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1 Introduction
Nonlinear energy functionals appearing in the calculus of variations can be discretized

by the finite element (FE) method and formulated as a sum of energy contributions from local
elements. In Matonoha et al. (2022); Moskovka and Valdman (2022); Moskovka (2023)
we demonstrated minimization of several functionals using vectorized implementation with the
simplest linear nodal (P1) elements in MATLAB. An assembly of the discrete energy func-
tional gradient required by the trust region method is crucial for the performance of mini-
mization process. In this contribution, we extend our vectorization concept by incorporating
two-dimensional rectangular hp-finite elements.

2 Models
Two models appearing in science and engineering are considered. The first, a p-Laplace equa-
tion, is given by

∆αu = f in Ω ,

u = g on ∂Ω
(1)

for some α > 1. Solving (1) is equivalent to finding the minimum of the corresponding energy
functional

J(u) = min
v∈V

J(v) , J(v) :=
1

α

∫

Ω

∥∇v∥α dx−
∫

Ω

f v dx , (2)

where
V = W 1,α

g (Ω) = {v ∈ W 1,α, v = g on ∂Ω}.
One of the most well-known vector problems from mechanics is the nonlinear elasticity which
describes the deformation of the material loaded by a force. The corresponding energy func-
tional is given by

J(v) =
∫

Ω

W
(
F(v(x))

)
dx −

∫

Ω

f(x) · v(x) dx , (3)

where v : Ω → Rdim is a deformation mapping, F = ∇(v), f is a loading, g is an external load
on the Neumann part of the boundary and W (F) is a density function which depends on the
model choice.
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Fig. 1 depicts the solutions of the p-Laplace problem (2) (left) and hyperelasticity (3)
(right). For p-Laplace we consider α = 3 and a constant f = −10. For hyperelasticity a
constant volumetric vector force f = (−3.5 · 107,−3.5 · 107) is considered. Fig. 2 depicts the
corresponding energy errors with respect to the number of dofs or evaluation times. For both
p-Laplace and hyperelasticity the Q2 elements dominate over P1 and Q1.

Figure 1: Solutions of p-Laplace (left) and hyperelasticity (right) problems. The same compu-
tational mesh for p-Laplace is considered using Q1 elements (the 1st image) and Q4 elements
(the 2nd). Deformation of a body with the underlying NeoHookean density is depicted for a
coarse mesh with Q4 elements (the 3rd image) and a fine mesh with Q1 elements (the 4th).

Figure 2: Two graphs on the left depict absolute energy errors of p-Laplace with respect to the
number of dofs and evaluation times. Energy errors for hyperelasticity are displayed on two
graphs on the right.
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