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1. Introduction
Phenomena like flutter, vortex-induced vibration, or buffeting can manifest during fluid-structure
interaction (FSI), potentially leading to structural failure. As a result, FSI problems have gar-
nered significant attention in fields such as the nuclear industry, aeronautics, and turbomachin-
ery. The computational demands of simulating practical FSI problems are substantial, with
fluid flow simulations often constituting the most resource-intensive aspect. To significantly
alleviate these computational demands, we propose using a neural network to predict fluid flow,
replacing traditional computational fluid dynamics (CFD) solvers. Convolutional Neural Net-
works (CNNs) were initially developed for image pattern recognition [3]. Guo et al. [4] were
pioneers in employing CNNs to predict steady fluid flow, demonstrating that their CNN could
predict velocity fields four orders of magnitude faster than a CPU-based solver and two orders of
magnitude faster than a GPU-accelerated lattice Boltzmann CFD solver while maintaining error
levels below 3%. Building upon this, Hennigh [5] extended the concept to predict unsteady fluid
flows. In these groundbreaking studies, CNNs were trained to predict flow fields with varying
geometries but consistent flow parameters, such as Reynolds number and angle of attack. Sub-
sequent research by Bhatnagar et al. [1] and Thuerey et al. [7] developed CNN models capable
of predicting complete velocity and pressure fields around aerofoils of diverse shapes, consid-
ering parameterized Reynolds numbers and angles of attack. This paper aims to apply CNNs to
fluid-structure interaction (FSI) problems. It is worth noting that most prior research utilizing
neural networks for fluid flow prediction assumed stationary boundaries. However, for FSI ap-
plications, CNNs must predict flow fields with moving boundaries. To address this challenge,
we have designed and trained a CNN specifically tailored to predict unsteady, incompressible
fluid flow with moving boundaries.

2. Neural network architecture and training dataset
In order to forecast the behavior of unsteady, incompressible fluid flow around a mobile object,
we employ a specialized convolutional encoder-decoder neural network known as U-Net, as
introduced by Ronneberger et al. [6]. This architecture is visualized in Fig. 1. The neural
network takes as input a three-dimensional array with dimensions of 128 × 32 × 8. This array
contains eight distinct values for each grid point, which encompass the following information:
the x and y coordinates of the grid points at time instances tn and tn+1, the corresponding
boundary indicator, fluid velocity components u and v, as well as the pressure p at time tn.
Including grid point coordinates is essential due to the non-Cartesian nature of the mesh. Since
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Fig. 1. Illustration of the network architecture

the mesh undergoes deformation, providing grid point positions at two distinct time steps is
imperative. The boundary indicator is represented as a binary value equal to 1 if the grid point
resides on the boundary of the blade profile and 0 if it is situated within the fluid domain. The
network’s output comprises pressure and velocity fields computed at the grid points for time
tn+1.

3. Structure model and fluid-structure interaction
We examine the interaction between laminar fluid flow and a solitary rigid body, which is elas-
tically attached and can only move horizontally. Additionally, our simulation focuses solely on
a 2D cross-sectional representation. The dynamics of this elastically-mounted body are encap-
sulated by the one-degree-of-freedom (1-DOF) linear mass-spring-damper model

ÿ + 2 ζ ωn ẏ + ω2
n y =

L

m
.

In this context, where y represents horizontal displacement, we define several vital parameters:
ζ as the damping ratio, ωn as the undamped angular natural frequency (where ωn = 2πfn and
fn is the undamped natural frequency), m as the mass, and c and k as the damping and stiffness
coefficients, respectively. Additionally, L represents the lift force. The relationship between the
damped natural frequency and the undamped natural frequency is expressed as follows:

fd = fn
√

1 − ζ2.

We discretize this equation using the BDF2 method, which is a 3-level implicit method.
To ensure the accurate interaction between the fluid flow and the solid structure, two condi-

tions must be met at the fluid-solid interface: the equilibrium of forces and geometric consis-
tency. Assuming that no external forces are acting on the body apart from aerodynamic forces,
the equilibrium of forces can be expressed as follows:

L =

∮

Γ

(
σxx nx + σyx ny

)
dS.
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Here Γ is the boundary of the body, n is the unit outer normal to the boundary and σ is the
aerodynamic stress tensor.

4. Numerical results
After conducting training sessions for a Convolutional Neural Network (CNN) using data from
fluid flow around a cylinder subjected to prescribed harmonic motion with varying amplitudes
and frequencies, we integrated the CNN with a structural solver. This integrated system was
then employed for Fluid-Structure Interaction (FSI) simulations. The validation of the CNN-
based FSI solver involved a thorough comparison of its outcomes with those of a Computational
Fluid Dynamics (CFD)-based FSI solver. Notably, the CNN-based and CFD-based FSI solvers
shared the exact structural solver and coupling algorithm; the primary difference lay in their
respective fluid solvers. In our case, we utilized FlowPro [2] as the fluid solver, which also
served as the source for generating the training dataset.

To validate the performance of the CNN-based FSI solver, we conducted multiple simula-
tions with various natural frequencies and damping ratios for the structural component. The
fluid parameters remained constant across all simulations. Specifically, we selected a Reynolds
number of 100. We opted for damping ratios of 0.375 and 0.45. For each damping ratio value,
we executed a series of simulations with different natural frequencies for the structure and sub-
sequently visualized the resulting amplitudes and frequencies.

In Fig. 2, we compare amplitude characteristics obtained from the CNN-based and CFD-
based FSI solvers for specific damping ratios. In essence, we depict the cylinder’s amplitude
response for various natural frequencies near the resonance frequency. Notably, we normalize
the damped natural frequency fd by the Strouhal frequency fSt, representing the vortex-shedding
frequency for a stationary cylinder, and we normalize the amplitudeA by the cylinder’s diameter
D. It is important to emphasize that fSt and D remain consistent throughout all simulations.

Fig. 3 illustrates the steady-state oscillation frequency f of the cylinder about the damped
natural frequency fd of the structure. Both axes are normalized by fSt. The horizontal black line
signifies the Strouhal frequency fSt, which, due to normalization, equates to 1. The inclined
black line corresponds to the natural frequency of the cylinder fd, which, also due to normal-
ization, aligns with the function y = x. The blue circles represent frequencies obtained from
the CFD-based FSI solver, while the red squares represent frequencies obtained from the CNN-
based FSI solver. For natural frequencies near the Strouhal frequency, i.e., when fd/fSt ≈ 1, the
vortex-shedding frequency deviates from its typical value and begins to follow the structure’s

Fig. 2. Cylinder amplitudes A depending on the damped natural frequency fd for various damping ratios
ζ. The blue circles are the CFD-based results while the red squares are the CNN-based results
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Fig. 3. Steady-state oscillation frequency f depending on the damped natural frequency fd for various
damping ratios ζ. The blue circles are the CFD-based results while the red square are the CNN-based
results

natural frequency. This phenomenon indicates that within a specific region around resonance,
the frequencies follow the inclined line instead of the horizontal line, commonly called ”lock-
in”.

5. Conclusions
The findings demonstrate that the CNN-based Fluid-Structure Interaction (FSI) solver effec-
tively captures the ”lock-in” phenomenon in the vortex-induced vibration of a cylinder. Fur-
thermore, the quantitative results closely align with those obtained from the CFD-based FSI
solver. The CNN-based FSI solver also exhibits a remarkable speed advantage, two orders of
magnitude faster than its CFD-based counterpart. This speedup is expected to be even more
pronounced when applied to larger-scale problems.
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