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1. Introduction
New experimental techniques allow for a more comprehensive examination of the mechanical
response of materials, providing the opportunity for the development of more detailed material
models. The incremental energy minimization approach is a compact variational formulation
of the evolutionary boundary value problem for constitutive models of materials with a rate-
independent response, see e.g. [3]. Although it can be easily applied to many conventional
models, its main advantages arise when applied to models with multiple strongly coupled dis-
sipation mechanisms, where the direct construction of the coupled yield conditions and flow
rules may be challenging. However, the approach usually requires a more complex numerical
treatment of the resulting sequence of time-incremental boundary value problems resolved via
the finite element method.

2. Incremental minimization principle
In what follows, we focus on a quasi-static evolutionary boundary value problem under isother-
mal conditions. Let us introduce a partition of the time interval from time 0 to T in the form
0 = t0 ≤ t1 ≤ · · · ≤ tN = T , N ∈ N. In this time-discrete setting, the mechanical response of
the system at time tn+1, n ∈ {0, . . . , N − 1} can then be determined by solving the incremental
minimization problem

inf
χ
Lτ (χ,χn) , (1)

where χ represents the set of all thermodynamic descriptors of the system. The superscript τ
denotes the time-discretized counterparts of time-continuous functionals of the corresponding
weak formulation, and the subscript n denotes the values of the previous time step. Let us
note that the minimization can be subject to some additional (kinematic and physically-based)
internal constraints, see [3] for details.

The (Lagrangian) functional Lτ usually combines the incremental energy functional, Eτ ,
the incremental dissipation functional, Dτ , and the incremental external work functional P τ .
For many engineering-relevant solid materials, the objective function of the minimization from
(1) takes the the following form:

Lτ (u,α,αn) := Eτ (u,α,αn) +Dτ (α,αn)− P τ (u,α,αn). (2)

52



Here, u denotes the displacement and α encompasses thermodynamic descriptors of the mi-
crostructure, which can be further constrained to an admissible set Aτ . The most common
examples include (hyper)elastic materials, where α and Dτ disappear, or perfectly plastic ma-
terial with α being the plastic strain andDτ being a one-homogeneous function of the difference
α−αn with an imposed constraint trα = 0.

3. Numerical solution strategies
At least two distinct methods can be utilised to solve the rate-independent problem stated in (2).
In the first case, frequently used in finite element software, the minimisation problem is split into
a nested form, where a sequence of “structural” nonlinear minimization problems and “mate-
rial” nonlinear minimization problems is resolved. The second approach benefits from the clear
variational structure of (1) and directly applies minimization.

To illustrate these approaches, let us consider the following form of incremental functionals
for a material body:

Eτ
n+1(u,α;un,αn) =

∫

Ω

fn+1(u,α)− fn(un,αn) dV, (3)

Dτ
n+1(α;αn) =

∫

Ω

(tn+1 − tn) δn+1(α;αn; tn+1 − tn) dV, (4)

P τ
n+1(u;un) =

∫

Ω

F vol
n+1 · (u− un) dV +

∫

ΓN

F surf
n+1 · (u− un) dS, (5)

where fi and δi stand for the discretized density of the thermodynamical (free energy) potential
and dissipation (pseudo)potential, respectively. Moreover, the set Ω ⊂ R3 is the geometric
representation of the physical body in the space with (assumed Lipschitz) boundary ∂Ω, and
ΓN ⊂ ∂Ω represents its subset where the Neumann boundary condition is applied. The terms
F i
vol and F i

surf represent the corresponding time discretizations of the prescribed volumetric and
surface forces, respectively. Let us further assume that all necessary information on the system
at t0 = 0 (including u0,α0) is known and well defined. We can disregard the terms in (3)–(5),
which are constant with respect to the minimization, and make profit from one-homogeneity of
the dissipation (pseudo)potential to the eliminate the time increment in (4).

The nested form of the boundary problem at a time instant tn+1 then reads as

un+1,p+1 = argmin
u∈Uτ

n+1

{Eτ
n+1(u,αn+1,p;αn)− P τ

n+1(u)}, (6)

αn+1,p+1 = argmin
α∈Aτ

n+1

{Eτ
n+1(un+1,p+1,α;αn) +Dτ

n+1(α;αn)− P τ
n+1(un+1,p+1)}. (7)

Whereas the first subscript denotes the time incrementation introduced above, the second one
denotes the iteration p + 1 (p ∈ N ∪ 0) within the resolution process at time tn+1, where the
the subproblems (6), (7) are solved consecutively and repeatedly until suitable convergence cri-
teria are met, i.e. so-called alternating minimization; αn+1,0 = αn. After a discretization in
space, the first, “structural” subproblem formally corresponds to the principle of minimum po-
tential energy. Its solution procedure is analogous to resolving an elastic body problem, which
is a rather standard problem for finite element method. The second, “material” subproblem
corresponds to minimization only with respect to internal variables, i.e. finding the local ther-
modynamical balance, and represents the constitutive response of a material point with fixed
displacement. This is usually tackled via numerical procedures specific to the particular consti-
tutive law or with some universal tool of mathematical programming, cf. [1]. A link between
the two solution procedures is provided by the material tangent stiffness operator, which must
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be derived from the constitutive law as well.
In the alternative approach, the problem is tackled via “complete” minimization, i.e., mini-

mizing all control variables at once,

(un+1,αn+1) = argmin
u∈Uτ

n+1,α∈Aτ
n+1

{Eτ
n+1(un+1,α;αn) +Dτ

n+1(α;αn)− P τ
n+1(un+1)}. (8)

This monolithic approach may be especially advantageous for material models with multiple,
strongly coupled rate-independent dissipative processes. In such a situation, the evolution of in-
dividual thermodynamic descriptor cannot be addressed independently, benefiting from conven-
tional active set search strategies. Solely a single “global yield function” driving the evolution
can be derived, which may render the conventional numerical treatment elaborate and depen-
dent on the model’s particular mathematical structure. In contrast, resolving directly (8) allows
to avoid transferring the results from one subproblem to the other, involving the construction of
the material Jacobian matrix (material tangent modulus) and its incorporation into the structural
Jacobian matrix. On the other hand, it requires to cope with with a non-smooth minimization
problem with non-linear constraints, which provides a complex computational challenge.

4. Conclusion
Recently, a vectorized MATLAB tool for minimization of nonlinear (mathematically well-
behaved) functionals discretized by the finite element method was developed [4]. The current
work builds on it and investigates both the nested and monolithic approaches for a constitutive
model with two strongly coupled dissipation process occurring in shape memory alloys, cf. [2].

The principal benefits of the monolithic approach stated above are counterbalanced by some
drawbacks. One is related to the limits of the variational framework: some models might re-
quire some adaptation of the sketched treat or they even might not fit to (1) at all. Second, the
dimension of the “complete” minimization problem is naturally higher than in the case when
the problem is split in the nested formulation, which poses a challenge for computational re-
sources. Third, applying universal minimization methods is often less efficient than employing
customized algorithms and may lead to prohibitive computational time consumption for more
complex evolutionary boundary problems. However, the advance of new optimization meth-
ods and increased computational power complemented with parallelization might provide some
remedies in the future.
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