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Journal bearings are widely used as a support for high-speed or heavy rotating machines.
Among their main advantages are simple construction, low wear, damping capacity and ability
to withstand shock loads. However, the journal bearing can be a source of self-excited subsyn-
chronous vibration of the rotating parts. This behaviour is also called fluid-induced instability.
The criterion and method for system stability analysis were studied in [3]. The undesirable
behaviour can be suppressed by global geometry modifications leading to lemon bore bearings,
multi-lobe bearings, offset-halve bearings and tilting pad journal bearings. If different bear-
ing types are insufficient to improve the system stability, the local changes in the geometry by
adding grooves, pressure dams, or, nowadays popular, textures are performed. The textures
(undulation) can improve the bearing load capacity due to the fluctuation of the developed hy-
drodynamic pressure. The hydrodynamic pressure is governed by the Reynolds equation. In
the case of an indented bearing shell, the solution of the Reynolds equation is tricky. The fi-
nite difference [3, 6] and the finite volume methods are the most used numerical methods for
solving this equation. These methods are suitable for plain journal bearing, but they become
time-costs inefficient for undulated bearing shells. For the textured bearing, the numerical so-
lution requires a significantly higher number of considered nodes in the computational mesh to
obtain valid results, see [6]. This contribution presents a computational approach employing
the homogenisation method [4, 5] applied to the problem of hydrodynamic lubrication in the
journal bearing with textures, where the homogenisation procedure is performed utilising the
SfePy tool [1] – simple finite elements in Python. The SfePy tool is further linked with the
continuation toolbox MATCONT [2].

First, a parameterization of the bearing model coupled with the rotor is introduced, Fig. 1.
The rotor position can be described by coordinates Ξ = (Ξ1,Ξ2) in the Cartesian system xz, or
by the polar coordinates ξ = (ρ, α) with ρ > 0 denoting the eccentricity, and α ∈] − π,+π[
denoting the angular deviation from the reference position. Clearly

Ξ = ρ(cosα, sinα) , ρ = |Ξ| . (1)

Let x = (x1, x2) ∈ Ω ⊂ R2 describe the position in the plane of the rectified bearing gap.
Consider Ω =] − s, s[×]0, L[, where s = πR is the half-circumference given by the bearing
shell radius R, and L is the bearing width. Due to the bearing eccentricity, the bearing median
gap height h0 is given by

h0(x) = h0 − ρ cos(θ − α) , θ ∈]− π, π] ,

x1 = Rθ = sθ/π , x2 ∈]0, L[ ,
(2)
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Fig. 1. A scheme of the considered rotor-bearing system with denoted forces (left) and the bearing
surface area with undulation (left)

where h0 = R− r is a nominal bearing gap, given by the bearing shell and rotor radii.
The rotor dynamic is driven by

MΞ̈ = f̃(Ξ, α, p) + g(ω, ϕ) with ϕ(t) = ωt , (3)

where M = mI is the mass matrix, vector f̃ is given by pressure p by virtue of the Reynolds
equation, and g is the rotor unbalance. Recall that the rotor angle position α and eccentricity ρ
are related to the Cartesian rotor position (1). The force f̃

∗
= (f̃ ∗

ρ , f̃
∗
τ ) is defined in the ρ − τ

(radial, tangential) coordinate system as follows

f̃ ∗
ρ (p, α, t) =

∫ L

0

∫

θ

p(t, x1(θ), x2) cos(θ − α)Rdθdx2 ,

f̃ ∗
τ (p, α, t) =

∫ L

0

∫

θ

p(t, x1(θ), x2) sin(θ − α)Rdθdx2 ,

(4)

where θ =]− π, 0[ so that, in the Cartesian system (Ξ1,Ξ2),

f̃ = R(α)f̃
∗
, where

f̃1 = f̃ ∗
ρ cosα− f̃ ∗

τ sinα ,

f̃2 = f̃ ∗
ρ sinα + f̃ ∗

τ cosα ,
thus, R(α) =

[
cos(α) − sin(α)
sin(α) cos(α)

]
. (5)

Here, the perfectly balanced rotor supported by an undulated journal bearing is taken into
account. The dynamic behaviour of the system described generally by (3) is investigated using
two methods: numerical integration in the time domain and numerical continuation of equilib-
rium solution with respect to a chosen bifurcation parameter (nondimensional rotor speed ω).
Both methods need to compute the pressure field in the bearing gap to determine the hydrody-
namic forces which depend on the actual position and velocities of the journal center. Firstly, for
a given bearing undulated geometry, the homogenized coefficients need to be calculated. Then,
these homogenised coefficients are used to determine the pressure field in the bearing gap in the
homogenised model of the Reynolds equation. For illustration, the pressure distribution in the
bearing gap in plain journal bearing and undulated journal bearing is shown and compared in
Fig. 2.

The rotor dynamic model (3) is transformed into nondimensional form and nondimensional
rotor speed and rotor eccentricity are defined as ω = ω

√
h0/g and ρ = ρ/h0, where ρ =
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Fig. 2. Comparison of pressure distribution in the bearing gap for ω = 1.5, ρ = 0.5h0 and α = 1.396 rad;
for plain bearing (top), undulated bearing with dimple height equalled to 10/55h0 – full-scale model
(middle), homogenized model (bottom)
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2. When neglecting the unbalance, the dynamic response of the model is formed by
an equilibrium which is either stable or unstable. Based on this fact, the stability of the system
is determined computationally and briefly described by the following steps:

• Initialisation: determination of parameters of homogenised model of Reynolds equation.

• Numerical integration in the time domain of the model (3) for given initial conditions of
rotor position and velocity and for given nondimensional rotor parameters: rotor speed ω
and rotor bearing parameter λ. The homogenized Reynolds equation is solved in every
time-integration step to determine the hydrodynamic forces.

• Finding steady-state (equilibrium) solution Ξ̂(ω, λ) using the numerical integration.

• The continuation of equilibrium solution Ξ̂(ω, λ) is performed with respect to parame-
ter ω.

• In each continuation step, the stability of the solution is determined based on the proper-
ties of eigen-values of the linearized model in the equilibrium point.

• Determination of special bifurcation points. In case of equilibria continuation, Hopf’s
bifurcation points can be detected. These are points where the stability of the equilibrium
solution is lost. Simultaneously, as the equilibrium loses its stability, a stable (or unstable)
limit cycle solution can be born at Hopf’s point.

• Moreover, Hopf’s bifurcation points form so-called Hopf’s (stability) curve, see Fig. 3
green curve. This curve can be found using codim-2 continuation of the equilibrium
solution starting from Hopf’s bifurcation point and the continuation is performed in two
parametric space (ω, λ). On the Hopf’s curve, there can be detected Generalized Hopf’s
bifurcation point which splits the curve into two parts. The first part is formed by Hopf’s
points from which a stable super-critical limit cycle solution can arise. The second part is
formed by Hopf’s points from which an unstable sub-critical limit cycle solution arises.
For more details, see Fig. 3
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Fig. 3. Stability chart; ’—’ stable equilibria; ’- -’ unstable equilibria; ◦ Hopf’s bifurcation points; ∗ Gen-
eralized Hopf’s bifurcation point; ’—’ super-critical Hopf’s curve; ’- -’ sub-critical Hopf’s curve

The work presents a novel approach which uses the homogenisation method for analysis
of the pressure field in the undulated journal bearing described by the Reynolds equation in
tasks of journal bearing dynamics. Based on this, a weakly-coupled dynamic model of a rotor
supported by undulated journal bearings is formulated. A corresponding computational model
integrates the homogenised model created in the Python-based SfePy tool into the Matlab-
based continuation tool MATCONT. This method enables to perform computationally efficient
dynamic analyses of weakly-coupled models.
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