
University of West Bohemia

Faculty of Applied Sciences

Department of Computer Science and
Engineering

Bachelor Thesis

Semantic web - format for
the exchange of
EEG/ERP data

Pilsen 2012 Jakub Daněk

Statement

I hereby declare that this thesis is completely my own work and that I used only the cited
sources.

Pilsen, 6th May 2012

Jakub Daněk

Abstract

This thesis provides a general description of the most common use-cases of the semantic
web and its technologies and provides theoretical background for semantic web extension
of the EEG/ERP Portal.

It compares expressivity of OWL 2, Java and UML and describes possibilities of map-
ping between these languages. The thesis also briefly covers possible performance prob-
lems and describes known solutions.

As a result, the thesis presents an ontology for the EEG/ERP experiment.

Contents

1. Introduction 1

2. Context 2
2.1. Semantic Web . 2

2.1.1. OWL 2 . 2
2.1.2. OWL 2 Document Syntax . 3
2.1.3. Existing Projects . 4

2.2. NIF Portal . 6
2.3. EEG/ERP Portal . 7

3. OWL 2, Java and UML Comparison 8
3.1. Basic Elements . 8
3.2. Property Restrictions . 11
3.3. Complex Classes . 14

4. Reasoning Performance 18
4.1. OWL 2 Profiles . 18

4.1.1. OWL 2 EL . 20
4.1.2. OWL 2 QL . 21
4.1.3. OWL 2 RL . 22

5. Ontology for EEG/ERP Portal 23

6. Conclusion 26

A. Additional Samples 31
A.1. Basic Elements . 31
A.2. Property Restrictions . 33

B. The EEG/ERP Portal’s Ontology 35
B.1. Ontology File Excerpt . 35
B.2. Ontology Tree Preview . 36

1. Introduction

At the moment there are many laboratories all over the world where neurological research
is being commenced. Each of them has its own way of persisting records related to their
measurements. Such case is also the EEG/ERP Portal (referenced as “the Portal” from
now on) at the Department of Computer Science and Egineering at the Faculty of Applied
Sciences, University of West Bohemia in Pilsen. It is designed for online sharing of
measured data among laboratories with the same or similar aim of research.

One of the current development goals is to register the Portal in the NIF 1, which serves
as an international search engine and access point to neuroscience data and resources. To
achieve that, both the data and its model must be presented in a format of the semantic
web.

The aim of this thesis is to compare expressive power of UML, Java programming
language and OWL2, which is the main language for technologies based on the idea of
the semantic web. Another goal is to provide unified insight into common use-cases,
possible utilisation and main benefits resulting from adapting the idea of “Web of Data”.
As a result an OWL-based format is prepared for the Portal. It will represent the same or
even enhanced semantic information about the data as current, conventional, entity model.

The first chapter provides general overview of the semantic web and its technologies
and describes several cases in which these technologies have been successfully used.

The second chapter contains description of the OWL 2 expressive power and provides
mapping possibilities between OWL 2 and Java or UML. The following chapter briefly
describes complexity problems related to the semantic web technologies and known so-
lutions leading to acceptable performance.

The last chapter presents the implementation details of the ontology for the Portal.

1Neuroscience Information Network
2Ontology Web Language

1

2. Context

2.1. Semantic Web

The current World Wide Web contains a huge amount of data: corporate information,
company presentations, community portals, social networks, all kinds of multimedia,
web-stores etc. However, all these data are controlled by applications and it is not possible
to combine and use them efficiently.

For example if you want to search for a list of books by your favourite author, current
search engines return, among others, a lot of pages which only mention the author’s name.
The problem is that search algorithms do not have any information about the semantics of
the data and therefore must search for every invocation of the wanted term. The Semantic
Web is supposed to be the solution for this issue. it is all about data and connections be-
tween them. By providing additional information (metadata) about relationships between
data, applications should be able to provide enhanced functionality.

Another, and not completely unrelated, purpose of semantic web technologies is an
extensible and powerful exchange format for sharing pieces of information among ap-
plications. E.g. current tagging systems work only within the universe of a particular
application - even if the tag value is the same, there is no proof that applications un-
derstand and handle it in a compatible way. Semantic web technologies create bridges
between these universes.

For more detailed description of basic concepts of the Semantic Web see [1].

2.1.1. OWL 2

OWL 2 is a language for expressing ontologies. An ontology is a set of
precise descriptive statements about some part of the world (usually referred
to as the domain of interest or the subject matter of the ontology).[2]

OWL is supposed to describe a particular state of the domain of interest by storing data
and their metadata (structure, relationships among data, etc). One of the major differences
between OWL documents and standard databases (except for the used technology) is so
called “open-world” assumption. If a statement is not present in a database, we presume
it is false. While for an ontology, we have to assume that the statement might be true,
only missing.

2

OWL documents are based on RDF1, which is a framework for describing information
about resources on the World Wide Web. The metadata written in RDF are machine-
readable and the framework is suitable for cases, when information should be processed
by computers rather than displayed to a user. It has been designed for data exchange
between applications.

The main concept of RDF works with object-predicate-subject tripples, which form
RDF graphs. The following example and more information on the topic can be found in
[3]. The example describes several facts:

• “me” is a Person

• Full name of the person is “Eric Miller”

• “Eric Miller” has a personal title “Dr.”

< c o n t a c t : P e r so n r d f : a b o u t =" h t t p : / / www. w3 . org / Pe op l e /EM/ c o n t a c t #me">
< c o n t a c t : ful lName > E r i c M i l l e r < / c o n t a c t : ful lName >
< c o n t a c t : p e r s o n a l T i t l e >Dr . < / c o n t a c t : p e r s o n a l T i t l e >

</ c o n t a c t : Person >

The OWL works on the same principle. In its full version it is a semantic extension of
RDF. OWL 2 Profiles (described in chapter 4) put restrictions on the structure of OWL 2
ontologies [4]. Because of these restrictions, not all RDF documents comply with each of
OWL 2 Profile specifications.

2.1.2. OWL 2 Document Syntax

Ontology documents can be, by specification, written in five defined syntaxes. As one can
see in the Table 2.1, only RDF/XML is mandatory and therefore all OWL 2 conformant
tools must be able to parse ontologies written in this syntax.

Name of Syntax Status Purpose
RDF/XML Mandatory Interchange
OWL/XML Optional Easier to process by XML tools.

Functional Syntax Optional Easier to see the formal structure of ontologies.
Manchester Syntax Optional Easier to read/write DL ontologies.

Turtle Optional Easier to read/write RDF tripples.

Table 2.1.: Table of OWL 2 Syntaxes [5]

The most significant are RDF/XML, OWL/XML and Functional Syntax.
The RDF/XML syntax results in a document containing an RDF graph with OWL vo-
cabulary. As it is the only mandatory syntax, it has been commonly used.

1RDF - Resource Description Framework

3

The functional syntax has been created for easy and compact description of various
OWL definitions - overall specification, profiles, etc. it is not meant for use in software
implementations (though it is not prohibited to use it). It is the main syntax in all W3C
Recommendation documents regarding OWL 2.

The OWL/XML syntax is designed as an alternative ontology exchange media to the
RDF/XML. it has been created with emphasis on easy parsability by XML tools.

The XML serialization mirrors the structural specification of OWL 2 and
is defined by means of an XML schema plus some additional constraints in
prose. [6]

The XSD schema definition can be found in [6]. The OWL/XML syntax has been used
for all OWL code examples in this document (unless stated otherwise), because it is more
transparent for the reader than RDF/XML.

2.1.3. Existing Projects

Around 45 use-case studies can be found in [7], from which more than 30 have been
already deployed within a production system, while the rest remain in a prototype or
planning state. Projects vary from a music archive through a diagnostic system to the
integration of separated web portals.

Most of the studies promote the open standard and easy extendability of the semantic
web format. These attributes make it suitable for data integration and metadata frame-
works. Only a few projects try to use reasoners’ inference capabilities. Extracts from
several case studies have been included below to provide a general picture of semantic
web technology usage.

Digital Music Archive [8]

The project of Digital Music Archive for the Norwegian National Broadcaster aims on
digitalizing the content of less resistant media as tapes or CD’s to ensure its persistance
for the future. The main goals of the project were:

• provide easy access to the archive’s content

• show relations among the data which were not obvious or easy to deduce

• implement comprehensive view on the archive’s content

Semantic web technologies have not been, however, used as a data storage medium in
this case. Because a large amount of data had been expected, a scalable RDBMS was
deployed and semantic web functionality was provided by the presentation layer.

4

According to the study the goals have been achieved succesfully, providing an easily
searchable archive with vast support for structured metadata (music file formats, links to
related pictures or interviews etc.). Plus there is the possibility of integration with other
systems or databanks without significant complications.

Detection of Patients at Risk of Organ Failure [9]

The project of Detection of Patients at Risk of Organ Failure through Immune Rejection
tries to utilise the ability of semantic-web-based technologies to make inferences from
the data in a domain. The system is supposed to provide a solid knowledge base for
decision-making assistance. The data format integrity should ensure coherence and ex-
tensibility. That makes possible to create, qualify and validate hypotheses despite huge
complexity of medical data and resources.

The project has not been applied to the common healthcare systems yet, as it faces
several problems (complexity of the domain, different data standards in the community,
etc.).

Ordnance Survey [10]

Ordnance Survey is the Great Britain’s national mapping agency. Their geographical data
are important for large scale of customers, including the government of GB. Common
usecase requires integration with customer’s own data. Semantic Web technologies allow
users to see differences between the two domains (Ordnance Survey’s and customer’s
data) and special ontologies can be created as an interface between them.

The interfaces can be divided into two categories. They are either created for cases
when one object has different names in each domain, or for cases when a name stands for
something different in each databank. An example has been mentioned in the study:

. . . is the Ordnance Survey definition of a field the same as the way the
Government Department for the Environment, Food and Rural Affairs (DE-
FRA) would understand it? Our definition is spatially delineated by barriers
such as fences or ditches, while DEFRA might distinguish a field’s extent by
the kind of crops that were grown, as part of their task of calculating farmers’
subsidies.[10]

5

BBC Web Sites [11]

The content published by BBC online used to be scattered over many microsites, which,
however, had not been connected together until 2007. The case study describes the situa-
tion:

These sites can be very successful, but tend not to link together, and so
are less useful when people have interests that span programme brands or do-
mains. For example, we can tell you who presents Top Gear, but not what else
those people have presented. As a user it is very difficult to find everything
the BBC has published about any given subject, nor can you easily navigate
across BBC domains following a particular semantic thread. For example,
until recently you weren’t able to navigate from a page about a programme to
a page about each artist played in that programme. [11]

Using semantic web standards, the BBC sites have been interconnected allowing users
to navigate from one webpage to another following the given topic. Another advanced
functionality is extended search capability comming from the data integration. The BBC
web developers have adapted the idea, that the Internet is its own CMS2, which seems to
fully correspond with the idea of the semantic web - web of data.

2.2. NIF Portal

As can be found in [12], Neuroscience Information Framework is a web portal designed
for sharing neuroscience resources, including data, tools and other materials or docu-
ments. NIF tries to advance neuroscientific research by enabling worldwide access to
public research data.

The portal provides the following services[12]:

• A search portal for researchers, students, or anyone looking for neuroscience infor-
mation, tools, data or materials.

• Tools for resource providers to make resources more discoverable, e.g., ontologies,
data federation tools vocabulary services

• Tools for promoting interoperability among databases

• Standards for data annotation

• Best practices for creating discoverable and interoperable resources

and more. . .

2CMS - Content Management System

6

2.3. EEG/ERP3 Portal

The EEG/ERP Portal (from now on referenced as “the Portal”) is a web application de-
veloped at the Department of Computer Science and Engineering, University of West
Bohemia in Pilsen. Neuroscientific research at the department, focused on event-related
potentials, produces a huge amount of test data, which need to be accessible by various
research teams or individuals. The portal aims to provide a sharing platform for research
data, metadata, scenarios and more. The main goal is to make cooperation among team
members or even whole teams easier and therefore more efficient.

As the portal tries to join the current neuroscience community, it follows INCF4 effort
to standarize database models used for storing neuroscientific research data[13]. The next
step is registering the Portal as a recognized resource of NIF. One of the conditions is
to provide data and metadata in the format of the semantic web - OWL. Therefore the
Portal’s developers have been experimenting with automatic data transformation from the
object-oriented model into the ontology model. Services for generating ontology files
containing either the whole content of the database, or the data model only, are available.

The semantic web technologies have a vast potential. The OWL 2 represents an open,
consistent and extensible data format. It has been used in various projects as data ex-
change format or metadata description format. Because of both implementation complex-
ity and performance issues, it was not commonly used as a data storage medium. There-
fore it seems that the technology is not ready to replace the current World Wide Web at the
moment. However, there are use-cases in which the OWL 2 format is a suitable solution.

3ERP - Event-related Potential
4INCF - International Neuroinformatics Coordinating Facility

7

3. OWL 2, Java and UML
Comparison

This section covers description of OWL 2 elements and their comparison with Java pro-
gramming language and UML. If an OWL expression does not have any equivalent in
Java, a recommendation for replacement is provided. Examples are given for Java or
UML (if exist) and OWL. For more examples and comparison with UML see appendix
A. All the OWL 2 samples are given in OWL/XML syntax. The examples used in this
chapter have been taken from [2].

3.1. Basic Elements

Basic units of OWL 2 model are individuals, classes and properties. All of the elements
have an equivalent in both UML nad Java.

Individuals

An individual in OWL 2 is an instance of a particular class. All the individuals belong to
the universal class Thing.

The main difference between OWL and UML in respect of instances is that
in OWL an individual can be an instance of Thing and not necessarily of any
other class, so could be outside the system in a UML model.[14]

In Java, instances represent actual data which are referenced from the code (by variables).
Therefore the data have to be fetched from a database before they are saved into an OWL
file.

Individuals and Unique Name Assmuption

By default, OWL 2 lacks the unique name assumption. It means that unless explicitly
stated, the reasoner supposes that two individuals of different names may actually be the
same instance (in the case when it is not made impossible by another axiom - e.g. they
could belong to different classes which are complements of each other). To precisely state

8

which names refer to the same instance and which do not, two elements are provided by
OWL 2 - DifferentIndividuals and SameIndividuals.

In case we are using OWL to describe an entity schema, all the instances in the doc-
ument (or namespace) do not have to be explicitly stated as mutually different (using
DifferentIndividuals element) to enforce unique names. If we presume that all individuals
belong to precisely one class (entity), and all classes of the model are stated to be disjoint,
then their individuals cannot be the same objects. All what must be done is to explicitly
mark that all instances of each class are mutually different.

Classes

A class represents a set of individuals. In OWL 2, each class is a sub-class of the universal
class Thing. Classes are represented in both UML and Java. In all three languages tree-
shaped class hierarchy is supported, however, Java does not allow full multiple inheritance
- only interfaces are provided (no attributes).

Sample

Definition of the class Winery.

Java: OWL 2:
class Winery {...} <Class IRI=’Winery’/>
UML:

Properties

In OWL 2 properties represent relationships between individuals or between an individual
and a literal. In UML they are represented by association connection and in Java they are
replaced by class attributes.

Properties are not necessarily tied to classes. By default, a property is a
binary relation between Thing and Thing.[14]

There are two basic Property sub-classes - ObjectProperty and DataProperty. The first
one represents a relation between two individuals and the latter connects a class to an
elementary datatype (i.e. literal).

Properties are defined using two elements:

• domain - defines the classes which the individuals having this property belong to.

• range - defines the classes or datatypes the values of this property belong to.

9

It is important to realize that domain does not serve as a restriction. It just allows the
reasoner to deduce more information. If we say that an individual had been made from a
grape (property madeFromGrape), it automatically becomes an instance of the class Wine,
even though it´s actually an instance of the class Cognac.

Similar logic applies to range. Consider having a property hasPet with its range set to
Dog and Cat. Then expression Pete hasPet Fluffy implies that Fluffy is a dog and a
cat at the same time.

Further property restrictions must be used to fully represent Java or UML class at-
tributes, including type safety or cardinality restrictions. This will be covered in the sec-
tion 3.2.

Sample

The class Man has the property hasWife, which is a reference to the class Woman.

Java: OWL 2:
class Man { <ObjectProperty IRI=’hasWife’/>

Woman hasWife; <ObjectPropertyDomain>
} <ObjectProperty IRI=’hasWife’/>

<Class IRI=’Man’/>
</ObjectPropertyDomain>
<ObjectPropertyRange>

<ObjectProperty IRI="hasWife"/>
<Class IRI="Woman"/>

</ObjectPropertyRange>
UML:

Sub-Properties

In OWL 2 properties can be, as well as classes, arranged in a tree-shaped hierarchy. That
can be used for encapsulation support. E.g. if the class Mother extends the class Parent,
then the property hasMother is a sub-property of the property hasParent.

Depending on the usecase, one has to be careful with encapsulation. As an example
consider having a property hasParent with both domain and range set to LivingThing.
Without any further restriction, this statement would e.g. allow the expression that parents
of a human child are a squirell and a crocodille.

When mapping the Java entity model into OWL 2, sub-properties do not have to be
used, because class hierarchy contains all required information. However, if methods
were used for mapping instead of attributes, sub-properties would be used for describing
the connection between interface methods and their implementation.

10

Sample

The property hasWife is a sub-property of the property hasSpouse.

OWL:
<SubObjectPropertyOf>

<ObjectProperty IRI=’hasWife’/>
<ObjectProperty IRI=’hasSpouse’/>

</SubObjectPropertyOf>

3.2. Property Restrictions

Because it is possible to infere from the properties of an individual that it is
a member of a given class, we can think of the complex classes and property
restrictions as a sort of predicate definition language.[14]

While Java does not have any means for predicate definition, UML standard provides a
predicate definition language OCL1.

The Object Constraint Language (OCL) is a textual sublanguage of the
Unified Modelling Language (UML). It can be used to express additional
constraints on UML models that cannot be expressed, or are very difficult to
express, with the graphical means provided by UML. OCL is based on first-
order predicate logic but it uses a syntax similar to programming languages
and closely related to the syntax of UML. It is, thus, more adequate for every-
day modelling than pure first-order predicate logic.[15]

For majority of OWL 2 elements described in this section and section 3.3 applies that
there is basically no equivalent in Java and very poor or none support in UML. OCL
might supply the described semantics for the UML models, however its description lays
beyond the scope of this thesis. The specification can be found in [16].

Quantification

Quantification property restrictions can be used to enforce that property values are of the
demanded class or type and/or that each individual of a class has particular number of the
property’s values assigned.

1Object Constraint Language

11

Existential Quantification

Existential quantification in OWL is represented by a touple of elements - ObjectSomeVal-
uesFrom and DataSomeValuesFrom. If used in a class definition, they specify that each
individual belonging to the class must have at least one property value of the given class
or data range (e.g. to be a parent, one must have at least one child).

In UML the equivalent is minimum cardinality set to one. Java does not provide any
native way to describe such rule (except for the keyword final, which, however, brings
other restrictions too). However, it can be implemented using annotations (for cardinal-
ity restrictions the annotations have been already implemented in javax.persistance

package).

Sample

Example describing that every parent must have at least one child.

UML:

OWL:
<EquivalentClasses>

<Class IRI="Parent"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="hasChild"/>
<Class IRI="Person"/>

</ObjectSomeValuesFrom>
</EquivalentClasses>

Universal Quantification

Universal quantification in OWL is represented by a touple of elements ObjectAllValues-
From and DataAllValuesFrom. In class definition it specifies for all the individuals of the
class that all values of the property must belong to a given class or data type. Unlike the
range attribute of properties this one enforces the actual restriction of property data type.
That is also the natural functionality of Java and UML class attributes.

12

Sample

The code in this example specifies, that every child of a human must be also a human.

OWL:
<EquivalentClasses>

<Class IRI="Human"/>
<ObjectAllValuesFrom>

<ObjectProperty IRI="hasChild"/>
<Class IRI="Human"/>

</ObjectAllValuesFrom>
</EquivalentClasses>

Cardinality Restrictions

Cardinality specifies a number of individuals involved in the relation. OWL provides ele-
ments to set minimum, maximum or exact cardinality on either property range or domain.
All variations also have a qualifiedCardinality version, which allows to restrict cardinality
on a specified class (as mentioned above, the class of property values is not strictly given
unless universal quantification is used). E.g. different cardinality restriction can be used
for sons and daughters while defining hasChild property.

Java has some limited means to set cardinality - e.g. array size for maximum cardinality
or key word final for minimum cardinality etc. However, there are not any means to
specify cardinality for collections. Enforcing usage of arrays would be too restrictive.
Special annotations could be designed and used (and are in the javax.persistance

package). On the other hand, UML has specified means to state multiplicity on both ends
of an association.

Functional Properties

A special case of property restrictions in OWL are functionalProperty and inverseFunc-
tionalProperty. Functional property has maximum cardinality restriction set to 1 on its
range, while inverse functional property has it on its domain.

Other Restrictions

OWL also provides an option to give an exact property value for the given class using
hasValue element. E.g. in definition of the class JohnsChildren the property hasParent
can be set to be always of the value John. Such behaviour is unknown to UML or Java
and could be simulated by annotations and enums. However, it is very difficult to find a
reasonable and generic use for similar functionality.

13

Another case is definition of inverse properties (e.g. hasChild and hasParent). This
element can be used for mapping of a binary association with two navigable ends in UML.
Annotations have to be used in Java to implement such feature.

3.3. Complex Classes

As mentioned in section 3.2, most of the elements mentioned in this chapter do not have
any direct equivalent neither in Java nor UML.

Class Expression

In OWL 2, classes and property expressions are used to construct class
expressions, sometimes also called descriptions, and, in the description logic
literature, complex concepts. Class expressions represent sets of individuals
by formally specifying conditions on the individuals’ properties; individuals
satisfying these conditions are said to be instances of the respective class
expressions.[17]

In other words a class is only a named set of individuals without any further restrictions
or specifications. To define special attributes of individuals, class expressions have to be
used. Class expressions do not have names by default, however they can be stated as
equivalent to a class and further referenced through the class’ name.

Axioms of the form EquivalentClasses(C, CE), where C is a class and
CE is a class expression, are often called definitions, because they define the
class C in terms of the class expression CE. [17]

EquivalentClasses element is used to declare that two classes (or class expressions) have
the same semantic value - they contain the same set of individuals.

The element DisjointClasses has the opposite meaning which specifies that every in-
dividual can be an instance of maximum 1 class included in the axiom - classes do not
share individuals. Instances in Java always belong to exactly one class, therefore Disjoint-
Classes element should be used for all the classes at the same level in a hierarchy tree.
Making two classes at the same hierarchy branch (a class and its sub-class) disjoint will
result in an inconsistent ontology.

UML provides the disjoint constraint which can be added to a set of generalisation
relationships. It states, that an instance of the parent entity can be an instance of only one
of the children within the set.

14

Complex Class Definitions

As mentioned earlier, EquivalentClasses element is used for definitions of complex class
expressions.

ObjectIntersectionOf

An intersection class expression ObjectIntersectionOf(CE1 ... CEn) con-
tains all individuals that are instances of all class expressions CEi for 1 ≤ i ≤
n. [17]

E.g. presume that the class expression Mother is an intersection of the classes Parent and
Woman. Using this element the reasoner can infere that Mother is a subclass of Parent
and Woman, therefore any instance of the class Mother is also an instance of both the
classes. Unlike the subClassOf element, intersection allows inference of the fact that any
individual which is an instance of the classes Parent and Woman is also an instance of
class expression Mother.

This element cannot be used when representing the entity model, because it is impossi-
ble for an object to be an instance of two different classes in Java (unless Java interfaces
are mapped as OWL classes as well).

Sample

The example describing that every mother is a woman and a parent and vice versa.

OWL:
<EquivalentClasses>

<Class IRI="Mother"/>
<ObjectIntersectionOf>

<Class IRI="Woman"/>
<Class IRI="Parent"/>

</ObjectIntersectionOf>
</EquivalentClasses>

ObjectUnionOf

A union class expression ObjectUnionOf(CE1 ... CEn) contains all indi-
viduals that are instances of at least one class expression CEi for 1 ≤ i ≤ n.
[17]

In UML and Java, all abstract superclasses can be considered unions of their subclasses.

15

Sample

Class expression Person can be described as the union of classes Man and Woman.

UML: OWL:
<EquivalentClasses>

<Class IRI="Person"/>
<ObjectUnionOf>

<Class IRI="Man"/>
<Class IRI="Woman"/>

</ObjectUnionOf>
</EquivalentClasses>

ObjectComplementOf

A complement class expression ObjectComplementOf(CE) contains all
individuals that are not instances of the class expression CE. [17]

ObjectComplementOf is the logical negation of the union element. E.g. the class ChildlessPerson
can be represented as intersection of a class Person and the complement of class Parent.

This element could be used to state that each individual belongs to exactly one class
by making all the classes complement of the others. However, if n was the number
of classes in the domain, it would result in n×(n−1)

2 ObjectComplementOf element oc-
curences. Therefore it is much more efficient to use DisjointClasses element for this
purpose.

Sample

The code in this example states that all individuals of the class Person who are not parents
belong to the class ChildlessPerson and vice versa.

OWL:
<EquivalentClasses>

<Class IRI="ChildlessPerson"/>
<ObjectIntersectionOf>

<Class IRI="Person"/>
<ObjectComplementOf>

<Class IRI="Parent"/>
</ObjectComplementOf>

</ObjectIntersectionOf>
</EquivalentClasses>

16

ObjectOneOf

An enumeration of individuals ObjectOneOf(a1 ... an) contains exactly
the individuals ai with 1 ≤ i ≤ n. [17]

Defining a class by enumerating all its individuals ensures (together with unique name as-
sumption), that all not-mentioned elements are automatically considered being instances
of the complement class expression of the given class.

This element has, unlike others in this chapter, an equivalent in both Java and UML.
In Java, they are represented by the enum keyword and UML has the <<Enumeration>>
literal.

Sample

Example of cardinal directions’ enumeration.

Java: OWL:
enum Directions { <EquivalentClasses>

North, <Class IRI="Directions"/>
East, <ObjectOneOf>
South, <NamedIndividual IRI="North"/>
West <NamedIndividual IRI="East"/>

} <NamedIndividual IRI="South"/>
<NamedIndividual IRI="West"/>

</ObjectOneOf>
</EquivalentClasses>

UML:

17

4. Reasoning Performance

So-called reasoners are applications capable of processing ontologies. Their performance
is measured in respect to their most common and important tasks [18]. Those are
classification, consistency check, satisfiability, subsumption query and
soundness and completeness.

Classification is ontology domain hierarchy computing. it is one of the most important
reasoning tasks. Especially during development, which requires often check for
unwanted or unexpected subsumptions.

Consistency check is performed to see whether all the statements about individuals
satisfy the axioms regarding the ontology domain structure.

Satisfiability check tests whether it is possible to find instances satisfying the ontology
concept.

Subsumtion query checks whether a concept can be infered from another one or re-
turns all concepts subsumed from (or infering) a concept.

Soundness and completness represents the quality of a reasoner’s output. It depends
on whether all subsumptions are sound based on the underlying semantics and
whether they are complete [18]. That is whether all facts have been inferred. For
many ontologies set of all statements based upon given concept is unknown. There-
fore soundness and completeness of a reasoner can be very often evaluated
only by comparing results of multiple reasoners.

4.1. OWL 2 Profiles

OWL 2 provides a high expressive power, which together with the open-world concept
brings huge performance problems. As it brings almost no general assumptions and no
computational guarantees into the ontology, it is more likely a theoretical concept than a
usable technology. In order to gain acceptable reasoning times, subsets of the language,
called profiles, have been specified. Each of the profiles aims for different use cases and
keeps different parts of OWL expressiveness. it is very important to choose an appropriate
profile for the considered project.

18

At the moment there are three main OWL 2 profiles defined - OWL 2 EL, OWL 2 QL
and OWL 2 RL. However, as stated in [4], there are other profiles, e.g extending one of
those mentioned above. OWL 2 is fully backward-compatible with OWL 1. Therefore
OWL DL and OWL Lite, which have been specified for OWL 1, can be considered as
profiles of OWL 2. However, this thesis focuses only on the profiles created directly for
OWL 2.

In order to describe computational complexity of each of the profiles, several aspects
have been considered [4]:

• Data Complexity: the complexity measured with respect to the total size of the
assertions in the ontology.

• Taxonomic Complexity: the complexity measured with respect to the total size of
the axioms in the ontology.

• Query Complexity: the complexity measured with respect to the total size of the
query.

• Combined Complexity: the complexity measured with respect to both the size of
the axioms, the amount of assertions and, in the case of conjuctive query answering,
the size of the query as well.

Most common reasoning problems are ontology consistency, class expression satisfiabil-
ity, class expression subsumption and instance checking. It will be referenced as T in
tables further in this document. Conjunctive query answering will be referenced as Q.

The tables contain the following complexity classes [4]:

• PTIME: problems solvable by a deterministic algorithm using time that is at
most polynomial in the size of the input (i.e., roughly nc, n is the size of the input
and c is a constant).

• PSPACE: problems solvable by a deterministic algorithm using space that is
at most polynomial in the size of the input (i.e., roughly nc, n is the size of the input
and c is a constant).

• NP: problems solvable by a nondeterministic algorithm using time that is at
most polynomial in the size of the input (i.e., roughly nc, n is the size of the input
and c is a constant).

• NLogSpace: problems solvable by a nondeterministic algorithm using space

that is at most logarithmic in the size of the input (i.e., roughly log(n), n is the size
of the input).

19

• AC0: the class of problems definable using a family of circuits of constant depth

and polynomial size, which can be generated by a deterministic Turing machine
in logarithmic time (in the size of the input).

A problem can be complete within one of the classes mentioned above. It means that an
algorithm which solves the problem is known to be inside the class and it had been proved
that the problem is at least as hard as any other within the class.

4.1.1. OWL 2 EL

OWL 2 EL is a profile recommended for simple but large ontologies and polynomial time
reasoning.

Besides negation and disjunction, OWL 2 EL disallows universal quantification on
properties. This fact disallows implementation of “type-safe” properties, because the
ontology cannot contain axioms restricting properties only to a given type. Also, there is
no way of specifying that, say, parentOf and childOf are invert to each other.

Other restrictions involve (see [4] for complete specification):

• cardinality restrictions are not allowed

• enumerations involving more than one individual are not allowed

• functional properties are not allowed

• anonymous individuals (without name) are not allowed

• boolean type is not allowed

• floating point number types from xsd have been replaced by owl:real and owl:rational

Reasoner support: CB, CEL, ELLY, Pellet, SHER, snorocket
Computing complexity values for OWL 2 EL are in the Table 4.1:

- Data Complexity Taxonomic Complexity Query Complexity Combined Complexity
T PTIME-complete PTIME-complete - PTIME-complete
Q PTIME-complete PTIME-complete NP-complete PSPACE-complete

Table 4.1.: OWL 2 EL complexity

20

4.1.2. OWL 2 QL

This profile is suitable for rather light ontologies with large amount of data (individuals).
It provides good interoperability with relational databases. Its expressive power can be
used to represent key features of entity-relationship and UML diagrams.

Different restrictions apply to axiom definition for superclasses and subclasses. E.g.
existential quantification is not allowed for a class expression or data range in the subclass
position.

It is very important that only atomic classes are allowed in class assertions. Therefore
individuals can belong to a class, but not to an anonymous class expression. Nevertheless,
classes can be defined (see section 3.3 in this document) in terms of a class expression.
All individuals must have a name, anonymous instances are not allowed. These rules try
to follow the common relational model, where anonymous entities are not permitted and
each entity instance can be recognized via primary key.

Other restrictions involve (see [4] for complete specification):

• enumerations of individuals and literals are not allowed

• cardinality restrictions are not allowed

• property chains are not allowed

• functional properties are not allowed

• existential quantification to an individual or a literal is not allowed

• individual equality assertions are not allowed (can not state that two individuals are
equal)

• boolean type is not allowed

• floating point number types from xsd have been replaced by owl:real and owl:rational

Reasoner support: Owlgres, OWLIM, Quill, QuOnto
Computing complexity values for OWL 2 EL are in the Table 4.2:

- Data Complexity Taxonomic Complexity Query Complexity Combined Complexity
T AC0 NLogSpace-complete - NLogSpace-complete
Q AC0 NLogSpace-complete NP-complete NP

Table 4.2.: OWL 2 QL complexity

21

4.1.3. OWL 2 RL

OWL 2 RL is a profile that can easily operate, using rule extended DBMSs, on data in
RDF tripples.

It is designed to accommodate both OWL 2 applications that can trade the
full expressivity of the language for efficiency, and RDF(S) applications that
need some added expressivity from OWL 2.[4]

OWL 2 RL provides quite extensive expression power, because scalable reasoning is
achieved more by specifying particular conditions under which elements can be used than
by constraining the set of elements available. This makes it a little more complicated to
maintain than other profiles. It is, however, extremely useful in cases where it is necessary
to work on the data in RDF tripples directly[5].

Reasoner support: ELLY, Jena, Oracle Database 11g OWL Reasoner, OWLRL Com-
puting complexity values can be found in the Table 4.3.

- Data Complexity Taxonomic Complexity Query Complexity Combined Complexity
T PTIME-complete PTIME-complete - PTIME-complete
Q PTIME-complete PTIME-complete NP-complete PSPACE-complete

Table 4.3.: OWL 2 RL complexity

22

5. Ontology for EEG/ERP Portal

Several decisions were made while preparing the ontology format for the Portal. Those
included:

• which OWL 2 syntax to use

• which OWL 2 Profile to choose

• what semantics provide in the ontology in addition to the entity model schema
semantics

Syntax

RDF/XML was chosen as the major syntax for the project, because it is the only syntax,
which has been specified as mandatory for OWL conformant tools. This should make the
service processable by most of the neuroscience community members. The ontology is
generated automatically using JenaBean Extension, a project developed at our university,
which is based on JenaBean1 library [19]. The current version of the library supports
only OWL 1, therefore the OWL API framework2 [20] has been used for transformation
into the OWL 23 format. Support of other syntaxes depends on capabilities of these
frameworks.

Profile

The decision, which profile should be used for the Portal, was based on several criteria -
size and complexity of the data model, expected amount of instances and main use-case
for the data written in the ontology format. The first one rejected was OWL 2 RL, as it is
designed for data stored in RDF tripples, which is not the case of the Portal.

The data model of the Portal contains around 60 entities. It is a very small and simple
ontology, especially compared to large medical ontologies like SNOMED CT4, which
contains more than 300 000 concepts connected by over a 951 000 relationships[21].

1JenaBean - Java Library for persisting JavaBeans to RDF
2OWL API - Java framework for managing OWL ontologies.
3Transformation from OWL 1 into OWL 2 is possible, because OWL 2 is fully backwards-compatible

with OWL 1.
4SNOMED CT - large clinical terminology maintained by International Health Terminology Standards

Development Organisation.

23

Compared to the amount of classes in the ontology, a large number of instances is
expected. Data, measured by various research teams including students, are saved in the
Portal for future research and evaluation. The Portal is also planned to store not only the
experiment’s data retrieved at the University of West Bohemia, but also become a sharing
platform for the related community worldwide. In this case the number of data stored
would grow even faster.

The ontology format has been prepared due to NIF’s requirements for integration. It is
therefore supposed to reflect the Portal’s data model (and the relational database schema).
All these facts support the choice of OWL 2 QL profile, as it has been designed for in-
teroperability with relational databases and for representing simple ontologies with large
amount of individuals. All the restrictions made to the OWL 2 syntax and semantics
in this profile are supposed to provide compatibility with relational database’s semantics
together with ensuring certain computing complexity.

Therefore OWL 2 QL has been chosen as the profile for the Portal’s ontology service.
Its full specification can be found in [4].

Semantics

Due to lack of requirements specification from the NIF, it has been decided for the mo-
ment that the ontology format for the Portal should reflect the semantics of its data model
in Java and/or its representation in the relational database. This has been achieved by us-
ing Class and Property elements. Additionally, all classes have been specified as disjoint
sets of instances.

Also some of XSchema datatypes have been prohibited and replaced by the profile
specification. Resulting mapping rules are described in Table 5.1:

Java OWL 2
Class owl:Class

extends, implements owl:SubClassOf
attributes owl:ObjectPropertyOf or owl:DataPropertyOf
double owl:real

boolean, long, int xsd:integer

Table 5.1.: EEG/ERP Portal Java-OWL 2 mapping table

The selected profile specification bans usage of anonymous individuals, therefore each
instance must have a name. Entity Id attribute represents instance’s name.

The profile usage makes implementation of some of the entity model semantics impos-
sible. Type safety and cardinality restrictions are not available. The type safety can be
ensured by owl:ObjectAllValuesFrom and owl:DataAllValues from elements - that
is by universal quantification, which is banned in both OWL 2 QL and OWL 2 EL pro-

24

files as well as all cardinality-restrictive elements. In both cases it is due to performance
drawbacks.

However, because the ontology is created automatically by the Portal, type safety is en-
sured by the Portal’s implementation. Cardinality specification can be ommited without
any major complications as well. The ontology is designed for data exchange and car-
dinality restrictions may vary among the recipients’ applications. Proper documentation
should suffice to allow correct processing of the ontology by recipients.

Testing

Testing of the model consisted of three parts: validation against the profile specification,
data model correctness and syntax the test.

Profile validity check was done using OWL 2 Validator service, which has been devel-
oped and run by the University of Manchester at the following URL:

h t t p : / / owl . c s . m a n c h e s t e r . ac . uk / v a l i d a t o r /

The validator is capable of making a test for all three OWL 2 profiles, giving a human-
readable feedback with highlighted specification violations in case any occured.

The correctness of the data model was the most difficult to confirm. The testing con-
sisted from manual checks of the ontology structure in Protege5 against the entity model
in UML, including infered relationships. Because the ontology was generated automat-
ically from annotated entity classes using services provided by JenaBean library, it has
been considered generally correct. However, more sophisticated testing process should
be developed in the future. Model consistency and satisfiability have been checked dur-
ing the process by reasoners, which are distributed as a part of Protege.

The test for the correct syntax was done as a part of both profile validation and model
correctness checks. Both the applications, the profile validator and Protege, make check
for the correct structure and syntax of owl documents they are provided.

See appendix B for an excerpt from the ontology file and for a part of the ontology
visualisation.

5Protege - an ontology editor. See http://protege.stanford.edu/

25

6. Conclusion

The Semantic Web brings an extension to the World Wide Web (WWW) as we know it. It
enables more precise search, complex metadata description, easier interapplication com-
munication and data integration, “hidden” relations discovery or data-driven machine-
based decision-making. Use-case studies mentioned in this paper prove that it is possible
to successfully implement this functionality. It is suitable for integration of applications
working with data from the same or similar domains. Such case is also the NIF portal,
which tries to provide search options across various neuroscience-related sites (as is e.g.
the EEG/ERP Portal).

However, it is questionable where the bounds of the technology concept lie. While it
might work quite well in these, in the context of WWW rather small, cases, the complexity
of such solution for the whole web would be huge.

As one can see from the language comparison in this thesis, modelling of an ontology
for an application requires different approach than conventional entity modelling. Partly it
is because the expressive power of OWL is higher compared to conventional technologies,
partly it is because of the “open-world” concept. The designer cannot rely on any default
rules applied to the data domain.

Another obstacle is the computational complexity. The defined subsets of the OWL (i.e.
profiles) provide, at cost of loosing expressivity, boundaries for both time and space

required. However, for large ontologies, it might still make some of the semantic web
functionality (especially inferring) difficult to use in real time.

For all these reasons it seems valid to presume that the Semantic Web will not replace
the classic web concept anytime soon.

Ontology for the EEG/ERP Portal has been designed to represent similar semantics as
the Portals entity model. This has not been achieved completely because some of required
elements were prohibited by the OWL 2 QL profile which we used to ensure complexity
boundaries. The lost pieces of functionality are type-safety and cardinality restrictions.
Also the boolean (binary) type had to be replaced by the integer type. However, these are
just minor parts of the semantics and can be ommited.

The Portal provides the basic ontology model, which can be easily extended - some fur-
ther requirements may be requested by the NIF during the registration process. Therefore
the main goal of this thesis has been fulfilled.

26

List of Abbreviations

API Application Programming Interface

CMS Content Management System

EEG Electroencephalography

ERP Event-Related Potenital

INCF International Neuroinformatics Coordinating Facility

NIF Neuroscience Information Framework

RDBMS Relational Database Management System

RDF Resource Definition Framework

OCL Object Constraint Language

OWL Ontology Web Language

UML Unified Modeling Language

XML Extensible Markup Language

27

Bibliography

[1] W3C. W3C Semantic Web Activity, Nov. 2001
http://www.w3.org/2001/12/semweb-fin/w3csw, (accessed 15.1.2012)

[2] W3C. OWL 2 Web Ontology Language Primer, rev. 27.10.2009
http://www.w3.org/TR/owl2-primer/, (accessed 12.4.2012)

[3] W3C. RDF Primer, rev. 10.2.2004
http://www.w3.org/TR/rdf-primer/, (accessed 2.4.2012)

[4] W3C. OWL 2 Web Ontology Language Profiles, rev. 27.10.2009
http://www.w3.org/TR/owl2-profiles/, (accessed 16.3.2012)

[5] W3C. OWL 2 Web Ontology Language Document Overview, rev. 27.10.2009
http://www.w3.org/TR/owl2-overview/, accessed (accessed 17.1.2012)

[6] W3C. OWL 2 Web Ontology Language XML Serialization, rev. 27.10.2009
http://www.w3.org/TR/owl2-xml-serialization/, (accessed 4.4.2012)

[7] W3C. Semantic Web Use Cases and Case Studies

http://www.w3.org/2001/sw/sweo/public/UseCases/, (accessed 10.4.2012)

[8] Dr. Robert H.P. Engels, Jon Roar Tønnesen
Case Study: A Digital Music Archive (DMA) for the Norwegian National Broad-

caster (NRK) using Semantic Web techniques, Sep. 2007
http://www.w3.org/2001/sw/sweo/public/UseCases/NRK/, (accessed 10.4.2012)

[9] Robert Stanley, Bruce McManus, Raymond Ng, Erich Gombocz, Jason Eshleman,
Charles Rockey
Case Study: Applied Semantic Knowledgebase for Detection of Patients at Risk of

Organ Failure through Immune Rejection, Mar. 2011
http://www.w3.org/2001/sw/sweo/public/UseCases/IOInformatics/,
(accessed 10.4.2012)

[10] Catherine Dolbear. Case Study: Semantic Web Technology at Ordnance Survey,
Mar. 2007
http://www.w3.org/2001/sw/sweo/public/UseCases/OrdSurvey/,
(accessed 10.4.2012)

28

[11] Yves Raimond, Tom Scott, Patrick Sinclair, Libby Miller, Stephen Betts, Frances
McNamara
Case Study: Use of Semantic Web Technologies on the BBC Web Sites, Jan. 2010
http://www.w3.org/2001/sw/sweo/public/UseCases/BBC/, (accessed 10.4.2012)

[12] Neuroscience Information Framework, 2012
http://www.neuinfo.org/, (accessed 20.1.2012)

[13] Petr Ježek, Roman Mouček
Database of EEG/ERP Experiments, in proc. of the Third International Conference
on Health Informatics, Valencia, Spain, 2010

[14] Lewis Hard, Patrick emery, Bob Colomb, Kerry Raymond, Sarah Taraporewalla,
Dan Chang, Yiming Ye, Elisa Kendall, Mark Dutra
OWL Full and UML 2.0 Compared

version 2.4, 12. 3. 2004

[15] OCL Portal, 2012
http://www-st.inf.tu-dresden.de/ocl/, (accessed 20.1.2012)

[16] Object Management Group. Object Constraint Language, ver. 2.2
http://www.omg.org/spec/OCL/2.2, (accessed 20.1.2012)

[17] W3C. OWL 2 Web Ontology Language Structural Specification and Functional-Style

Syntax, rev. 27.10.2009
http://www.w3.org/TR/owl2-syntax/, (accessed 22.3.2012)

[18] Kathrin Dentler, Ronald Cornet, Annette ten Teije, Nicolette de Keizer
Comparison of Reasoners for large Ontologies in the OWL 2 EL Profile

2011, Semantic Web, vol. 2, p. 71-87, ISSN 1570-0844

[19] JenaBean, 2012
http://code.google.com/p/jenabean/, (accessed 10.4.2012)

[20] OWL API, 2012
http://owlapi.sourceforge.net/ , (accessed 10.4.2012)

[21] The International Health Terminology Standards Development Organisation
SNOMED Clinical Terms® (SNOMED CT®) International Release, July 2009
http://www.nlm.nih.gov/research/umls/Snomed/SNOMED_CT_July_2009_Scope_Memo.doc,
(accessed 10.4.2012)

29

Appendices

30

A. Additional Samples

A.1. Basic Elements

Class

OWL

< C l a s s IRI = ’Wine ’ / >
< C l a s s IRI = ’ Drink ’ / >
<SubClassOf >

< C l a s s IRI = ’ Drink ’ / >
< C l a s s IRI = ’Wine ’ / >

</ SubClassOf >

Java

c l a s s Dr ink { . . . }
c l a s s Wine e x t e n d s Dr ink { . . . }

UML

Figure A.1.: UML representation of class hierarchy

31

Property

OWL

< O b j e c t P r o p e r t y IRI = ’ grape ’ / >
< Objec tP rope r tyDomain >

< O b j e c t P r o p e r t y IRI = ’ grape ’ / >
< C l a s s IRI = ’Wine ’ / >

</ Objec tP rope r tyDomain >
< O b j e c t P r o p e r t y R a n g e >

< O b j e c t P r o p e r t y IRI = ’ grape ’ / >
< C l a s s IRI = ’ WineGrape ’ / >

</ O b j e c t P r o p e r t y R a n g e >

Java

c l a s s Wine {
WineGrape g r a p e ;

}

UML

Figure A.2.: UML representation of attributes

32

A.2. Property Restrictions

Min/Max Cardinality

OWL

< E q u i v a l e n t C l a s s e s >
< C l a s s IRI = ’ Car ’ / >
< O b j e c t I n t e r s e c t i o n O f >

< O b j e c t M a x C a r d i n a l i t y c a r d i n a l i t y ="5" >
< O b j e c t P r o p e r t y IRI =" hasDoors " / >
< C l a s s IRI =" Door " / >

</ O b j e c t M a x C a r d i n a l i t y >
< O b j e c t M i n C a r d i n a l i t y c a r d i n a l i t y ="3" >

< O b j e c t P r o p e r t y IRI =" hasDoors " / >
< C l a s s IRI =" Door " / >

</ O b j e c t M i n C a r d i n a l i t y >
</ O b j e c t I n t e r s e c t i o n O f >

</ E q u i v a l e n t C l a s s e s >

UML

Figure A.3.: UML representation of min/max cardinality

33

Exact Cardinality

OWL

< E q u i v a l e n t C l a s s e s >
< C l a s s IRI = ’ Bike ’ / >
< O b j e c t E x a c t C a r d i n a l i t y c a r d i n a l i t y ="2" >

< O b j e c t P r o p e r t y IRI =" hasWheels " / >
< C l a s s IRI =" Wheel " / >

</ O b j e c t M i n C a r d i n a l i t y >
</ E q u i v a l e n t C l a s s e s >

UML

Figure A.4.: UML representation of min/max cardinality

34

B. The EEG/ERP Portal’s
Ontology

B.1. Ontology File Excerpt

<?xml v e r s i o n ="1 .0"? >
< r d f :RDF xmlns : r d f =" h t t p : / / www. w3 . org /1999/02 /22 − r d f−syn t ax−ns #"

xmlns : j . 0 = " h t t p : / / t h e w e b s e m a n t i c . com#"
xmlns : owl =" h t t p : / / www. w3 . org / 2 0 0 2 / 0 7 / owl #"
xmlns : xsd =" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema#"
xmlns : r d f s =" h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / r d f−schema #"
xml : ba se =" h t t p : / / k i v . zcu . cz / e e g b a s e #" >
<owl : Onto logy r d f : a b o u t =" h t t p : / / k i v . zcu . cz / e e g b a s e " / >
<owl : C l a s s r d f : ID=" Pe r so n ">

< j . 0 : j a v a c l a s s >cz . zcu . k i v . e e g d a t a b a s e . d a t a . po jo . Person </ j . 0 : j a v a c l a s s >
</ owl : C las s >
<owl : C l a s s r d f : ID=" H i s t o r y ">

< j . 0 : j a v a c l a s s >cz . zcu . k i v . e e g d a t a b a s e . d a t a . po jo . H i s t o r y < / j . 0 : j a v a c l a s s >
</ owl : C las s >
<owl : C l a s s r d f : ID=" I S c e n a r i o T y p e ">

< j . 0 : j a v a c l a s s >cz . zcu . k i v . e e g d a t a b a s e . d a t a . po jo . I S c e n a r i o T y p e </ j . 0 : j a v a c l a s s >
</ owl : C las s >
<owl : C l a s s r d f : ID=" S c e n a r i o ">

< j . 0 : j a v a c l a s s >cz . zcu . k i v . e e g d a t a b a s e . d a t a . po jo . S c e n a r i o < / j . 0 : j a v a c l a s s >
</ owl : C las s >
<owl : O b j e c t P r o p e r t y r d f : ID=" h i s t o r i e s ">

< r d f s : domain r d f : r e s o u r c e =" h t t p : / / k i v . zcu . cz / e e g b a s e # Pe r s on " / >
< r d f s : r a n g e r d f : r e s o u r c e =" h t t p : / / k i v . zcu . cz / e e g b a s e # H i s t o r y " / >

</ owl : O b j e c t P r o p e r t y >
<owl : O b j e c t P r o p e r t y r d f : ID=" s c e n a r i o T y p e ">

< r d f s : domain r d f : r e s o u r c e =" h t t p : / / k i v . zcu . cz / e e g b a s e # S c e n a r i o " / >
< r d f s : r a n g e r d f : r e s o u r c e =" h t t p : / / k i v . zcu . cz / e e g b a s e # I S c e n a r i o T y p e " / >

</ owl : O b j e c t P r o p e r t y >
<owl : D a t a t y p e P r o p e r t y r d f : ID=" s c e n a r i o L e n g t h ">

< r d f s : domain r d f : r e s o u r c e =" h t t p : / / k i v . zcu . cz / e e g b a s e # S c e n a r i o " / >
< r d f s : r a n g e r d f : r e s o u r c e =" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema# i n t e g e r " / >

</ owl : D a t a t y p e P r o p e r t y >
<owl : A l l D i s j o i n t C l a s s e s >

<owl : members r d f : pa r seType =" C o l l e c t i o n ">
<owl : C l a s s r d f : a b o u t =" h t t p : / / k i v . zcu . cz / e e g b a s e # S c e n a r i o " / >
<owl : C l a s s r d f : a b o u t =" h t t p : / / k i v . zcu . cz / e e g b a s e # Pe r so n " / >
<owl : C l a s s r d f : a b o u t =" h t t p : / / k i v . zcu . cz / e e g b a s e # H i s t o r y " / >
<owl : C l a s s r d f : a b o u t =" h t t p : / / k i v . zcu . cz / e e g b a s e # I S c e n a r i o T y p e " / >

</ owl : members >
</ owl : A l l D i s j o i n t C l a s s e s >

</ r d f : RDF>

35

B.2. Ontology Tree Preview

Visualisation of the ontology tree. Because of a large amount of classes the view is col-
lapsed except for a few elements. Full purple line stands for “subClassOf”, dashed lines
represent properties which connect classes via the domain and range attributes. One can
see that each entity is a sub-class of the class Thing.

36

