finally, blocks may be refer-
enced by modalities, which equip a block with metadata
and physical characteristics, such as its physical size. A
BVP asset may contain multiple modalities such as raw
data and different segmentations. Transformations are
not described by a BVP asset, as it is only a storage
format, not a scene description format.

All information about modalities, formats, blocks, how
the blocks are structured in a hierarchy, and how to ac-
cess the external microblock data, is supplied in a sep-
arate (G3) JSON (G11) document called the manifest.

3.2 Microblocks and formats
The concept of microblocks has been introduced to al-
low different block-level encoding schemes, such as
S3DC, ETC, ASTC, etc., which are common in com-
puter graphics and often hardware-accelerated (G5).
For example, a microblock may be as simple as a single
voxel with a 32-bit floating-point value or more com-
plex such as a 4×4×4 RGBA volume represented by
16 bytes in ASTC format. There exist many encod-
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ing schemes and choosing any fixed set of them for in-
clusion in BVP would make it inflexible and inexten-
sible, as it would not be able to accommodate the di-
versity and evolution of encoding schemes. Instead, we
chose to generalize the concept of a block-level encod-
ing scheme as a format family, and a specific instance
of that scheme as a format.

A format defines the dimensions of a microblock, the
number of bytes representing it, and the semantics of
these bytes when extracting voxel values. The dimen-
sions and the number of bytes must be specified in a
BVP asset so that even if an implementation encoun-
ters an unknown format (possibly added to BVP as an
extension), it can still perform basic operations, such
as block assembly, cropping and concatenation without
having to decode a single microblock (G7).

Formats that share similar characteristics are organized
into format families, which can be added to BVP
through extensions (G12). The most basic format
family is the “mono” format family, which describes
single-voxel microblocks storing vectors of a single
primitive type, for example one 8-bit unsigned integer
or four 32-bit floating-point numbers. A format
belonging to the “mono” format family must specify
the primitive type and its size in bytes, along with the
number of vector components. The primitive types are
unsigned integers, signed integers represented as two’s
complements, or floating-point numbers conforming
to the IEEE 754 standard, all of which are stored in
little-endian format when endianness is relevant (G11).
Microblock byte size is the product of the number of
components and the byte size of the primitive type.
A conformant implementation must support at least
vectors with 1 to 4 components, signed and unsigned
integers represented with 1, 2, or 4 bytes, and single-
and double-precision floating point numbers, which is
adequate for most practical applications (G4). Note that
not all of these formats have equivalents in common
graphics APIs, although they are commonly used in
practice (e.g. doubles in scientific simulations and
16-bit integers in medical imaging), rationale being
that BVP should not be limited by such APIs. In such
cases, the data must be converted to an appropriate
representation. It is important to note that data conver-
sions are specific to pairs of formats and are therefore
not included in the BVP specification.

3.3 Blocks
Blocks are cuboid regions of space formed by mi-
croblocks (see Fig. 1) of a specific format, which can
be hierarchically assembled together to form volumes.
Microblocks in a block adhere to a right-handed
coordinate system and are ordered lexicographically
in R3, which aligns with most modern graphics APIs.
The data for a block can come from various sources

such as files, web servers, or other blocks positioned in
designated areas called placements within the parent
block. This structure enables block reuse, resulting in
a compressed volume (G6), and additionally allows
distributed storage (G2).

An assembly process is required to fill a block with
data. It is initialized with zeros, then placements are
filled with referenced blocks, and finally, external data
is copied into the block if available. Either a block has
placements, or it is defined by external data. With fu-
ture extensions in mind, we have decided not to explic-
itly disallow having both placements and external data
present in a single block. This, however, necessitates
an order of operations. Since the choice is largely ar-
bitrary, we opted for placements first and external data
second. The designated format of the parent block must
be matched by all referenced sources.

External data can also be differential, in which case the
existing microblocks are modified rather than overwrit-
ten, which can significantly improve compressibility.
The placements must not be overlapping to allow par-
allel assembly (G1). Additionally, circular dependen-
cies between blocks are not allowed and an implemen-
tation should be robust to malformed assets. As a result,
the blocks form a directed acyclic graph (DAG). Such a
structure enables fast queries if an application chooses
to store the blocks in unassembled form, or in out-of-
core scenarios (G1). The use of DAGs is not new in
computer graphics [KSA13, DKB+16, vdLSE20], but
to our knowledge, BVP is the first format to use DAGs
for dense volume compression.

A block may reference a lower-resolution block repre-
senting the same data, which enables representing the
same data in multiple resolutions, allowing fast pre-
views and accelerated rendering (G9). Additionally,
rudimentary support for animated volumes is provided
by allowing blocks to reference subsequent blocks as
frames of an animation. Video compression is possible
by sharing constituent blocks between frames. It is im-
portant to note that while this feature is available, the
BVP format is not primarily designed to target volu-
metric video.

3.4 Modalities
Blocks are referenced by modalities which provide se-
mantic information about the blocks, such as the phys-
ical size and acquisition method (G10). A BVP asset
can store multiple modalities, such as raw data and seg-
mentation volumes, or even scans of the same subject
using different methods like magnetic resonance imag-
ing and computed tomography (G8). This allows for a
comprehensive representation of the data and enables
the storage of multiple views and interpretations of the
same underlying data. Unlike blocks in a single hierar-
chy, different modalities can use different formats.
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3.5 Manifest
The manifest is a UTF-8-encoded JSON document
(G11), which may be split into several parts, that
describes all the information stored in a BVP asset
(G3). It includes information about modalities, formats,
blocks, the structure of blocks in a hierarchy, and how
to access the external microblock data. This design
draws inspiration from the glTF format. Furthermore,
the manifest stores metadata about the BVP asset,
such as copyright information, acquisition methods,
checksums, and various timestamps.

External microblock data is referenced from the mani-
fest by a URL (G11), which may locate a file in a local
file system, an archive, or a web server. Consequently,
the BVP format is agnostic of the storage medium, at
the same time allowing distributed storage and single-
file volume archives (G2). External data can optionally
be supercompressed to further improve the compres-
sion ratio. A modified version of the LZ4 compression
scheme, known for its simplicity and high decompres-
sion speeds, is a core component of the BVP format.
Deflate, in contrast to LZ4, is much more commonly
used and achieves better compression ratios at the cost
of simplicity and decompression speed. For these rea-
sons it is included in the BVP format as an extension.

3.6 Extension mechanism
The BVP format has a built-in extension mechanism,
similar to the one used by the glTF format (G12). This
mechanism allows the core format to remain simple to
implement, while still providing the ability to extend
certain functionalities, for example by adding new for-
mat families, compression methods, and block place-
ment capabilities. Extensions are categorized into two
types: those that allow a BVP asset to be decoded even
if the extension is not supported and those that require
specific decoding logic, such as compression methods.
Both types of extensions must be listed in the manifest
so that they are readily available to the BVP reader.

The core BVP format, without any extensions, only de-
scribes the block assembly process, the “mono” format
family, and modalities. A simplified LZ4 supercom-
pression is also included. Everything else, such as com-
pressed formats, multiple resolutions, animations, and
differential blocks, is provided by extensions.

4 RESULTS
We compared the following existing formats in terms
of file size: RAW (baseline), BVP, MRC, NRRD, VTI,
NIfTI, Zarr, HDF5, OpenVDB, and DICOM. Since
Zarr does not prescribe a storage medium, we used an
uncompressed ZIP archive. Similarly, we used a sim-
plified form of ASAR8 for BVP assets. In the first

8 https://github.com/electron/asar

set of tests we disabled supercompression and relied
only on block reuse to reduce the file sizes. In the
next set of tests, we enabled LZ4 supercompression
where it was available. The dataset was comprised
of 40 single-channel 8-bit integer volumes from vari-
ous fields9, adding up to approximately 1424 MB. As
a practical use case, we also used BVP to store an
ASTC-compressed RGBA volume to show that BVP
can effectively handle GPU-accelerated compression
formats. Finally, to show the potential for compression
with DAGs, we evaluated BVP on a 32-bit instance seg-
mentation volume. The dataset and the scripts used for
storing it in different formats are available on github10.

For the BVP assets we used a two-level block hierarchy
with the parent block in the first level and subblocks of
size 32×32×32 in the second level. Equal blocks were
found using the xxHash32 hash function11.

Figure 2 reveals that BVP with block reuse outper-
forms other formats, which do not include this fea-
ture. This is most evident in volumes with lots of
empty space. When we enabled LZ4 supercompres-
sion, we found that only the BVP format could pro-
duce a smaller file than LZ4 alone, as shown in Fig-
ure 3. Note that in Figures 2 and 3 we colored the
baseline (the raw format without and with supercom-
pression) yellow, the BVP format red, and other for-
mats blue. Light blue was used in Figure 3 for the for-
mats that are not directly comparable to BVP due to
e.g. unsupported data types or unsupported compres-
sion algorithms. Some formats outperformed BVP, but
they relied on other compression algorithms, such as
DEFLATE (MRC, NRRD, NIfTI) or JPEG2000 (DI-
COM), as they do not support LZ4. OpenVDB does
not support 8-bit integers and stores values as 32-bit
floating-point numbers, which performs well without
supercompression, but poorly with it. The only formats
with comparable features were VTI, Zarr, and HDF5,
which produced 4-8 % larger files and are significantly
more complex in design and implementation. Addition-
ally, HDF5 provides LZ4 only as a plugin and it does
not allow arbitrary subblock sizes.

Compression ratios expectedly varied throughout the
dataset depending on the amount of noise in the vol-
umes. Where the amount of noise was reasonable (in
around half of the volumes), we achieved reductions in
file sizes from 10 % to 70 % without the use of LZ4 su-
percompression. With LZ4 supercompression, reduc-
tions varied more. However, when comparing LZ4-
compressed raw volumes and LZ4-compressed BVP

9 https://klacansky.com/
open-scivis-datasets/

10https://github.com/UL-FRI-LGM/
wscg2023-bvp

11http://www.xxhash.com/

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301 
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.25 218

https://github.com/electron/asar
https://klacansky.com/open-scivis-datasets/
https://klacansky.com/open-scivis-datasets/
https://github.com/UL-FRI-LGM/wscg2023-bvp
https://github.com/UL-FRI-LGM/wscg2023-bvp
http://www.xxhash.com/


D
at

as
et

 s
iz

e 
in

 M
B

0

500

1000

1500

2000

RAW
BVP

MRC
NRRD VTI

NIfT
I

Zarr
HDF5

Ope
nV

DB

DIC
OM

Figure 2: Dataset sizes without supercompression. The
RAW baseline and BVP were colored yellow and red,
respectively, for emphasis.
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Figure 3: Dataset sizes with supercompression. The
RAW baseline is a LZ4-compressed RAW dataset.
Light blue formats are not directly comparable to BVP.

volumes, the resulting file sizes were very similar, with
differences of up to 5 %.

Smaller blocks could be used to improve the compres-
sion ratio at the expense of a bigger manifest and a
lower compression speed. However, due to diminish-
ing returns, we found that blocks of size 32× 32× 32
were a good compromise.

Note that these results are for lossless compression
only. Extending the condition for block reuse from
equality to similarity would result in lossy compression,
which would significantly increase the compressibility
of the volumes due to the use of DAGs. Even though
this feature has not yet been implemented in our com-
pressor, the BVP format readily supports it. Similarly,
differential blocks were not included in the evaluation.
We conjecture that the benefit would be marginal in the
static case and more pronounced in animations.

In addition to raw volume compression, we evaluated
BVP on an ASTC-compressed RGBA volume of size
768× 768× 360. We used microblocks of dimensions
4× 4× 4 and 6× 6× 6 and a similar two-level block
hierarchy with subblocks of size 48× 48× 48. Both
cases were evaluated with and without LZ4 supercom-
pression. Figure 4 shows that BVP with LZ4 achieves
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Figure 4: Dataset size using ASTC compression. Per-
centages are calculated with respect to the RAW file
size (approximately 850 MB).

approximately equal final asset size as raw ASTC with
LZ4 supercompression, but with added metadata and
hierarchical structure.

To show the compression capabilities of DAGs, we used
BVP to compress a 32-bit instance segmentation vol-
ume of size 512× 512× 512. We used the mono for-
mat and a two-level block hierarchy with subblocks of
size 32×32×32. The raw volume of 512 MB was re-
duced to 259 MB, which corresponds to a compression
ratio of 50 %. After enabling LZ4 compression, the
raw volume was reduced to 6.1 MB, while the BVP-
compressed volume was reduced to 6.9 MB. The over-
head was almost exclusively due to the manifest.

5 CONCLUSION
The BVP format offers many advantages for storing
and distributing volumes. It is a simple-to-implement
platform-independent format that can be used to store
large volumes from a variety of different fields. BVP
draws inspiration from many existing formats, con-
solidating ideas such as multiresolution representation,
hierarchical storage, parallel I/O, and supercompres-
sion. It readily supports GPU-accelerated compressed
formats for efficient use in computer graphics. Con-
trary to the existing formats, the BVP format respects
the widely-accepted engineering standards, facilitating
data exchange and interoperability.

However, there are some limitations to BVP. BVP by
design only supports dense, bounded 3D volumes.
Specifically, it does not support unlimited indexing
(such as in OpenVDB), it does not support general-
purpose data storage (such as in HDF5), and it does
not support higher-dimensional arrays (such as in
NRRD and Zarr). Additionally, a BVP asset does
not include information about the scene, such as
transformations, transfer functions, and illumination,
so a separate format, such as USD12 [CMMLB22] or

12https://graphics.pixar.com/usd/
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glTF [RAPC14], must be used for that purpose. Fur-
thermore, BVP deliberately excludes information about
sampling and data conversions, as these operations are
format-specific and often domain-specific.

There are also some technical limitations that have been
deliberately introduced to simplify the implementation
process. BVP has some restrictions on block and place-
ment dimensions and formats. For instance, blocks and
placements must be completely contained within the
parent block, and the size of a block and placement
must be an integer multiple of microblock size. Con-
sequently, block-level encoding schemes prohibit arbi-
trary block sizes. Additionally, the format of place-
ments must match the format of the block, and format
mixing is only allowed on modality level.

Despite the above limitations, the BVP format provides
a simple and comprehensive representation of volumes
from various fields. It is a reasonable and featureful
alternative to the existing formats.
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