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ABSTRACT
Ray tracing is typically accelerated by organizing the scene geometry into an acceleration data structure. Hardware-
accelerated ray tracing, available through modern graphics APIs, exposes an interface to the acceleration structure
(AS) builder that constructs it given the input scene geometry. However, this process is opaque, with limited
knowledge and control over the internal algorithm. Additional control is available through the layout of the AS
builder input data, the geometry of the scene structured in a user-defined way. In this work, we evaluate the impact
of a different scene structuring on the run time performance of the ray-triangle intersections in the context of
hardware-accelerated ray tracing. We discuss the possible causes of significantly different outcomes (up to 1.4
times) for the same scene and identify a potential to reduce the cost by automatic input structure optimization.
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1 INTRODUCTION

Graphics APIs with access to ray tracing hardware fea-
tures, such as Vulkan or DirectX, utilize internally built
two-level acceleration data structures. These data struc-
tures are used during the ray tracing to accelerate a ray-
triangle intersection. The data layout, as well as the
build algorithm, is provided by a driver vendor and is
typically opaque to the user of the API (except for sev-
eral open-source driver implementations).

When an AS is being constructed for an existing scene,
certain organized layout of the scene data is expected as
an input for the algorithm. In this paper, we refer to this
input layout as a scene structure. Intuitive transfer of a
scene organized in a scene graph to this scene structure
is natural, but likely a suboptimal approach, especially
for more complex and dynamic scenes. Nevertheless,
preserving the information from the scene graph is ben-
eficial, as it connects the geometric and material prop-
erties, including UV coordinates, or object instancing.
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This work explores multiple available options for con-
struction of an opaque acceleration structure for hard-
ware ray tracing. We evaluate the impact of scene struc-
turing in conjunction with different construction algo-
rithm hyper-parameters on the traversal performance of
the final acceleration structure. Finally, we reason about
the differences in performance and outline a way to de-
rive a better input scene layout automatically.

The paper is structured as follows: Section 2 presents
relevant research in the field. Section 3 gives a brief in-
troduction to the acceleration structure API. Section 4
explores the input data layout for bounding volume hi-
erarchy (BVH) construction. Section 5 describes the
evaluation process and presents the measured data. In
Section 6, we discuss the results and draw an explana-
tion for the measurements. Finally, Section 7 concludes
the paper.

2 RELATED WORK
An exhaustive study on the topic of bounding volume
hierarchies for ray tracing was recently presented by
Meister et al. [Mei21a].

Our work is directly related to massively parallel
GPU-accelerated BVH construction algorithms. One
of the fastest among these techniques is the top-down,
binning-based construction algorithm linear BVH
(LBVH) proposed by Lauterbach et al. [Lau09a]. The
LBVH was then extended to the hierarchical LBVH
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by Pantaleoni and Leubke [Pan10a], who employed a
surface area heuristic (SAH) for the upper levels of
the hierarchy. The SAH was originally introduced by
Goldsmith and Salmon [Gol87a] as a metric approx-
imating the likelihood of a ray-volume intersection
and it is employed for driving the vast majority of the
BVH build algorithms. A different approach to was
taken by Meister and Bittner [Mei17a], who proposed
a GPU-accelerated bottom-up build algorithm using
agglomerative clustering: parallel locally-ordered
clustering (PLOC). Recently, PLOC++ by Benthin
et al. [Ben22a] has been proposed, addressing certain
technical weaknesses of the original PLOC, such as the
number of dispatched GPU kernels.

The refinement of an existing BVH structure of a lower
or deteriorated quality back to a near-optimal state was
investigated by Benthin et al. [Ben17a], who presented
a process of partial re-braiding to reduce overlaps in
the AS and improve the SAH quality of the BVH. In
a similar fashion, Hendrich et al. [Hen17a] proposed
a progressive hierarchical refinement, a method of im-
proving the outcome of a fast but low-quality BVH
builder, such as LBVH. This method could be used to
perform a build directly from the scene graph hierarchy.

In past years, major chip vendors, starting with
NVIDIA, later joined by AMD and Intel, introduced
ray tracing acceleration to their mainstream GPU line-
up. Although the internal functioning is mostly hidden,
there were attempts to improve the overall ray tracing
performance by reorganizing the data used for the ray
tracing process, while considering the ray tracing API
as a black box. In particular, Meister et al. [Mei20a]
investigated the possibilities of ray reordering, while
Wald et al. [Wal20a] focused on exploiting the API
design to improve the AS hierarchy for a special case
of long and thin geometries. Our work aims to lay a
foundation for further improvements by performing
scene graph restructuring prior to passing the data to
the ray tracing API.

3 ACCELERATION STRUCTURE API

In this work, we consider following ray tracing APIs:
DirectX Raytracing (DXR), Vulkan and NVIDIA Op-
tiX. Although they might differ in specific capabilities
and naming conventions, they all conform to similar
programming model.

Acceleration structure defined in a particular API is an
opaque data structure utilized in subsequent queries to
accelerate ray-object intersection. In general, the lay-
out of the AS, as well as the related algorithm to build
the AS, is internal to a specific implementation. Based
on the public interface for an AS manipulation, we can
derive the knowledge discussed in this section.

3.1 Data layout
The AS is formed in two logical levels - a bottom level
acceleration structure (BLAS) and a top level accel-
eration structure (TLAS). BLAS nodes consist of ge-
ometry data (multiple disjoint geometries can be easily
merged into one BLAS), while TLAS nodes reference
the BLAS nodes and include their respective transfor-
mation and shading data (using a relevant shader index).
The TLAS enables storage of geometry in a local co-
ordinate system and supports geometry instancing, as
illustrated in Fig. 1.

Figure 1: Logical representation of the acceleration
structure design as exposed by contemporary GPU
APIs.

Terms BLAS and TLAS are directly utilized in DXR
and Vulkan APIs, while OptiX chooses terms geometry
acceleration structure (GAS) and instance acceleration
structure (IAS).

3.2 Build/update algorithms
The API distinguishes between two modes when build-
ing a new AS, either building from scratch or updating
the existing AS. AS update corresponds to bounding
volume refit, a technique available when specific con-
ditions regarding the topology of the updated geometry
are met. Specifically, only instance definitions, trans-
form matrices, and vertex or axis aligned bounding box
(AABB) positions are allowed to change during the up-
date. Refit is fast but also likely to deteriorate the qual-
ity of the AS over time.

In accordance of the two-level logical hierarchy, both
modes are executed in two steps. In the first step,
BLASes are built. As long as there is enough mem-
ory available for auxiliary buffers required by BLAS
builders, multiple BLAS builds can be scheduled to
run concurrently without any additional synchroniza-
tion. When all BLASes are available, the TLAS build
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Figure 2: Input scene structure for AS construction, cre-
ated by mapping a scene graph structure (grey, yellow,
and pink nodes) to one joined BLAS node. Material
and transformation information is not stored in the AS.

can start. Once finished, the AS is ready to be deployed
for hardware-accelerated ray tracing.
Coarse control over the building process is allowed in
the form of flags, hinting our preference to the builder.
Notably, flags such as PREFER_FAST_TRACE,
PREFER_FAST_BUILD (available in all mentioned
APIs), or LOW_MEMORY (available in DXR and
Vulkan) indicate that the underlying implementation is
expected to utilize multiple different algorithms with
different trade-offs in terms of the AS build speed,
runtime traversal cost, or overall memory consumption.

4 MAPPING A SCENE GRAPH TO
THE AS BUILD LAYOUT

3D scenes are typically stored in a scene graph hier-
archy, maintaining all vital information about the rela-
tions of scene objects: i.e. instances, their geometries,
materials, and transformations.
A valid method to submit such data for an AS build is
to transform all geometries in place, merge them into
one BLAS node, and assign it to a TLAS node with a
unit transformation, see Fig. 2. Under such conditions,
the BLAS builder is likely to execute the job to its full
potential and build the AS of the best quality, thanks
to global knowledge of the scene in one place. How-
ever, all the benefits of TLAS are given up, including
any possibility of fast partial rebuilds and refits of the
AS, geometry instancing, or referencing of a special-
ized shader for defined material.
Another approach to submit scene data to an AS build-
ing API is to map geometry nodes to BLAS nodes and
object instances to TLAS nodes, see Fig. 3. However,
as we show in the next section, submitting the scene
graph data organized from a scene designer perspec-
tive can have significant performance consequences and
will likely translate to a suboptimal acceleration struc-
ture.

5 EVALUATION

We evaluated several different ray tracing setups using
eight static test scenes. The list of evaluated scenes
with some of their parameters is shown in Table 1.
All scenes were taken from Morgan McGuire’s online
archive [McG17a]. Default scene graph hierarchy was
loaded from the scene source file. The measurements
were performed on a computer equipped with Intel i9-
10900X CPU, 128GB RAM, and NVIDIA RTX3080Ti
GPU (driver v525.89.02).

Scene Triangles #Instances Overlap

Fireplace room 143173 51 4.1
Chestnut 316880 5 3.6
Sibenik cathedral 75284 1087 21.1
Crytek Sponza 262267 393 11.1
Bistro interior 1046609 2062 22.8
Bistro exterior 2832120 1591 22.5
Power plant 12759246 57 8.7
San Miguel 9980699 2135 226.3

Table 1: List of used scenes and their geometric com-
plexity. Overlap metric represents an overlap of axis
aligned bounding boxes of instances in the scene and is
computed in a following way: for each pair of AABBs
of instances, we compute a surface area of their overlap-
ping region. The overlap value is then the sum of these
areas divided by a surface area of the scene’s AABB.

Performance evaluation was done in a custom path trac-
ing engine running on a Vulkan API backend. For each
scene, we traced five 1920x1080 views with 2048 sam-
ples per pixel and a maximum recursion depth of eight.
To focus the measurement on the AS performance, we
employed simple Lambertian BRDF for surface inter-
action, avoiding any complex shading computations.

Figure 3: Input scene structure for AS construction, cre-
ated by mapping a scene graph structure (grey, yellow,
and pink nodes) to one BLAS node per scene geometry,
with the possibility of instancing. Material and trans-
formation information is stored in TLAS nodes.
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Every sample tracks the number of traced rays in-
ternally, which is then added to an atomic counter.
The measurements showed that the atomic add has
an insignificant impact on the performance. Time
is tracked through the timestamp query API with
advertised nanosecond precision.

We measured the following configurations of the
scene: input scene structures mapped as described in
chapter 4: (1) one BLAS per geometry node in the
scene and (2) one BLAS for the whole scene. Both
configurations are then measured with three different
opaque AS builder options: PREFER_FAST_TRACE,
PREFER_FAST_BUILD, and LOW_MEMORY in the
build AS mode (AS is built from scratch). The rendered
output is always identical. The measured values are
presented in Figures 4, 5, and 6. Reported values
represent sum of costs of both AS leves, where TLAS
times or memory consumption are negligible compared
to BLAS values.

6 DISCUSSION
The measured results support our initial assumption
that the scene structure provided to the opaque AS
builder significantly impacts the final ray tracing perfor-
mance. The relation between the geometric complexity
and overlap of the acceleration structure nodes seems
like a good final performance predictor. This correla-
tion can also be observed in the visualizations shown
in Tab. 2 and the traversal performance in Fig. 4. The
superior traversal performance of one BLAS per whole
scene is especially pronounced in the scenes with an
otherwise high overlap of instance AABBs.

The hypothesis outlined in section 4 states, that the
global scene knowledge available for the AS builder in
one BLAS node will lead to superior AS quality and
thus better runtime performance. We can conclude that
this hypothesis was proven right in almost all cases,
except the Fireplace scene with the fast trace setting
on. The behavior in the Fireplace scene is unexpected
and it suggests that, in some cases, a better acceleration
structure can be found when the scene graph holds use-
ful structural information that is not found by the AS
builder. As an anomaly, this case is interesting, and it
will be the subject of further investigation.

On average, the trace speed of the BLAS per scene is
1.3 times higher in the PREFER_FAST_TRACE case,
1.41 times higher for the PREFER_FAST_BUILD
case, and 1.37 times higher for the LOW_MEMORY case
than that of the one BLAS per geometry.

In contrast to the trace speed, the build speed of the AS
builder itself, reported in Fig. 5, remains mostly in fa-
vor of multiple smaller BLAS nodes compared to one
big BLAS node. This is expected due to the hardware
ability to run the construction of multiple nodes concur-

rently, as well as due to the known O(n · log(n)) com-
plexity of the AS construction algorithms.

We consider minimization of the node overlap as one
of the key steps in the potential scene restructuring pro-
cess that would optimize the trace speed while keeping
the high level scene structure. The problematic nodes,
causing unnecessary overlap, have to be identified and,
based on the local decision, cut or joined. This deci-
sion has to be guided by the local complexity, possibly
predicted by metrics like SAH.

A possible further research direction is the analysis
of the influence of BLAS orientation. Axis-aligned
bounding boxes, which serve as an underlying bound-
ing volume for the AS, are not invariant to rotation of
bounded geometry. Discovering the optimized initial
rotation for the geometry, minimizing the SAH cost and
likely the overlap of its AABB, can thus benefit the
overall performance.

7 CONCLUSION
This paper discussed the problem of the dependence
of the hardware accelerated ray tracing performance on
the AS construction input scene structure. We showed
that although the benefits of a two-level acceleration
structure are numerous (instancing, local transforma-
tions, material referencing, fast refit), the performance
penalty for suboptimally organized scenes can be sig-
nificant.

As indicated by the Fireplace scene, we believe that it
is possible to find a scene structure that keeps the TLAS
benefits and also minimizes the performance impact.
This paper aims to provide the groundwork necessary
for the following research of a scene graph layout re-
structuring to achieve superior results with an opaque
AS builder.
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Figure 4: Ray tracing speed of acceleration structures constructed with six different configurations. The trace
speed is measured in GigaRays per second (the higher the better).
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Figure 5: Build times of acceleration structures constructed with six different configurations, measured in millisec-
onds (the lower the better).
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Figure 6: Memory consumption of acceleration structures constructed with six different configurations, measured
in MegaBytes (the lower the better).
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Scene Diffuse view Instance view Instance AABB overlap

Fireplace room

11 1616

Chestnut

11 1616

Sibenik catherdral

11 1616

Crytek Sponza

11 1616

Bistro interior

11 3232

Bistro exterior

11 3232

Power plant

11 3232

San Miguel

11 6464

Table 2: Evaluated scenes, with visualization of complexity of the scene for "One BLAS per geometry" case. The
middle column shows ID buffers with unique colors for each object instance, and the right column shows heat
maps indicating the overlap of bounding boxes of instances. The lower and upper bounds of the heat map scale
defined are shown in the top left and top right corners of the heat maps, respectively.
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