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Abstract: VaR and CVaR are effective quantitative measurements of market risk. These measures can 
quantify the risk of unexpected changes within a given period. In this paper, we examine the market risk 
of the US stock market index S&P 500 and cryptocurrencies  bitcoin and ripple. The returns of these three 
instruments are approximated using normal inverse Gaussian distribution and alpha stable distribution. 
For comparison, the normal distribution is also included. Subsequently, the VaR99 and CVaR97.5 values 
corresponding to four candidate distributions are calculated for these instruments. We also analyze the 
ability of theoretical distributions to approximate the left tail behavior of stock market index returns. It turns 
out that the normal distribution is not suitable for this purpose. Furthermore, it appears that CVaR97.5 is 
higher (in absolute value) for all indices than the corresponding VaR99 which may require higher need for 
economic capital which banks should allocate.  
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       INTRODUCTION 
Volatility is an integral part of stock market dynamics. It provides opportunities to make a lot of money as 
well as to incur huge losses. Therefore, any market participant has to take adequate risk management 
measure to counter its negative exposure. In order to do so, risk has first to be quantified. The same holds 
for regulatory purposes. Value at Risk (VaR) and Conditional Value at Risk (CVaR) are two of the main 
measurements of market risk. These measures are very simple and popular quantificators of market risk 
and they are widely used in practice. Moreover, they are applicable in measuring other types of risk as 
well. 
 Computing VaR and CVaR heavily depends on the specification of distribution used for modeling price 
or return dynamics. It has been known for quite a long time that the distribution of financial asset returns 
in general as well as stock price returns have heavier tails and sharper peak than the corresponding 
normal distribution. Not only can the correct choice for their distribution help to find the answer to our 
problem, but it is also of great importance for VaR and CVaR evaluation as well as for asset. So far, many 
efforts of researchers as well as practitioners have been devoted to this task. There are two ways how to 
deal with it. 
The first one, which is less inconvenient but may not yield the needed accuracy, is to replace the normal 
distribution by an alternative distribution with the same number of parameters as the normal one which 
exhibits the leptokurtic property. In general, the probability distribution with heavy ends (alpha stable 
distribution) or the distribution with so-called semi-heavy tails (generalized hyperbolic distribution and its 
special cases) are considered. For the generalized hyperbolic distribution family, (see Prause, 1999), and 
(Eberlein & Keller, 1995), for the skewed generalized t-distribution family, (see Theodossiou, 1998), Zhu 
&Galbraith, 2012), (Platen & R. Rendek, 2008) and (Guo, 2017).  The second way how to solve this 
problem is to use a candidate distribution with more than two parameters. In this case, the additional 
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parameter(s) will capture the tail and peak behavior of the distribution of financial asset returns. However, 
additional parameters also make estimation procedure more complicated. In the literature, two 
distributions with semi-heavy and heavy tails are often chosen for this task: normal inverse Gaussian and 
alpha stable distribution. Hence, VaR and CVaR as measures of stock market risk can be calculated with 
these two distributions. The objective of this research is to find how market risk can be adequately 
quantified by these two measures and which distribution is a good one for approximation of returns of 
stock market indices. 
In this paper, we compare the daily returns of the well-known S&P 500 index and the two cryptocurrencies 
Bitcoin and Ripple. Bitcoin (BTC) was proposed by an unknown person or persons, under the name 
Satoshi Nakamoto in October 2008, as a combination of a digital asset and a peer-to-peer payment 
system in his study: Bitcoin: A Peer-to-Peer Electronic Cash System. The first bitcoin was minted on 
January 4, 2009, and the first payment was January 11, 2009. The software was released as an open 
source on January 15, 2009, allowing anyone with sufficient technical skills and computer equipment to 
engage in development. For a long time, Bitcoin was of little interest. However, from the second quarter 
of 2012, transaction volumes began to grow dramatically. The current daily average volume of Bitcoin 
transactions during their lifetime (from January 4, 2010 to January 1, 2017) is 19,301,677 USD. 
Bitcoin “coins” are created by a network of computers with specialized software programmed to release 
new coins at a steady but still declining pace. The number of coins in circulation should reach 21 million 
in year 2140 when the coinage should be terminated. 
Bitcoin weekly volatility reached up to 60% per annum during the 2016, but other cryptocurrencies shows 
even bigger swings. Bitcoin is, however, still more volatile than any fiat currency pairs. 
Bitcoin has volatility seven times greater than gold, eight times greater than the S&P 500, and 18 times 
greater than the U.S. dollar. 
Currently, there are also a few places where you can trade with options on Bitcoin (e.g. Deribit). In general, 
the more liquid the derivatives markets are, the more deeply liquid the underlying product is. The 
appearance of options of Bitcoin shows that liquidity of Bitcoin increased.  
Ripple (XRP) is a global currency exchange and remittance network that aims to lower the cost and 
improve the speed of international bank transfers relative to legacy financial infrastructure. Also called the 
Ripple Transaction Protocol (RTXP) or Ripple protocol, it is built upon a distributed open-source Internet 
protocol, consensus ledger and native currency called Ripples (XRP). Ripples digital currency acts as a 
bridge currency to other currencies and does not discriminate between fiat or cryptocurrency, making it 
easier for currency to be exchanged. Each currency on the ecosystem has its own gateway, allowing 
users to send payments in one currency, and the recipient of the payment to receive the payment in their 
preferred currency. XRP Ledger is publicly available code, so-called open source, and as with Bitcoin it 
is decentralized, it consists of individual users' computers. There is no server that checks and records 
individual transactions. The so-called nodes and validators are used for this. Anyone can become a node 
and validator in the XRP Ledger network, just download the appropriate software and run it on your 
computer. In addition to individuals, validators are run by companies such as Microsoft or universities 
such as the Massachusetts Institute of Technology. The main function of the XRP cryptocurrency is not 
the value itself, as in the case of bitcoin, for example, but as a functional element of the payment network. 
XRP’s price chart indeed reveals that daily swings are wide. Furthermore, the direction of the next move 
usually surprises investors. Therefore, short-term Ripple traders should be cautious. If you are an investor 
with a two-year to three-year horizon, you could consider having a small exposure below $1. If RippleNet 
increases its partnership with global financial institutions, it is likely to continue creating value for XRP 
investors. 
XRP are subject to very high volatility. An example of this was in 2017 when XRP jumped 54,900% from 
$0.006 in March 2017 to $3.30 in December of that same year. Then in April 2018, the coin plummeted 
86% to $0.44. 
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Finally, those market participants who do not want to experience the daily choppiness in Ripple could 
consider investing in exchange-traded funds (ETFs) that give exposure to the cryptocurrency and 
blockchain, the technology behind these digital assets. 
Paper is organized as follows  
In section 1 we first present both considered distributions (alpha stable and normal inverse Gaussian). 
Since we use the MLE method for estimation and the stable distribution does not have density in the 
analytical form, the method of Borak, Hardle, Weron (2005) using inverse Fourier transform of the 
characteristic function is briefly explained. Then, a definition of VaR and CVaR is followed and a brief 
discussion of the advantages and disadvantages of these risk measures: VaR values are calculated at 
99% and CVaR values at 97.5%, according to the BIS (Bank for International Settlements) 
recommendation, which is based on the fact that for normal distributions these values are the same. The 
following section after the first section presents the results of parameter estimation for both distributions 
and the corresponding VaR and CVaR values. It turns out that the heavier the ends of the considered 
approximate distribution, the more the CVaR value exceeds the VaR value. 
 

1. METODOLOGY 

In this section a brief description of heavy and semi-heavy tailed distributions of our interest is provided. 
We will consider alpha stable distribution, and normal-inverse Gaussian (NIG) and for parameter 
estimation maximal likelihood method is used.  

1.1 Stable distributions 
This probabilistic distribution is formulated by its characteristic function because density function does not 
exist in explicit form (unlike NIG) 
 

Φ(𝑡) = exp {−𝜎𝛼|𝑡| (1 − 𝑖𝛽𝑠𝑖𝑔𝑛 (𝑡) tan
𝜋𝛼

2
) + 𝑖𝜇𝑡}    for 𝛼 ≠ 1                                                        (1)      

Φ(𝑡) = exp {−𝜎|𝑡| (1 − 𝑖𝛽
2

𝜋
𝑠𝑖𝑔𝑛(𝑡) log|𝑡|) + 𝑖𝜇𝑡}   for  𝛼 = 1                                                 (2)            

 
where parameters 𝛼 ∈ (0, 2], 𝛽 ∈ [−1,1], 𝜇 ∈ ℝ  and 𝜎 ∈ [0, ∞)   
 
So the  𝛼 - stable distribution has four parameters. These parameters may be interpreted as: 
 
𝛼… tail power (tail index), as 𝛼 decreses tail thicknes increases 

𝛽… skewness parameter, determines asymmetry, a positive 𝛽 indicates that right tail is fatter then left    
tail and vice versa, 𝛽 = 0 corresponding to a symmetric distribution 
𝜇 … location parameter (corresponding to a mean for 𝛼 > 1) 
𝜎… scale parameter, generalized standard deviation, for 𝛼 = 2 corresponding to a standard deviation 
of normal distribution 
 
Power of the tails 
The power of the tail is the index 𝛼 which approximately means that  𝑃(𝑋 < 𝑥) ≈ 𝑐𝛼|𝑥|−𝛼  
 as  𝑥 → −∞. The exact formula for   𝑐𝛼  can be found in (Nolan, 2020). 

 
Estimation of Parameters of stable distribution using Maximal Likelihood Estimation  (MLE) 
Because closed-form formula for the probability density function of NIG distribution exists using MLE is 
straightforward. In the case of stable distributions there is no explicit for of density function, so we have 
to find it by using inverse Fourier transformation.   

According (Borak, et al.,2005), after substitution 𝜁 = −𝛽 tan
𝜋𝛼

2
  the density of standard 𝛼 − stable 

random variable (μ=0, σ =1) for 𝛼 ≠ 1  can be expressed as: 
for 𝑥 > 𝜁: 



𝑓(𝑥; 𝛼, 𝛽) =
𝛼(𝑥−𝜁)

1
𝛼−1

𝜋|𝛼−1|
 𝑊(𝑥, 𝛼, 𝛽, 𝜁)                                                                                               (3) 

where 
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for 𝑥 = 𝜁: 

       𝑓(𝑥; 𝛼, 𝛽) =
Γ(1+

1

𝛼
) cos 𝜉

𝜋(1+𝜁2)
1

2𝛼

                                                                                                            

and for  𝑥 < 𝜁: 
                     𝑓(𝑥; 𝛼, 𝛽)

= 𝑓(−𝑥; 𝛼, −𝛽)                                                                                                              
 
where 

  𝑉(𝜃; 𝛼, 𝛽) =    (cos 𝛼𝜉)
1

𝛼−1 (
cos 𝜃

sin 𝛼(𝜉+𝜃)
)
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1

𝛼
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In MLE we have to find from observation data 𝑥𝑖  a maximum of the likelihood function 
                
∑ log𝑓(𝑧𝑖; 𝛼, 𝛽, 𝛿, 𝜇)                                                                                                                     𝑛

𝑖=1                                                                                                                                 

with respect to parameters  𝛼, 𝛽, 𝛿, 𝜇 , where 𝑧𝑖 =
𝑥𝑖−µ

𝛿
-.  

 

1.2. Normal inverse Gaussian distribution as a special case of generalized hyperbolic distributions 
This generalized hyperbolical distributions was introduced by (Barndorff-Nielsen 1977) and at first applied 
them to model grain size distributions of wind-blown sands. (Eberlein and Keller 1995) were the first to 
apply these distributions to finance. The probability density function is as follows: 
 
 

𝑓(𝑥) =
(𝛼2−𝛽2)

𝜆 2⁄

√2𝜋𝛼
(𝜆−

1
2

)
𝛿𝜆 𝐾𝜆(𝛿√(𝛼2−𝛽2))

 𝑃(𝑥)                                                                                          (4) 

 

where 

𝑃(𝑥) = (𝛿2 + (𝑥 − 𝜇)2)(𝜆−1 2⁄ ) 2⁄ 𝐾𝜆−1 2⁄ (𝛼√𝛿2 + (𝑥 − 𝜇)2)exp(𝛽(−𝜇)),    

                                                                                                                                                               
where 𝐾𝜆(𝑥) is the modified Bessel function of the third (second) kind with index 𝜆 ∈ ℝ. It can be 
defined as 
 

                𝐾𝜆(𝑥) =
1

2
∫ 𝑠𝜆−1 exp

𝑥(𝑠+𝑠−1)

2

∞

0
𝑑𝑠                                                                                    (5)                      

                                                     
For  𝜆 = 1 2⁄ , we get the normal-inverse Gaussian distribution (NIG). So, the probability density function 
of NIG distribution is (using some properties of Bessel functions): 
 

𝑓(𝑥) =
𝛼𝛿 𝐾1(𝛼√𝛿2+(𝑥−𝜇)2)

𝜋√𝛿2+(𝑥−𝜇)2
exp(𝛿 + 𝛽(𝑥 − 𝜇))                                                                            (6) 

The semi-fat tail property of generalized hyperbolic distribution family coming from the following 
asymptotic property of Bessel function: 



            𝑃(𝑋 ≤ 𝑥) ≈ |𝑥|𝜆−1 exp[(𝛼 + 𝛽)𝑥]   as    𝑥 → −∞           
                                                  (7) 
So we have to find from observation data 𝑥𝑖  a maximum of the likelihood function                
∑ log𝑓(𝑥𝑖; 𝛼, 𝛽, 𝛿, 𝜇)                                                                                                                     𝑛

𝑖=1                                                                                                                                 

with respect to parameters  𝛼, 𝛽, 𝛿, 𝜇 
 

1.3 Value at Risk and Conditional Value at Risk 
Value at risk (VaR) at the level 𝛼 ∈ (0,1) is defined by 
 
                      𝑉𝑎𝑅𝛼(𝑌) = 𝑖𝑛𝑓{𝑥 ∈ ℝ|𝐹𝑌(𝑥) ≥ 𝛼},                                                                          (8)                                                                                                                                                                  

where Y is loss random variable (losses are positive, gains negative) with cumulative distribution function  
𝐹𝑌(𝑥) . 

VaR has become a standard risk measure in finance.  But it has a disadvantage of lacking subadditivity1 
which means that a (diversified) portfolio may have a higher risk (VaR) than the sum of its individual parts. 

Conditional VaR (CVaR), sometimes called Expected shortfall (ES) 2, is defined by 

                  𝐸𝑆𝛼(𝑌) =
1

1−𝛼
∫ 𝑉𝑎𝑅𝑠(𝑌)𝑑𝑠.

1

1−𝛼
                                                                                         

(9)                                                                                                                                                                                                                                                                                      
CVaR can be interpreted as a conditional mean value of losses provided that the VaR has been 
exceeded. CVaR has been proposed as an alternative to VaR risk because its subaddition property. 
However, it is often criticized for computational difficulty, limited backtesting capabilities and high 
sensitivity to extreme data (lack of robustness). 

From a statistical point of view, CVaR should not be preferred to VaR, but CVaR has one advantage 
because it is far more difficult to manipulate. Banks can manipulate risk measures by selecting a specific 
estimation method. However, there is no certainty that the estimation method that gives positive results 
for the bank today will do the same tomorrow. 

Short discussion about VaR and CVaR 

(Danielsson et al., 2005) report that for most practical applications VaR is sub-additive and there is no 
reason to choose a more complicated risk measure than VaR, solely for reasons of subadditivity. 
(Ibragimov and Walden, 2007) showed that for very heavy-tailed risks diversification does not necessarily 
decrease tail risk and sometimes can increase it which makes the subadditivity requirement unnatural. 
According these authors (and others) these objections to the subadditivity deserve to be considered and 
support the choice of robust risk measurement. 

According to other authors, the main deficiency of VaR (in addition to lack of subaditivity) is that it does 
not cover tail risks beyond VaR although it makes VaRa risk measure more robust than the other risk 
measures. This deficiency can be particularly serious when one faces choices of various risks with 
different tails. ES makes good for the lack of subadditivity of VaR but it is not elicitable. This means that 
backtesting of ES is less straightforward than backtesting of VaR. But there are feasible approaches to 
the backtesting3 of ES although to reach the same level of certainty more validation data is required for 
ES than for VaR. 

                                                           
1 The subaditivity property for the risk measure means that the sum of the risks of the two portfolios X and Y is greater or equal 
than the total risk of both merged portfolios X + Y (diversification effect). 
2 These two terms (ES and CVaR) are not exactly the same, but they are identical for continuous distributions. 
3 One of the possible backtests (also recommended by BIS) is based on a subsequent approximation: 𝐸𝑆𝛼(𝑋) ≈
1

4
[𝑞𝛼(𝑋) + 𝑞0.75𝛼+0.25(𝑋) + 𝑞0.5𝛼+0.5(𝑋) + 𝑞0.)25𝛼+0.75(𝑋)] 



2. DATA AND RESULTS 
For our empirical analysis two cryptocurrencies bitcoin and ripple and stock market index S&P500 are 
chosen. Data for both cryptocurrencies are daily series of close values from 9-11-2017 to 4-2-2022 and 
they are obtained from Yahoo database. Data for S&P 500 are also daily ones   from 14-12-2015 to 4-2-
2022 and they are obtained from FRED database. The original series then are transformed into log-return 
series. We display their basic descriptive statistics in two table 1 
 
Table 1 Descriptive statistics of time series in the econometric analysis 

                                     original series logarithmic returns 

 BTC XRP SP 500 BTC XRP SP 500 

mean 18673,3 0,531269 2966,604 0,001117 0,000694 0,00052 

median 9630,664 0,37127 2801,31 0,001691 -0,00084 0,000768 

minimum 3236,762 0,139635 1829,08 -0,46473 -0,5505 -0,12765 

maximum 67566,83 3,37781 4796,56 0,225119 0,606885 0,089683 

1st quartile 7218,135 0,263618 2429,375 -0,01601 -0,02368 -0,00303 

3rd quartile 32078,41 0,67867 3317,475 0,018967 0,021478 0,005441 

std 17631,41 0,392851 741,9039 0,041523 0,066877 0,011619 

skewness 1,252392 2,231216 0,83991 -0,85853 0,854557 -1,0964 

kurtosis 3,045015 11,00664 2,80673 15,41087 18,93303 24,73759 

n. of obs. 1549 1549 1549 1548 1548 1548 

                                                                                                            Source: Own calculations 
 

Table 2 Sharpe ratio (mean/std) 

  mean std Sharpe ratio rank 

BTC 0,001117 0,041523 0,026906629 middle 

XRP 0,000694 0,066877 0,010378463 worst 

SP500 0,00052 0,011619 0,044750682 best 

                                                                                                       Source: Own calculations 
 
We see that bitcoin has the highest average daily return and the S&P 500 the lowest. If we measure risk 
by standard deviation, the ripple is the most risky and the S&P 500 is the least risky. Sharpe ratio, which 
measures return per unit of risk, is highest for the S&P 500 stock index, lowest for ripples. 
It can therefore be concluded that investing in a ripple (if we take into account the Sharpe ratio) is the 
least advantageous, because the average return is accompanied by high risk. From this point of view, it 
would be most advantageous to invest in a portfolio that replicates the S&P 500 index. 
 
  

                                                           
where 𝑞𝛼(𝑋), 𝑞0.75𝛼+0.25(𝑋), 𝑞0.5𝛼+0.5(𝑋), 𝑞0.)25𝛼+0.75(𝑋)  are corresponding quantiles. So, we have to backtest them 

just like we do at VaR. 



Table 3  Estimation results of NIG parameter distribution 

currency parameter Coefficient SE z-stat p-value 

BTC alpha 13,81002 0,726915 18,99813 0 

beta -0,54902 0,190318 -2,88475 0,003917 

delta 0,024529 0,005004 4,9018 9,50E-07 

mu 0,002093 0,06234 0,033576 0,973215 

XRP alpha 6,53982 1,197775 5,459973 4,76E-08 

beta 0,418575 0,246452 1,698404 0,089432 

delta 0,028381 0,001217 23,31747 0 

mu -0,00113 0,001052 -1,07066 0,284321 

SP 500 alpha 44,40342 5,304945 8,370194 0,00E+00 

beta -5,39343 2,911659 -1,85236 0,063975 

delta 0,005456 0,000283 19,28385 0 

mu 0,001187 0,000213 5,587328 2,31E-08 

            Source: Own calculations 

 

Table 4 Estimation results of parameters of stable distribution  

currency parameter Coefficient SE z-stat p-value 

BTC 

alpha 1,445392 0,038493 37,5497 0 

beta -0,03446 0,071616 -0,4812 0,630373 

mu 0,019448 0,00055 35,343 0 

delta 0,001751 0,000856 2,045022 0,040853 

XRP 

alpha 1,357857 0,037248 36,4543 0 

beta -0,01527 0,064215 -0,23784 0,812007 

mu 0,024837 0,000737 33,68731 0 

delta -0,0008 0,001072 -0,74265 0,457695 

SP 500 

alpha 1,458221 0,038627 37,75123 0 

beta -0,11804 0,072457 -1,62905 0,103303 

mu 0,004694 0,000132 35,64421 0 

delta 0,001257 0,000207 6,067191 1,30E-09 

Source: Own calculations 
              Table 5  VaR 99                                                                                  

 VaR 99 

 Gaussian NIG stable 

BTC -0,0955 middle -0,1264 middle -0,172 middle 

XRP -0,1549 worst -0,1934 worst -0,2689 worst 

SP 500 -0,0265 best -0,0357 best -0,0418 best 

                                                                                                    Source: Own calculation 

              Table 6 CVaR 97.5 

CVaR 97.5 

 Gaussian  nig  stable 

BTC -0,096 middle -0,1322 middle -0,2669 middle 

XRP -0,1557 worst -0,2045 worst -0,4488 worst 

SP 500 -0,0265 best -0,0378 best -0,0647 best 

                                                                                                                 Source: Own calculation 



 
            Table 7 CVaR/VaR 

 NIG Stable 

BTC 1,045886 best 1,551744 middle 

XRP 1,057394 middle 1,669022 worst 

SP 500 1,058824 worst 1,547847 best 

                                                                                                              Source: Own calculations 
 
   CONCLUSIONS 
We see that the VaR 99 and CVaR 97.5 values depend on the probability distributions that were chosen 
as an approximation for the empirical distribution. The results confirm our assumption that the fatter tail 
of a given approximate distribution, the higher the CVaR in absolute value than the corresponding VaR. 
The stable distribution, which has stronger ends than NIG, has higher values (in absolute value) of VaR 
and CVaR. The normal distribution that was used for comparison obviously has the same VaR and CVaR 
values, however, as an approximation, it turns out to be inappropriate. The ripple cryptocurrency has the 
fattest tail which is reflected in the magnitudes of VaR and CVaR, which are the highest (in absolute 
value). The S&P index, on the other hand, has by far the lowest VaR and CVaR values. 
From Table 6 we see that the highest CVaR / VaR ratio is for ripple and the lowest for the S&P 500, which 
has the thinnest ends. Therefore, if a bank invests in a ripple, its need for economic capital to cover 
unexpected losses will be highest. 
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