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Abstract
We present a new approach and an algorithm for solving two-scale material optimization problems to optimize the behaviour 
of a fluid-saturated porous medium in a given domain. While the state problem is governed by the Biot model describing 
the fluid–structure interaction in homogenized poroelastic structures, the approach is widely applicable to multiphysics 
problems involving several macroscopic fields in which homogenization provides the relationship between the microcon-
figurations and the macroscopic mathematical model. The optimization variables describe the local microstructure design 
by virtue of the pore shape which determines the effective medium properties, namely the material coefficients, computed 
by the homogenization method. The numerical optimization strategy involves (a) precomputing a database of the material 
coefficients associated with the geometric parameters and (b) applying the sequential global programming (SGP) method 
for solving the problem of macroscopically optimized distribution of material coefficients. Although there are similarities 
to the free material optimization (FMO) approach, only effective material coefficients are considered admissible, for which 
a well-defined set of corresponding configurable microstructures exists. Due to the flexibility of the SGP approach, different 
types of microstructures with fully independent parametrizations can easily be handled. The efficiency of the concept is dem-
onstrated by a series of numerical experiments that show that the SGP method can simultaneously handle multiple types of 
microstructures with nontrivial parametrizations using a considerably low and stable number of state problems to be solved.

Keywords Multi-material optimization · Sequential global programming · Homogenization · Biot model · Poroelasticity · 
Sensitivity analysis

List of symbols
Ω  State/design domain
Uad   Set of admissible design functions
E  Element index set
I  Index set for unit cell types
�  Symmetric square matrices
Ai  Set of geometric cell parameters

Anodes
i

  Interpolation nodes of H̃i

A
grid

i
  Design grid (cell type i)

Continuous functions
e  Mechanical strain
u  Displacement
�  Mechanical stress
Φ  Compliance
Ψ  Fluid flux
p,P  Hydraulic pressure
w  Seepage velocity
Z  State solution operator
�
ij,�P,� i,�i  Microscopic responses

�  Design function
L  Lagrangian
Ξ  Regularization measure
�  Volume fraction
F   Cost function
Hi  Parameter-to-design map (cell type i)
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H̃i  Hermite interpolator of Hi

Q6  Rotation matrix for AA
Q3  Rotation matrix for B,K

Discretized functions
u  Displacement
p  Hydraulic pressure
Φh  Compliance
Ψh  Fluid flux
Ξh  Regularization measure
�h  Volume fraction
Zh  State solution operator
�  Angle variable
�   Filter kernel
rx  Channel radius in x-direction
ry  Channel radius in y-direction
rs  Radius of void inclusion

Parameters
Λ

Φ
  Factor for compliance

Λ
Ψ

  Factor for fluid flux
Λ

Ξ
  Factor for regularization

Λg  Globalization weight

Optimization labels
AA  Homogenized stiffness tensor
B  Homogenized Biot coupling tensor
K  Homogenized permeability tensor
R  Regularization labels
�m  Volume fraction of material phase
IH  Design variable with optimization labels

Others
e  Finite/design element index
i  Unit cell type index
�i  Geometric parameters of cell type i
a
i
  Lower parameter bounds for cell type i

ai  Upper parameter bounds for cell type i

1 Introduction

The design of fluid-saturated poroelastic media (FSPM) pre-
sents a gradually increasing topic of research interest due to 
its mathematical complexity and great application potential. 
Although the theory of FSPM has been developed in the 
context of geomechanics and civil engineering, these types 
of materials are now abundant in many engineering applica-
tions. A convenient design of microstructures can provide 
a metamaterial property related to controllable fluid trans-
port or elasticity. In particular, soft robots can be designed 
as inflatable porous structures generating motion and force 
due to variable fluid content, e.g.  Andreasen and Sigmund 
(2013). In this context, the behaviour of the fluid-saturated 

porous materials is described by the Biot model (Biot and 
Willis 1957) in the small strain theory, which was postulated 
using a phenomenological approach. The homogenization 
method enabled the derivation of the quasi-static Biot’s 
equations (Burridge and Keller 1982). Since then, several 
works extended the results of the dynamic case, which is 
important for treating wave propagations, see, e.g. Rohan 
and Naili (2020). As an extension beyond the linear theory, 
a modified Biot model with strain-dependent poroelastic and 
permeability coefficients was proposed by Rohan and Lukeš 
(2015).

The topology optimization of microstructures constitut-
ing the FSPM was addressed by Andreasen and Sigmund 
(2012) and Andreasen and Sigmund (2013) who handled the 
fluid–structure interaction problem in the homogenization 
framework and proposed an approximation towards compu-
tational simplification.

In this paper, we aim to derive a two-scale approach 
which assumes a clear separation of the macro- and micro-
scales, whereby one macroscopic cell represents a micro-
structured porous material rather than a single cell. In par-
ticular, we do not consider a de-homogenization with only 
a couple of unit cells per macro cell as, despite being an 
interesting aspect that should be addressed in future work, 
it exceeds the scope of this paper. Thus, we do not explicitly 
address the connectivity of the porous cells.

Two-scale optimization problems have already been exten-
sively discussed in the literature. The concept originated with 
the seminal paper by Bendsøe and Kikuchi (1988) which 
proposed that, for a given parametrization of the unit cell, 
the homogenization procedure can be carried out on a fixed 
parameter grid in a preprocessing step. Subsequently, in every 
step of the optimization and for each design element, (approx-
imate) effective material coefficients must first be retrieved by 
interpolation. In the next step, these coefficients are plugged 
into the state equation which is solved and from which the 
cost is evaluated. Conversely, sensitivities are computed using 
the chain rule, i.e. the quantity of interest with respect to the 
material coefficients is first differentiated and then the mate-
rial coefficients are differentiated with respect to the design 
parametrization. This procedure opens the way for the appli-
cation of any suitable gradient-based optimization solver, 
e.g.  Optimality Criteria Method (OCM) by Sigmund (2001), 
Method of Moving Asymptotes(MMA) by Svanberg (1987), 
or Sparse Nonlinear Optimizer (SnOpt) by Gill et al. (2002), 
to name only those examples that are most prominently used 
in structural topology and material optimization.

While the optimization concept initiated by Bendsøe and 
Kikuchi (1988) essentially carries over to other classes of 
problems, as it is done by Das and Sutradhar (2020), Zhou 
and Geng (2021), Chen et al. (2023) for thermomechanical 
settings, we opted to follow a slightly different avenue in this 
paper for several reasons. Firstly, by nature the concept largely 
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depends on the chosen parametrization. If the parameters 
enter the homogenized properties in a substantially non-con-
vex way (as is the case if, e.g.  rotations of the base cells are 
allowed), many local minima might be introduced and addi-
tional measures must be taken to avoid getting trapped in one 
of them. Secondly, it is not easy to extend the original con-
cept with respect to the use of completely independent types 
of unit cells, regardless of whether they are characterized by 
different geometries or material configurations. In this case, 
specifying a smooth parametrization is non-trivial. The typi-
cal approach would be to first introduce an independent para-
metrization for either cell type (e.g.  using sizing variables) 
and then add a smooth interpolation scheme for the effective 
tensors on top as used, for instance, in multi-material optimi-
zation, see Hvejsel and Lund (2011). However, the problem 
with such an approach is that the second level of interpola-
tion introduces material coefficients for which typically no 
interpretation exists in terms of a microstructure. Thus, an 
additional penalization strategy is required, which ensures 
that those unphysical choices do not remain in the optimal 
solution. Such an approach was successfully demonstrated in 
the recent work of Ypsilantis et al. (2022). In another recent 
article, Liu et al. (2023) chose two unit cell types, described 
via level-set functions, such that the mixture of their geomet-
ric parameters can be directly interpreted as a third unit cell 
type. Pizzolato et al. (2019) also opted for level-set functions 
to describe the geometry of the microstructures. However, 
with respect to the handling of multiple material classes, 
the authors defined floating patches where each patch is a 
subdomain of the design domain and only occupied by one 
microstructure type. Subsequently, the layout of these patches 
is optimized on the macroscopic level and their overlaps are 
combined via a differentiable maximum operator.

In our paper, we describe how these disadvantages can 
be circumvented using the SGP concept. The basic concept 
was introduced in Semmler et al. (2018) and is now gener-
alized to a multiphysics, two-scale setting. This involves an 
extension of an MMA-type block-separable model function, 
see Stingl et al. (2009), to the poroelastic setting, a split of 
the computations into an offline and an online phase, which 
is particularly suited for homogenization-based problems, 
and a numerical solution scheme for the nearly global opti-
mization of block-separable subproblems. In this context, it 
is important to note that the term block-separable implies 
that the minimization can be carried out separately for 
each design element, although a design element itself can 
be described by multiple design degrees of freedom. For a 
further motivation of the SGP method, we refer to the first 
paragraph in Sect. 3. In the overall optimization process, two 
different types of sensitivities are relevant. First, there are 
the sensitivities of constraint or cost functions with respect 
to the effective material coefficients. These constitute a sub-
stantial component of the block-separable model used at the 

core of the SGP method. Second, there are the sensitivi-
ties of the material coefficients with respect to the chosen 
parametrization. In the proposed two-scale SGP framework, 
the second type of sensitivities are not strictly required but 
can help to derive an improved interpolation model used in 
the offline phase. In the particular context of fluid-saturated 
porous media, the derivation of the sensitivities presented 
in this paper relies on derivations in Hübner et al. (2019), 
where the sensitivity of the homogenized coefficients were 
also reported, see also Rohan and Lukeš (2015).

Finally, we would like to comment on the generality of the 
presented approach with respect to multiphysics models and 
design parametrizations. Although the SGP concept outlined 
in our paper can be applied to a large range of multiphysics 
two-scale material optimization problems, the Biot model of 
fluid-saturated porous media provides an ideal test bed for the 
method for several reasons. Firstly, the physical coupling is 
non-trivial, while secondly, it is very natural to set up compet-
ing objective functions, such as the structural compliance on 
the one hand, and the enhanced fluid flow through an outflow 
boundary, on the other hand. Thirdly, configurable types of 
microstructures supporting either the first or the second goal 
can be deduced in a straightforward manner.

The SGP approach is applicable to combinations of differ-
ent unit cell types with any low-dimensional parametrization 
per unit cell. The restriction to low dimensionality is the com-
putational complexity of conventional interpolation schemes, 
such as the equidistant cubic interpolation used in this paper, 
for the entries of the effective material tensors which becomes 
infeasible for a number of parameters greater than four. For 
higher-dimensional parametrizations, roughly up to ten 
parameters, one may resort to interpolation approaches such 
as sparse grids, see Valentin et al. (2020). This aspect implies 
that our approach is not suitable for simultaneous material 
optimization on the macroscopic level and topology optimiza-
tion on the unit cell level, as it is, for instance, approached by 
Rodrigues et al. (2002) and Coelho et al. (2008).

Fig. 1 illustrates the steps of the two-scale optimization 
process with SGP and reflects the structure of the remain-
der of this paper. All aspects of the two-scale problem are 
described in Sect. 2, which include a brief overview of the 
constitutive laws of the Biot model (Sect. 2.2 and Sect. 2.3), 
the poroelastic state problem in variational form (Sect. 2.4), 
a generic sketch of the two-scale problem constrained by the 
poroelasticity equations (Sect. 2.5), and an adjoint analy-
sis providing sensitivities with respect to effective material 
coefficients as used later in the SGP method (Sect. 2.6). 
Finally, two types microstructures are proposed in the form 
of configurable unit cells (Sect. 2.7). In Sect. 3, the SGP 
concept for the solution of two-scale optimization problems 
is introduced in greater detail. For this, the two-scale prob-
lem is discretized and extended for the use of multiple types 
of unit cells (Sect. 3.1). Subsequently, a separable sequential 
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approximation concept is proposed (Sect. 3.2), and finally, 
the SGP method is presented in an algorithmic form 
(Sect. 3.3). In Sect. 4, the advantages of the SGP algorithm 
are discussed using various types of two-scale problems.

The highlights of our paper include:

• The simultaneous treatment of differently parametrized 
unit cell types in a two-scale optimization workflow.

• Non-convex models, formulated in effective material 
properties, are globally optimized.

• The SGP framework is - for the first time - combined 
with a multiphysics, here poroelastic, model.

• Our algorithm displays only slight dependence on the 
initial designs and thus only requires a few iterations to 
obtain decent optimized designs.

2  Formulation of the two‑scale optimization 
problem

Our optimization strategy is outlined and explained in this 
section. Although it can be applied to similar problems 
involving several physical fields or multiphysics problems, in 

this paper we consider the fluid-saturated porous media rep-
resented by the Biot model which can be derived using the 
homogenization of the fluid–structure interaction problem 
restricted to small deformation kinematics, (see, e.g. Bur-
ridge and Keller 1982; Brown et al. 2011; Rohan et al. 2016).

2.1  Notation

The notation that we employ is outlined below. Since we 
deal with a two-scale problem, we distinguish between 
the “macroscopic” and “microscopic” coordinates, x and 
y, respectively. We use ∇x = (�x

i
) and ∇y = (�

y

i
) when dif-

ferentiating with respect to coordinates x and y, whereby 
∇ ≡ ∇x . Using e(u) = 1∕2[(∇u)T + ∇u] , we denote the 
strain of a vectorial function u where the transpose opera-
tor is indicated by the superscript T . The Lebesgue spaces 
of 2nd-power integrable functions on an open bounded 
domain D ⊂ ℝ

3 are denoted by L2(D) while the Sobolev 
space W1,2

(D) of the square integrable vector-valued func-
tions on D, including the first-order generalized derivative, 
is abbreviated as �1

(D) . Further, �1
#
(Ym) is the Sobolev 

space of vector-valued Y-periodic functions (the subscript 
#).

Fig. 1  Flowchart of two-scale optimization with SGP
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2.2  Coupled flow deformation problem

The Biot–Darcy model of poroelastic media for quasi-static, 
evolutionary problems imposed in Ω is constituted by the 
following equations involving stress � , displacement u , 
strain e(u) , fluid pressure p, and the seepage velocity w:

whereby f s and f f  , the effective volume forces in Eq. 1 act-
ing in the solid and fluid phases, are denoted, respectively, 
and �̄� = 𝜂phys∕𝜀2

0
 is the relative fluid viscosity given for the 

specific fluid viscosity �phys and microstructure scale �0 , see 
Remark 1. The poroelastic coefficients AA,B,M , and the 
hydraulic permeability K are obtained using the homogeni-
zation of the fluid–structure interaction problem considered 
in a locally periodic microstructure. Such a structure is gen-
erated as a periodic lattice by the microscopic representative 
unit cell Y = Π

3
i=1

]0,�i[⊂ ℝ
3 which splits into the solid part 

occupying domain Ym and the complementary channel part 
Yc , see Fig. 2,

whereby we use Yd for d = m, c to denote the closure of the 
open bounded domain Yd . Using ∼∫

Yd
=|Y|−1 ∫

Yd
 with Yd ⊂ Y  for 

d = m, c , we denote the local average ( |Y| is the volume of 
domain Y). Naturally, the unit volume |Y| = 1 can always be 
chosen. The homogenized coefficients are computed using 
the integral expression presented in Eq. 7 which involves 
the characteristic responses of the microstructure and the 
solutions to the local problems Eqs. 4–6 presented in the 
next section.

2.3  The homogenized Biot–Darcy model

We report the homogenization result presented, e.g.  in 
Rohan and Lukeš (2015), cf. Hübner et al. (2019), where 
the problem of locally optimized microstructures was 

(1)

−∇ ⋅ � = f s, � = AAe(u) − Bp,

−∇ ⋅ w = B ∶ e(u̇) +Mṗ,

w = −
K

�̄�

(
∇p − f f

)
,

(2)

Y = Ym ∪ Yc ∪ ΓY ,

Yc = Y ⧵ Ym,

ΓY = Ym ∩ Yc,

described. The homogenized model of the porous elas-
tic medium incorporates local problems for characteristic 
responses that are employed to compute the effective mate-
rial coefficients of the Biot model.

We employ the usual elasticity bilinear form involving 
two vector fields w and v that reads

where ID = (Dijkl) is the elasticity tensor satisfying the usual 
symmetries, Dijkl = Dklij = Djikl , and ey(v) =

1

2
(∇yv + (∇yv)

T
) 

is the linear strain tensor associated with the displacement 
field v.

In what follows, the microstructure Y(x) refers to the 
decomposition Eq. 2 of the representative cell Y and the 
material properties, as represented by the elasticity ID in 
our case only. If the structure is perfectly periodic, the 
microstructures Y ≡ Y(x) are independent of the macro-
scopic position x ∈ Ω . Otherwise, the local problems must 
be considered at any macroscopic position, i.e. for almost 
any x ∈ Ω , see, e.g. Brown et al. (2011) in the context of 
slowly varying “quasi-periodic” microstructures. This issue 
is of great significance when dealing with homogenization-
based material design optimization and, as explained below, 
a regularization is required to control the design variation 
within Ω.

The local microstructural response is obtained by solv-
ing the following decoupled problems:

• Find �ij
∈ �

1
#
(Ym) for any i, j = 1, 2, 3 satisfying 

 where �ij
= (Π

ij

k
) , i, j, k = 1, 2, 3 with components 

Π
ij

k
= yj�ik , represents the displacement generated by the 

macroscopic strain component ex
ij
 (note that 

e
y

kl
(�

ij
) = 1∕2(�ik�jl + �il�jk)).

• Find �P
∈ �

1
#
(Ym) satisfying 

• Find (� i,�i
) ∈ �

1
#
(Yc) × L2(Yc) for i = 1, 2, 3 such that 

(3)am
Y
(w, v) =∼∫Ym

(IDey(w)) ∶ ey(v),

(4)am
Y

(
�
ij
+�

ij, v
)
= 0, ∀v ∈ �

1
#
(Ym),

(5)am
Y

(
�
P, v

)
=∼∫

ΓY

v ⋅ n[m] dSy, ∀v ∈ �
1

#
(Ym).

Fig. 2  Microstructure decom-
position. The zoomed reference 
periodic cells Y are associated 
with locally periodic porous 
medium filling the macroscopic 
domains Ω

+
 and Ω0
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∀v ∈ �
1
#
(Yc) and ∀q ∈ L2(Yc).

The effective material properties of the homogenized 
deformable fluid-saturated porous medium are described in 
terms of homogenized poroelastic coefficients: the drained 
elasticity AA , the stress coupling C , and the compressibility 
N , which are all related to the solid skeleton. All these coef-
ficients, including the intrinsic hydraulic permeability K , 
are computed using the characteristic microscopic responses 
Eqs. 4 ,5, 6 substituted into the following expressions:

Subsequently, the Biot stress coupling B and the Biot com-
pressibility M are given by

where � is the fluid compressibility and � = |Yc|∕|Y| is the 
porosity (volume fraction of the fluid-filled channels).

Naturally, the tensors AA = (Aijkl) , B = (Bij) , and K = (Kij) 
are symmetric, AA adheres to all the symmetries of ID , AA is 
positive definite, and N > 0 . Furthermore, while the hydrau-
lic permeability K is generally positive semi-definite, it is 
positive definite whenever the channels constitute a simply 
connected domain generated as the periodic lattice by Yc ; for 
this, denoting the faces of Y by Γk

Y
⊂ 𝜕Y , k = 1,… , 6 , it must 

hold that Γk
Y
∩ �Yc ≠ � for all k = 1,… , 6.

Remark 1 It is important to note that �̄� = 𝜂phys∕𝜀2
0
 involved in 

the Darcy law Eq. 13 is defined for a given fluid ( �phys ) and 
microstructures scale: �0 = �0∕L where L is a characteristic 
macroscopic length, and �0 is the characteristic microstruc-
ture size, which is typically given by the “pore diameter”. 
Thus, for a given fluid, the effective permeability K∕�̄� is 
proportional to �2

0
 , i.e. it reflects the microstructure size. In 

contrast, all other coefficients are scale-independent (when 
the scale separation holds, i.e. �0 being small enough).

Remark 2 In this paper, we only consider steady-state prob-
lems for the Biot medium, such that all time derivatives in 

(6)
∫Yc

∇y�
k
∶ ∇yv − ∫Yc

�k
∇ ⋅ v = ∫Yc

vk,

∫Yc

q∇y ⋅ �
k
= 0,

(7)

Aijkl = am
Y

(
�
ij
+�

ij, �kl
+�

kl
)
,

Cij = − ∼∫Ym

divy�
ij
= am

Y

(
�
P, �ij

)
,

N = am
Y

(
�
P, �P

)
=∼∫

ΓY

�
P
⋅ n dSy,

Kij =∼∫Yc

�
j

i
=∼∫Yc

∇y�
i
∶ ∇y�

i.

(8)
B ∶= C + �I,

M ∶= N + �� ,

Eq. 1 vanish. Consequently, the Biot compressibility M is 
not involved as far as the porous phase, which is generated 
as a periodic lattice by channels Yc , is connected. Conse-
quently, problem Eq. 5 may be skipped. However, for any 
microstructure with disconnected pores, such that Yc ⊂ Y  , 
thus Yc , constitutes one or more inclusions with one cell 
Y  , see (Rohan et al. 2016), the permeability vanishes. In 
such instances, the time integration in Eq. 1 leads to the 
mass conservation equation in the form B ∶ e(u) +Mp = 0 , 
assuming an undeformed initial configuration with the zero 
pressure in the inclusions. In the optimization problem, apart 
from microstructures with nondegenerate permeabilities, we 
also consider microstructures with spherical and thus dis-
connected pores, constituting impermeable material. In this 
case, one can choose either fluid-filled pores or empty pores 
as the only difference lies in the use of the so-called und-
rained material elasticity, AAU = AA +M−1B⊗ B or the elas-
ticity AA describing the effective elasticity of the “drained” 
skeleton with empty pores.

2.4  State problem formulation

Let Ω ⊂ ℝ
3 be an open bounded domain. Its boundary �Ω 

splits as follows: �Ω = ΓD ∪ ΓN  and also �Ω = Γp ∪ Γw , 
where ΓD ∩ ΓN = � and Γp ∩ Γw = � . Assume Γp consists 
of two disconnected, non-overlapping parts Γk

p
 , k = 1, 2 , 

Γp = Γ
1
p
∪ Γ

2
p
 , and Γ1

p
∩ Γ

2
p
= �.

We consider the steady-state problems for the linear 
Biot continuum occupying domain Ω . The poroelas-
tic material parameters and the hydraulic permeability 
referred to as the homogenized coefficients are generally 
given by the locally defined microstructures Y(x) which 
can vary with x ∈ Ω.

The two-scale optimization approach proposed in 
this paper facilitates the combination of microstructures 
characterized by connected and disconnected pores, with 
the latter characterized by a vanishing permeability. To 
achieve this aim, the domain Ω = Ω0 ∪ Ω

+
 is decomposed 

into two parts: the permeable Ω
+
 and the impermeable 

Ω0 , which may not constitute connected domains, being 
split into more disconnected subparts, see Fig. 3. Conse-
quently, the interface Γ

+
= �Ω

+
∩ �Ω0 is impermeable. 

Fig. 3  The domain and boundary decomposition considered in the 
state problem Eq. 9 (left) and Eq. 10 (right)
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Regarding the boundary decomposition, we assume that 
Γ
k
p+

∶= Γ
k
p
∩ �Ω

+
≠ � , for k = 1, 2 , so that the porous 

structure permits the fluid transport through domain Ω
+
 

if it connects Γ1
p+

 and Γ2
p+

.
We consider the following macroscopic problem: Given 

the traction surface forces g and pressures p̄k on boundaries 
Γ
k
p
 , find displacements u and the hydraulic pressure P which 

satisfy

where P = 0 in Ω0 , whereas in Ω
+
 , P satisfies

For the steady-state problem, the set of equations Eq. 1 
yields the two problems Eqs. 9 and 10 as a decoupled sys-
tem: first, Eq. 10 can be solved for P , after which Eq. 9 is 
solved for u . Moreover, for the considered type of boundary 
conditions, and since volume forces are not involved, the 
solutions are independent of the viscosity �̄� , see Eq. 1.

Further, we consider an extension of p̄k from boundary Γk
p
 

to the whole domain Ω , such that p̄k = 0 on Γl
p
 (in the sense 

of traces) for l ≠ k . Then, P = p +
∑

k p̄
k in Ω

+
 , such that 

p = 0 on Γp+ and p can be simply extended by 0 in Ω0 . For 
the sake of notational simplicity, we introduce p̄ =

∑
k p̄

k . 
Furthermore, by virtue of the Dirichlet boundary conditions 
for u and p , we introduce the following spaces:

We employ the bilinear forms and the linear functional g,

To define the state problem in the context of two-scale opti-
mization, we employ the weak formulation which reads as 
follows: Find u ∈ V0 and p ∈ Q0 , such that, for all v ∈ V0 
and q ∈ Q0,

(9)

−∇ ⋅ (AAe(u) − PB) = 0 in Ω,

u = 0 in ΓD,

(AAe(u) − PB) ⋅ n = g in ΓN ,

(10)

−∇ ⋅ K∇P = 0 in Ω
+
,

P = p̄k on Γ
k
p+
, k = 1, 2,

n ⋅ K∇P = 0 on Γw ∪ Γ
+
.

(11)
V0 = {v ∈ �

1
(Ω) | v = 0 on ΓD},

Q0 = {q ∈ L2(Ω) ∩ H1
(Ω

+
) | q = 0 on Γp+}.

(12)

a
Ω
(u, v) = ∫

Ω

(AAe(u)) ∶ e(v),

b
Ω

+
(p, v) = ∫

Ω
+

pB ∶ e(v),

c
Ω

+
(p, q) = ∫

Ω
+

∇q ⋅ K∇p,

g(v) = ∫
ΓN

g ⋅ v.

To uniquely define p in Ω , p ≡ 0 in Ω0 = Ω ⧵Ω
+
 . Since the 

two fields are decoupled, p is first solved from Eq. 132 , after 
which u is solved from Eq. 131 , where p is already known.

Remark 3 In the context of the undrained porosity defined 
by fluid-filled closed pores Yc ⊂ Y  , see Remark 2, whereby 
formulation Eq. 13 is also consistent with this microstructure 
class type Y◻

0
 with AAU replacing AA in the elasticity bilinear 

form Eq. 121 . Pressure is then defined pointwise in Ω0 by 
P ∶= −B ∶ e(u)∕M.

We use � to denote an abstract function which determines 
the particular layout of the microstructure in each x ∈ Ω . 
In the examples below, each �(x) stores several geometrical 
parameters characterizing microstructures Y(x) of a given 
type. In the following, we call � a design.

Although we disregard some particular details related 
to the treatment of multiple types of Y in this section, we 
consider the existence of two microstructure classes, Y◻

+
 

and Y◻

0
 , associated with the pore connectivity type as dis-

cussed above. The “permeable” domain Ω
+
 is occupied by 

the material given pointwise by Y(x) ∈ Y
◻

+
 for all x ∈ Ω

+
 . 

Hence, both the subdomains of Ω are defined implicitly by 
the microstructure type: Ωi is the set of x ∈ Ω , such that 
Y(x) ∈ Y

◻

i
 , where i = +, 0.

We thus consider a two-scale optimization problem that 
is characterized by the following features:

• Geometrical restrictions are stated in respective defini-
tions of the admissibility design sets for a chosen type of 
microstructure. For instance, let 

 be the set of admissible designs. Then, a, a ∈ ℝ
n are 

lower and upper bounds on the design parametrization 
and we regard � ∶ Ω → A.

• We consider multiple optimization criteria that perform 
as the objective functions or equality constraints. With-
out the loss of generality, we confine ourselves to the two 
criteria Φ�(u) and Ψ�(p) that are defined as follows: 

 While Φ�(u) expresses the structural compliance, cri-
terion function Ψ�(p) expresses the amount of the fluid 
flow through surface Γ2

p
 due to the pressure difference 

p̄1 − p̄2 , as shown in the boundary condition in Eq. 102 . 

(13)
a
Ω
(u, v) − b

Ω
+
(p, v) = g(v) + b

Ω
+
(p̄, v),

c
Ω

+
(p, q) = −c

Ω
+
(p̄, q).

A = [a, a] ⊂ ℝ
n

(14)

Φ𝛼(u) = g(u),

Ψ𝛼(p) = −∫
Γ2
p

K∇(p + p̄) ⋅ n.
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These two criteria are antagonists as the pore volume 
reduction naturally leads to a stiffening of the structure 
but reduces the permeability. Hence, for the objective 
function Φ� , function Ψ� serves as a constraint and vice 
versa.

2.5  Two‑scale optimization problem

To facilitate the ease of notation we restrict our approach 
to one microstructure type only, namely Y(x) ∈ Y

◻

+
 , so that 

we may consider Ω ≡ Ω
+
 . Hence, all the bilinear forms in 

Eq. 12 are defined by integration in Ω.
We first define the direct optimization problem to find 

design � that minimizes a cost functional based on the 
criteria defined in Eq. 14. Further, we introduce the set 
T = 𝕊

6
× 𝕊

3
× 𝕊

3
×ℝ ×ℝ and denote by

the function that assigns each x ∈ Ω material parameters 
involving the effective (homogenized) material coefficients, 
the solid part volume �m = 1 − � = |Ym|∕|Y| , and a regu-
larization parameter R , which typically only depends on the 
design.

For a given admissible design � , the state z = (u, p) is the 
solution of Eq. 13 where for every x ∈ Ω the homogenized 
coefficients IH(x) are given in Eq. 7 using the characteristic 
responses W(x) ∶= (�

ij,�P,� k,�k
) . For every x ∈ Ω , W(x) 

stores the solutions to Eq. 4,5,6, which depend on �(x) in 
terms of the microconfigurations Y(x) . In this way, mapping 
S ∶ � ↦ z introduces the admissible state and can be defined 
by a composition map, S = Z◦E◦W , where W represents 
the resolvents of the characteristic problems imposed on 
the local microconfigurations, E provides the homogenized 
material, and Z is the resolvent

Further, we employ the mapping

such that H = E◦W is the composition map defined for any 
admissible design. We would like to mention that the map H 
(as also E and W ) are understood pointwise, i.e.

The macroscopic state problem introduced in Eq. 13 is the 
implicit form �IH = 0 of the mapping Z ∶ IH ↦ z , such that 
z ∈ S0 = V0 × Q0 satisfies

IH ∶ x ↦ (AA(x),B(x),K(x), �m(x),R(x)) ∈ T

(15)
W ∶ � ↦ W

E ∶ (�,W) ↦ IH

Z ∶ IH ↦ z.

H ∶ � ↦ IH,

H(�) ∶ x ↦ H(�(x)) ∀x ∈ Ω.

where S0 is the space of admissible state problem solutions. 
For the Biot medium problem, Eq. 16 is identified with 
Eq. 13.

2.5.1  Direct two‑scale optimization problem

For the two given functions of interest, Φ and Ψ , both 
depending on the material distribution IH and the state z , 
the two-scale abstract optimization problem reads:

where the term Ξ(IH) in the objective is related to the 
design regularization, namely to parameter R , and Λ

Ξ
∈ ℝ

+ 
is a penalty parameter. If we recall the chain mapping 
H ∶ � ↦ IH , then z = Z(H(�)) . Below, we abbreviate 
Φ�(z) =∶ Φ(H(�), z) and also Ψ�(z) =∶ Ψ(H(�), z) . In 
Eq. 14, specific examples relevant to the Biot medium opti-
mization were given.

Subsequently, optimization problem Eq. 17 is associated 
with the following inf-sup problem,

with the Lagrangian function

where � = (Λ
Φ
,Λ

Ψ
) ∈ ℝ

2 are the Lagrange multipliers asso-
ciated with the objective and constraint functionals Φ and Ψ , 
and z̃ ∈ S0 are Lagrange multipliers – the adjoint variables 
— associated with the constraints of the problem Eq. 17.

More explicitly, we can write the Lagrangian function as

(16)

𝜑IH(z, v) = 0 ∀v ∈ S0,

with 𝜑IH(z, v) ∶= a
Ω
(u, v) − b

Ω
+
(p, v)

− g(v) − b
Ω

+
(p̄, v)

+ c
Ω

+
(p, q) + c

Ω
+
(p̄, q),

(17)

min
𝛼∶Ω→A

Φ(IH, z) + Λ
Ξ
Ξ(IH)

s.t. Ψ(IH, z) = Ψ0,

z = S(𝛼),

IH = H(𝛼),

�
Ω

𝜌m ≤ �̄�m|Ω|,

(18)min
𝛼∶Ω→A

inf
z∈S0

sup
�∈ℝ2,z̃∈S0

L(𝛼, z,�, z̃),

(19)

L(𝛼, z,�, z̃) = Λ
Φ
Φ𝛼(z)

+ Λ
Ξ
Ξ(H(𝛼))

+ Λ
Ψ
(Ψ𝛼(z) − Ψ0)

+ 𝜑IH(𝛼)(z, z̃),
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Finally, we may temporarily consider the material coeffi-
cients IH as the optimization variables (although they are 
parameterized by � ). Further, let us assume a given value 
� ∈ ℝ

2 , whereby the entries of � can be positive or nega-
tive depending on the desired flow augmentation or reduc-
tion. In the numerical examples, we chose Λ

Φ
> 0 , whereas 

Λ
Ψ
< 0 indicates the constraint effect of Ψ relative to Φ . 

Upon denoting the image space of all admissible designs 
using Im(H) = H(A) and defining

optimization problem Eq. 17 can be rephrased as the two-
criteria minimization problem

where

2.6  Adjoint responses and the sensitivity analysis

The sensitivity analysis associated with the optimization 
problem constitutes an indispensable part of any gradient-
based optimization method. Here, we summarize the adjoint 
state problem and the final sensitivity formulae, while the 
details are reported in Appendix. We consider � to represent 
a general optimization variable that is related to the effec-
tive medium parameters IH . However, one may also con-
sider � ≡ IH in the context of the free material optimization 
(FMO). Below, and in Appendix, we use � to refer to the 
optimization variable that is to be interpreted as the compo-
nents of IH = (AA,B,K, �m,R) , see Sect. 2.4.

The adjoint state (ṽ, q̃) ∈ V0 × Q0 is the solution to prob-
lem Eq. 60. To allow for the independence of the state 
adjoint from � , we define the split

where �̃ ∈ V0 and q̃k ∈ Q0 , k = 1, 2 satisfy

(20)

L(𝛼, (u, p),�, (ṽ, q̃))

= Λ
Φ
Φ𝛼(u) + Λ

Ψ
(Ψ𝛼(p) − Ψ0) + Λ

Ξ
Ξ𝛼(IH)

+ a
Ω
(u, ṽ) − b

Ω
(p + p̄, ṽ)

− g(ṽ) + c
Ω
(p + p̄, q̃).

Uad ={IH ∶ Ω → T | IH(x) ∈ Im(H) for all x ∈ Ω},

(21)

min
IH ∈ Uad

F(IH, z),

s.t. z = Z(IH)

�
Ω

𝜌m ≤ �̄�m|Ω|,

F(IH, z) = Λ
Φ
Φ(IH, z) + Λ

Ψ
Ψ(IH, z) + Λ

Ξ
Ξ(IH).

(22)
ṽ = Λ

Φ
�̃,

q̃ = Λ
Φ
q̃1 + Λ

Ψ
q̃2,

The sensitivity of the objective and constraint functions 
involved in the definition of F  (see problem Eq. 21) are 
computed using the tensors established in Eq. 64 by combin-
ing the state and the adjoint state as follows:

This sensitivity applies to Jphys established in Eq. 42. Since 
the term Ξ(IH) involved in problem Eq. 17 solely depends on 
the regularization parameter R , see Eq. 37, we obtain

for the regularization term in Eq. 65. In the context of 
the finite element discretization introduced in Sect. 3, the 
homogenized coefficients are supplied as constants in each 
element Ωe of the partitioned domain Ω . Accordingly, the 
expressions in Eq. 64 are supplied in an elementwise fashion 
to the Gauss integration points.

2.7  Design parametrization

The design of the cell Y , which is the decomposition into the 
solid skeleton Ym and the pores Yc , can be parameterized in 
several ways. In Hübner et al. (2019), the authors employed 
a so-called spline-box structure parameterized by design 
variables defining positions of the spline control polyhe-
dron. Due to its generality, this kind of parametrization is 
convenient for handling rather arbitrary designs but leads to 
complicated formulations of design constraints which are 
needed to preserve essential geometrical requirements (e.g.  
positivity of channel cross sections).

In this paper, we employ two specific types of microstruc-
tures illustrated in Fig. 4, in which the channels are shaped 
as a 3D cross (type 1) or a sphere (type 2). Hence, the latter 

(23)
∀v ∈ V0 ∶ a

Ω

(
v, �̃

)
= −g(v),

∀q ∈ Q0 ∶ c
Ω

(
q, q̃1

)
= b

Ω

(
q, �̃

)
,

∀q ∈ Q0 ∶ c
Ω

(
q, q̃2

)
= c

Ω
(q, p̃).

(24)

𝛿tot
AA
F = Λ

Φ ∫
Ω

𝛿AAe ∶ e(u)⊗ e(�̃),

𝛿tot
B
F = −Λ

Φ ∫
Ω

𝛿Be ∶ Pe(�̃),

𝛿tot
K
F = ∫

Ω

𝛿Ke ∶
(
Λ

Φ
∇P⊗ ∇q̃1

+Λ
Ψ

(
∇P⊗ ∇q̃2 − ∇p̃⊗ ∇P

))
.

�IHΞ(IH)��IH = ∫
Ω

(R − � (R) ⋅ (�R − �R� (R)◦�R)

Table 1  The parametrization of 
the pore geometry for the two 
types of microstructures: 1: the 
3D cross, 2: the sphere

microstructure # cell param-
eters

1 rx ry �

2 rs – –
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microstructure is characterized by zero permeability and, 
therefore, we consider dry pores (voids) in the mechanical 
model. Due to these specific geometries, we can use a rather 
simple parametrization, which is listed in Table 1. For a 
unit cell of type 1, rx and ry refer to the radii of the cylinders 
pointing in the x- and y-directions, respectively. The third 
parameter � describes the cell rotation about axis z . For the 
unit cell type 2, the spherical void, whose radius is described 
by rs , yields an orthotropic material with nearly isotropic 
elastic properties and thus rotations are not enabled for this 
cell type. Importantly, box constraints can straightforwardly 
be imposed on rx, ry and rs to ensure geometric feasibility.

To illustrate the sensitivity of the material properties 
determined by the homogenized coefficients IH in Fig. 5 for 
unit cell type 2, the elasticity as the only relevant material 
property is displayed as a function of rs . In Fig. 6, for unit 

cell type 1, selected components of the poroelastic tensors 
and of the permeability are reported as functions of rx.

3  A sequential global programming 
formulation

The basic description of the SGP algorithm together with its 
convergence aspects was presented in Semmler et al. (2018), 
where SGP was applied to a multi-material optimization 
based on a two-dimensional time harmonic Helmholtz state 
equation. The setting and procedure described in this manu-
script differs from that presented in Semmler et al. (2018) 
in several key respects, the first of which is that in Semmler 
et al. (2018) a selection of finitely many fixed materials was 
considered an admissible set. In this paper, each admissible 
material is computed by homogenizing a unit cell, which 
itself is configurable by several geometric parameters. Thus, 
at each point of the design domain the designer can choose 

Fig. 4  Parametrization of unit cells: unit cell type 1 is parameter-
ized by radii rx and ry , both ranging from 0.08 to 0.22, rz = 0.15 and 
rs = 0.25 are kept constant; unit cell type 2 is parameterized by radius 
rs ranging from 0.1 to 0.4

0.10 0.15 0.20 0.25 0.30 0.35 0.40
rs [-]

2.5

3.0

3.5

4.0

4.5

co
effi

ci
en
ts

A
[G
Pa

] A1111

Fig. 5  Unit cell type 2: dependence of A1111 on parameter rs

Fig. 6  Unit cell type 1: the dependence of the homogenized coeffi-
cients AA , B , and K on rx ; ry = 0.15 is fixed
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from M different unit cell types and adjust the geometric 
parameters for the latter. Secondly, the SGP approach is 
extended to a multiphysics setting using a slightly differ-
ent separable approximation and thirdly, a different solution 
strategy that permits non-analytical and non-differentiable 
parametrizations is employed for the resultant subproblems. 
This approach leads to a greater design flexibility. Despite 
these differences, the approach presented here also shares 
an important common feature with the procedure outlined 
in Semmler et al. (2018), namely that separable models are 
established in terms of (effective) material tensors IH rather 
than their parametrization � . As a result, the parametriza-
tion is directly treated at the level of subproblems without 
further convexification. Thanks to the separable character of 
the selected first-order model, the resulting generally non-
convex subproblems can - in principle - still be solved to 
global optimality.

The advantages of this approach are twofold. Firstly, due 
to the separable model functions being able to also capture 
the non-convex features of the original cost function, a low 
number of outer iterations equivalent to the number of state 
problems to be solved are typically required. Secondly, due 
to the good fit of the separable models with the cost func-
tion and the fact that non-convex subproblems are solved to 
global optimality, the overall algorithm is less start-value 
dependent and less prone to be trapped in poor local minima. 
This is in contrast to approaches, for instance (Bendsøe and 
Kikuchi 1988; Coelho et al. 2008), in which a local model 
is established that is directly based on the sensitivity of cost 
functions with respect to the design parametrization �.

In the following, we first derive a fully discretized coun-
terpart for a slightly generalized problem Eq. 21. We sub-
sequently describe in detail how the separable first-order 
approximations can be constructed and finally present 
a practical outline of the full SGP algorithm including a 
generic sub-solver that allows for computing near glob-
ally optimal solutions to subproblems using a brute-force 
strategy.

3.1  A fully discretized two‑scale design problem

For the sake of simplicity, the definitions of sets and func-
tions were introduced in Sect. 2.4 and 2.5 based on the 
assumption that there is only one type of unit cell such that 
M = 1 . Here, for a more general setting, we consider M unit 
cell types, each having ni design parameters, and introduce 
index set I ∶= {1,… ,M}. For each unit cell type i ∈ I , the 
admissibility set is defined in terms of box and other purely 
geometrical constraints. By choosing a suitable parametriza-
tion, we can identify these with (geometric) parameter sets 
such as

with a
i
, ai ∈ ℝ

ni being the lower and upper bound vectors 
constraining the corresponding parameter vector �i ∈ ℝ

ni.

Remark 4 We note that although the parameters in Eq. 25 are 
always used to vary the geometrical properties of the unit 
cell in this manuscript, variations in the material parameters 
could be described in the same way. Thus, SGP can handle 
both of these situations.

We further define for all i ∈ I the maps

where Hi(�) performs the homogenization procedure 
described in Sect. 2.5. Fig. 7 illustrates the components of 
Hi(�i).

We denote the union of the ranges of all Hi by

and thereby generalize the set of admissible design functions 
to become

Hence, the state problem operator is given by

with a displacement function u and a hydraulic pressure 
function p together with the respective function spaces 
Vu(Ω,ℝ

3
) and Vp(Ω,ℝ).

(25)Ai = [a
i
, ai] ⊂ ℝ

ni ,

(26)Hi ∶

{
Ai → T

�i ↦ (AA,B,K, �m,R),

(27)H∶=

M⋃

i=1

Hi(Ai)

Uad ={IH ∶ Ω → T | IH(x) ∈ H for all x ∈ Ω}.

(28)Z ∶

{
Uad → Vu(Ω,ℝ

3
) × Vp(Ω,ℝ)

IH ↦ z = (u, p),

Fig. 7  For each unit cell type, we store data collections such as geo-
metric parameters, physical properties, and further labels
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Finally, we use a slightly more general resource func-
tion than in Sects. 2.4, 2.5 as follows:

In this context, a concretization could be the total volume 
fraction of a specific material phase (see description of �̄�m 
in Sect. 2.5).

Based on these definitions, we then formulate an FMO-
type problem

where �̄�m ∈ ℝ is the resource constraint value, and the cost 
functions Φ , Ψ , and Ξ together with their weights Λ

Ψ
,Λ

Φ
,Λ

Ξ
 

which were already introduced in Sect. 2.5.
Although problem Eq. 30 is formulated directly in the 

tensor variable IH , a realization of the feasibility condition 

(29)� ∶ Uad → ℝ

(30)

min
IH∈Uad

F(IH, z) ∶=Λ
Φ
Φ(IH, z) + Λ

Ψ
Ψ(IH, z)

+ Λ
Ξ
Ξ(IH)

s.t. z =Z(IH),

𝜌(IH) ≤�̄�m,

IH ∈ Uad would force us to evaluate the homogenization 
maps Hi (i ∈ I) . This has the consequence that for each 
evaluation of the cost function, a homogenization proce-
dure, which contains a series of cell problems, has to be 
conducted. To address this challenge, we follow Bendsøe 
and Kikuchi (1988) and only carry out the homogeniza-
tion procedure for discrete samples in the design parameter 
space. For each unit cell type i , we introduce a grid with 
nodes Anodes

i
⊆ Ai and effective material coefficients are only 

computed via homogenization at the sampled nodes of this 
grid. In addition, we define a piecewise cubic Hermite inter-
polator for these samples to realize the continuous mapping

for all i ∈ I . We denominate this procedure as the offline 
phase of a two-scale optimization approach, as it can be 
performed independently from the online optimization pro-
cedure that is subject to constraints that go beyond the box 
constraints on the parameter sets as shown in Eq. 25. Fig. 8 

(31)H̃i ∶

{
Ai → T

�i ↦ (AA,B,K, 𝜌m,R),

α
(1)
1 →
α
(2)
1 ↓ 0.08 0.15 0.22

0.08 . . .

0.15 . . . . . .

0.22 . . . . . .

homogenization
H1

(a)

α
(1)
1 →
α
(2)
1 ↓ 0.08 0.15 0.22

0.08

AA =





3.22 1.43 1.51 0 0 0
3.22 1.51 0 0 0

3.49 0 0 0
sym. 0.83 0 0

0.88 0
0.88





K =




0.21 0 0

0.21 0
sym. 0.21



, B =




0.0343 0 0

0.0342 0
sym. 0.0305



, ρm = 0.12, . . . . . . . . .

0.15 . . . . . .

AA =





2.23 0.92 0.81 0 0 0
2.58 0.92 0 0 0

2.23 0 0 0
sym. 0.64 0 0

0.56 0
0.65





K =




2.61 0.04 0

8.5 0.07
sym. . . . . . . 2.5



, B =




0.06 0 0

0.05 0
sym. 0.06



, ρm = 0.23, . . .

0.22

AA =





2.9 1.02 1.14 0 0 0
2.29 0.93 0 0 0

2.6 0 0 0
sym. 0.67 0 0

0.76 0
0.6





K =




9.67 0 0.03

0.24 0
sym. 2.3639



, B =




0.0461 0 0

0.0548 0
sym. 0.0502



, ρm = 0.2, . . . . . . . . .

(b)

α
(1)
1 →
α
(2)
1 ↓ 0.08 0.015 0.15 0.185 0.22

0.08 H1(0.08, 0.08) H̃1(0.08, 0.015) H1(0.08, 0.15) H̃1(0.08, 0.185) H1(0.08, 0.22)

0.015
...

...
...

...
...

0.15
...

...
...

...
...

0.185
...

...
...

...
...

0.22 H1(0.22, 0.08) H̃1(0.22, 0.015) H1(0.22, 0.15) H̃1(0.22, 0.185) H1(0.22, 0.22)

construct interpolation H̃1
based on H1(Anodes

1 )

(c)

Fig. 8  Example of database generation based on unit cell type 1: 
a  depicts Anodes

1
 with 3 samples per parameter, b contains effec-

tive material coefficients obtained by applying homogenization 
map H1 to Anodes

1
 , and c is the database with effective material coef-

ficients which is obtained by evaluating the interpolation function 
H̃ on a finer parameter grid Agrid

1
 with 5 samples per parameter. 

The images of H1 and H̃1 coincide at the interpolation nodes, e.g.   
H̃1(0.08, 0.08) = H1(0.08, 0.08)
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provides a sketch based on unit cell type 1 for an exemplary 
sampling with three values for each of the design parameters 
rx and ry . In the offline phase, homogenization is applied to 
these samples and the resulting data, such as effective mate-
rial coefficients and volume fractions (see Fig. 7), are stored 
for the optimization in the online phase.

For the case M = 1 , the conventional approach would 
be to perform the optimization based on the interpolated 
functions H̃1 over the full parameter set A1 . However, since 
this is not directly possible for M > 1 , one way to get around 
this would be to introduce another interpolation between 
the different unit cell types in a similar way as it is done in 
discrete material optimization (DMO) by Hvejsel and Lund 
(2011). Instead of this, we introduce design grids

for all unit cell types, whereby only elements of Agrid

i
, i ∈ I 

are considered in the optimization process. In this way, only 
an approximate solution to the design problem can generally 
be computed. However, it will be shown that this strategy 
combines well with the separable non-convex model intro-
duced later in Sect. 3.2. Moreover, the resulting error can 
easily be controlled by the distance and number of samples 
in Agrid

i
, i ∈ I.

As we only optimize on Agrid

i
, i ∈ I , Eq. 27 is approxi-

mated by

We note that elements of H̃ can already be precomputed in 
the offline phase, which generally leads to a higher memory 
requirement, although it additionally reduces the online 
computation time.

Finally, we briefly describe a finite element approxima-
tion with nel finite elements and therefore introduce ele-
ment index set E∶={1,… , nel} to indicate a finite element 
distinctively by its index e ∈ E . We further assume that 
the design on each element is constant and can thus be 
represented by

Through the definition of H̃ in Eq. 33, this condition already 
states that only material tensors are eligible for which a unit 
cell type i and a parameter vector �i in Agrid

i
 exist. Moreover, 

we replace the physical functions Φ and Ψ , the regulariza-
tion function Ξ , and the solution operator Z by their discre-
tized counterparts, e.g. 

(32)A
grid

i
⊂ Ai, i ∈ I,

(33)H̃∶=

M⋃

i=1

H̃i(A
grid

i
).

IH ∈ H̃nel .

(34)Zh ∶

{
H̃nel → ℝ

ndof

IH ↦ (u, p)
,

where ndof is the dimension of the discrete state solution 
space. The discretized version of the resource function � 
Eq. 29 is

Hence, the optimization problem, now fully discretized in 
the design and state spaces, reads

with

We successfully eliminated the resource constraint by means 
of the Lagrange formalism. In this paper, we use a bisection 
strategy as introduced in Sigmund (2001) for the framework 
of the well-known OCM method to compute �� . We finally 
specialize the regularization term to become

where �  denotes a standard density filter function (see, e.g.  
Bourdin (2001)) with

and R is the vector of regularization labels associated with 
all finite elements e ∈ E.

3.2  Construction of subproblems

For any sequential programming algorithm, a sequence of sub-
problems first has to be defined. Here, in each iteration k , we 
construct separable first-order approximations about an expan-
sion point IHk

∈ H̃nel for the components of the cost function

of the original optimization problem in Eq. 36. The model 
problem is

where our model function is defined as

(35)𝜌h ∶

{
H̃nel → ℝ

IH ↦ 𝜌h.

(36)
min

IH∈H̃nel

max
𝜆𝜌∈ℝ

+

Fh(IH, z, 𝜆𝜌)

s.t. z = Zh(IH),

Fh(IH, z, 𝜆𝜌) ∶=ΛΦ
Φh(IH, z) + Λ

Ψ
Ψh(IH, z)

+ 𝜆𝜌

(
𝜌h(IH) − �̄�m

)
+ Λ

Ξ
Ξh(IH).

(37)Ξh(IH) =
1

2
‖R − � (R)‖2,

(38)𝔽 ∶ ℝ
nel → ℝ

nel

(39)J(IH, ��) ∶= Fh(IH, z, ��)

(40)min
IH

max
��∈ℝ

Jsep

(
IH, ��;IH

k
)
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with

In the following, we describe each component of Jsep in 
more detail.

For this, we split J(IH, ��) as

with

From tuple IH , only the effective material coefficients AA,B 
and K are relevant for Jphys . Consequently, for Jphys , we 
define a separable approximation of type

where J̃phys is the following generalization of the first-order 
MMA-like model proposed in Stingl et al. (2009) for func-
tions defined in tensor variables:

Here, Cphys is a constant that is chosen to establish the 
zeroth-order correctness of the model and < ⋅, ⋅ >

{�6,�3}
 

denotes the Frobenius inner products for matrices from �6 
and �3 , respectively. Furthermore, in contrast to the model 
in Stingl et al. (2009), we refrain from working with flexible 

(41)

Jsep

(
IH, 𝜆𝜌;IH

k
)
∶=

∑

e∈E

Jsep,e

(
IHe, 𝜆𝜌;IH

k

e

)

=

∑

e∈E

J̃phys

(
IDe;ID

k

e

)
+ 𝜆𝜌J̃vol((𝜌m)e)

+ Λ
Ξ
J̃reg,e(Re;R

k
e
) + ΛgJ̃glob(AAe;AA

k
e
)

IDe ∶= (AAe,Be,Ke) ∈ �
6
× �

3
× �

3,

ID
k

e
∶= (AAk

e
,Bk

e
,Kk

e
) ∈ �

6
× �

3
× �

3,

IH, IHk
∈ H̃nel .

J(IH, ��) = Jphys(IH) + ��Jvol(IH) + Λ
Ξ
Jreg(IH)

(42)Jphys(IH) ∶= Λ
Φ
Φh(IH, z) + Λ

Ψ
Ψh(IH, z),

(43)Jvol(IH) ∶= 𝜌h(IH) − �̄�m,

(44)Jreg(IH) ∶= Ξh(IH).

(45)
∑

e∈E

J̃phys

(
IDe;ID

k

e

)
,

(46)

J̃phys

(
IDe;ID

k
)

= Cphys −

⟨
AAk

e

[
𝜕Jphys(ID

k
)

𝜕AA

]

e

AAk

e
, AA−1

e

⟩

�6

−

⟨
B
k

e

[
𝜕Jphys(ID

k
)

𝜕B

]

e

B
k

e
,B−1

e

⟩

�3

−

⟨
K

k

e

[
𝜕Jphys(ID

k
)

𝜕K

]

e

K
k

e
,K−1

e

⟩

�3

.

generalized asymptotes LAA
e
∈ �

6, LB
e
, LK

e
∈ �

3 and simply 
choose all of them to be zero matrices. The partial deriva-
tives of Jphys with respect to the material coefficients AA,B 
and K can easily be extracted from the expressions in Eq. 66.

The function Jvol that describes the fraction of utilized 
matrix material is separable by definition and solely depends 
on �m . We accordingly choose

The function Jreg given in Eq. 44 solely depends on the reg-
ularization label R ∈ ℝ

nel , which is a component of tuple 
IH ∈ H̃nel . The separable approximation of Jreg is thus of 
the form

where

In Eq. 49, we further employ the function

in which the regularization label is varied only in the e-th 
entry by the value R , and contributions of the expansion 
point Rk are used in the neighbouring entries. It is noted that 
Eq. 49 can be reduced to a convex quadratic function of type

by precomputing ae, be, ce ∈ ℝ , which are independent of Re.
Finally, we implement a step size control for the design 

from one iteration to the next by adding

with a positive factor Λg to the model cost function. Alter-
natively, a more general globalization strategy similar to the 
regularization approach with the regularization label R in 
Eq. 49 could be pursued by introducing particular globaliza-
tion labels. Here, we assume that evaluating the design step 
size based on the stiffness tensor AAe and AAk

e
 is sufficient 

and, in particular, the uniqueness of the globalization labels, 
such that

is satisfied.

(47)J̃vol((𝜌m)e;𝜌
k
m
) = (𝜌m)e.

(48)
∑

e∈E

J̃reg,e(Re;R
k
),

(49)
J̃reg,e(Re;R

k
)

=
1

2

‖‖‖‖
�Re

(
Re;R

k
)
−

[
�

(
�Re

(
Re;R

k
))]

e

‖‖‖‖

2

.

R̃e

(
R;Rk

)
∶=

(
Rk
1
,… ,Rk

e−1
,R,Rk

e+1
,… ,Rk

nel

)
,

aeR
2
e
+ beRe + ce,

(50)
∑

e∈E

J̃glob

(
AAe, AA

k

e

)
=

∑

e∈E

1

2

‖‖‖AAe − AAk

e

‖‖‖
2

(51)AAe = AA�

e
⇒ �e = �

�

e
,
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3.3  The sequential global programming algorithm 
with a brute‑force sub‑solver

Having the separable first-order approximations of the objec-
tive function and penalization terms at hand, we are now able 
to formulate the iterative scheme that is described by Algo-
rithm 1. We make extensive use of the separable structure of

and individually solve the subproblems of each iteration k for 
each finite element e ∈ E . This is done by evaluating Jsep,e 
for all IHe ∈ H̃ , which are computed on Agrid

i
 (see example 

in Fig. 8c). Based on these evaluations, we then identify a 
global minimizer IH∗

e
 . Here, it is important to note that a 

unique geometric cell label �e is associated with each IHe 
and thus, by determining IH∗

e
 , we also determine the respec-

tive �∗

e
 and material class index i∗.

In Algorithm 2, a bisection strategy is applied to treat the 
resource constraint. Alternatively, dual solution strategies could 
be used instead, especially when multiple constraints are con-
sidered, as for instance shown in Fleury (1993). For the sake of 
simplicity, it is assumed that the resource constraint is always 
active at a minimizer and, if no resource constraint is applied, 
the outer loop in Algorithm 2 is simply omitted.

After each outer iteration of Algorithm 1, the original 
cost function J  is evaluated with the current solution of the 
subproblems IH∗ . If a descent in J  was achieved, we con-
tinue the iterative process. However, if this is not the case, 
we employ the step width control by increasing the multi-
plier Λg of the globalization term Eq. 50 and subsequently 
resolve the subproblems using Algorithm 2.

Algorithm 1 SGP for parametrized multi-
material optimization

1: k ← 0
2: initialize IH0 ∈ H̃nel

3: J k ← solve states Eq. (9),(10) with IH0

4: Jdiff ← ∞
5: while Jdiff > 1e−6 and k ≤ kmax do
6: compute gradients for IHk

7: initialize Λg ∈ R
8: while Jdiff < 0 do
9: IH∗

Λg
← solve Eq. (40) to global

optimality using Algorithm 2
10: increase Λg

11: end while
12: IH∗ ← IH∗

Λg

13: J ∗ ← solve states Eq. (9),(10) with IH∗

14: Jdiff ← J ∗ − J k

15: k ← k + 1
16: J k ← J ∗

17: end while

Jsep

(
IH, ��;IH

k
)
=

∑

e∈E

Jsep,e

(
IHe, ��;IH

k

e

)

Algorithm 2 Solve subproblems via brute-force
strategy

1: initialize λρ ∈ R for volume bisection
2: while volume constraint is not satisfied do
3: for all finite element e ∈ E do
4: for all unit cell types i ∈ I do
5: α∗

i,e ← minimizer on Agrid
i

6: end for
7: α∗

e ←minimizer among all α∗
i,e (i ∈ I)

8: i∗ ← unit cell type index of α∗
e

9: IH∗
e ← evaluate H̃i∗(α∗

e) (see Eq. (31))
10: end for
11: ρ ← evaluate ρh(IH∗

e) (see Eq. (35));
12: if ρ > ρ̄m then
13: increase λρ

14: else
15: decrease λρ

16: end if
17: end while

4  Numerical results

In this section, we demonstrate the capabilities of SGP by 
means of numerical examples. The setting of the poroe-
lastic problem is depicted in Fig. 9. It is a recapitulation 
of the macroscopic problem setting from Hübner et  al. 
(2019), where the authors selected a finite element from the 
macroscopic domain and optimized the shape of the local 
microstructure via a spline-box approach. In the present 
paper, we provide an extension to this example by solving 

Fig. 9  Setup of the macroscopic problem: a mechanical traction force 
f =(0,−1, 0)⊤ acts on a part of the body’s surface (red) while sup-
port is provided on ΓD and pressure values p1 = 1.0 and p2 = 0.5 
are prescribed on Γp1

 and Γp2
 . The design domain is discretized by 

15 × 10 × 2 hexahedra
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the two-scale optimization problem with the SGP method 
described in Sect. 3. In so doing, we work with a rather 
coarse discretization of the macroscopic domain because 
such a discretization is sufficient to demonstrate the capa-
bilities of SGP as described above. On the other hand, in 
Algorithm 2 it is evident that the number of macroscopic 
elements enters the computational complexity for SGP lin-
early and thus, in principle, there is no obstacle to work-
ing with finer discretizations. Furthermore, for all results 
presented in Sect. 4.1 and Sect. 4.2, it was not necessary to 
employ a globalization strategy to control design changes 
from one iteration to the next and we thus set the globaliza-
tion parameter Λg = 0 . Hence, it is only when turning on the 
regularization in Sect. 4.3 that we also employ the globaliza-
tion term described in Eq. 50.

4.1  Optimization with one unit cell type

Let us consider unit cell type 1 as it is depicted in Fig. 4. 
The geometry consists of three joint cylindrical fluid chan-
nels filled with glycerine (Young’s modulus 4.35 GPa , 
dynamic viscosity 0.95 Pas ) that are perpendicular to 
each other and intersect a hollow sphere in the middle of 
the cell domain. These channels are embedded in matrix 
material made of polystyrene with a Young’s modu-
lus of 3.9 GPa and a dynamic viscosity of 0.34 Pas . The 
feasible range for the geometric design parameters is 
A1 = [0.08, 0.22]2 . Thus, in each finite element e ∈ E , we 
have the design parameters �1 = (rx, ry)

⊤
∈ A1 to steer the 

radii of the channels pointing in the x - and y-directions. 
The radius of the fluid channel that points in the z-direc-
tion (out-of-plane) is kept constant. At the boundaries of 
the design parameter space, the volume fractions of the stiff 
material phase are 𝜌h

(
H1

(
[0.08, 0.08]⊤

))
= 0.7154 and 

𝜌h

(
H1

(
[0.22, 0.22]⊤

))
= 0.879 . The directional stiffness of 

the softest version of this unit cell is visualized in Fig. 10 by 
means of a polar plot.

The interpolation of H1 is based on Anodes
1

 . Here, Anodes
1

 
is the parameter grid spanned by the components of �1 , and 
for each component we chose 11 equally spaced samples. 
The subproblems of the SGP algorithm are solved based on 
the discrete parameter grid Agrid

1
 . For this grid, we chose a 

sample size of 28 for each of the two channel radii and again, 
the samples were equally spaced.

For the following optimization results with the weighted 
sum formulation of structural compliance and fluid flux, 
we employ an initial design guess, visualized in Fig. 11, 
that is neither particularly favourable for the mechanical 
nor for the fluid flow state.

The visualization style that we chose for our optimized 
designs is outlined in the following. During the optimi-
zation process, each macroscopic element of the finite 
element discretization represents a microstructured mate-
rial whose properties are obtained by homogenization. In 
Fig. 11, and upcoming similar design representations, one 
macroscopic element is substituted by one unit cell geom-
etry of type 1 or 2 with the respective optimized geometri-
cal sizes, whereby this choice solely serves the purpose of 
visualization.

For now, we choose Λ
Ψ
= −10 and solve optimization 

problem Eq. 36. The resulting optimized design is depicted 
in Fig. 12a. Note that the design domain is discretized by 
two finite element layers in the z-direction. We found that, 
for all numerical results presented in this paper, the dif-
ferences between the optimized designs at layer z = 0 and 
layer z = 1 are so small that they cannot be visually dis-
cerned and hence we will only show the optimized designs 
for layer z = 0 in the rest of the paper.

The SGP stopped after 19 iterations because the dif-
ference between the objective values of the old and new 
design was found to be 0. We note that this comparably 
low number of iterations is related to the fineness of the 
design discretization and using more grid points could thus 
lead to a slightly larger number of iterations. On the other 
hand, in the experiments that we performed in this regard, 

Fig. 10  Visualization of the directional stiffness of a unit cell with 
maximally opened fluid channels ( rx = 0.22, ry = 0.22 ). This spheri-
cal plot was generated by drawing the entry A1111 of the rotated mate-
rial tensor AA ∈ �

6 for varying rotation angles (�,�) ∈ [0, 2�]2 about 
the z- and y-axes. For instance, the sketched arrow points to (�∕2, 0) 
and its length of 1.9457 comes from the first entry of the material ten-
sor that is rotated by �∕2 about the z-axis Fig. 11  Homogeneous initial design with rx = ry = 0.15 , no cell rota-

tion, and physical performance Φh,init = 28.9 and Ψh,init = 0.135
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the visualizations of the results that were obtained could 
be hardly distinguished, see Fig. 13, which is why we do 
not report the results derived from different choices of 
A
grid

i
, i ∈ I.

A second observation is that the fluid channels in result-
ing designs are fully connected, which is due to the fact 
that no rotational design degrees of freedom were used. 
On the other hand, we will show that the performance sig-
nificantly improves if local rotations of the microstructures 
are also allowed.

4.1.1  Optimized local in‑plane rotation of microstructures

We introduce angle variable � ∈ [0,�] to allow the in-
plane rotation of the microstructure about the z-axis. The 
effective material coefficients are rotated by � with the 
following analytical expressions:

where Q6 ∈ ℝ
6×6 are rotation matrices for the stiffness tensor 

AA in Voigt notation and Q3 ∈ ℝ
3×3 are rotation matrices for 

the Biot coupling and permeability tensor. We note that no 
additional evaluations of the homogenization operators are 
required as the effective material tensors are rotated instead 
of the microstructure. Furthermore, � is discretized with 180 
steps for the brute-force approach to solve the SGP subprob-
lem with Algorithm 2.

Now we again set Λ
Φ
= 1 and Λ

Ψ
= −10 as shown in 

Fig. 12 and observe in Fig. 14a, b how the design evolves 
as both physical models counteract each other. Firstly, the 
mechanical model strives for as much material as possible 
to minimize the compliance while the fluid flux is maxi-
mized when there is less material in the design domain. 
The convergence plot for the merit function J  and com-
pliance function Φh , displayed in Fig. 15, shows that the 
compliance drops in the first iteration and then slightly 
increases before it finally settles around the value of 27.0. 
In general, in our numerical studies, we observed that the 
largest design changes occur at the beginning within a 
few iterations. Afterwards, minor changes are made to fur-
ther tweak the objective. This behaviour shows the good 
quality of the SGP model and its approximations that are 
described in Sect. 3. The design change from one outer 
iteration to the next one, visualized in Fig. 15, is measured 
with

(52)

AArot(rx, ry,�) = Q6(�)AA(rx, ry)Q6(�)
T ,

Brot(rx, ry,�) = Q3(�)B(rx, ry)Q3(�)
T ,

Krot(rx, ry,�) = Q3(�)K(rx, ry)Q3(�)
T ,

1

nel

�
�

e∈E

‖AAk+1
e

− AAk
e
‖1 + ‖Kk+1

e
− Kk

e
‖1

�

(a) Optimized design (z = 0) (b) Optimized design (z = 1)

(c) Mechanical state

(d) Pressure field (e) Velocity field

Fig. 12  Optimization result for Λ
Ψ
= −10 and fixed local microstruc-

ture orientation (no rotation) with Φh,opt = 27.25 and Ψh,opt = 0.275 
for the optimized design in a, b. The initial guess is the design shown 
in Fig. 11. In c, the mechanical state of the optimized design is visu-
alized by deforming the domain by the physical displacements and 
the strain energy is shown in colour. In e, the flow direction is visual-
ized by equally scaled arrows and the colours indicate the magnitude 
of the flow field

Fig. 13  Two optimized designs for different sample sizes of Agrid

1
 . 

a 10 samples each for rx and ry and 180 samples for � . b 28 sam-
ples each for rx and ry and 180 samples for � . Here, Λ

Ψ
= 1 and 

Λ
Ψ
= −10 . The visual differences are barely perceptible, although b 

has a 1.5% lower compliance and a 1.7% higher flux than a 
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for k = 0, 1,… In this example, the SGP algorithm 
stopped after 38 iterations because the stopping criterion 
Jdiff = J(IH

k+1
) − J(IH

k
) < 1e−6 , see Algorithm 1, was ful-

filled. Furthermore, the numbers also show that the design 
change from iteration 37 to 38 is exactly 0 which means that 
no better local solution could be found without refining the 
design grid.

If we now closely examine the intermediate designs 
shown in Fig. 14a, it is again evident that the initial guess 
is neither particularly favourable for the mechanical nor 
for the fluid flow state. After the first iteration, we see in 
Fig. 14a that some channels that are close to the outflow 
region are opened wide and cells closer to the mechani-
cal support were adjusted to have narrower fluid channels 
to improve the mechanical performance of the design. In 
comparison with the solution in Fig. 12 where the orienta-
tion was fixed, this solution has a 1% smaller compliance 
and a fluid flux that is approximately 47% higher.

We conclude this subsection by presenting a Pareto front 
for this type of bicriterial weighted sum formulation in 

Fig. 16. All optimizations were based on the homogene-
ous initial guess that is shown in Fig. 11. This implies that 
no warm starting technique for the rotation variable, as, for 
instance, proposed by Pedersen (1989), Norris (2005), was 
required to proceed from one point to the next on the Pareto 
curve. Nevertheless, a Pareto curve is obtained in which 
none of the points is dominated by another. The optimized 
designs for various choices of Λ

Ψ
 are visualized in Fig. 17. 

We observed that with decreasing Λ
Ψ

 , the compliance-min-
imized design (Fig. 17a) is almost smoothly transformed 
into a fully flux-based design (Fig. 17b). Furthermore, the 
optimized local orientation fields, visualized in Fig. 17, all 
seem rather smooth, although no regularization technique 
was applied. The combination of the ability to obtain smooth 
orientation fields without particular design initialization and 
any regularization indicates that the SGP method can avoid 
poor local solutions and has little dependence on the initial 
guess. The number of outer iterations required to solve the 
problems corresponding to all points on the Pareto curve 
varied between 3 and 38 and did not increase with increas-
ing design degrees of freedom. The rather low number of 3 
iterations was obtained for the extreme case where Λ

Ψ
= 0.

4.1.2  Scalability

We chose a rather coarse, albeit sufficient, resolution of the 
design domain (Fig. 9) for the numerical examples shown 
in this section. However, to practically illustrate that our 
optimization model scales linearly with the number of 

(a) Design after one iteration (b) Optimized design

(c) Pressure field (d) Velocity field

(e) Mechanical strain

Fig. 14  Optimized design with rotational design degrees of free-
dom and respective physical states for Λ

Φ
= 1 and Λ

Ψ
= −10 , with 

Φh,opt = 27.1 and Ψh,opt = 0.413

Fig. 15  Convergence plots for the design shown in Fig. 14
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design elements, we also solved the optimization shown 
in Fig. 14 for two finer discretizations and report on the 
computation times in Table 2. We would like to empha-
size that our implementation is prototypical and hence 
not performance optimized. Therefore, the reported serial 
subproblem solution times in Table 2 are rather high and 
the simulation times are significantly smaller. However, 
they reflect the linear scaling of the subproblem solution 
well, which is fsub ≈ 8 when octuplicating the reference 
resolution of 15 × 10 × 2 . The subproblem solver can be 
parallelized in the design elements and does not require 
any respective communication which shows the potential 
for the scalability of our approach for high-dimensional 
optimization problems.We present the optimized design 
with resolution 30 × 20 × 4 in Fig. 18 and only visualize 
the first two layers in the z-direction.

25 26 27 28 29 30
0

0.25

0.5

ΛΨ = −3

−5

−10
−15

−30
−60

compliance Φh

flu
x
Ψ

h

Fig. 16  Pareto front for varying Λ
Ψ

 in the weighted sum formulation 
Jphys = Φh + Λ

Ψ
Ψh . The optimization was based on cells of type 1 

and the initial design was always [0.15, 0.15, 0]nel . As we are mini-
mizing Φh and maximizing Ψh , a point P = (P

Φh
,P

Ψh
) in the image 

space of Φh and Ψh dominates a point Q = (Q
Φh
,Q

Ψh
) if P

Φh
≤ Q

Φh
 

and P
Ψh

≥ Q
Ψh

(a) Compliance-minimized
design

(b) ΛΨ = −3 (c) ΛΨ = −5 (d) ΛΨ = −10

(e) ΛΨ = −15 (f) ΛΨ = −30 (g) ΛΨ = −60 (h) Flux-maximized design:
ΛΦ = 0,ΛΨ = 1

Fig. 17  Visualization of the optimized designs associated with the labelled points in Fig. 16

Table 2  Serial computation times for different discretization levels: 
the number of outer iterations niter , average time for a subproblem 
solution t̄sub , and average time for a simulation t̄sim

fsub are the factors in time that are required for one average subprob-
lem solution, for which resolution 15 × 10 × 2 serves as the reference. 
Thus, fsub = 1 for the lowest resolution

Resolution niter t̄sub (min) fsub t̄sim (s)

15 × 10 × 2 38 6.8 1 1.53
30 × 20 × 4 39 51.06 7.5 8.41
60 × 40 × 8 61 359.62 52.89 248

(a) z = 0 (b) z = 1

Fig. 18  Optimized designs for Λ
Ψ
= −10 , see setting in Fig. 14, with 

a higher resolution of 30 × 20 × 4 design elements
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4.2  Optimization with two unit cell types

To study the ability of SGP to handle more than one unit 
cell type, we add unit cell type 2 that is comprised of a void 
sphere surrounded by matrix material (see second row of 
Fig. 4). In this case, the only design parameter is the radius 
rs ∈ [0.1, 0.4] of the void sphere, whereby the smaller the 
void sphere, the higher the volume fraction of the matrix 
phase and therefore the stiffer the cell. Thus, cells of type 
2 are particularly favourable for the mechanical part of the 
objective. When only optimizing the compliance, we obtain 
the trivial solution shown in Fig. 19.

For the fluid flow, the use of cells of type 2 is futile as they 
are not permeable. However, for numerical reasons, we set the 
permeability of the latter cells to 0.001. Cells of type 1 have 
orthotropic mechanical properties and transversal isotropic 
permeability tensors, whereas cells of type 2 have isotropic 
mechanical properties and no permeability. Although cell types 
1 and 2 are disjunct in their parameter spaces, the corresponding 
ranges of volume fractions of the stiff matrix material overlap. 
We have �h

(
H

1

([0.08, 0.08])
)
= 87.9%, �h

(
H

1

([0.22, 0.22])
)
= 71.54% 

and �h
(
H2(0.4)

)
= 73.19%, �h

(
H2(0.1)

)
= 99.6% . Anodes

2
 , 

the basis for the interpolation of H2 , consisted of 30 uniformly 

distributed samples for rs ∈ [0.1, 0.4] and the optimization pro-
cedure was performed on Agrid

2
 with 60 samples that again were 

uniformly distributed.
Next, we present the updated Pareto front for compliance 

minimization and fluid flux maximization with both unit cell 
types in Fig. 20.

It is important to note that although we did not use 
enhanced initial designs for the computation of the points 
on the Pareto curve, the comparison between the new (blue) 
curve and the old (red) curve shows that consistently better 
designs are obtained and the points on the blue curve strictly 
dominate the points on the red curve in the Pareto sense. This 
is not surprising as, with the addition of a new unit cell type, 
the design freedom is increased. However, the fact that we 
do not observe any outliers in this respect again underlines 
the stability of our SGP method. The numbers of required 
outer iterations varied between 4 and 40, which means that no 
significant increase in the number of iterations is observed, 
although a second cell type has been added. Fig. 21 shows 
how the number of cells of type 2 in the optimized design 
decreases with decreasing Λ

Ψ
 . This is expected, as cell type 

2 is unusable for a flux-favoured design.
All results presented so far were computed without 

employing a resource constraint and hence to demonstrate 

(a) Only cells of type 1 (b) Optimized design with
Φh,opt = 19.62

Fig. 19  Compliance-minimized designs: a only allowing cells of 
type 1 and b allowing choices of type 1 and 2. The red dots visualize 
the void inclusions of cells of type 2. The optimized compliance of 
design b is 24% better than the compliance of the optimized design a. 
(Color figure online)

19 20 21 22 23 24 25 26 27 28 29 30
0

0.25

0.5

ΛΨ = −2

−5

−60

compliance Φh

flu
x
Ψ

h

Fig. 20  Comparison of the Pareto curves for varying Λ
Ψ

 . Blue: opti-
mization with cells of type 1 and 2. Red: optimization with cells of 
type 1 only. The blue curve clearly dominates the red curve. (Color 
figure online)

(a) Compliance-minimized
design

(b) ΛΨ = −2

(c) ΛΨ = −5
(d) ΛΨ = −60

(e) Flux-maximized design:
ΛΦ = 0,ΛΨ = 1

Fig. 21  Results of bicriterial optimization with cells from both type 1 
and 2 for varying Λ

Ψ
 . The designs visualized here correspond to the 

labelled data points of the Pareto curve in Fig. 20
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that SGP can also easily handle problems in which a 
resource constraint is added, we briefly present a selected 
result in Fig. 22.

4.3  Optimization with both cell types 
and regularization of design labels 
and interfaces

We introduce a regularization of the optimization problem 
by applying a weighted sum filter �  (e.g.  Bruns and Tor-
torelli (2001); Bourdin (2001)), which is often used in the 
context of topology optimization, on regularization labels 
that are directly related to the unit cells’ geometric param-
eters. For this, we introduce the following mappings

where

and

(53)l1 ∶

{
A1 → ℝ

3

(rx, ry,�) ↦ R1

R1 =

(
rx − 0.08

0.14
,
ry − 0.08

0.14
, cos

(
2
𝜑

𝜋
−

𝜋

2

))⊤

,

(54)l2 ∶

{
A2 → ℝ

3

rs ↦ R2 = (−1,−1,−1)⊤.

This choice of labelling has several effects. Within type 1, 
the maximal distance from the lower to upper label bound is 
1, which is the same distance required to jump from the stiff-
est cell of type 1, with rx = ry = 0.08 , to any cell of type 2. 
Therefore, the interface between cells of type 1 and 2 is also 
penalized. The most expensive change is a jump from type 1, 
which is preferred by the compliance, to any cell of type 2, 
which is most beneficial for the fluid flux. The shifted cosine 
function appearing in the expression for (R1)3 is employed to 
circumvent disambiguities for the angular variable.

Employing these regularization labels, Jreg from Eq. 49 
changes to

where R
�
∈ ℝ

nel collects the �-the components of the regu-
larization label assigned to each finite element, which is 
defined by formula Eq. 53 or Eq. 54 if cell type 1 or cell 
type 2 is chosen for the corresponding finite element e , 
respectively.

Next, we study the influence of regularization with the opti-
mized result for the particular choice Λ

Ψ
= −3 . The result dis-

played in Fig. 23 shows the changes in design with the increas-
ing regularization parameter pfilt.

(55)Jreg(R) =
1

2

3�

�=1

‖R
�
− � (R

�
)‖2,

(a) Optimized design at z = 0

(b) Mechanical state with
Φh,opt = 23.78

Fig. 22  Result of pure compliance minimization when allowing unit 
cells of type 1 and 2 with an active volume fraction constraint set-
ting �̄�m = 0.8 on the stiff material phase. In comparison with Fig. 21a, 
it is evident that only now cells of type 1 also appear in the design. 
Moreover, the resource constraint leads to a variation of the param-
eter rs for cell type 2

(a) Initial design (b) No regularization

(c) ΛΞ = 0.01

(d) ΛΞ = 0.02 (e) ΛΞ = 0.025

Fig. 23  Results for varying Λ
Ξ
 with a filter radius of 1.3 elements and 

Λ
Ψ
= −3
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The respective objective values are listed in Table 3. The 
regularization of fluid channel radii can clearly be observed 
when comparing the designs in the right lower corner of 
Fig. 23b and c. With increasing pfilt , the interface between unit 
cell types 1 and 2 at the right upper corner of the design domain 
vanishes and the design is dominated by cells of type 1.

5  Conclusion and outlook

We presented an SGP approach to homogenization-based 
structural optimization which can be viewed as a free mate-
rial optimization constrained by the set of admissible geo-
metric material parameters.

By means of numerical examples, in which we succes-
sively added more components to the optimization problem, 
we demonstrated that the proposed SGP approach with its 
first-order approximations provides good and reasonable 
optimized designs without the necessity for a particular 
design initialization or the employment of a regularization 
strategy for purposes of convergence. Furthermore, SGP is 
able to handle several material classes with disjunct param-
eter sets without additional interpolation and penalization 
strategies. We further observed that optimizing the local ori-
entation of the microstructure yields a significant improve-
ment, up to 48%, of the fluid flux. While we have not actively 
addressed the subject of connectivity within the microstruc-
ture, namely to ensure the connectivity of the fluid-saturated 
channels, the regularization approach presented in Sect. 4.3 
can be used to control the degree of variation of the local 
microstructure rotation. Furthermore, through the presented 
numerical examples, we showed that only a mild regulariza-
tion already has a fair impact on the design.

Although the resolution of the finite element approxima-
tion - and hence the number of design elements - of the 
examples in Sect. 4 was chosen rather coarsely, it served 
the purpose of demonstrating the presented features of 
SGP. Concerning finer resolutions, it should be noted that 
the algorithm can be well parallelized with respect to the 
design elements due to the block separability of the first-
order approximations.

The brute-force approach in the subproblem solver, 
described in Algorithm 2, can be further accelerated by 
employing a hierarchical scanning of the design grids Agrid

i
 in 

which one starts with a rather coarse number of samples and 
determines the minimizer among those. In the next level, only 
the current minimizer and its neighbours are considered and 
the same search within this subset of Agrid

i
 is performed for all 

i ∈ I . This step is repeated until the maximum desired number 
of levels or some accuracy is achieved. With this strategy, the 
quality of the design depends on the number of samples on 
the coarsest grid level and an alternative would be to apply a 
Lipschitz optimization solver, see Hansen and Jaumard (1995), 
to each design element and type in a black-box manner.

Further research will focus on extending the SGP approach 
for homogenization-based optimization to transient problems 
and, in particular, to dynamic metamaterial design. Another 
challenge is to extend the proposed optimization approach for 
an approximate treatment of nonlinear two-scale problems 
with the homogenized coefficients depending on the macro-
scopic response by virtue of the sensitivity analysis as dis-
cussed in Rohan and Lukeš (2015).

Adjoint responses and the sensitivity 
analysis

To derive the adjoint equation, we consider the optimality con-
dition for (u, p) . Thus, from Eq. 20, it follows that

where

To avoid computation of the gradient ∇q on Γ2
p
⊂ 𝜕Ω , we 

consider p̃ ∈ H1
(Ω) such that p̃ = 0 on Γ ⧵ Γ2

p
 , while p̃ = 1 

on Γ2
p
 , as a result of which it is evident that

The optimality conditions Eq. 56, related to the state admis-
sibility, yield the adjoint state (ṽ, q̃) ∈ V0 × Q0 which satis-
fies the following identities:

These equations can be rewritten using Eqs. 57 and 58, as 
follows:

(56)

𝛿
(u,p)L(𝛼, (u, p),�, (ṽ, q̃))◦(v, q)

= Λ
Φ
𝛿uΦ𝛼(u;v) + Λ

Ψ
𝛿pΨ𝛼(p;q)

+ a
Ω
(v, ṽ) − b

Ω
(q, ṽ) + c

Ω
(q, q̃),

(57)

�uΦ�(u;v) = g(v),

�pΨ�(p;q) = −∫
Γ2
p

K∇q ⋅ n.

(58)
−Ψ𝛼(p) = r(p) ∶= c

Ω
(p + p̄, p̃),

−𝛿pΨ𝛼(p;q) = 𝛿pr(p;q) = c
Ω
(q, p̃).

(59)
∀v ∈ V0 ∶ a

Ω
(v, ṽ) = −Λ

Φ
𝛿uΦ𝛼(u;v),

∀q ∈ Q0 ∶ c
Ω
(q, q̃) = b

Ω
(q, ṽ) − Λ

Ψ
𝛿pΨ𝛼(p;q).

Table 3  Performance of the designs shown in Fig.  23 with 
Jmer,opt(ΛΞ

) = Jreg,opt(ΛΞ
) + Φh,opt + Λ

Ψ
Ψh,opt

Λ
Ξ

Jmer,opt Jreg,opt Φh,opt Ψh,opt

0 21.34 11.5 21.57426 0.0765
0.01 21.65 0.0389 21.65041 0.0140
0.011 21.67 0.0484 21.66846 0.0142
0.015 21.99 0.0747 21.95892 0.0139
0.02 22.40 0.092 22.34912 0.0135
0.025 22.70 0.0712 22.66730 0.0136
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In Sect. 2.5, the adjoint state ṽ and q̃ is decomposed accord-
ing to Eq. 22, so that the adjoint state problem constitutes 
three equations that are independent of the multipliers �.

We can compute the total variation of the Lagrangian with

If the pair (u, p) solves the state problem and (ṽ, q̃) is 
its adjoint state, Eq.  61 is equivalent to the following 
expression:

Above, the shape derivatives �� of the bilinear forms can 
be rewritten in terms of the sensitivity of the homogenized 
coefficients. Apart from the evidently vanishing derivative 
��g(u) = 0 , it holds that

Using the “total pressure” P ∶= p + p̄ , the following tensors 
are employed to evaluate the expression in Eq. 63:

Now, using these tensors, Eq. 61 is computed as follows:

Hence, the variations of L with respect to AA,B and K are 
given by the following formulae

(60)
∀v ∈ V0 ∶ a

Ω
(v, ṽ) = −Λ

Φ
g(v) ,

∀q ∈ Q0 ∶ c
Ω
(q, q̃) = b

Ω
(q, ṽ) + Λ

Ψ
c
Ω
(q, p̃).

(61)

𝛿tot
𝛼
L = Λ

Φ
𝛿ug(u;𝛿𝛼u) − Λ

Ψ
𝛿pr(p;𝛿𝛼p)

+ Λ
Φ
𝛿𝛼g(u) − Λ

Ψ
𝛿𝛼r(p) + Λ

Ξ
𝛿𝛼Ξ𝛼(IH)

+ a
Ω

(
𝛿𝛼u, ṽ

)
− b

Ω

(
𝛿𝛼p, ṽ

)
+ c

Ω

(
𝛿𝛼p, q̃

)

+ 𝛿𝛼aΩ(u, ṽ) − 𝛿𝛼bΩ(p + p̄, ṽ)

+ 𝛿𝛼cΩ(p + p̄, q̃).

(62)
𝛿tot
𝛼
L = Λ

Φ
𝛿𝛼g(u) − Λ

Ψ
𝛿𝛼r(p) + Λ

Ξ
𝛿𝛼Ξ𝛼(IH)

+ 𝛿𝛼aΩ(u, ṽ) − 𝛿𝛼bΩ(p + p̄, ṽ)

+ 𝛿𝛼cΩ(p + p̄, q̃).

(63)

𝛿𝛼aΩ(u, ṽ)◦𝛿𝛼AA = ∫
Ω

𝛿𝛼AAe(u) ∶ e(ṽ),

𝛿𝛼bΩ(p + p̄, ṽ)◦𝛿𝛼B = ∫
Ω

(p + p̄)𝛿𝛼B ∶ e(ṽ),

𝛿𝛼cΩ(p + p̄, q̃)◦𝛿𝛼K = ∫
Ω

∇q̃ ⋅ 𝛿𝛼K∇(p + p̄),

𝛿𝛼r(p) = 𝛿𝛼cΩ(p + p̄, p̃)◦𝛿𝛼K

= ∫
Ω

∇p̃ ⋅ 𝛿𝛼K∇(p + p̄).

(64)
e(u)⊗ e(�̃) , Pe(�̃),

∇P⊗ ∇q̃1 , ∇P⊗ ∇q̃2,

∇p̃⊗ ∇P.

(65)

𝛿tot
𝛼
L = −Λ

Ψ
𝛿𝛼r(p)

+ Λ
Φ

(
𝛿𝛼aΩ

(
u, �̃

)
− 𝛿𝛼bΩ

(
P, �̃

)
+ 𝛿𝛼cΩ

(
P, q̃1

))

+ Λ
Ψ
𝛿𝛼cΩ

(
P, q̃2

)
+ Λ

Ξ
𝜕IHΞ(IH)𝛿𝛼IH.
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