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Abstrakt
Tato práce se zabývá vývojem HIL simulace AGV platformy IOT Bot zalo-
žené na ROS2. Nejprve je sestaven kinematický model robotického systému
počítající aktuální pozici a orientaci robota ve 2D prostoru. Tento model je
implementován v simulační platformě SIMIT spolu s dynamickým modelem
otáček kol robota. V prostředí NX MCD je implementován mechatronický
model robota a algoritmus pro určení jeho polohy a orientace. Tento mo-
del slouží k porovnání výsledků kinematického modelu a pro 3D vizualizaci.
Výstupy obou modelů jsou porovnány s pozicí a orientací reálného robota
měřenou navigačním systémem. Tím je ověřena funkčnost obou modelů. Oba
modely jsou použity ve dvou simulačních konceptech. Prvním konceptem je
SIL simulace pro jejíž účely je vyvinut ROS2-SIMIT konektor a robot je v
této simulaci ovládán pomocí ROS2 aplikací implementovaných na stejném
zařízení jako simulace. Druhým konceptem je HIL simulace, kdy je simulace
robota ovládána stejným HW a SW jako reálný robot. Komunikace mezi
zařízením ovládajícího robota a zařízením, kde běží simulace, je implemen-
tována pomocí rozhraní OPC UA.

Klíčová slova
HIL simulace, SIL simulace, Virtuální uvádění do provozu, Matematické mo-
delování, Digitální dvojče, Mobilní robot, ROS2, OPC UA



Abstract
This thesis is focused on the development of ROS2-based AGV platform
IOT Bot’s HIL simulation. In the beginning, the kinematic model of robotic
system computing its current position and orientation in 2D space is built.
This model and the dynamic model of robot’s wheels’ revolutions are imple-
mented in SIMIT simulation platform. The robot’s mechatronic model and
the script determining its position and orientation are implemented in NX
MCD. This model is used for the comparison of kinematic model’s results
and for 3D visualization. The outputs of both models are compared with the
positions are orientations measured by navigational system and the models’
functionality is verified. Both models are used in two simulation concepts.
The first concept is the SIL simulation. The ROS2-SIMIT Bridge is de-
veloped for the purposes of this concept. The robot is controlled by the
ROS2 nodes implemented in the same device as the robot’s simulation. The
second concept is the HIL simulation. The simulated robot is controlled by
the same HW and SW as the real one. The OPC UA interface is used for the
communication between the device controlling robot and the device where
the robot’s simulation runs.

Key words

HIL simulation, SIL simulation, Virtual commissioning, Mathematical mod-
elling, Digital twin, Mobile robot, ROS2, OPC UA
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1 Introduction

Nowadays, in the middle of the new industrial revolution known as Industry
4.0, the digitalization of the industry plays an important role. The nine
pillars of the Industry 4.0 are (1) Big Data and Analytics, (2) Autonom-
ous Robots, (3) Simulation and Digital Twin, (4) Industrial Internet of
Things, (5) Augmented Reality, (6) Additive Manufacturing, (7) Cybersecur-
ity, (8) Cloud Computing and (9) Horizontal and Vertical System Integration
[1].

There are two main aims of the digitalization in the industry. The first aim
is to make the production more efficient. The reduction of final product’s
manufacturing cost and human workers amount needed is required. The
second aim is more sustainable and environmental friendly manufacturing.
Since the number of people on our planet is growing, more products need to
be manufactured. If emissions related to that wouldn’t be lowered, it could
have negative environmental consequences.

The two aims mentioned above could be summarized into term Smart Man-
ufacturing. Another important term is Flexible Manufacturing. Apart from
the manufacturing efficiency and sustainability is also important its ability
to adapt to changes in terms of the quantity of manufactured products and
its type.

This thesis goes deeper in two pillars of the Industry 4.0 - autonomous ro-
bots and simulation. In the following section, the mobile robots and their
autonomous driving setup options are introduced. These robots play sig-
nificant role in the flexible manufacturing process because their equipment
could be easily changed if the interaction with different product is needed
during the manufacturing. Moreover, with the fleet management doesn’t
matter how many mobile robots are supposed to be controlled. The quant-
ity of manufactured products can be very smoothly increased or decreased
while the manufacturing process is still identical.

Two simulation methods, which are currently widely used in the industry
to perform a testing of proposed control solutions for different typed of sys-
tems, are introduced below. These two simulation concepts are developed
in the scope of this thesis for the simulation of certain mobile robotic plat-
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form IoT Bot. The Siemens simulation tools are described and used for the
mentioned simulations’ development. Furthermore, a basic overview of the-
oretical background related to mathematical modeling of the mobile robots
is given in the second chapter.

1.1 Mobile Robots
A mobile robot is an automatic machine capable of transporting itself from
one place to another. The robot is equipped with wheels or legs which
are used for its transportation. The wheeled robots are convenient for flat
surfaces such as industrial manufacturing halls. Mobile robots equipped with
legs can operate in rough terrain with the necessity of overcoming difficult
obstacles and in places where the ordinary wheeled robots would fail. See
the examples of these two kinds of robots in the figure 1.1.

Figure 1.1: Example of the wheeled robot (Evocortex Evo Carrier) [2] and
the robot equipped with legs (Boston Dynamics Spot) [3]

The mobile robots are mainly used in the industrial field. Their main task is
to carry the material between particular manufacturing places and support
the human operators. The path of the robot’s movement can be controlled by
human. One can still see this procedure in the industry. However, the mobile
robots are nowadays mostly programmed to be able to move autonomously.
This kind of machine is known as Automated Guided Vehicle (AGV) or
Autonomous Mobile Robot (AMR).

There is a significant difference between AGV and AMR. The AGV is cap-
able of following only the path which is marked on the ground by magnetic
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tape or by colored line e.g. Certain sensors for the line detection such as
light sensor or magnetic sensor are mounted to the AGV in order to detect
the line [4].

In comparison with AGV, AMR does not need to have any marked path to
deliver the material. It is equipped with tools for scanning the working area
such as lidar. The AMR is aware of the obstacles present in the field. It is
autonomously able to plan the path to avoid the collision [4]. The principle
of this difference is shown in the figure 1.2.

Figure 1.2: The difference between AMR and AGV [4]

Apart from industry, the mobile robots are also used in space exploration.
The role of mobile robots there is significant because they can substitute
people in certain places. For instance, NASA has sent several rovers to
Mars since Mars is too dangerous to be visited by humans.

The mobile robots can save human lives twice in that case. Firstly, they
allow to get more information about the planet without the risk of losing
human lives. Secondly, due to obtaining information about the planet, it
will be safer to settle there for people in the future.

Some people have mobile robot directly in the house or in the garden. The
automatic vacuum cleaners or automatic grass cutters are nowadays a com-
mon part of the home equipment. Finally, the mobile robot could be used in
a healthcare. An automatic wheelchair with robotic arm could be very help-
ful for older people to support their movement and objects grabbing.
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For specific use cases, the mobile robot can be equipped with some serial
or parallel manipulator. The serial manipulator is typically the robotic arm
such as UR5. One of examples of the mobile robot with parallel manipulator
is an Omnid mocobot shown in the Figure 1.3. The use case with several of
these robots is also visualized in that figure. It is also the case of a human-
robot collaboration. Several robots can collaborate with humans and are
helpful with placing the payload to specific position [5].

Figure 1.3: Omnid macobot description and use case of human-robot col-
laboration during the manipulation with payload [5]

1.2 SIL Simulation Concept
Software in the Loop (SIL) simulation is a concept used for development
and testing of control programs for various types of systems. Firstly, a
model of the system is created and implemented in an appropriate simulation
software such as Matlab/Simulink or SIMIT. Then, the control strategies
are proposed and implemented in the loop with the created model. The
whole process of the control program development and testing before its
final deployment on real system is generally known as virtual commissioning
[6].

In the SIL concept, the virtual commissioning is fully software based. It
means that both controller and system’s model are closed in the loop where
the data exchange is not covered by physical connectors and communication
protocols but by coupling of signals or using shared memory. Usually the
whole loop is implemented in the same computer or processor.
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The advantage of this concept is simplicity since only one device is needed
in most cases. It is a good concept for initial evaluation of proposed con-
trol solution. However, before the solution is deployed on real system it is
suitable to test it in a more complex way using a concept described in the
following chapter e.g.

Figure 1.4: Software in the Loop (SIL) simulation concept [6]

1.3 HIL Simulation Concept
Hardware in the Loop (HIL) simulation is more sophisticated concept used
for the virtual commissioning. The main idea of HIL is replacing the real
system (plant) by a mathematical model implemented in the hardware which
allows communication with the device where the control algorithm is imple-
mented. This is the biggest advantage of HIL concept in comparison with
the SIL concept.

Figure 1.5: Hardware in the Loop (HIL) simulation concept [6]

As mentioned above, with the SIL concept the real communication between
modeled system and developing controller cannot be simulated. That could
lead to a failure of the control algorithm after its implementation on real
control hardware. This failure could be caused by a noise on the wires or by
different communication rate. Ideally, when the development of the control
algorithm is finished, the real system or machine can be connected to the
control loop instead of the HIL simulator [7]. This procedure is demonstrated
in the figure 1.6.
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The HIL concept brings plenty of advantages during the commissioning of
the real device or machine. In that case, the virtual commissioning is as
similar to the real one as possible. Moreover, the risks of the real com-
missioning such as a machine parts breakage and the efforts like energy or
traveling costs are reduced.

Figure 1.6: Analogy of two connections: control system - plant simulator
and control system - plant [7]

The HIL concept is used in both process and machine automation. In other
words, the HIL simulator could be developed for robotic arm as well as for
chemical process e.g. This concept is widely used for instance in automotive
industry. The virtual model of the car communicates in that case with the
real components such as gearbox or peripheries like radars or cameras.
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2 Theoretical Background

2.1 Position and Orientation in Robotics
Let’s assume a three-dimensional coordinate system F1 = {O1, x1, y1, z1}
and F2 = {O2, x2, y2, z2}. O1 and O2 is the center of the coordinate system
F1 and F2, respectively. See it in the Figure 2.1.

Figure 2.1: Two coordinate systems and their mutual translation

Based on the Figure 2.1 the mutual translation vector between coordinate
system F1 and F2 expressed in F1 could be obtained as r1

1,2 = O1
2 − O1

1 [8].
The center of the coordinate system expressed in its own coordinates always
equals to zero. Thus, this formula can be rewritten as r1

1,2 = O1
2. The reverse

translation is defined similarly as r2
2,1 = O2

1.

As a definition of mutual rotation of these two coordinate systems, the ro-
tational matrix R1

2 = [x1
2, y1

2, z1
2] is used. Each column of this matrix

represents a unit direction vector of corresponding F2 axis expressed in F1

[8].

Due to the fact that the columns of this matrix represent the vectors which
are mutually perpendicular, the matrix has following important mathemat-
ical feature [8]:

(R1
2)T · R1

2 = I , (2.1)
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where I is a unit three-dimensional matrix.

This mathematical feature is really useful for the inverse mutual rotational
matrix definition. Then, it could be obtained as follows [8]:

(R1
2)−1 = (R1

2)T = R2
1 (2.2)

In practice, three basic types of rotation are defined. Each rotation is related
to one axis. The most intuitive is the rotation around z-axis by an angle γ.
It is obtained as [8]:

Rx(γ) =


cos(γ) −sin(γ) 0
sin(γ) cos(γ) 0

0 0 1

 (2.3)

Similarly, the rotation around x-axis by an angle α and the rotation around
y-axis by an angle β could be obtained as [8]:

Rx(α) =


1 0 0
0 cos(α) −sin(α)
0 sin(α) cos(α)

 , Rx(β) =


cos(β) 0 sin(β)

0 1 0
−sin(β) 0 cos(β)

 (2.4)

To get a compact description of the F2 position and orientation against F1

both translation vector and rotational matrix could be written in homogen-
ous transformation matrix which generally looks as follows [8]:

T1
2 =

 R1
2 r1

1,2

0 0 0 1

 (2.5)

If third three-dimensional coordinate system F3 is assumed and the trans-
formation from F1 to F3 determination is needed, then following formula
could be used [8]:

T1
3 = T1

2 · T2
3 (2.6)
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In other words, it’s about particular homogenous matrices folding in order
to get a final one.

2.2 Kinematic Models

2.2.1 Forward Kinematic Model
A forward kinematic model calculates a position and orientation of a single
geometric point on the robot in the three-dimensional space. The values
of position and orientation are calculated based on the current setup of the
robot actuators and its geometric parameters [8].

For better understanding, an example of the forward kinematic model of a
planar robotic arm operates in two-dimensional space is given. Since only
two-dimensional space is considered, the coordinates related to the third
dimension will always equal to zero. See drawing of the considered planar
robot in the Figure 2.2.

The inputs of the forward kinematic model are in this case the angles of
rotations of the joints Θ1, Θ2, Θ3 (current setup of the robot actuators)
and the lengths of the arms a1, a2, a3 (geometric parameters). Then, the
outputs are the coordinates of the point O3 (end-effector) expressed against
the point of the robot base O0 (x0

3 and y0
3) and the orientation of the final

effector represented by angle Φ.

Figure 2.2: Planar robotic arm drawing [8]
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The mathematical expression of the forward kinematic model described
above includes three following equations [8]:

(1) x0
3 = a3 cos(Θ1 + Θ2 + Θ3) + a2 cos(Θ1 + Θ2) + a1 cos(Θ1)

(2) y0
3 = a3 sin(Θ1 + Θ2 + Θ3) + a2 sin(Θ1 + Θ2) + a1 sin(Θ1)

(3) Φ = Θ1 + Θ2 + Θ3 (2.7)

If the description of the relation between actuators angular velocity and
the velocities of the output coordinates is needed, it is possible to derivate
the three equations written above with respect to time. Then a forward
instantaneous kinematic model is obtained [8]:

(1) ẋ0
3 = d

dt
{a3 cos(Θ1 + Θ2 + Θ3) + a2 cos(Θ1 + Θ2) + a1 cos(Θ1)}

(2) ẏ0
3 = d

dt
{a3 sin(Θ1 + Θ2 + Θ3) + a2 sin(Θ1 + Θ2) + a1 sin(Θ1)}

(3) Φ̇ = d

dt
{Θ1 + Θ2 + Θ3} (2.8)

For the description of the mobile robot’s kinematics the same mathematical
methods as are described above could be used. The difference is that the
mobile robot moves in the two-dimensional space which is considered as
infinite from a mathematical point of view. In this case it makes sense to
deal with the description of the model which calculates the relation between
its actuators velocities and the speed of the mobile robot itself. It means
that the forward instantaneous kinematic model is usually used.

Figure 2.3: Differential drive mobile robot drawing

Let’s give an example of the simplest mobile robot - differential drive. See
the drawing of this kind of mobile robot in the Figure 2.3. The forward
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instantaneous kinematic model of the kind of robot drawn in the Figure 2.3
is very simple. It describes the relation between wheels’ velocities (vl for left
wheel and vr for right wheel) and the robot velocities (linear velocity vx and
angular velocity ωa):

vx = 1
2 (vr + vl) ,

ωA = 1
d

(vr − vl) (2.9)

The value d is the distance between the wheels’ centers. It should be men-
tioned that for simplicity something like linear velocity of the wheel (value vl

and vr) is considered in the given model (equation 2.9). This value does not
make sense from the physical point of view. The simple rolling of the wheel,
after the initial surface friction overcoming, is considered and the following
expressions are valid:

vr = r ωr ,

vl = r ωl , (2.10)

where r is the radius of the wheel,

and ωr and ωl is the angular velocity of the right and left wheel, respect-
ively.

In case of mobile robots basically two kinds of velocities are considered. The
first is a linear velocity and the second is an angular one. For the position and
orientation of the mobile robot in two-dimensional space determination, its
forward instantaneous kinematic model should necessarily contain the equa-
tions describing the straightforward (x-directional), lateral (y-directional),
rotational (around z-axis) motion and the relations between them. In other
words, all three degrees of freedom of the robot in two-dimensional space
should be considered in overall motion description. If this condition is met,
the forward instantaneous kinematic model’s equations could be simply in-
tegrated with respect to time to get a position and orientation of the robot
in the two-dimensional space.

In the model described in equation 2.9 the mentioned condition is not
met. Let’s integrate the equations contained in this model with respect
to time:

sx(t) =
∫ t

0
vx(τ) dτ = 1

2 r
∫ t

0
[ωr(τ) + ωl(τ)] dτ ,

φA =
∫ t

0
ωA(τ) dτ = 1

d
r

∫ t

0
[ωr(τ) − ωl(τ)] dτ , (2.11)
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where t symbolize a current time moment and τ is a temporary integration
value.

Although, the value φA accumulates the rotational movements during the
time and at the time moment it provides a current orientation of the robot
in two-dimensional space, the position of the robot cannot be determined us-
ing this model. The value sx(t) accumulates the forward movements without
considering the robot’s orientation. In other words, the lateral motion can-
not be distinguished from the straightforward motion. In the scope of this
thesis, the forward kinematic model describing fully the position and orient-
ation of the mobile robot is derived and implemented.

2.2.2 Inverse Kinematic Model
An inverse kinematic model solves the opposite issue than the forward one.
It is used for robot control, because based on the required position and
orientation of robot end-effector (model’s inputs), the setup of the robot’s
actuators can be calculated (model’s outputs) [8].

For example, the inverse kinematic model of the planar robotic arm shown
in the Figure 2.2 can be derived analytic way considering its forward kin-
ematic model (equation 2.7) and some geometrical dependencies. Similarly,
based on the forward instantaneous kinematic model of differential drive mo-
bile robot (equation 2.9) drawn in the Figure 2.3, its inverse instantaneous
kinematic model could be obtained. It looks as follows:

vl = vx − ωA
d

2 ,

vr = vx + ωA
d

2 (2.12)

In these two cases it is not tough to derive the inverse (instantaneous) kin-
ematic model. However, in comparison with the forward kinematic model
derivation which is always derivable analytic way, it could be a very com-
plicated issue. In some cases, there is no analytical solution. It can also
happen that the inverse kinematic model cannot be found at all.

As mentioned, the inverse kinematic model is used for the robot control. For
this reason, it is one of the most important mathematical knowledge for the
industrial purposes. Since it is always tricky to derive this model by hand,
the software tool used for the virtual commissioning of the robots came with
implemented functions for inverse kinematics’ automatic calculation. NX
MCD as a one of these tools is introduced below.
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2.2.3 Redundant Robots
A redundant robot is a robot which has fewer degrees of freedom number of
its end-effector than the number of actuators (joints). The consequence of
robot’s redundancy is that the task of the robot could be accomplished more
than one way [8]. In other words, if the request for the robotic arm would
be to reach certain coordinates, than more setups of the robot’s actuators
could be found.

The planar robotic arm drawn in the figure 2.2 could be redundant if only
the position of the end-effector is considered. In this case the end-effector
of considered robot has two degrees of freedom (x0

3 and y0
3) while the robot

always has three joints (Θ1, Θ2 and Θ3) controlled by actuators. Otherwise,
if the orientation Φ is also considered as a degree of freedom, both degrees of
freedom number and the number of joints controlled by actuators are equal
to three, and the robot is considered as non-redundant.

Similarly, it could be thought about the mobile robots in general. They move
in the two-dimensional space and there are infinite options how to get from
one place to another. However, each option causes a different orientation
angle of the mobile robot in the final destination.

2.3 Dynamic Models of Linear Systems
There are several options how to model a dynamic behavior of a linear sys-
tem. Let’s demonstrate some of these options on a simple dynamic system
example - RLC electric circuit. This circuit contains the three passive ele-
mentary electronic components - resistor, coil and capacitor. See it in the
figure 2.4.

Figure 2.4: RLC electric circuit scheme
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Using a Kirchhoff law and the knowledge of the elementary electronic com-
ponents’ behavior, a differential equation (second-order and linear) as a first
option for the general dynamic model’s mathematical description, could be
derived as follows [9]:

uR(t) + uL(t) + uC(t) = u(t)

R i(t) + L
di(t)
dt

+ 1
C

∫
i(t)dt = u(t) , (2.13)

where R (Ohm), L (Henry) and C (Farad) are the constant parameters
of passive electronic components, u(t) is input voltage (also system input),
uR(t) is a voltage on the resistor, uL(t) is a voltage on the coil, uC(t) is
a voltage on the capacitor (required system output) and i(t) is a circuit’s
current. Moreover, zero initial conditions are assumed.

From the differential equation the state-space model, as a second introduced
option for the dynamic system behavior’s modeling, could be obtained. The
main idea of the state-space model is the state variables of the system de-
termination. Moreover, the value supposed to be system output is determ-
ined. Then, if it is needed, the differential equation is adjusted, and the
determined state variables are installed inside. That leads to obtaining of
multiple lower order differential equations [9].

There is no exact procedure how to choose the state variables. However,
it makes sense to choose some physical interpretable and measurable values
such as position or electric voltage in this case [9].

Let’s determine the state variables x1(t), x2(t) and the required system out-
put y(t) following way:

x1(t) = i(t)

x2(t) = uC(t) = 1
C

∫
i(t)dt

y(t) = x2(t) (2.14)
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After substitution of the state variables into equation 2.13 the state-space
model is obtained. It includes

• state equations

dx1(t)
dt

= −R

L
x1(t) − 1

L
x2(t) + 1

L
u(t)

dx2(t)
dt

= 1
L

x1(t) (2.15)

• output equation
y(t) = x2(t) (2.16)

For further work with the obtained state-space model is convenient to rewrite
it to the following matrix form:[

ẋ1

ẋ2

]
=

[
−R

L
− 1

L
1
C

0

] [
x1

x2

]
+

[ 1
L

0

]
u(t)

y(t) =
[
0 1

] [
x1

x2

]
(2.17)

Then, the state-space model can be defined by three matrices:

A =
[
−R

L
− 1

L
1
C

0

]
, B =

[ 1
L

0

]
, C =

[
0 1

]
(2.18)

These three matrices can be used for the derivation of a transfer function
as a last introduced option how to describe the dynamic system. General
equation for the transfer function’s calculation from the state-space matrices
is defined as follows [9]:

F (s) = C (sI − A)−1 B , (2.19)

where I is a unit two-dimensional matrix.

Let’s use the equation 2.18 and obtain the transfer function of the electric
circuit described in the Figure 2.4:

F (s) = 1
CL s2 + RC s + 1 =

1
CL

s2 + R
L

s + 1
CL

(2.20)
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The obtained transfer function’s shape corresponds with the shape of the
second-order oscillating system’s transfer function [9]

F (s) = ω2

s2 + 2 ξ ω + ω2 , (2.21)

where ω = 2πf describes the oscillations’ frequency and ξ is the oscillations’
dumping constant.

The denominator’s roots of the transfer function given in equation 2.21 are
generally complex numbers. In special case if the roots are real numbers,
could be this transfer function dividable into two transfer functions of aperi-
odic first-order system. This procedure is used in this thesis for the mobile
robot’s motors dynamic behavior modeling. The second-order transfer func-
tion is divided into two first-order transfer functions due to implementation
reasons.

The typical example of the aperiodic first-order system is RC electric circuit
shown in the figure 2.5. The transfer function of this kind of system generally
looks like follows [9]:

F (s) = 1
τ s + 1 , (2.22)

where τ is a time constant and in case of RC electronic circuit is obtained
as τ = RC.

Figure 2.5: RC electric circuit scheme

The transfer function F (s) is generally defined like follows [9]:

F (s) = L{y(t)}
L{u(t)} = Y (s)

U(s) , (2.23)
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where u(t) is the system input, y(t) is the system output, and U(s) and Y (s)
is the Laplace image of the system input and output, respectively. Moreover,
the zero initial conditions are anticipated.

Operator L generally symbolized a Laplace transform of a function of time
f(t) which is defined as [9]

L{f(t)} =
∫ ∞

0
f(t) e−st dt , (2.24)

where s = σ + jω is a complex value and the function f(t) should meet the
following conditions:

• f(t) is locally integrable on [0, ∞)
• f(t) = 0 for t < 0
• f(t) is of exponential order (

∫ ∞
0 f(t) e−σtdt for σ > 0)

Each mentioned system above has a different step response - the response
for a unit step input signal. See their typical shapes in the figure 2.6.

Figure 2.6: Typical shapes of the first-order and second-order systems’ step
responses

2.4 Control Circuits and PID Controller
There are two main concepts to control any input-output process (system)
in the control theory. These two methods are related to the two elementary
control circuits - feedforward and feedback control circuit. See their schemes
in the figure 2.7.

The control circuit in general includes following values:

• reference value r(t) - intended control circuit output
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• process value y(t) - actual control circuit output
• action value u(t) - controller output
• control error e(t) = r(t)−y(t) (only in case of feedback control circuit)

Figure 2.7: feedforward and feedback control circuit both including Control-
ler (C) and Process (P)

Both mentioned concepts are used in this thesis for the SIL and HIL simula-
tion purposes. The first concept is implemented for the simulation of ROS2
controller, which controls the robot in feedforward circuit using the inverse
instantaneous kinematic model. The second concept is used for the simu-
lation of robot’s inner motor control loops, where the feedback control of
the motor’s revolutions is implemented. PID controller as the most common
industrial controller is used in these loops.

The action value of PID controller includes three elements: Proportional
(P), Integrative (I) and Derivative (D). It is expressed by following formula
[10]:

u(t) = K
[
e(t) + 1

TI

∫ t

0
e(τ)dτ + TD

de(t)
dt

]
, (2.25)

where K = KP is a proportional gain, TI is an international time constant
and TD is a derivative time constant. Moreover, the integrative and derivat-
ive gain can be obtained as follows: KI = K

TI
, KD = K TD. N is derivative

filter’s time constant’s coefficient and out of the general engineers’ experi-
ences it can be obtained as N = 3 ÷ 10.

Each of the three elements influences the control value different way [10]:

• Element P: represents a static part of the controller, higher KP causes
higher regulation precision, low-frequency errors’ suppression and faster
controller’s response, but higher over-regulation

• Element I: essential part for regulation’s precision - only with that
a zero control error can be reached, slows down the controller’s re-
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sponse, lower TI causes higher over-regulation
• Element D: speeds up the controller’r response, higher TD causes lower

over-regulation

In practice, the PID controller is mostly implemented in discrete computing
device such as Programmable Logic Controller (PLC) or any other kind of
discrete device like microprocessor. For this implementation, the derivation
is supplied by difference calculated from previous and current control error
and instead of integral a simple sum is used.

In this thesis the PID controller is simulated in SIMIT where a block for in-
tegration is used, and the derivation is supplied using mentioned difference.
There is also a low-pass filter implemented for the derivative noise lower-
ing. The low-pass filter is generally obtained by following transfer function
[10]:

F (s) = K

τs + 1 , (2.26)

where K is a filter’s gain and τ is a time constant determining the highest
passed frequency. Out of the general engineers’ experiences it can be ob-
tained as τ ≈ TD

N
= KD

N ·KP
.

In this thesis, the discrete version of low-pass filter is implemented using its
difference equation:

y(k + 1) =
(

1 − Ts

τ

)
y(k) + K

Ts

τ
u(k) , (2.27)

where Ts is a sampling period, u(t) is a filter’s input and y(t) is a filter’s
output.

Moreover, the accumulation of integrative error is covered using PID con-
troller with anti-windup compensation circuit presented in the figure 2.8.
Furthermore, the saturation to bound the controller’s output (its action
value) is placed in there.

Figure 2.8: PID controller with anti-windup compensation circuit [10]
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The parameter Tt can be out of the general engineers’ experiences obtained
as Tt ≈

√
TI TD =

√
KD

KI
[10].

2.5 Linear Regression
In the system modeling there are basically three approaches how to obtain
the mathematical model of system. The first approach is called White Box
Model. In this case the physics of the system is fully known. Thus, the
structure of mathematical model and also its parameters related to physics
could be obtained. Completely opposite approach is the Black Box Model.
In this case there is not any knowledge of the system’s physics. Whole
model is determined using input and output data from an experiment. An
approach which stands in the middle of these two mentioned approaches is
the Grey Box Model. In this approach the structure of the mathematical
model is known but its parameters not.

One of the Gray Box Model methods for the parameters’ identification is
a linear regression. The linear relation between input and output data is
supposed. Input and output data are measured and based on them the
coefficients describing their relation are estimated. In this thesis this method
is used for one of the forward instantaneous kinematic model’s parameters
identification.

For the principle of this method demonstration, following simple static dis-
crete input-output model is assumed:

y(k) = c u(k), k = {0, 1, 2, ..., N}, N ∈ Z , (2.28)

where c is an estimated constant, y(k) is the input and u(k) is the output
at discrete time moment.

The regression model is obtained from the equation 2.28 if the error ε is also
supposed [10]:

y(k) = c u(k) + ε(k), k = {0, 1, 2, ..., N}, N ∈ Z (2.29)

During the experiment, N measurements are done. Then, the measured
input and output data are written in following column’s vectors:

U = [y(0), y(1), y(2), ..., y(N)]T ,

Y = [u(0), u(1), u(2), ..., u(N)]T (2.30)

29



Based on the measured data, the regression model can be rewritten following
way [10]: 

y(0)
y(1)

...
y(N)

 = c


u(0)
u(1)

...
u(N)

 +


ε(0)
ε(1)

...
ε(N)


Y = c U + ε (2.31)

If N > 1, then more measurements than unknown parameters count are
done. In this case the parameter’s identification in translated to the optim-
ization task. The aim of this task is to minimize the mean square error sum
criterion, which can be expressed as follows [10]:

J(c) =
N∑

k=0
ε2(k) = εT ε (2.32)

The condition of the criterion’s minimum is expressed following way [10]:

c∗ = argmin(J(c)) (2.33)

The value c∗ is an optimal estimation of the parameter c and can be calcu-
lated using following expression [10]:

c∗ = (UT U)−1 UT Y , (2.34)

where (UT U)−1 UT is a generalized matrix inverse for the rectangular
matrices [10].

30



3 Technologies Used

3.1 SIMIT
SIMIT is a simulation platform which is mainly intended to use for a complex
tests of any automation applications and providing the trainings for the
operators before the real system is commissioned. The major purpose of
the SIMIT usage in practice is to simulate behavior of the real components
which could be found in the real machine or process. In process automation
these components could be for example pipes, valves or tanks. Moreover, a
lot of components used in machine automation are possible to be simulated
in there such as motor drivers sensors etc.

Programming in SIMIT is block-based which means that the instructions are
covered by blocks and the connections between them are for data exchange
purposes. Plenty of certain components used in the real automation applic-
ations are findable as blocks in the libraries and can be simply dragged and
dropped into a project chart. In order to organize the structure of the SIMIT
project, the logic can be distributed in more than one charts. In a Standard
library, the blocks for basic (addition, multiplication etc.) and advanced
(integrators, PT blocks for transfer function’s definition etc.) mathematical
calculations are available.

If some custom block which is not present in the standard libraries is needed
than it is possible to develop own block with required functionality. A stand-
alone application Component Type Editor (CTE) can be used for these
purposes. It is possible to define the connectors (inputs and outputs), block
parameters adjustable later in project chart, cyclic calculation executed each
simulation cycle, block visualization etc.

For the simulation cycle control is possible to define more time slices. Then,
these time slices can be assigned to particular simulation blocks. It is a really
useful functionality. For example, in case if a part of the logic does not need
to be run each fastest simulation cycle, it can simply be connected to slower
time slice and the overall simulation performance is increased.

The SIMIT is used in a concept called SIMATIC Machine Simulator as a part
for machine behavior calculation. See a scheme of this concept in the figure

31



3.1. This concept fully supports the virtual commissioning of a machine in
the SIL setup (described in chapter 1.2).

Figure 3.1: SIMATIC Machine Simulator scheme

It is possible to manage a coupling for a full-duplex data exchange with other
applications for the SIL simulation purposes in SIMIT. The coupling with
NX MCD is doable very easily because only the right running MCD simu-
lation should be selected and then the MCD signals are visible in SIMIT.
Similarly, the coupling with TIA portal where virtual PLC controller is pro-
grammed can be managed. When the right project is selected, new instance
of virtual PLC in PLCSIM Advanced application is automatically created.
Then, the PLC program is uploaded to virtual PLC and its signals are visible
in SIMIT.
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There is also solution for the virtual commissioning in HIL setup (described
in chapter 1.3) provided by Siemens. A SIMIT Unit is used for these pur-
poses. It is a hardware interface between SIMIT simulation platform and
the real controller.

Figure 3.2: HIL simulation setup using SIMIT Unit

Using this device, the behavior of the whole machine or plant can be simu-
lated in real time. The real controllers communicate with the SIMIT Unit
via Profibus or Profinet. Then, it is connected to the station via Industrial
Ethernet. In this station runs the simulation in SIMIT. See the HIL setup
with the SIMIT Unit in the figure 3.2.

3.2 NX MCD
NX is a Computer-Aided Design (CAD) software used for 3D solid and
assembly modelling. Any mechanical part of a machine can be designed
there. Individual parts can be there merge into one assembly which can be
further used in another created assemblies.

NX Mechatronics Concept Designer (NX MCD) is a NX plugin used for the
definition of the mechatronic behavior of the created 3D solid. The rigid
body of the 3D object can be defined in order to let the object behave as a
real body on Earth. It means that when the simulation starts, the 3D object
with rigid body defined starts falling down due to the gravity. Moreover,
if the collision body is defined on the object, and another collision body is
defined on the surface above the solid, the object falls on this surface.
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Different kind of joints such as hinge or sliding joint can be also defined
between two different rigid bodies. For the movement of the rigid body con-
trol, the position or speed controller can be defined. Moreover, in NX MCD
the whole robotic arm use-case can be proposed using an Inverse kinematics
function. The poses are simply defined, and the kinematics calculations are
done automatically.

If a custom behavior of some object is needed, it can be implemented using
a C# runtime behavior script. In this script, the NX Open library is used.
The objects such as rigid body are simply imported to the script, where it
can be worked with their properties. For instance, in case of rigid body, its
position and orientation can be read and changed.

In the mentioned concept of SIMATIC Machine Simulator described in the
figure 3.1, the NX MCD is used as a simulator of mechanical components.
From SIMIT, the setpoints from simulated components are received. For
example, in SIMIT a motor driver can be simulated and the simulation of
its movement is implemented in NX MCD. The coupling for data exchange
can be managed with SIMIT as well as with TIA portal. Moreover, the
handshake between two NX MCD simulations can be done.

3.3 ROS2
Robot Operating system (ROS) is a pack of the tools and software libraries
for the robot applications’ development. ROS2 is an open-source and can be
considered really as operating system because it has its own hardware ab-
straction, low-level control of devices, data exchange between particular pro-
cesses using messages etc. ROS2 is runnable in a plenty of operating systems
such as Windows or any type of Linux (Debian, Ubuntu etc.). Moreover,
it can be also hosted in Docker. ROS2 is provided in several distributions
such as Humble or Foxy. Each distribution is runnable in different operating
systems [11].

The bases of the ROS are nodes. Each node is supposed to be responsible for
a single module. For example one node can control wheel motors, another
cover the reading data from lidar sensor etc. Particular nodes communicate
continuously with each other using services and topics. The communication
using the topics is one-directional. A publisher publishes the data and the
subscriber receive them. The full-duplex communication is covered by ser-
vices [11]. This is a service-client based communication. See the diagram
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describing these two kinds of communication between nodes in the figure
3.3.

Figure 3.3: Continuous communication between ROS2 nodes using topic and
service [11]

If the one-shot communication between nodes is needed, then action can
be used. It includes a request message from the client to server, then the
response as acknowledgement is sent opposite direction. The requested data
are sent using feedback topic [11]. See this procedure in the figure 3.4.

Figure 3.4: One-shot communication between ROS2 nodes using action [11]

The ROS2 nodes are mainly code in C++ and Python. Moreover, the Node-
RED can be also used for dealing with ROS2 services, topics and actions.
The Node-RED is a tool for flow-based programming (FBD) which is a
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programming approach based on the black boxes’ networks communicate
with each other through messages. It is a user-friendly development tool
where the logic is implemented by dragging and dropping the blocks using
the connections between them. In these connections the messages flow.

Furthermore, there are some client libraries which can be used for interfacing
with ROS2 such rclcs for the interfaces written C#. If there is a request for
recording and playing the recorded the data from ROS2 topics, the ROS2
feature called bag recording can be used.
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4 AGV Platform IOT Bot

IoT Bot is a ROS2-based AGV platform developed by Eduart Robotic in
cooperation with Siemens and Technical College in Nuremberg. It is four
wheels’ AGV provided in two variants. The first variant is differential drive
while standard wheels are used. The second variant of this AGV is the
variant with mecanum wheels - mecanum drive [12].

Figure 4.1: IOT Bot - differential drive variant (on the left) and mecanum
drive variant (on the right) [12]

In the scope of this thesis, the first variant is worked with. Since the in-
tention of this thesis is the SIL and HIL simulator of this IOT Bot variant
development, reverse engineering of the robot should be done. Individual
parts of the given robot are investigated and described in this chapter.

4.1 SIMATIC IOT2050
SIMATIC IOT2050 is an industrial Internet Of Things (IOT) Gateway. In
practice, it is used for the connection of the factory low-level devices such
as SIMATIC PLCs to the internet world. Using this gateway, the data
can be easily transferred from the factory to the cloud where their further
processing is done [13].

The IOT2050 is equipped with the following hardware components [14]:

• TI SOC AM6528 GP Dual Core processor
• 1 GB RAM (DDR4)
• 2 Ethernet interfaces (100/1000 Mbps)
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• 2 USB Type A
• 1 COM interface (RS232/422/485)
• 1 DisplayPort 1.1 A

Moreover, there is a slot for SD card where required operating system can
be installed in. In case of IOT Bot, the Linux Debian is used. Two Docker
images run there - ROS2 (it manages the robot control) and NODE-Red
image. Using the Ethernet and Secure Shell Protocol (SSH) connection, the
command prompt of the Debian is smoothly reachable from any operating
station. The NODE-Red environment is accessible using the operating sta-
tion’s web browser and available for the user-friendly dealing with the robot
data.

As mentioned, the IOT2050 manages the connection between low-level com-
ponents and the outer world. The outer world is the mentioned operating
station. The low-level component is the Extension-Shield described below.
The communication between IOT2050 and the Extension-Shield is covered
by Universal Asynchronous Receiver-Transmitter (UART). The robot can
be remotely controlled by PlayStation4 (PS4) Controller which is connected
with the IOT2050 via Bluetooth.

4.2 Motors and Extension-Shield
In the extension-shield, the electronics for the wheels’ motors control is in-
stalled. Each motor has its own inner control loop with PID controller (re-
lated theory described in the chapter 2.4), Pulse Wide Modulation (PWM)
drive and the encoder with process unit for the actual revolutions’ meas-
urement. The motors are stepper motors controlled by voltage generated
by PWM pulses whose amplitude depends on battery’s voltage level (range
from 17.5 to 23.5 Volts).

Figure 4.2: Block scheme of the motor’s inner control loop
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There is also an encoder for the revolution measurement in the inner control
loop. The units of setpoint and process value are the Revolutions Per Minute
(RPM). See the block scheme of the inner motor’s control loop in the figure
4.2.

Apart from the motors’ control, the Extension-Shield reads the data from
another robot’s sensors:

• 4 Time-of-Flight (TOF) distance sensors
• 1 Inertial Measurement Unit (IMU) - orientation, angular velocity and

acceleration measurement
• 1 sensor measuring the battery voltage level

4.3 Power Supply
The robot’s electronics is supplied by Nickel–Metal Hydride (NiMH) battery
providing nominally 19.2 Volts and having 3.0 Ampere-hours capacity. The
battery is charged by power source having 100-240 Volts (∼, 1.2 Amperes,
50/60 Hertz) input and 30 Volts (=, 2 Amperes) output.

4.4 ROS2 Nodes
As mentioned, the control of the robot’s movement is implemented in ROS2
nodes. The robot_motion_control_node contains inverse instantaneous
kinematics model which theory is described in the chapter 2.2.2. Based on
the target velocity vector (Twist - intended linear and angular velocity) it
calculates target motor speed values (motors’ setpoints). It is also possible
to overcome the kinematics calculations and assign the mentioned target
motor speed values directly. See the input topics published by this node in
the table 4.2.

Description Topic Message type
Taget Motorspeed values /iotbot/rpm iotbot_interface/msg/RotationSpeed
Taget Velocity vector /cmd_vel geometry_msgs/msg/Twist

Table 4.1: ROS2 node for robot’s motion calculation (its inverse kinematics):
topics [12]

Another node, iotbot_shield_node, reads the data from sensors mentioned
above. The topics and services published by this node are listed in the table
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4.2 and 4.3, respectively.

Description Topic Message type
Controller Values /joy sensor_msgs/msg/joy
Taget Motorspeed values /iotbot/rpm iotbot_interface/msg/RotationSpeed
Current Motorspeed values /iotbot/rpm/return iotbot_interface/msg/RotationSpeed
Inertial Measurement Unit /iotbot/imu sensor_msgs/msg/Imu
Distance measurements /iotbot/tof std_msgs/msg/Float32MultiArray
Battery Voltage /iotbot/battery iotbot_interface/msg/Battery

Table 4.2: ROS2 node for communication between the microprocessor and
IOT2050: topics [12]

Description Service Message type
Determination of light pattern /iotbot/srv/send_lighting iotbot_interface/src/SendLighting
Enable signal for driving iotbot/srv/send_enable iotbot_interface/src/SendEnable

Table 4.3: ROS2 node for communication between the microprocessor and
IOT2050: services [12]
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5 IOT Bot’s models

5.1 Mathematical Kinematic Model
The IOT Bot is a vehicle moving in two-dimensional space described with
global coordinate system [x, y]. The robot’s local coordinate system is also
defined in order to describe its motion. Its origin is located in the robot’s
Center of Mass (COM). The position of the robot is expressed by coordinates
X and Y of this origin in the global coordinate system. In order to get a full
description of the robot’s coordinates, its orientation Θ expressed against
global x-axis should be taken in consideration as well [15]. See the robot
in global coordinate system in the figure 5.1. For further work, the robot’s
coordinates can be written into the following vector:

q =
[
X Y Θ

]T
(5.1)

As it is described in the figure 5.1, the IOT Bot’s COM moves in the global
coordinate system at velocity v =

[
vx vy

]T
which is expressed in the local

coordinate system. The element vx and vy determines a longitudinal and
lateral IOT Bot’s velocity, respectively [15].

Figure 5.1: IOT Bot kinematics
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The basic forward instantaneous kinematic model can be determined if the
rotation of the IOT Bot around z-axis (equation 2.3) by orientation angle Θ
is considered [15]:

q̇ =


Ẋ

Ẏ

Θ̇

 =


cos(Θ) −sin(Θ) 0
sin(Θ) cos(Θ) 0

0 0 1



vx

vy

ω

 , (5.2)

where ω is the IOT Bot’s angular velocity.

The IOT Bot’s movement is based on differential drive principle. It means
that both driving and steering are controlled with the particular wheels’
angular velocities’ values. As it is visualized in the figure 5.1, the four wheels
are used for controlling the IOT Bot’s movement. However, as was proved
by the measurement (described in the chapter 5.2) only the two angular
velocities (related to IOT Bot’s left and right side) can be considered as the
forward instantaneous kinematic model’s inputs:

ωL = ω1 = ω2 ,

ωR = ω3 = ω4 (5.3)

Using these angular velocities the lateral and angular velocity of the robot
can be expressed [15]:

vx = r

2 (ωL − ωR) , (5.4)

ω = r

ly
(ωL + ωR) , (5.5)

where r = 0.085 m is the radius of the IOT Bot’s wheel.

The other IOT Bot’s dimensions according to the figure 5.1 are:

• distance between front and rear set of the wheels lx = 0.25 m

• distance between left and right set of the wheels ly = 0.31 m

The sign (− in the equation 5.4 and + in the equation 5.5) expressing the
relation between ωL and ωR can differ model by model. It depends on the
direction of wheels’ revolutions’ setup. The relation of these two velocities
in the equations 5.4 and 5.5 was found out by measurement described in the
chapter 5.2.

Both equations 5.4 and 5.5 are valid only if the longitudinal slippage is
neglected [15]. In case of pure robot’s straightforward motion when ω = 0
and vy = 0 the slippage neglect is not a big issue. In the beginning of the
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movement the wheels should overcome small initial lateral rolling friction.
It could cause a small slippage but then a simple rolling without friction can
be considered.

In case of vy ̸= 0 the lateral skid which causes the change of the robot’s
orientation Θ should be taken into account. During the skid steering, the
longitudinal velocity is lost as slip and only the tangential velocity v con-
tributes to rotation [16]. It can be described by the following expression
[16]:

ω = r
ly

l2
x + l2

y

(ωL + ωR) , (5.6)

where l2
x + l2

y is a distance between two diagonally opposite wheels.

As mentioned, the steering of the IOT Bot is done by lateral skid and due
to that it highly depends on the friction between the wheels and surface.
Thus, the relation between IOT Bot’s angular velocity ω and the wheels’
velocities described in the equation 5.5 or 5.6 is only a pure mathematical
representation without any physical knowledge. However, it is useful as a
priori information for the experiments described below. Its target is to find
out a physical relation between the wheel’s revolutions and IOT Bot’s angu-
lar velocity. Considering the mentioned facts, let’s determine the equation
for IOT Bot’s angular velocity ω calculation as follows:

ω = r Kω (ωL + ωR) , (5.7)

where Kω is a parameter to be identified using a real data from the experi-
ment and the two following a priori information can be used for comparison
of the experiment’s result:

Kapi1
ω = 1

ly
, (5.8)

Kapi2
ω = ly

l2
x + l2

y

, (5.9)

where Kapi1
ω and Kapi2

ω is based on the equation 5.5 and 5.6, respectively.

In order to determine the position and orientation of the IOT Bot in the two-
dimensional global coordinate system, it is necessary to derive the expression
of IOT Bot’s lateral velocity vy as well. As it is drawn in the figure 5.1, the
IOT Bot rotates around its Instantaneous Center of Rotation (ICR) during
the steering. From the figure 5.1, it can be also deduced [15]:

|ω| = ||v||
||d||

, (5.10)
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where ||d|| is a radius of the IOT Bot’s rotation around ICR, vector
d =

[
X Y Θ

]T
, perpendicular to v, expresses the coordinates of the ICR

in the IOT Bot’s local coordinate system and symbol || ∗ || means the Euc-
lidean vector’s norm.

Based on the equation 5.10 it can be also written [17]:

ω = vx

yICR

= − vy

xICR

(5.11)

By modification of the equation 5.11, the following expression of the IOT
Bot’s lateral velocity can be obtained:

vy = −xICR ω , (5.12)

where the parameter XICR is the x-projection of ICR. During the pure rota-
tion of IOT Bot at spot this constant expresses the radius of the rotation. In
other words, it is the distance between the IOT Bot’s COM and geometric
center of rotation. The IOT Bot’s COM has been estimated manually Then,
the distance between estimated COM and geometric center of rotation has
been measured. The result is XICR = 0.02 m.

This result corresponds with the statement about this constant. This state-
ment says that XICR < lx

2 otherwise the vehicle should not move properly
[17]. In the case of IOT Bot it is XICR = 0.02 m < lx

2 = 0.125 m.

The equation 5.12 can be installed into the equation 5.2 in order to get the
following forward instantaneous kinematic model:

q̇ =


Ẋ

Ẏ

Θ̇

 =


cos(Θ) −sin(Θ) 0
sin(Θ) cos(Θ) 0

0 0 1




vx

−xICR ω

ω

 (5.13)

Let’s also install the equations 5.4 and 5.7 into the equation 5.13 as fol-
lows:

q̇ =


Ẋ

Ẏ

Θ̇

 =


cos(Θ) −sin(Θ) 0
sin(Θ) cos(Θ) 0

0 0 1




r
2 (ωL − ωR)

−xICR r Kω (ωL + ωR)
r Kω (ωL + ωR)

 (5.14)

Further, it is necessary to extract the wheels’ angular velocities ωL and ωR

into a single vector on the right side of the equation. Then, the final version
of the IOT Bot’s instantaneous forward kinematic model is obtained:

q̇ =


Ẋ

Ẏ

Θ̇

 =


r
2 cos(Θ) + r XICR Kω sin(Θ) − r

2 cos(Θ) + r XICR Kω sin(Θ)
r
2 sin(Θ) − r XICR Kω cos(Θ) − r

2 sin(Θ) − r XICR Kω cos(Θ)
r Kω r Kω


[
ωL

ωR

]
, (5.15)
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where the values ωL = ω1 = ω2 and ωR = ω3 = ω4 are the forward in-
stantaneous kinematic model’s inputs (IOT Bot’s actuators) and the values
q̇ =

[
Ẋ Ẏ Θ̇

]T
are the forward instantaneous kinematic model’s out-

puts (time differences of IOT Bot’s coordinates in the global coordinate
system).

In order to obtain the IOT Bot’s coordinates q (equation 5.1) at the time t,
the forward instantaneous kinematic model’s equations should be integrated
with respect to time:

X(t) =
∫ t

0

{
r

2 cos[Θ(t)] + r XICR Kω sin[Θ(t)]
}

ωL(t)+

+
{

−r

2 cos[Θ(t)] + r XICR Kω sin[Θ(t)]
}

ωR(t) dτ ,

Y (t) =
∫ t

0

{
r

2 sin[Θ(t)] − r XICR Kω cos[Θ(t)]
}

ωL(t)+

+
{

−r

2 sin[Θ(t)] − r XICR Kω cos[Θ(t)]
}

ωR(t) dτ ,

Θ(t) =
∫ t

0
r Kω ωL(t) + r Kω ωR(t) dτ , (5.16)

where τ is an integration time value.

5.2 Kinematic model’s parameter Kω Identi-
fication

5.2.1 Identification using Unsteady RPM values
During the first experiment the IOT Bot rotates at single spot. It means
that only the angular velocity ω caused by lateral velocity vy is considered
and longitudinal velocity vx equals to 0. The rotation was done at different
angular velocities ω in both directions. This experiment had three main
aims:

1. evaluation that only two forward instantaneous kinematic model’s in-
puts (see equation 5.3) can be considered

2. evaluation of the direction of wheels’ revolutions’ setup (sign + between
ωL and ωR in the equation 5.7)

3. identification of the parameter Kω (see equation 5.7)

During the experiment following data were measured from corresponding
ROS2 topics (see the 4.2) in Node-RED:
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• ω1, ω2, ω3 and ω4 - wheels’ actual angular velocity values (revolutions)
in Revolutions Per Minute (RPM)

• ω - IOT Bot’s angular velocity - data from Inertial Measurement Unit
(IMU) in RPM, but then recalculated to radians per second (rad/s)

The general expression for calculation of angular velocity in rad/s from RMP
is obtained as follows:

ωrad/s = 2π

60 ωRP M (5.17)

In the figure 5.2 and 5.3 are the measured left wheels’ revolutions in RPM
plotted.
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Figure 5.2: IOT Bot’s front left wheel’s revolutions - ω1
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Figure 5.3: IOT Bot’s rear left wheel’s revolutions - ω2
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Figure 5.4: Evaluation of ω1 = ω2 (see equation 5.3)

As it can be seen in the figure above, the values ω1 and ω2 are spread out
around the line ω1 = ω2. The wider area around this line and some outliers
are caused by the friction between the wheels and surface. Meaning, the
equality ωL = ω1 = ω2 is evaluated as useful for the IOT Bot’s forward
instantaneous kinematic model’s purposes.
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Figure 5.5: Average of ω1 and ω2: ωL = ω1+ω2
2

For further work with the measured data the ωL is obtained as the average of
ω1 and ω2. See almost unrecognizable differences between the figures 5.2, 5.3
and 5.5. In the figure 5.6 and 5.7 are the measured right wheels’ revolutions
in RPM plotted.
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Figure 5.6: IOT Bot’s front right wheel’s revolutions - ω3
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Figure 5.7: IOT Bot’s rear right wheel’s revolutions - ω4
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Figure 5.8: Evaluation of ω3 = ω4 (see equation 5.3)

Similarly, as the equality ωL = ω1 = ω2, the equality ωR = ω3 = ω4 can
be evaluated as useful for the IOT Bot’s forward instantaneous kinematic
model’s purposes.
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Figure 5.9: Average of ω3 and ω4: ωL = ω3+ω4
2

Similarly, as the ωL the ωR is obtained as the average of ω3 and ω4. The
plots in the figures 5.6, 5.7 and 5.9 are also almost unrecognizable from each
other. In the figure 5.4 the IOT Bot’s angular velocity measured in RPM
using IMU and recalculated to rad/s is plotted.
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Figure 5.10: IOT Bot’s angular velocity

The plotted values in the figures 5.5 and 5.9 are similar. Thus, it can be
deduced that the sign + between ωL and ωR can be evaluated as correct
because a consideration of sign − would null the IOT Bot’s angular velocity
in the equation 5.7.
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In order to identify the parameter Kω used in the equation 5.7 let’s define a
regression model according the equation 2.31:


ω(0)
ω(1)

...
ω(N)

 = Kω


r [ωL(0) + ωR(0)]
r [ωL(1) + ωR(1)]

...
r [ωL(N) + ωR(N)]

 +


ε(0)
ε(1)

...
ε(N)


Ω = Kω W + ε , (5.18)

where ω(k) (k = {0, 1, 2, ..., N}) is measured IOT Bot’s angular velocity in
rad/s, r is the IOT Bot’s wheel radius in meters, ωL(k) and ωR(k) are the
averages of IOT Bot’s side revolutions in RPM, ε(k) is the error’s vector, k

is a discrete time and N is the number of measured data.

Using the equation 2.34 the parameter Kω can be identified the following
way:

Kω = (WT W)−1 WT Ω (5.19)

The time between two measurements steps k and k+1 is 0.02 s. It means that
the measurement’s frequency is 50 Hz. The identification of the parameter
Kω using the equation 5.19 and other data processing was done in a Python
script. Considering the units of measured values, the unit of the identified
parameter Kω should be m−1:

Kω = ω

r (ωL + ωR)

m−1 = rad/s

m RPM

m−1 =
2π
60 RPM

m RPM
(5.20)

In the figure 5.11 the identification in visualized. There are r (ωL(k)+ωR(k))
values in the x-axis and ω(k) values in the y-axis. The value of the black
line’s slope is the identified parameter Kω = −1.058 m−1. The sign − of
the identified parameter means that the IOT Bot’s rotation’s direction is
defined oppositely than it was assumed.
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Figure 5.11: Identified Kω (see the equation 5.7, 5.8 and 5.9)

The plotted data in the figures above come from an experiment done on tile
floor. Similar experiments on different surfaces were done as well. Their
results (values of identified parameter Kω) are written in the 5.1.

Measurement 1 Measurement 2 Measurement 3 Average
Tile floor -1.058 -1.042 -1.057 -1.052

Floating floor -1.082 -0.991 -0.985 -1.019
Carper (harder) -1.061 -1.048 -0.998 -1.036
Carpet (softer) -1.022 -1.032 -1.035 -1.030

Table 5.1: Identified Kω on different surfaces

Generally, the higher Kω the more wheels’ motors’ energy is translated to
rotational movement. As seen in the table 5.1 the higher average Kω was
identified for tile floor. This surface seems to be the biggest advantage
for the IOT Bot’s rotational movement or for skid steering. The rotational
movement on the carpet is generally very tough because the friction between
the wheels and surface is very high. Then, the wheels should overcome this
friction and some part of its energy is lost. In case of floating floor, there is
an opposite problem. The friction is too low and due to the slip a part of
the wheels’ energy is lost.
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If the corresponding IOT Bot’s dimensions are substituted into the equation
5.8 and 5.9, the numerical values of the two a priori information about the
parameter Kω are obtained:

Kapi1
ω = 3.229 m−1 , (5.21)

Kapi2
ω = 1.995 m−1 (5.22)

If the absolute values of the identified parameter Kω are compared with the
two a priori information values, it can be observed that the identified values
are much lower. It means that the influence of the friction between IOT
Bot’s wheels and the surface is assumed to be much lower in the equation
5.6 than it actually is.

5.2.2 Identification using Steady RPM values
As it can be seen in the figure 5.11 there are many outliers far away from the
identified line with slope Kω. It is caused by the actual values of the wheel’s
revolutions ω1, ω2, ω3 and ω4 which are not steady. In other words, the
data of transient response from initial value to setpoint’s value of particular
wheel’s revolutions are used.

In order to avoid this problem, the second experiment was done. It is quite a
similar experiment as the first one having the same aims. Moreover, similar
data are measured. The first difference is that wheel’s angular velocities’
setpoints ω∗

1, ω∗
2, ω∗

3 and ω∗
4 are measured as well. The second difference is

that all data are measured with their timestamps.

The wheel’s velocities’ actual values should be later compared with the meas-
ured setpoints. However, the problem is that a lower sampling frequency is
used for the setpoints’ measuring. So, the missing setpoints’ samples should
be calculated afterwards using a linear interpolation. It means that the lin-
ear function intersecting two neighboring samples is found and the value in
the middle of them is calculated.

In the four figures below the measured particular wheel’s revolutions’ set-
points and actual values are plotted.
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Figure 5.12: IOT Bot’s front left wheel’s revolutions (setpoint ω∗
1 and actual

value ω1)
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Figure 5.13: IOT Bot’s rear left wheel’s revolutions (setpoint ω∗
2 and actual

value ω2)
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Figure 5.14: IOT Bot’s front right wheel’s revolutions (setpoint ω∗
3 and

actual value ω3)
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Figure 5.15: IOT Bot’s rear right wheel’s revolutions (setpoint ω∗
4 and actual

value ω4)

As seen in the four figures above, the actual values of wheels’ revolutions
never reach the setpoints. The reason is the surface where this experiment
was performed. The influence of hard carpet’s friction is significant. Thus,
it is impossible that the motors satisfy the RPM setpoints’ request. In the
figure 5.16 the IOT Bot’s angular velocity in rad/s measured during this
experiment is plotted.
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Figure 5.16: IOT Bot’s angular velocity

As can be seen in the figure 5.17 and 5.18, the setpoints of the wheel’s angular
velocities are equaled. It is a definitive proof that ωL and ωR (side wheels’
revolutions) can be considered as only two inputs to IOT Bot’s forward
instantaneous kinematic model.
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Figure 5.17: Confirmation of ω1 = ω2 (see equation 5.3) - using the setpoints
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Figure 5.18: Confirmation of ω3 = ω4 (see equation 5.3) - using the setpoints

In the two figures below the actual values of wheels’ revolutions are plotted
same way as their setpoints in the two figures above.
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Figure 5.19: Evaluation of ω1 = ω2 (see equation 5.3) - using the actual
values
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Figure 5.20: Evaluation of ω3 = ω4 (see equation 5.3) - using the actual
values

Similarly, as it was in the previous experiment, the average of front and rear
wheels’ revolutions is used for the parameter Kω identification.
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Figure 5.21: Average of ω1 and ω2: ωL = ω1+ω2
2
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Figure 5.22: Average of ω3 and ω4: ωL = ω3+ω4
2

The principle of Kω identification’s improvement using data from this ex-
periment is that only the steady values of the actual wheel’s revolutions are
taken into account. The steady values are determined using a defined steady
zone around the setpoints.

As it can be seen in the figure 5.23, the number of outliers is much lower
than in the plotted data in the figure 5.11. However, similar result was
reached. This experiment’s data plotted in the figures above was measured
when IOT Bot rotated on harder carpet (see the table 5.1). The value of
identified parameter is Kω = −1.12.
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Figure 5.23: Identified Kω (see the equation 5.7, 5.8 and 5.9)
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5.3 Wheel’s RPM Control Loop’s Dynamic
Model

The dynamic part of the PWM drive, motor and encoder with its process
unit (see description in the chapter 4.2) is modeled by following transfer
function (related theory described in the chapter 2.3) [18]:

S(s) = 1.11
0.069 s + 1

1
0.0023 s + 1 = 1.11

0.0001587 s2 + 0.0713 s + 1 (5.23)

The data measured directly from Extension-Shield was used for the transfer
function identification. The Strejc method was used for the calculation of
its coefficients [18]. See the visualization which parts of inner IOT Bot’s
control loop are modeled by the transfer function in the figure 5.24.

Figure 5.24: Block scheme of the motor’s inner control loop - modeled parts

The PID controller is modeled based on the theory described in the chapter
2.4. The derivation of the error value in the derivative part of the controller is
supplied by the time difference. The low-pass filter is implemented (using the
equation 2.27) for the derivative part in order to lower the noise. Moreover,
the anti-windup compensation circuit is included in the output of the circuit.
The controller has the following parameters to set:

• proportional gain KP

• integration gain KI

• derivative gain KD

• derivative filter’s time constant’s coefficient N

• minimum amplitude of action value Amin

• maximum amplitude of action value Amax

• sampling period Ts
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5.4 Models’ Implementation using SIMIT
The wheels’ RPM control loops’ dynamic model and the IOT Bot’s kinematic
model is implemented in SIMIT (see the chapter 3.1) using five charts. In
the first chart, the inner control loops are implemented using two macros.
Macro is a part of the program which can be implemented once and then
reused multiple times. In this case it is quite convenient because all four
wheels’ RPM inner control loops are modeled the same way. In comparison
with a custom component created using CTE, the advantage is that it is
not necessary to use any stand-alone application. See the first chart in the
figure 5.25.

Figure 5.25: Model’s implementation using SIMIT - first chart

The real IOT Bot’s wheel’s RPM PID controller has the following paramet-
ers: KP = 13.513, KI = 195.84 and KD = 0. It means that the PI controller
is used in practice. The same parameters are used in the simulation. The
PID controller’s macro has the controller’s parameters described in chapter
5.3 as the inputs (see the figure 5.26).

The value KD = 0 causes problems during computation of derivative filter’s
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time constant τ ≈ KD

N ·KP
and integrative anti-windup circuit’s parameter

Tt ≈
√

KD

KI
(see the description of these parameters in the chapter 2.4). It is

covered by setting the τ as 1
N ·KP

and the Tt as
√

1
KI

.

Figure 5.26: Model’s implementation using SIMIT - PID controller’s macro

The transfer function according to the equation 5.23 is implemented in the
process’s macro using two first order transfer function blocks (PT1). See it
in the figure 5.27.

Figure 5.27: Model’s implementation using SIMIT - process’s macro

The calculations of the IOT Bot’s linear (see equation 5.4) and angular
velocity (see equation 5.7) are implemented in the second chart (see figure
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5.28). In order to have a possibility for changing between the Kω calculated
using the equation 5.9 and the identified values according the table 5.1, the
switch is implemented.

Figure 5.28: Model’s implementation using SIMIT - second chart

The forward instantaneous kinematic model according to the equation 5.14
is implemented in the third chart. The position and orientation is obtained
from the velocities using integrators. The IOT Bot’s orientation angle Θ is
scaled to range (−π, π] using the following equation:

Θ(−π, π] = −mod(−Θ + π, 2π) + π , (5.24)

where the operator mod means modulo. The modulo is calculated in the
custom block created using SIMIT CTE.
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Figure 5.29: Model’s implementation using SIMIT - third chart

The instantaneous inverse kinematic model is implemented in the fourth
chart (see the figure 5.30) for the purposes of the required IOT Bot’s side
wheels’ RPM calculation. The following equations are derived using the
equation 5.4 and 5.7:

ωL = 1
r

[
vx + 1

2 Kω

ω
]

,

ωR = 1
r

[
− vx + 1

2 Kω

ω
]

(5.25)

Moreover, it is possible to switch on a treatment that IOT Bot turns only
at spot (vx = 0 and ω ̸= 0) or drive linearly (vx ̸= 0 and ω = 0). It can also
be switched off and both requests can be fulfilled (vx ̸= 0 and ω ̸= 0).
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Figure 5.30: Model’s implementation using SIMIT - fourth chart

The five chart is used as a user interface. It is possible to switch between the
IOT Bot’s control using the target velocity vector ([vx, ω]) and direct control
of particular wheels ([ω1, ω2, ω3, ω4]). The required and actual wheels’ RPM
values are monitored. The values of IOT Bot’s position and orientation are
visualized and compared with the similar values calculated using NX MCD
mechatronic model (described in the chapter 5.5).

Figure 5.31: Model’s implementation using SIMIT - fifth chart
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5.5 NX MCD Mechatronic Model
The IOT Bot’s mechatronic model is created in NX MCD (see the applica-
tion’s description in the chapter 3.2). The 3D graphics is handed over from
the developer of IOT Bot and imported to NX from .stp file.

Using the NX MCD the physics is defined. The IOT Bot’s assembly includes
one main rigid body (IOT Bot’s body) and four wheels’ rigid bodies. The
collision body is defined for each wheel. The collision material with possib-
ility of static friction change is defined for each wheel’s collision body. The
four hinge joints are attached to the particular wheels. Their base is the IOT
Bot’s main rigid body. The angular velocity of the wheels is controlled by
defined speed controllers. Moreover, the fourth IOT Bot’s distance sensors
are defined to simulate the distance measurements. See The IOT Bot’s
assembly in the figure 5.32.

Figure 5.32: IOT Bot’s assembly in NX MCD

The IOT Bot’s assembly in placed in the assembly of Siemens Nuremberg’s
machine hall’s digital twin (see figure 5.33). The collision bodies and collision
materials are defined for the floor and the obstacles. The IOT Bot’s moves in
this virtual hall. The position and orientation of the IOT Bot is determined
using the C# runtime behavior which uses the functionalities of NX Open
library (see the script in the figure 5.34).
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Figure 5.33: Machine hall’s digital twin assembly in NX MCD

The position and orientation of the IOT Bot’s main rigid body is calculated
against the NX MCD’s coordinate system origin. For this reason the ini-
tial offsets should be taken into account in order to determine these values
correctly. The position is obtained directly as the rigid body’s feature. The
orientation is calculated from general orientation matrix’s which is defined
like follows:

R =


cos(α) cos(β) cos(α) sin(β) sin(γ) − sin(α) cos(γ) cos(α) sin(β) cos(γ) + sin(α) sin(γ)
sin(α) cos(β) sin(α) sin(β) sin(γ) + cos(α) cos(γ) sin(α) sin(β) cos(γ) − cos(α) sin(γ)

−sin(β) cos(β) sin(γ) cos(β) cos(γ)

 , (5.26)

where the angle

• α is called yaw and expresses the rotation around z-axis (see equation
2.3)

• β is called pitch and expresses the rotation around y-axis
• γ is called roll and expresses the rotation around x-axis (see equation

2.4)

The angles β and γ are always equal to zero in this case. The IOT Bot’s
orientation’s angle α (yaw) is calculated from the general orientation matrix
using the two-input’s arcus tangens function:

α = atan2(R(2, 1), R(1, 1)) = atan2(sin(α), cos(α)) (5.27)
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Figure 5.34: NX MCD C# runtime behavior script for the determination of
IOT Bot’s position and orientation

The NX MCD simulation is connected with SIMIT simulation using the
coupling. It receives the wheel’s RPM actual values from SIMIT and send
the position and orientation of the IOT Bot back to compare it with the
similar values calculated using the IOT Bot’s kinematic model’s equations
implemented in SIMIT.

5.6 Kinematic Models’ Functionality Verific-
ation

In order to verify the IOT Bot’s kinematic models’ functionality, the real
values corresponding with the model’s inputs and outputs should be meas-
ured. Then, the model should be fed by the measured input values and its
outputs are measured. In the end, these outputs are compared with their
corresponding real values.

The actual IOT Bot’s wheels’ revolutions (RPM) are measured directly on
the robot. The data are recorded from /iotbot/rpm topic (see the table
4.2) with their timestamps using ROS2 bag recording feature. These values
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correspond with the forward kinematic model’s inputs (see the equation
5.15) and the values assigned to wheels’ speed controllers in NX MCD. The
Pozyx platform providing the real-time localization data [19] is used for
the measurement of IOT Bot’s 2D position and orientation. The platform
functionalities are implemented in ROS2 node and the data are recorded
from /poseStamped topic similar way as robot’s data. The values of the
IOT Bot’s x-position, y-position and orientation yaw correspond with the
forward kinematic model’s outputs (see the equation 5.16) and the values
measured in NX MCD.

The Pozyx navigational system uses the static anchors which localizes the
object moving in the 2D or 3D space using Ultra-Wideband (UWB) radio
technology. The Pozyx company offers a creator kit. It is a complete UWB
kit including HW and SW for real-time localization [20]. The HW core of
this creator kit is a unified developer tag which can be used as the static
anchor as well as the device mounted to localized dynamic object.

Figure 5.35: Pozyx creator kit (development tags on the left, boxes with
static anchors on the right and wiring on top) [20]

The eight static anchors are mounted in different heights in machine hall
(see its digital twin in the figure 5.33). In order to set up the real-time
navigational system using the Pozy creator kit, it is necessary to assign the
identification numbers (IDs) and the positions of mounted static anchors to
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script for position and orientation determination (SW part of Pozy creator
kit). The 3D scan (see the figure 5.36) of machine hall has been made for
the determination of anchors’ positions.

Figure 5.36: 3D scan of machine hall opened in CloudCompare open-source
software: one of the anchors is marked and its position is determined

During the experiment, the functionality of IOT Bot’s SIMIT forward kin-
ematic model and IOT Bot’s NX MCD mechatronic model (with imple-
mented position and orientation determination) has been verified. For the
purposes of the verification, two experiments has been done.

70



5.6.1 IOT Bot’s Single Particular Movements
During the first experiment the IOT Bot does the separated movements. It
means that only straight forward motion or rotation at spot is performed.
The following four plots visualize the IOT Bot’s actual wheels’ revolution
values during this experiment:
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Figure 5.37: IOT Bot’s front left wheel’s revolutions (actual value ω1)
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Figure 5.38: IOT Bot’s rear left wheel’s revolutions (actual value ω2)
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Figure 5.39: IOT Bot’s front right wheel’s revolutions (actual value ω3)
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Figure 5.40: IOT Bot’s rear right wheel’s revolutions (actual value ω4)

In the figure 5.41 and 5.42, the IOT Bot’s position in particular exes are
plotted over time. The plot in the figure 5.43 visualized its position in 2D
space.
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Figure 5.41: IOT Bot’s position-x
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Figure 5.42: IOT Bot’s position-y
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Figure 5.43: IOT Bot’s position

As seen in the figures above, the values of IOT Bot’s position over time
from models are comparable with the real position values measured by nav-
igational system. The difference is caused by the friction which is not part
of the forward kinematic model implemented in SIMIT. In can also be ob-
served that in reality the IOT Bot starts slightly turning to side during long
linear movement. This behavior cannot be part of the idealized mathemat-
ical model since all four wheels are supposed to have the same behavior. In
the NX MCD mechatronic model, the friction is modeled. However, using
the dynamic friction coefficient of collision material the reality can never be
fully described. Generally speaking, the position is determined by integra-
tion of velocity which means that even small initial constant deviation rises
significantly during the time. The cause can be also the unluckily chosen
input signal for this experiment which changes its values very quickly dur-
ing the time. Then, the model built for ideal input signal is not able to
respond quickly enough. Moreover, there can be some uncertainty in nav-
igational system’s measurements of position caused by interference of the
radio signal.
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Figure 5.44: IOT Bot’s orientation

The IOT Bot’s orientation angle yaw is plotted in the figure 5.44. As it can
be observed, the deviation of the orientation between reality and model is
lower than in case of position. It can be caused by the way how the navig-
ational system computes the orientation. It is computed by combining the
data from three sensors available on development tag - accelerometers, mag-
netometer and Inertial Measurement Unit (IMU). Then, the measurement’s
error is lowered. The quaternions over time are got from the measurements
and the yaw is calculated in each step. There is the rotation constant Kω

according to the equation 5.9 set in the model for this experiment. The
lower deviation from reality has been reached than if the constants from 5.1
were set. It is probably caused by the testing on concrete surface which has
a better friction properties than the surfaces where this constant has been
identified on.
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5.6.2 IOT Bot’s Combination of Movements
During the second experiment, the combination of IOT Bot’s movements
was performed. The IOT Bot slightly drove out from its initial position and
then started turning in circle. It means that both linear velocity and angular
velocity were set and the absolute value of wheels’ revolutions was different
on each side of robot. See the plotted wheels’ revolutions in the following
four plots:

0 2000 4000 6000 8000 10000 12000
Time (milliseconds)

0

10

20

30

40

W
he

el
 re

vo
lu
tio

ns
 (R

PM
)

Front left wheel

Figure 5.45: IOT Bot’s front left wheel’s revolutions (actual value ω1)
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Figure 5.46: IOT Bot’s rear left wheel’s revolutions (actual value ω2)
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Figure 5.47: IOT Bot’s front right wheel’s revolutions (actual value ω3)
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Figure 5.48: IOT Bot’s rear right wheel’s revolutions (actual value ω4)

The following three plots visualized the comparison of IOT Bot’s position
calculated by models and measured by navigational system. Similarly, as
in the previous experiment the values are comparable. In this case, the
deviations are mostly caused by the friction. The rotation of the IOT Bot
in circle is caused mainly by the outer wheels. The inner wheels almost
don’t rotate and only slide. Thus, the influence of the friction is significant
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and causes the differences of the rotation circle radius and in the IOT Bot’s
position itself.
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Figure 5.49: IOT Bot’s position-x
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Figure 5.50: IOT Bot’s position-y
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Figure 5.51: IOT Bot’s position

Similarly, as in the first experiment, there are lower deviations in the orient-
ation than in position. It is again thanks to the more precise measurement
of orientation. The rotational constant Kω is also set according to the equa-
tion 5.9 because this setup causes better results than the values from table
5.1.
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Figure 5.52: IOT Bot’s orientation
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6 SIL Simulation

6.1 SW Setup
As described in the chapter 1.2, the idea of SIL simulation is to have both
controller and system simulated in one device and manage the data exchange
between them using the signals’ coupling or shared memory. The SIL simu-
lation of IOT Bot runs in 64-bit Windows 10 operating system which runs
in HP Zbook Fury 15 G7 (Intel(R) Core(TM) i7-10850H CPU @ 2.70GHz
2.71GHz, 48 GB RAM).

The IOT Bot’s model is implemented in SIMIT (wheels’ RPM dynamic
models and forward kinematic model) and NX MCD (mechatronic model
with calculation of IOT Bot’s position and orientation). See the descrip-
tion of these models in the chapter 5.4 and 5.5. The model of controller is
implemented in ROS2 Foxy distribution (see the ROS2 description in the
chapter 3.3). The reverse engineering of the inverse instantaneous kinematic
model’s calculations controlling the real IOT Bot was done. Similar calcu-
lations are implemented in ROS2 node for the simulated IOT Bot’s motion
control.

Figure 6.1: SIL simulation’s SW setup
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ROS2-SIMIT Bridge is implemented for the data exchange between ROS2
and SIMIT purposes. The details of this part are described in the chapter
6.2. See the diagram describing the SW setup of SIL simulation in the figure
6.1.

The IOT Bot’s motion control is implemented in iotbot_motion_control
node. The values of target velocity vector (Twist) are controlled by key-
board. The horizontal arrows control the IOT Bot’s linear velocity (vx) and
the vertical arrows control its angular velocity (ω). If the key S is pressed,
these velocities are set to zero and the IOT Bot stops. When the keyboard
input is detected, the wheels’ RPM setpoints are calculated based on these
two velocities. Then, they are published using the /rpm topic.

Apart from the IOT Bot’s motion the simulation of the IOT Bot’s lights’ con-
trol is implemented. There is a display changer implemented for the change
of four lights’ rigid bodies’ (extracted from main IOT Bot’s rigid body) colors
in NX MCD. The control itself is covered by lights_color_publisher similar
way as in motion control node. If the input from keyboard is detected, the
number is published to NX MCD where the color of lights is changed.

There are also three subscribers implemented in ROS2 Foxy. The first re-
ceives the wheels’ RPM actual values. The second subscribes two sets of IOT
Bot’s position and orientation values (x-position, y-position and orientation
angle yaw). One set of values is calculated in SIMIT (using the forward
kinematic model) and the other set comes from the NX MCD where these
values are calculated in C# runtime behavior script (see description in the
chapter 5.5). The third subscriber is used for the distance measurements’
data reception. These data come from simulated distance sensors in NX
MCD. See the list of the topics used for the communication between ROS
and SIMIT in the table 6.1.

Description Topic Message type
Taget Motorspeed values /rpm std_msgs/msg/Float32MultiArray
Current Motorspeed values /rpm/return std_msgs/msg/Float32MultiArray
Light’s color /lights_color std_msgs/msg/Int16
Position and orientation /position_and_orientation std_msgs/msg/Float32MultiArray
Distance measurements /distance_measurements std_msgs/msg/Float32MultiArray

Table 6.1: ROS2 topics used for the communication with SIMIT project

The IOT Bot’s model implementation in SIMIT is similar as the one de-
scribed in chapter 5.4. There are only small differences. The particular
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wheels’ RPM setpoints are received as outputs from ROS2 in the first chart
(see figure 6.2). Since the IOT Bot’s motion control is implemented in ROS2
the fourth chart is used as the user interface (see figure 6.3).

Figure 6.2: Model’s implementation using SIMIT - first chart modified for
SIL simulation purposes

Moreover, the fifth chart is used for the forwarding of signals from NX MCD
to ROS2 and oppositely (see figure 6.4).

Figure 6.3: Model’s implementation using SIMIT - fourth chart modified for
SIL simulation purposes
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Figure 6.4: Model’s implementation using SIMIT - fifth chart modified for
SIL simulation purposes

6.2 ROS2-SIMIT Bridge
ROS2-SIMIT Bridge is a C# .NET 7.0 application developed in scope of this
master thesis for the purposes of the full-duplex data flow between ROS2
nodes and SIMIT project. The environment used for the development of this
application is Microsoft Visual Studio 2022. The flowchart of the application
is drawn in the figure 6.5.

The ROS2-SIMIT Bridge application is built from two main parts - SIMIT
and ROS2 part. The SIMIT part is built using SIMIT external embedded
coupling application which is an extension of SIMIT and it uses
Siemens.Simit.API.coupling library. This application contains two separ-
ated applications. The first separated application is used for the definition
of inputs and outputs of external application which is the SIMIT project
coupled with. This part is used for the definition of variables which are
supposed to be exchanged between ROS2 ans SIMIT during the IOT Bot’s
SIL simulation. The second separated part is for the purposes of data ex-
change between SIMIT and its coupling extension. This part is used in
ROS2-SIMIT Bridge application. The SIMIT part’s flowchart can be seen
in the figure 6.6.
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Figure 6.5: ROS2-SIMIT Bridge flowchart
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Figure 6.6: ROS2-SIMIT Bridge flowchart: SIMIT part

The second part of the ROS2-SIMIT Bridge application (ROS2 part) is built
using rclnet which is a .NET wrapper allowing the interaction of .NET ap-
plications with ROS2 applications. This library has been released in 2023.
The supported distributions of ROS2 are Foxy and Humble. It supports
Windows and Linux Ubuntu operating system. In order to run it success-
fully, the .NET 7.0 and higher is needed [21]. See the flowchart of ROS2
part in the figure 6.7.
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Figure 6.7: ROS2-SIMIT Bridge flowchart: ROS2 part
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6.3 SIL Simulation Testing
In order to manage the SIL simulation setup, at least two applications should
be opened - ROS2-SIMIT connector in Visual Studio and IOT Bot’s model
in SIMIT. Additionally, the mechatronic model in NX MCD can be opened.
In this case, the coupling with NX MCD in SIMIT should be activated and
the connection with SIMIT in NX MCD should be allowed.

To run the SIL simulation, the ROS2-SIMIT Bridge should be turned on
first. Then, the SIMIT simulation should be started and the communica-
tion between the SIMIT and ROS2-SIMIT Bridge is established. In case
of the NX MCD mechatronic model being opened and everything being set
according to the previous paragraph, both NX MCD simulation and commu-
nication between SIMIT and NX MCD is established automatically. Then,
the corresponding ROS2 publishers and subscribers can be run in order to
manage the data exchange according to the diagram visualized in the figure
6.2 using the topics described in table 6.1.

Figure 6.8: SIL simulation: screenshot from testing
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The screenshot from the running SIL simulation can be seen in the figure 6.8.
There are SIMIT and NX MCD model running, the Twist is published from
ROS2 node to control the IOT Bot’s motion and the actual wheels’ revolu-
tions (RPM) are continuously received by the ROS2 subscriber. To test the
SIL simulation functionality several IOT Bot’s drives including separated
and combined movements were done.
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7 HIL Simulation

7.1 HW and SW Setup
As described in chapter 1.3, the main idea of HIL simulation is controlling
the simulated system by real controller. The simulation of IOT Bot (system)
has similar setup as in case of SIL simulation - SIMIT wheels’ RPM dynamic
models with robot’s forward kinematic model and the NX MCD mechatronic
model. It runs in the same laptop as the one described in the chapter 6.1.
The simulated system is controlled by the same controller as the real IOT
Bot. The control software runs in Linux Debian OS which runs in SIMATIC
IOT2050 (described in the chapter 4.1). Each application is implemented
in its own docker container. One docker container (iotbot_basis) includes
the ROS2 nodes for the IOT Bot’s motion control and reading data from
the sensors mounted on the extension-shield (see the chapter 4.2). Another
docker container contains Node-RED environment where it is possible to
deal with the data from ROS2 topics (see the table 4.1, 4.2 and 4.3).

Figure 7.1: HIL simulation’s HW and SW setup

As mentioned in the chapter 4.1, the real robot can be controlled by the
PS4 controller. The provided Twist (target velocity vector) is sent from
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PS4 controller via Bluetooth to IOT2050 where the inverse instantaneous
kinematic model implemented in ROS2 node calculates the wheels’ RPM
setpoints. Then, these setpoints are forwarded to extension-shield via UART
where they are used as the inputs to motors’ inner control loops and manage
the robot’s motion control.

Figure 7.2: NODE-Red: reading the RPM setpoints from ROS2 topic and
their continuous publishing via configured OPC UA server

Similarly, it is set up in case of HIL simulation. The difference is that the
communication between the real controller and simulated system is managed
by OPC Unified Architecture (OPC UA). It is standard for data exchange
which uses the server-client model of communication. There is the OPC UA
server configured in Node-RED using the node-red-contrib-opcua node which
allows to read, write, subscribe or browse OPC UA server [22]. The required
IOT Bot’s wheels’ revolutions (RPM setpoints) are read from corresponding
ROS2 topic and then published via configured OPC UA server. The data
from OPC UA server are subscribed by OPC UA client defined in OPC UA-
ROS2 Bridge which description is given in the chapter 7.2. The OPC UA-
SIMIT Bridge forwards the required motors’ RPM to the input of simulated
IOT Bot’s inner motors’ control loops. See the diagram describing the IOT
Bot’s HIL simulation’s HW and SW setup in the figure 7.1.
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7.2 OPC UA-SIMIT Bridge
OPC UA-SIMIT Bridge is a C# .NET 7.0 application having similar struc-
ture as ROS2-SIMIT Bridge described in the chapter 6.2. The difference
is that instead of task for the communication with ROS2, the task which
defines the OPC UA client and starts the continuous reading of required
wheels’ RPM is run. The.NET library Opc.UaFx.Client [23] is used for
communication with OPC UA server. In order to reach the OPC UA server
using this library is necessary to provide the right IP address of SIMATIC
IOT2050 and the same port number as the OPC UA server defined in Node-
RED has.

7.3 HIL Simulation Testing
In order to manage the HIL simulation setup is necessary to have the laptop
and IOT2050 in the same network. The OPC UA Bridge in Visual Studio
should be opened as well as the SIMIT simulation. The NX MCD mechat-
ronic model can be opened optionally because its presence is not necessary
for overall simulation functionality. Dealing with the NX MCD model and
its connection with SIMIT is same as in case of SIL simulation (described
in the chapter 6.3).

Figure 7.3: HIL simulation: screenshot and webcam shot from testing
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To run the HIL simulation, the IOT2050 should be turned on first. Then, the
OPC UA-SIMIT Bridge should be run. In case if the IP address and port are
set correctly on both server and client side of OPC UA, the communication
with OPC UA server is established. As soon as the SIMIT simulation is
started, the communication with SIMIT is established as well.

If the robot is placed on some frame and the NX MCD simulation is connec-
ted as well, then it is possible to observe that the simulated wheels rotate
similarly as the wheels in simulation. This setup was used during the testing.
In case of wireless communication between IOT2050 and laptop via router,
it would be even possible to drive the real and simulated robot at the same
time. If the virtual environment in NX MCD would correspond with the
real one, it would be nice to observe the similarity of IOT Bot’s motion in
virtual reality and real world.

To test the HIL simulation several drives with IOT Bot in virtual machine
hall were made. As mentioned, the real IOT Bot stand at frame, the wheels
rotated and the virtual IOT Bot was moving in the digital twin of ma-
chine hall. During this motion, the current position and orientation were
calculated by implemented forward kinematic model in SIMIT and also de-
termined by C# runtime behavior script in NX MCD. See the screenshot
and photo from webcam during testing in the figure 7.2.
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8 Conclusion and Outlook

The aim of this thesis was the development of HIL simulation of certain
mobile robotic system AGV platform IOT Bot. The mathematical model
describing the robot’s position and orientation in 2D space was built and
implemented using SIMIT. In order to model the dynamic part of the robot,
the models of its wheels’ revolutions inner control loops were implemented
in SIMIT as well. For the purposes of comparison of the calculated posi-
tion and orientation by implemented mathematical model, the mechatronic
model of robot in NX MCD with the position and orientation determination
functionality was created. This model is also used for the 3D visualization.
The results of both models were compared with the data from real navig-
ational system. The calculated values of position and orientation by both
models are found as comparable with the real data from navigational system.
The deviations are caused by the friction, improperly chosen input signal for
testing and by uncertainty of navigational system’s radio signal.

Both models were used for the development of two robots’ simulation con-
cepts. The first concept is SIL simulation. The ROS2 nodes controlling the
robot were implemented in Windows ROS2 Foxy distribution and the whole
simulation was performed in the same machine. The ROS2-SIMIT Bridge
was developed for the purposes of full-duplex communication between ROS2
nodes and SIMIT simulation. The second concept is HIL simulation. In this
case, the interface allowing the controlling of the simulated robot same way
as the real one was configured. The OPC UA protocol is used for these
purposes. The real robot control setup is kept and the control signals are
simply transferred to simulation. Thus, it is possible to perform the motion
of real and simulated robot at the same time. Thanks to the 3D visualiza-
tion in NX MCD it is possible to observe similarity between simulated and
real robot’s movements in case of the virtual environment being similar to
the real one.

The developed SIL simulation represents an opportunity to perform several
tests of the IOT Bot’s applications without the need to have a physical ro-
bot available and without the risk of any damages of the real robot. The
same opportunity is represented by HIL setup in case if only robot’s con-
trol HW (SIMATIC IOT2050) without the robot itself being connected with
the simulation. The ROS2-SIMIT Bridge application has a potential to be
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used in many other robotic and AGV simulations because the SIMIT itself
can be connected with each Siemens simulation software such as PLCSIM
Advanced, Plant Simulation or Simcenter Amesim. The kinematic mathem-
atical model itself can be implemented in another platform. It can be used
in some more sophisticated navigational algorithm such as Kalman filter
where both data from sensors and predictive data are used to estimate the
position and orientation of an object. Moreover, it can be used in virtual
sensor application running in Industrial Edge. This application is used in
cases of some value cannot be measured directly and should be estimated
using some mathematical model. If the navigational system is missing, the
position and orientation of the mobile robot can be determined using this
application.
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