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1. Introduction
A pressurized-water reactor core includes a large number of fuel assemblies (FAs) of the same
or different types. During the reactor operation, FAs can be statically deformed in the lateral
and/or torsional direction. This phenomenon is called FA bow [1, 3]. This contribution is
focused on the mathematical modelling of the vibration of two different types bowed FAs in
interaction. The aim of the modelling is a description of changes in FA’s dynamic behaviour in
the case of contacting FAs in the mixed reactor core.

2. Concept of the modelling
The presented method is based on the two-stage modelling concept, whose scheme is depicted
in Fig. 1. The first-stage model represents the global nonlinear model of the VVER 1000 type
reactor. The original reactor model [4, 5] with homogeneous reactor core (HCR) was modified
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Fig. 1. Scheme of the two-stage modelling of the FAs vibration in the mixed reactor core (FA = fuel
assembly, RC = reactor core, CB = core barrel)
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for the mixed reactor core (MCR) containing FAs of two types. This new reactor model was
created under the following assumptions:

1. FAs of both types were modelled as 1D beam-type continua based on the modal values of
their detailed models.

2. An excitation of the reactor is based on time-series of the pressure fluctuations measured
at the coolant inlet to reactor core [2] under standard operation.

3. Motion of the FAs mounting plates investigated on the global reactor model is the source
of the FAs kinematic excitation.

In the second-stage model, both FA types are modelled more in detail (see Fig. 15 in [1]).
The load-bearing skeleton (S) is made of six angles rigidly fixed with eight (type 1) or twelve
(type 2) spacer grids. The spacer grids together with the rims and parts of the angles in the rim
width are modelled as rigid hexagonal plates. Other FA components – fuel claddings (C), fuel
pellets (FP) stacks, guide thimbles (GT) and central tube (CT) – are modelled as a beam-type
continua. Interaction between the neighbouring FAs can occur due to their static deformations
and kinematics excitation by mounting plates movement.

3. Mathematical model of the pair FAs inside the mixed reactor core
Considering a pair of neighbouring FAs composed of statically deformed FA1 (type 1) and
geometrically ideal FA2 (type 2). Contact of the FAs can be assumed in the area of the vertices
of the skeleton angles on the contact line (Fig. 2).
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Fig. 2. Contact forces between FAs

Let us denote normal contact forces N̄1,2

and ¯̄N1,2 at the contact line between FA1 and
FA2. These forces can be written in the form

N̄1,2 = kC(n̄1,2 − δ)H(n̄1,2 − δ),
¯̄N1,2 = kC(¯̄n1,2 − δ)H(n̄1,2 − δ),

(1)

where kC is the contact stiffness between two
skeleton angles and δ is the nominal clear-
ance between FAs in the normal n1,2 direc-
tion. Relative displacements n̄1,2 and ¯̄n1,2 of
the vertices of FA1 angles with respect to the
vertices of FA2 angles in the direction of nor-
mal n1,2 are expressed using FAs generalized
coordinates and static deformations parame-
ters. A necessary condition for the activation
of any normal contact forces is a positive ar-
gument of the Heaviside function H in (1).

Activated normal contact forces N1,2 ∈
{N̄1,2,

¯̄N1,2} generate tangential an axial fric-
tion forces (see Fig. 2)

T1,2 = f(c1,2)N1,2
c1,2,t
c1,2

, A1,2 = f(c1,2)N1,2
c1,2,ax
c1,2

. (2)

The friction coefficient f(c1,2) depends on the absolute sliding velocity c1,2 between the vertices
of the contacting angles [1]. The tangential sliding velocity c1,2,t is common to both contact
points. The axial sliding velocity c1,2,ax in contact points at the contact line is given by the
different expressions according to the mutual position of interacting FAs.
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The mathematical model of a pair of neighboring FAs of different type can be written in the
form[

M1 0
0 M2

][
q̈1

q̈2

]
+

[
B1 0
0 B2

][
q̇1

q̇2

]
+

[
K1 0
0 K2

][
q1

q2

]
=

[
fKE1 (t)
fKE2 (t)

]
+

[
fC2,1
fC1,2

]
, (3)

where Mj, Bj, Kj, j = 1, 2 are the mass, damping, and stiffness square matrices of non-
interacting FAs of order nj . The kinematic excitation vectors fKEj (t), j = 1, 2 differ in the
structure of FA types and in coordinates describing the position in the MRC. The vectors
of contact forces fC2,1, f

C
1,2 between FAs are expressed by means of the normal and friction

forces in (1) and (2). The dimension of global vector [qT1 , q
T
2 ]T of generalized coordinates is

way too large for nonlinear simulations in the time domain. Therefore, the modal reduction
qj =m Vjxj, j = 1, 2 with modal submatrices mVj ∈ Rnj ,mj , mj < nj of the undamped
non-interacting FAj is used. The matrices mVj meet the conditions of orthonormality

mV T
j Mj

mVj = Ij,
mV T

j Kj
mVj =mΛj, j = 1, 2 , (4)

where Ij are the identity matrices of order mj and mΛj ∈ Rmj ,mj are the diagonal spectral
submatrices composed of FAj eigenfrequencies squares. Model (3) can be transformed into the
form[

ẍ1

ẍ2

]
+

[
D1 0
0 D2

][
ẋ1

ẋ2

]
+

[
mΛ1 0
0 mΛ2

][
x1

x2

]
=

[
mV T

1 0
0 mV T

2

][
fKE1 (t)+fC2,1
fKE2 (t)+fC1,2

]
, (5)

where the diagonal matrices Dj = diag[2D
(j)
ν Ω

(j)
ν ], j = 1, 2 are determined by FAj eigenfre-

quencies Ω
(j)
ν and damping factors D(j)

ν , ν = 1, . . . ,mj .
To perform dynamic analysis, the reduced model (5) is transformed to the state space

u̇ = Au + f(u, t) . (6)

The state vector u of dimension 2(m1 + m2) is defined as u = [xT1 ,x
T
2 , ẋ

T
1 , ẋ

T
2 ]T . The matrix

A and the nonlinear vector f(u, t) are defined as follows:

A = −
[

0 I
mΛ D

]
, f(u, t) = −

[
0

mV [fKE(t) + fC ]

]
, (7)

where D, mΛ, mV T , fKE(t) and fC are global matrices and vectors in (5). Model (6) is solved
using a suitable numerical method in time-domain.

4. Application
To demonstrate the presented method, dynamic response of the statically deformed hexagonal
FA1 type 1 (eight spacer grids) and geometrically ideal hexagonal FA2 type 2 (twelve spacer
grids) in the MRC132 (contains 132 FA2 and 31 FA1) was analysed. The FA1 is statically de-
formed into a C-shape with forceless contact of both pairs of angles on the level of spacer grid
g = 5 with the FA2 between spacer grids 6 and 7 (see Fig. 2). The dynamic orbits of the FA1

centre at the level of spacer grid g = 5 and the orbit of the FA2 centre at the level of the spacer
grid g = 11 are shown in Fig. 3. Dynamic orbits are shown for the FAs with the high fuel
burn-up when gap between fuel pellets and FR cladding is closed. The orbits are depicted in a
short time interval around extreme transverse FAs deformation.

Time-domain behaviour of normal contact forces N1,2 (N1,2 = N2,1) between FAs in time
interval t ∈< 0; 5 >[s] are shown in Fig. 4. Two states of both FAs were considered with the
low (state I) and the high (state II) fuel burn-up. The normal forces in contact phases are larger
in state II.
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Fig. 3. Dynamic orbits of the FAj’s load bearing skeleton centre at the level of maximally deformed
spacer grids
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Fig. 4. Time-domain behaviour of the normal contact forces between FAs
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[1] Dyk, Š., Zeman, V., Hlaváč, Z., Mechanical interaction of bowed hexagonal fuel assemblies in

PWR core, Progress in Nuclear Energy 161 (2023) No. 104732.
[2] Stulı́k, P. et al., Mechanical behaviour of the nuclear fuel, its monitoring and validation using op-

eration measurement, Internal Research Report, Nuclear Research Institute Řež, 2020. (in Czech)
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