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1 Introduction
We consider the reaction-diffusion-convection equation
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+ g(v), p > 1. (1)

Here D ∈ C1[0, 1] is a positive diffusion coefficient, H ∈ C2[0, 1] is a nonlinear convective flux
function and the reaction term g is a Lipschitz function satisfying g(0) = g(1) = 0, g(v) = 0 in
[0, θ] and g(v) > 0 in (θ, 1) for some θ ∈ (0, 1). This type of nonlinearity g is frequently found
in combustion models where θ represents the ignition temperature, see, e.g., Berestycki et al.
(1985).

A classical problem associated with reaction-diffusion equations is the existence of trav-
eling wave solutions, i.e., bounded nonconstant solutions that travel without the change of shape
at a constant speed. In the absence of convection, there exists a unique admissible wave speed
c = c∗ and a corresponding wave profile connecting equlibria 0 and 1. The additional convec-
tive term might cause the disappearance of this wavefront, as shown in Malaguti and Marcelli
(2003) for p = 2. We extend the existence and nonexistence results established therein to the
more general case p > 1.

2 Reduction to a first order problem
The existence of traveling wave solutions v(x, t) = u(x− ct) to (1), where c denotes the

unknown speed of propagation, is equivalent to the solvability of the boundary value problem
{
(D(u)|u′|p−2u′)

′
+ (c+ h(u))u′ + g(u) = 0,

u(−∞) = 1, u(+∞) = 0.
(2)

It can be shown that the solution u = u(ξ) is nonincreasing on R and u′(ξ) < 0 for any ξ ∈ R
such that 0 < u(ξ) < 1. Thanks to this property, we can proceed similarly as in Enguiça et al.
(2013) and transform (2) into a first order boundary value problem

{
y′(u) = p′

[
(c+ h(u))

(
y+(u)

) 1
p − f(u)

]
, u ∈ (0, 1),

y(0) = y(1) = 0,
(3)

where f(u) = Dp′−1(u)g(u), h(u) = d
du
H(u) and p′ = p

p−1
is the exponent conjugate. More

precisely, positive solutions of (3) are uniquely determined by solutions of (2) and vice versa.
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3 Main results
By investigating the first order problem (3), we derive the following results, where hm

denotes the minimum of h over [0, 1].

3.1 Existence
Let
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This is a continuous function satisfying lim
p→1+

k(p) = 0 and lim
p→+∞

k(p) = 2.

If

H(1) ≤ hm +

(
k(p)

∫ 1

0
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) 1
p′

(4)

then there exists a unique c = c∗ > −hm such that the boundary value problem (2) has a unique
(up to translation) solution. Moreover, if H satisfies condition (4) with hm = 0, then c∗ > 0.

We mention that for p = 2 our result generalizes the one from Malaguti and Marcelli
(2003) by allowing equality to hold in (4).

3.2 Nonexistence
If

H(θ) ≥ θhm +

(
p′
∫ 1

0
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) 1
p′

(5)

then the boundary value problem (2) admits no solutions for any c > −hm.
If hm = h(0) and strict inequality holds in (5), then (2) has no solution for any c ∈ R.
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Grant No. 22-18261S.

References
Berestycki, H., Nicolaenko, B., and Scheurer, B. (1985) Traveling wave solutions to combustion

models and their singular limits. SIAM J. Math. Anal., Volume 16, No. 6, pp. 1207–1242.

Enguiça, R., Gavioli, A., and Sanchez, L. (2013) A class of singular first order differential
equations with applications in reaction-diffusion. Discrete Contin. Dyn. Syst., Volume 33 ,
pp. 173–191.

Malaguti, L., and Marcelli, C. (2003) The influence of convective effects on front propagation in
certain diffusive models. In Mathematical modelling & computing in biology and medicine,
Bologna, pp. 362–367.

32


