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Abstract

In recent years, the use of automatic surveillance devices called camera traps
has become widespread. These devices are used to collect information needed to
monitor different ecosystems. With the acquisition of a large amount of data,
there is a time burden on researchers and the need for new ways to process
this data. This diploma thesis is dealing with the use of artificial intelligence
and computer vision as a tool for effective processing of images from camera
traps. In this thesis, we participate in the competition, from which an image
dataset of animals occurring in a national park in Central Africa is available.
To obtain classified images, we use convolutional neural network models and the
Vision Transformer. The best results are achieved using an ensemble of Vision
Transformer models and other image processing methods.

KeyWords: classification, computer vision, camera traps, convolutional
neural network, Vision Transformer

Abstrakt

V posledńıch letech se rozš́ı̌rilo použ́ıváńı automatických sledovaćıch zař́ızeńı
nazývaných fotopasti. Tyto zař́ızeńı slouž́ı ke sběru informaćı potřebných ke
sledováńı r̊uzných ekosystémů. Se źıskáńım velkého množstv́ı dat docháźı k
časovému zat́ıžeńı výzkumńık̊u a k potřebě nových zp̊usob̊u jak tyto data zpra-
covávat. V této diplomové práci se budeme zabývat použit́ım umělé inteligence
a poč́ıtačového viděńı jako nástroje k efektivńımu zpracováńı obraz̊u z fotopast́ı.
V rámci této práce jsme se zúčastnili soutěže, z které bude k dispozici dataset
obraz̊u zv́ı̌rat vyskytuj́ıćıch se v národńım parku ve středńı Africe. V této
práci využijeme model̊u konvolučńıch neuronových śıt́ı a Vision tranformeru
pro źıskáńı klasifikovaných obraz̊u. Nejlepš́ı výsledky byly dosaženy použit́ım
ensemblu Vision tranformer model̊u a daľśıch metod zpracováńı obrazu.

Kĺıčová slova: klasifikace, poč́ıtačové viděńı, fotopasti, konvolučńı neu-
ronové śıtě, Vision Transformer
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Chapter 1

Introduction

We rely on our planet’s ecosystem every day. Whether it is healthy forests that
provide accommodation for various types of animals, they also help store carbon
that would otherwise be released into the atmosphere [1]. Oceans provide food
and livelihood for millions of people around the planet. Animals and insects
pollinate crops intended for consumption [2]. Natural habitats serve as a means
of income for low-resource communities. With the progressive action of humans,
the global climate is changing. There are huge effects and changes to wildlife.
By protecting natural habitats, we can prevent the spread of diseases between
humans and animals and prevent the extinction of populations of various ani-
mals [3]. Good tools and methods are needed to observe and understand these
problems.

The health of these ecosystems depends on a diverse and complex network of
plants and animals known as biodiversity. Today, we face a biodiversity crisis.
Tracking species in the wild is a common component of conservation efforts to
monitor and maintain biodiversity. Camera traps are one of the best resources
we have for researching wildlife populations [4].

This thesis will focus on the use of machine learning and computer vision
to make the best use of the camera traps just mentioned. The goal will be to
investigate and validate different computer vision methods and procedures for
the classification of images provided by camera traps. This data is used to find
out how animal populations change over time or what effect human presence has
on wildlife. Processing and dividing data from a large number of camera traps is
tedious and time-consuming. Even an expert can take tens of seconds to process
an unknown image. However, this time could be used more constructively by an
expert on the given problem. It is also known that monotonous activity leads
to errors, even in a relatively simple problem. Classification of unknown images
is very monotonous. Classification can be simple for one image and, conversely,
very difficult for another. This is the part for which it is appropriate to use
computer vision and artificial intelligence, which can quickly process a large
number of images. With the right application, it is then possible to process
these images in real time.

As the performance of computers increases, so does the possibility of ap-
plying artificial intelligence with greater complexity and for more difficult and
diverse tasks. Especially with the growing popularity of neural networks and
their variants, which are proving to be a suitable tool for solving problems in
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Introduction 1.1. Task description

the field of computer vision. In recent years, a lot of competitions and various
institutions have been created that try to encourage the combination of ecology
and artificial intelligence [5].

In this thesis, we are participating in one such competition, where we will
try to look at the given problem from the point of view of computer vision.
The most important parts of code produced during this thesis are available on
GitHub1, the link is in the footnotes.

1.1 Task description

Creating a model that will be suitable for this competition can be divided into
three parts. The first is that the model should be able to generalize well with
the possibility of applying it to new data that researchers have not seen yet,
thereby ensuring usefulness for other projects. The second criterion is simple
application and use so that even researchers that are not experts in computer
science are able to use this model and apply it to their problem. The third
condition, the selected methods for designing the model should be technically
motivated, so that the best possible results are achieved and users know what
behavior and what results they can expect when using it.

To ensure all these conditions, we will try to implement different types of
models and methods for their optimization. Then we will compare all results
with each other, gradually removing methods and procedures that will not work
for the given task and leaving the models that will show the best performance.
Including competition winning models or models used for classification in the
last couple of years.

1.2 Limitations

Even if there is a lot of hype around artificial intelligence, it is not capable of
everything and even though it has intelligence in its name, it is not capable of its
own thinking. These models can learn patterns from training data. However,
they do not act based on ordered rules. This can result, and often does, in
a bias occurring in a given model based on the data seen. Later, when the
model tries to generalize on unseen data, it might discriminate against specific
groups or it might be able to misrecognize when the background changes. For
the classification of images on camera traps, the environment around a given
static trap may be learned and the animal may be misclassified. This would
be problematic when trying to apply this model to other locations, not in the
training data.

Trying to avoid this problem of generalization leads to another limitation. A
common way to get rid of the bad generalization problem is to get a lot of data.
Using large amounts of data generally leads to better results on unseen data.
This can lead to problems using a small amount of data on a given project, it is
necessary to have a good set containing all the labels that we will try to classify.
For this particular competition, a fairly balanced set of images is provided, but
as we will see, the problem of poor generalization will still be evident in this task.
If the set of images did not contain enough of a specific species, it would be very

1https://github.com/LKolblFAV/Diploma-thesis
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Introduction 1.3. Goals

difficult to get correct predictions for that animal. In this competition, we will
also be limited by the camera traps used, which often have different resolutions
and overall image quality. There is also a problem with the placement of traps
and the number of captured animals on the given cameras. The second problem
is also providing sequences of images where one trap captures the same animal
several times in a row and thus, we get data that is not completely 100% new.

1.3 Goals

This work aims to create a useful model for a selected competition. An ex-
amination of the methods and processes used for various classification problems
and whether these methods are suitable for use on images obtained from camera
traps. We will also be interested in what is the best way to deal with the given
data and find out if it is possible to get a classifier that will be less susceptible
to changing data from a new location where even a different kind of camera trap
will be placed.

This project does not have millions of labeled images as other projects did,
so we will be interested in how pre-trained models will behave compared to
models that will be trained only on our data.

1.4 Outline

The thesis is divided into five main chapters. In this way, it should be eas-
ier for the reader to choose which part to focus on based on their interest or
understanding of the problem.

After the introductory chapter, which serves to introduce the basic topic of
the work and what the reader should expect from this work. We have a second
background chapter, which will mainly deal with the setting of this project in
a wider context. How does the given competition work, and what are the main
goals and motivations of this competition? Next, we will deal with how our
input data is created and where the given project takes place overall. Here we
will also learn something about how artificial intelligence works in this particular
area and what other projects are trying to connect these areas and use machine
learning, especially computer vision.

Then follows the third chapter the theory, where we will deal with the the-
oretical part hidden behind this project and what we will try to use to get the
results. Some parts will only be a quick overview, while in others we will try to
go more in-depth and describe how the given topics work. Although this section
will cover machine learning concepts, it will by no means be an entire course.
If you are familiar with the theory of neural networks and Vision Transformers,
you can proceed to the next section.

In the fourth chapter, we will deal with all the practical activities in this
thesis. It will be explained and shown how the practical part of the competition
works and what specific methods and models were used along with their results
or at least their influence on a specific task. We will also take a closer look at
the data provided and what problems or benefits that data has for our goal.
The implementation process for several methods will be thoroughly described,
along with the rationale for using them in this specific fashion. To help you
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Introduction 1.4. Outline

decide whether a method or model is successful, a variety of findings will be
presented both graphically and textually. At the end of this section, there will
be an evaluation of the practical part at the end of the section.

In the last chapter, we will conclude and summarize the entire thesis. We
will describe the results and shortcomings of the entire work. It will also be
indicated how the competition could be moved forward and how the use of
camera traps could be improved.

4



Chapter 2

Background

In this chapter, we will deal with an overview of the entire competition. The
competition was created based on the need to process a large amount of data
from camera traps from various places. Through the competition, the organi-
zation cooperates with the national park and the institution of anthropology to
give space to people to participate in similar projects and draw attention to the
possibility of combining and using computer vision and ecology.

2.1 Competition

This is a competition called Conser-vision Practice Area: Image Classification
hosted by DrivenData and is designed to classify species that appear in cam-
era trap images. Wildlife classification is an important step in sorting images,
quantifying sightings, and quickly determining whether individual species are
present in an image. DrivenData has been collaborating with the Wild Chim-
panzee Foundation and the Max Planck Institute for Evolutionary Anthropology
on Project Zamba (Lingala for ”forest”) since 2017. This is a multi-year effort
to develop machine learning tools for camera trap videos and dramatically ac-
celerate their progress. The speed at which these videos can be processed and
used. This team of conservation researchers has made a set of camera trap data
available for the community to study and practice [6].

2.2 Täı National Park

All images that are used as training come from Täı National Park in Côte
d’Ivoire see Figure 2.1. It is a national park that contains one of the last
primary rainforests in West Africa. This area has been registered as a World
Heritage Site, which indicates that the area is under the legal protection of
an international convention administered by UNESCO. These sites receive this
registration if they have cultural, historical, scientific or other significance. This
national park has an area of about 3,300 km2 and is located 100km from the
border of Liberia between two rivers.
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Background 2.3. Camera traps

Figure 2.1: Täı National Park location

One of the main goals why the scientific community is interested in this
rainforest, in addition to conservation itself, is the occurrence of primates, espe-
cially chimpanzees, who are critically endangered. Many other animals that are
currently endangered also live in this rainforest. It is also a natural reservoir
of the Ebola virus, which the World Health Organization is interested in, for
example UNESCO [7].

2.3 Camera traps

To study nature, especially animals in their natural habitat, which is useful
for ecologists to assess their population, it is necessary to use reliable devices.
So-called camera traps are used for this purpose see Figure 2.2. These cameras
are used to capture wildlife on film. These cameras are nothing special. They
are mainly everyday cameras, but they are often equipped with infrared sensors
that take a picture when movement is detected. These cameras can also detect
temperature changes. The advantage of these cameras is to provide data and
observe the natural world without a human presence. Although these cameras
themselves are not complicated at all, getting these images can be. Often these
cameras have to be placed in places that are difficult to visit, these cameras
also have to be moved over time because animals can be alerted to the presence
of these cameras and then they avoid those places. Due to the adverse effects
of the environment, which is not suitable for devices such as cameras, it is not
uncommon for the cameras to break. Another problem is that the cameras react
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to any movement and, therefore, up to one-third of images do not contain any
animals at all. For the best results from these devices, it is necessary to carefully
select the most efficient and productive place to place the camera [4].

Figure 2.2: Camera trap

Camera traps hold great potential for ecologists, and the rapid introduction
of new camera trap projects has exploded the amount of available data. Without
a massive increase in the time spent on examining images, researchers must use
tools from another field, namely computer vision.

2.4 Computer vision

Since artificial intelligence is a complex field, it is necessary to divide it into
individual parts, each dealing with one aspect, which is why computer vision
was created. An area of artificial intelligence known as computer vision en-
ables computers and systems to extract useful information from digital photos,
videos, and other visual inputs and to understand high level information in
digital images and its 3D representation. If AI gives computers the ability to
think, computer vision gives them the ability to see, observe, and comprehend.
At first, it may seem like a simple problem, because we apply the ability to
see in everyday life. Unfortunately, computer vision is a complex field, and a
lot of problems arise with capturing visual information. For example, loss of
information due to perspective projection or brightness depends on multiple
factors such as light source, material reflectivity, camera pose or its orientation.
These were examples related to capturing information. Then we have the field
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of digital information processing, which has its own pitfalls [8].

2.5 Related work

In this section, we review previous research in a similar field. In study [9] they
trained machine learning models that used convolutional neural networks with
the ResNet-18 architecture and had more than 3 million images available that
contained wildlife species captured on images from camera traps. These images
were specifically from five states in the United States. They have shown and
achieved great accuracy for a large amount of data 98% top-1 accuracy. Finally,
trained on smaller datasets, where 82% top-1 accuracy and 94% top-1 accuracy
were achieved. Cross-validation by sequence was used.

This [10] paper describes the camera trap data management platform that is
being developed for French institutions. Where artificial intelligence tools deal
with detection and classification. They use MDv4 for filtering and cropping.
And train EfficientNetB3 for species classification. Achieving 95% accuracy on
the validation set.

Schneider at al. [11] validated the classification performance on 47 thousand
images from Canada. For classification, they use DenseNet201, which achieves
an accuracy of 95.6 % on the validation data, which is located at the same
location. Ensemble will then be used to obtain better performance. However,
noticing a large drop in accuracy when moving to a new location, namely 71
% accuracy from the ensemble. They also point out a change in performance
during class imbalance. Finding that a minimum of 1000 images from each class
is needed to obtain a mean accuracy of 95 %.

All these articles have a common problem and that is the need for as many
images as possible from the given cameras. Furthermore, it can be seen that
the models tend to perform poorly when testing on data that is taken from a
different location than the original training set.

Whytock at al. [12] trains a species classifier on 347 thousand images from
different regions of central Africa. They have a split training and test set based
on location and also have a test set containing new locations. Making use of
ResNet-50 for training. Achieving results of around 77 % on top-1 accuracy.
They also show results when aggregating labels, which were often misclassified.
Lastly, showing the calculated species richness and activity patterns for four fo-
cal species. Practically pointing out that machine learning-generated results are
as good as expert-generated results. This could mean that for many applications
it is not necessary to perform labeling of every single image.

All these projects try to achieve the same results that is the best possible
classification from camera traps. Let’s look at the last project, which is closely
related to our competition since our competition is derived from that project.

Zamba Cloud is a project by DrivenData which is also a host of our com-
petition. They made a tool built in Python that uses machine learning and
computer vision to automatically detect and classify animals that appear in
videos from camera traps. In this project, you can identify unknown species,
filter empty images or create custom models that then search for species in spe-
cific habitats. Their main focus is on 23 species that are often seen in central
Africa. Five models and their ensemble is used for training. The model for
African species achieves a top-1 accuracy of 82 % [5].
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Background 2.5. Related work

The first three projects are rather an example of what problems occur in this
field and what results could be achieved under the right conditions. While the
last two projects are more closely related to our competition and apply methods
to similar data.

9



Chapter 3

Theory

In this chapter, we will focus on the theory that needs to be understood in
order to use the mentioned methods correctly. First, we will focus on machine
learning in general. Subsequently, we will focus on the topic of classification
and how neural networks can be applied for this purpose. Finally, there will be
an analysis of the specific methods and models that are used in this thesis and
how the data can be handled and edited to our benefit.

3.1 Machine learning

Machine learning is a branch of artificial intelligence, which is further broadly
defined as the ability of a machine to imitate intelligence and human behavior.
Artificial intelligence are systems used to perform simple to complex tasks that
they try to solve in a similar way, as if an expert on the problem would solve the
given task. Machine learning usually starts with data. These can be numbers,
images, text or any other data that is obtained and modified specifically so
that it contains sufficient information to solve the given problem. This data
is then used as training data and serves as information for the given machine-
learning model. In general, the more data, the better the solution. Part of the
data is held out from training and is used as a validation set, which tests how
accurate the machine learning model is when it is shown new data. In general,
the machine learning function of a system can be descriptive, that is, it tries to
describe what happened from the data, or a predictive system tries to predict
what will happen from the data, or prescriptive, the system tries to use the data
to recommend next steps. Machine learning generally falls into two categories.
The first category is supervised machine learning. In this case, the model is
trained using a labeled data set. This way the model is allowed to gradually
improve and learn with each additional piece of information. The second method
is unsupervised machine learning, where the model does not receive information
about the data from the so-called teacher, but tries to identify patterns in
unlabeled data by itself [13].

10



Theory 3.2. Classification

3.2 Classification

The world is increasingly data-driven. With the help of data, we try to under-
stand society, predict economic decisions and, based on them, make decisions
about our next steps. Classification is one of the most commonly used super-
vised machine learning processes. Data classification is the process of organizing
data into different categories. Thanks to classification, we can easily retrieve,
sort, and store data for later use. In this case, classification means a request
from the computer program to specify which of the k categories the given input
belongs to. This usually means creating a function f : Rn → {1, ...., k}. When
y = f(x), then the model assigns the input described by the vector x to the
category identified by the numerical code y [14]. This thesis uses labeled im-
ages and the classification is performed exclusively using a supervised algorithm.
Example of classified image, see Figure 3.1.

Figure 3.1: Classification - Leopard

3.3 ResNet

ResNet [15] or Deep Residual Learning for Image Recognition is a deep convo-
lutional neural network.

Deep neural networks are more difficult to train. In this paper, a method
of training a neural network is shown which serves to facilitate the training of
deeper networks than what was previously possible. All models that had good
results in competitions such as ImageNet [16] or other visual recognition tasks
used the deepest possible networks, so it is not surprising that the depth of
the network is an important parameter to obtain the best possible results. In
this study, they address the question of whether better network training means
increasing network depth. To increase the depth of the network, it is necessary
to remove a very well-known problem, namely vanishing/exploding gradients.
This problem causes the network to not converge with the addition of more
layers.

When training a deep neural network using gradient and back-propagation,
we get partial derivatives when passing through the neural network. When us-

11



Theory 3.3. ResNet

ing the chain rule, deeper layers go through continuous matrix multiplication
to calculate their derivatives. With an n-layer network, there are n derivatives
multiplied together. If the derivatives are large, then there is an exponential
growth of the gradient by gradual propagation through the model until it ex-
plodes. This is called an exploding gradient. If the derivatives are small, then
there is an exponential decrease during the passage through the network and
the complete disappearance of the gradient occurs. This is called the vanishing
gradient.

So far, this problem has been solved by normalizing the initialization and
continuous normalization of layers, thus achieving convergence for networks with
a depth of tens of layers using SGD and back-propagation.

Deep networks also have the problem of degradation. Gradually, the ac-
curacy of the network becomes saturated and subsequently degrades rapidly.
In this study, authors propose a solution using a deep residual learning frame-
work. Instead of hoping that several stacked layers will exactly fit the desired
underlying mapping, they leave these layers to fit residual mapping. If the
underlying mapping H(x) is the desired, we let the nonlinear layers fit map-
ping F (x) := H(x) − x. The original mapping is recast into F (x) + x. This
formulation is implemented using so-called skip connections, see Figure 3.2.

Figure 3.2: Skip connection

In this case, the skip connection performs identity mapping, and their out-
puts are added to the outputs of the stacked layer.

The reformulation using residual learning is inspired by the degradation
problem. If the deeper model is constructed such that the added layers are
identity mappings, then the deeper model should not have a training error
larger than its shallower version. It follows from the degradation problem that
solvers have a problem with the approximation of identity mappings by multiple
nonlinear layers. From this reformulation, it is possible to bring the weights
to zero to approach identity mapping, which can only happen if the identity
mappings are optimal. However, they are not optimal in general, but this
reformulation still helps to precondition the problem. If the optimal function is
closer to the identity mapping than the zero mapping, then it is easier for the
solver to find perturbations than to learn a completely new function [15].

By implementing these procedures and experiments on ImageNet and CIFAR-
10 [17], the final ResNet neural network is created. They were able to increase
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Theory 3.4. Vision Transformer

the depth of the neural network and show improved results for 18, 36, 50, 101
and 152 layers. By using the ensemble, this network won first place in the
ILSVRC 2015 classification competition.

3.4 Vision Transformer

Vision Transformer [18] is a model that tries to apply the Transformers: self-
attention-based architecture, which is commonly used for natural language pro-
cessing, as a model for image recognition. In this area, the dominant way is to
pre-train on a large corpus and then fine-tune it on a smaller dataset. Using
Transformers, it is possible to train models of huge sizes, which have more than
100 billion parameters. Even with larger models, there are no signs of reaching
performance saturation.

There have been several similar attempts to combine self-attention with
CNN-like architectures in the past, but they were not as successful as classic
ResNet-like architectures on large projects related to image recognition. In this
study, authors apply Transformers directly to images with as few modifications
as possible. The image is divided into patches and a sequence of linear em-
beddings from these patches is fed as input to the Transformer. Image patches
are subsequently handled in the same way as tokens (words) in NLP. However,
the model fitted in this way has a problem with translation equivariance and
locality, due to which it has problems generalizing if it does not have a sufficient
amount of training data. An improvement occurs if the model is trained on a
sufficiently large dataset (14M-300M images). With such a pre-trained model, it
shows good results when subsequently applied to tasks with fewer data points.

Figure 3.3: Vision Transformer

On Figure 3.3 we can see the model overview. The standard transformer
receives as input a one-dimensional sequence of token embeddings. To handle
two-dimensional images, you need to reshape image x ∈ RH×W×C into a se-
quence of flattened two-dimensional patches xp ∈ RN×(P 2·C), where (H,W ) is
the resolution of the original image and C is the number of channels. (P, P )

13



Theory 3.5. Augmentation

is the resolution of each image patch, thereby obtaining the final number of
patches, N = HW/P 2 , which are subsequently used as input for Transformer.
Transformers use a latent vector through all their patches and so it is necessary
to flatten the patches and map to the same dimension as the latent vector using
a trainable linear projection.

Vision transformers have a much smaller image-specific inductive bias than
CNNs. For convolution neural networks, locality and two-dimensional neigh-
borhood structure and translational equivariance are present throughout the
model. In Vision Transformer, only MLP layers are local and translationally
equivariant, while self-attention layers are global. Except for some moments
during the cutting of images into patches and fine-tuning. Position embeddings
do not carry any positional information at the beginning of initialization, and
it is therefore necessary for the model to learn all two-dimensional positions in
patches and their spatial relation from the very beginning.

Experiments were performed on ResNet and Vision Transformer and their
combinations. They focus on datasets of different sizes and the computational
cost of pre-training, where the Vision Transformer is less demanding to pre-
train. Furthermore, the Vision Transformer is compared with past state-of-the-
art results, where it performs the same or even better on most benchmarks
[18].

3.5 Augmentation

Augmentation is the process of generating new transformed versions of images
from a given image dataset to obtain diversity. The image is represented by a
two-dimensional array of numbers. These numbers represent the pixel values in
the image. By changing these values we can generate new augmented images.
These images are very similar to the original ones from which they were created.
However, they contain additional information that can be used to improve gen-
eralization in a machine-learning task. In general, augmentation is suitable for
improving the performance of detection, classification or segmentation. For the
best results of computer vision tasks, it is advisable to have extensive datasets
that contain all visual aspects of the targets that we want to classify. However,
it is very difficult for a specific dataset to meet these requirements. The data is
often manually collected and manually annotated, so it is very time-consuming
and often impossible to produce such a dataset. As an example, if we want to
capture an image with all possible lighting conditions, it is likely that, despite
all efforts, there will always be some information missing that will limit the
model in its best possible performance. Using augmentation, we are able to
create data that can fill in this missing information. We are therefore able to
save time when collecting data, but also improve the overall performance of an
existing dataset, thus preventing overfitting.

Overfitting is a common problem in computer vision. Generally, this is a
condition where great results are obtained on the training set, but there is
drastic deterioration when applied to the test data. In principle, the model
learns underlying patterns with high accuracy on seen data but misrecognizes
similar patterns on unseen data. This phenomenon generally occurs with a
small dataset that is not sufficient for the task at hand. As a result, the model
does not have available all possible patterns that it could learn. Augmentation
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is one of the techniques used to improve the overfitting problem. For computer
vision tasks, there is a large selection of augmentations that can be used. The
basic ones include position manipulation: such as rotation, scaling and flipping.
Color manipulation: such as brightness, contrast, saturation and hue [19].
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Chapter 4

Practical tests

In this chapter, attention will be paid mainly to the practical parts of this work.
First, the competition will be introduced. Then we look at the baseline and
gradually get to the modifications and procedures implemented to improve the
neural network and its classification.

4.1 Practical introduction to competition

I participated in a competition as part of this thesis. This is a competition called
Conser-vision Practice Area: Image Classification hosted by DrivenData1. The
aim of this competition is classification. Specifically, the classification of wildlife
species that appear in camera traps. Available at our disposal are images with
additional attributes of each image. These will be later used for setting up
testing and training sets. Training and testing images are in .jpg format each
in its own file. Attributes are then provided in .csv file. These files contain the
following fields:

• id (string, unique identifier) - a unique identifier for each image

• filepath (string, feature) - image path including its split directory

• site (string, feature) - the site in which the image was taken

Sites in the training and testing datasets do not overlap. This fact will be later
used for reduction in overfitting and splitting the main data set into training
and validation datasets.

The last piece of information that is provided are labels for training images.
Testing images do not have these labels available. And file containing submission
format for the competition.

4.1.1 Dataset

After reviewing the data and attributes in the files mentioned earlier, we will
examine the images themselves and their properties. There are eight possible la-
bels for every image, which means our classification is divided into eight classes.

1https://www.drivendata.org/
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If the image does not contain any animals, it is labeled as blank. If not, one
of the seven labels designating a species group is present. Every single image
contains a maximum of one group. Those are:

1. antelope duiker

2. bird

3. civet genet

4. hog

5. leopard

6. monkey prosimian

7. rodent

First, let’s take a look at train labels.csv file. File has a single row per image,
first row contains ids of all the species in alphabetical order. Every other row
then contains image name starting ZJ000000 and ending ZJ016487 followed by
a binary validation. One column for each of the possible predicted classes that
indicates whether the image is of that class or not. Each row will add up to 1,
since the classes are mutually exclusive.

Figure 4.1: Labels

The train features.csv file again contains one row per image. Each row con-
tains id, filepath, and site. The exactly same format is used in test features.csv,
image names start with ZJ016488 and ends with ZJ020951.

The train features and test features files, which include all of the training
and testing images, is the next part we examine. Train feature file contains
all 16487 training images in .jpg format. We will review specifics in the next
section. The same goes for the test feature file which contains 4463 images.
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4.2 Data

In this section we will look in more detail at image properties. Here is an
example of a single image in our dataset. It is an image 4.2 named - ZJ016048.

Figure 4.2: Leopard image

Information that we have is the id, site - S0085, filepath - train features
/ZJ000048.jpg and we know it contains leopard - [0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0].

Let’s explore how the various species are distributed throughout the training
set, first in terms of total counts and then in terms of percentages.

Count and percentage of animals
Count Percentage

Monkey prosimian 2492 0.151%
Antelope duiker 2474 0.150%
Civet genet 2423 0.147%
Leopard 2254 0.137%
Blank 2213 0.134%
Rodent 2013 0.122%
Bird 1641 0.010%
Hog 978 0.059%

Table 4.1: Table of animal distribution

As you can see, the distribution 4.1 is not completely even. Although it is
better than found in nature, the photos are selected to form a more uniform dis-
tribution. The most common species group are monkeys and the least common
group are hogs. The number of all training images is 16488 with 148 different
used sites.
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Now let’s look at examples of all eight classes:

Figure 4.3: All classes example

As you can see, our depictions 4.3 of each species differ significantly from
one another. Among other variants, the animals could be further or closer to
the camera, in the sun or the shadows, or facing the camera. The hue of the
images, the weather at the time they were taken, and the type of camera are
also different. One of the main struggles will be the ability to teach the network
to generalize across different sites and environments.
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In the Fig. 4.4 you can see the number of images corresponding to a specific
camera trap.

Figure 4.4: Images per site

Again, the distribution of images taken by each camera trap is not even. For
example, we have 1132 images from camera trap number 60 and only 2 images
from camera trap number 78.

We can also say that various cameras would record various numbers of photos
of each species. It is more likely that parts of the rain forest will be inhabited
by different species or that some animals wont live next to each other.

As already mentioned, the images are very different from each other. There
are 2197 grayscale images; these images don’t have 3 channels, and 14291 RGB
images. Also, the brightness across the images varies, in the next picture you
can see a count of the average brightness in the whole dataset. RGB images are
converted to grayscale and then the mean brightness value is calculated.

Figure 4.5: Mean brightness across all images

As you can see in the Fig. 4.5 dataset contains a diverse set of pictures from
really bright to really dark.
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The last two properties that we will focus on are the dimensions of the
images and subsequently the covariance matrix of the occurrence of animals.
Dimensions of the images are written in the Table 4.2:

Size of images and aspect ratio
Count Pixels

Heights

7490
6345
970
864
458
293
67
1

360
540
335
240
515
120
215
95

Widths

8460
6803
931
294

640
960
360
160

Count Ratio

Aspect ratio

13835
970
864
458
293
67
1

1.777
1.910
1.500
1.864
1.333
1.674
1.684

Table 4.2: Table of image sizes and ratios

In the Table 4.2 you can see that images differ in their sizes and aspect
ratios. We must take this fact into account when handling these images.

Lastly we have the covariance matrix of animal occurrence:

Figure 4.6: Covariance matrix of animal occurence
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In the Fig. 4.6 we can see that the coappearance is not equal between
species pairs. This corresponds with our earlier estimate. For example, we can
see that leopards and civets don’t share their space very often. This is expected
as leopards are natural predators that prey on civets in the wild.

4.2.1 Data split

We will try to use all the data available to us. The training set should contain a
larger part of the data than the validation set. It is possible to use for example
75:25, but this section will describe why we use a different split ratio. A common
practice is to use the so-called K-fold [20]. The data will be divided into k-folds
in our particular case into five folds. This is a part of cross-validation, where we
try to select the best possible data for our training. First, we are going to use
stratify k-folds; this will result in five training sets and 5 validation sets with
an 80:20 ratio. Now these splits help us a little bit with overfitting; we did not
use any additional information except our data distribution. We can further
improve our data split by using a stratified group k-fold [20]. This technique
will add additional grouping condition to our split. This grouping condition is
going to be made according to our additional attributes that our images have
and that is the site at which the photograph were taken at. This particular split,
which has completely different sites in the training set than in the validation
set, will help us with overfitting, now our network must learn to generalize in
previously unknown locations. This method will also help our model to make
better predictions for the test set, which also contains different sites compared
to the training and validation sets.

4.2.2 Data augmentation

This is a technique used for improving the performance of deep neural networks.
To achieve good results and avoid overfitting, deep neural networks need a lot
of training data. But getting enough training samples is frequently very chal-
lenging. This is where augmentation comes into play. By augmenting already
labeled images with non-label changing transformations, we can achieve a much
larger dataset. We can also get more samples with different distortions present
in a few images [21].

Figure 4.7: Augmentation example horizontal flip

These augmentated images 4.7 are not fully-fledged images as they do not
contain new data. Now let’s look at the specific augmentation used. First of
all, resize to 224x224 is used to provide uniform input; this also corresponds
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with input used in original ResNet [15] paper; then we use normalize, that is
changing mean and std with parameters also corresponding with original paper.

Figure 4.8: Used augmentations

We use a combination of:
Horizontal flip 4.7 - flips the image around the y-axis with 0.5 probability.

Gaussian blur 4.8 - blurs the image using a Gaussian filter with random kernel
size (3 to 7) with 0.2 probability. Although it may seem that the image is
not too blurry for the human eye, for the neural network, all the values in the
image change. Next is color jitter and random brightness-contrast 4.8 together
with 0.5 probability. Both have an equal chance of being used and they both
serve the same purpose, changing brightness and contrast values, color jitter
having more options. We use either hue-saturation or RGB shift 4.8. These two
have a 0.2 probability of being applied. The first one is changing values of hue
and saturation in the image, and the RGB shift is randomly shifting values in
each channel of the image. The last one is equalize, which equalizes the image
histogram; this is a pretty big change; the probability of it being applied is only
0.05.

All of these augmentations are made ”on the fly”, which means that we are
changing them while training and we are not storing these changed images. All
of these augmentations are probability-based, so only part of them is used on
each image; these probabilities never reach one to ensure that the original image
is being seen by a neural network. Validation images are only augmentated by
resize [21].

There is a penalty if the network declares the ground truth class to be incor-
rect, and competition severely handicaps the network that confidently classifies
in the incorrect class. It is frequently possible to significantly increase the gen-

23



Practical tests 4.2. Data

eralization and learning rate of a multi-class neural network by employing soft
targets, which are a weighted average of the hard targets and the uniform dis-
tribution over labels. Label smoothing has been used in many state-of-the-art
models preventing the network from becoming over-confident [22]. Another
change that belongs to the augmentation category is cropping the image. We
want to keep the 224x224 resolution as the pre-trained model is trained on these
inputs. Often the edges of images are not containing any significant informa-
tion, so we will first resize to 256x256 pixels and then crop to 224x224 pixels
resulting in a decrease in loss on testing dataset.

Models
Architecture Applied methods Competition loss
ResNet50 No augmentation 1.9200
ResNet50 Augmentation 1.9261

Table 4.3: Table of basic augmentation results

In 4.3 the loss function for basic augmentations is the best result from the
combination of augmentations mentioned above. We can see that there is no
improvement for the best result, but there is a decrease in overfitting when
training more epochs.

Cutout

Because the implemented weaker augmentations did not have such a funda-
mental effect on improving overfitting, stronger augmentations will be imple-
mented, which will also result in label changes. The first augmentation added is
a Cutout [23]. This is a regularization technique used mainly for convolutional
neural networks. This process removes contiguous regions of the selected input
image. This way, we augment the input dataset with versions of the image that
have occluded parts. This procedure can be seen as an extension of dropout
without changing the feature maps. In the article, they pointed out that the
shape hyperparameter does not affect performance as much as the size of the
removed regions. Cutout forces model to take full image context into consider-
ation, instead of focusing solely on a few key features. In this way, we prepare
the model so that it is ready to recognize images that have obstructed parts.
Cutout is used as the completely last augmentation on input images. In this
implementation, the occluded region is made by randomly choosing a pixel, and
according to the required size, the corresponding rectangle is masked out. There
is also a possibility to select multiple regions in a single image.
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Figure 4.9: Cutout example

In the 4.9 we can see a specific random execution of the Cutout method for
one or more removed regions. This augmentation does not affect the resulting
label of the given image.

Mixup

The second augmentation method is called Mixup [24]. Mixup uses convex
combinations of samples and labels to train neural networks. Mixup optimizes
the neural network to favor straightforward linear behavior between training
samples. Additionally, it decreases the memorization of corrupted labels and
improves robustness to adversarial examples. By using Mixup we construct
virtual training examples where parts of images are swapped with each other.
Given two images and their ground truth labels: (xi, yi), (xj , yj) a virtual train-
ing sample (x̂, ŷ) is generated:

x̂ = λxi + (1 − λ)xj (4.1)

ŷ = λyi + (1 − λ)yj (4.2)

where λ ≈ Beta(α = 0.2).
The hyperparameter α controls the extent of interpolation between feature-

target pairs. In our specific implementation, Mixup is applied in pairs, where
two λ values are randomly chosen for each pair, and a pair of images is aug-
mented twice. The labels of these pairs are also mixed in the same way.
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These 4.10 are the original images before the Mixup is applied. In the
4.11, we can see a specific random example of images after the mixup has been
applied. The first pair on the left has λ1 equal to 0.2145, and the second is
equal to 0.3424. The label of each image is also changed according to λ values.

Figure 4.10: Original image before Mixup

Figure 4.11: Mixup example

Figure 4.12: Example of how labels are changed

As we can see in the 4.12, the first image is a monkey, and the second image
is a rodent. Their labels are mixed according to λ values where first λ1 is the
ratio for the first image and second λ2 is the ratio of the second image.
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CutMix

The third augmentation method is called CutMix [25]. This method addresses
an issue of having uninformative pixels in the training images during training
while retaining the advantages of regional dropout. The additional patches make
the model recognize the object from a partial view, which improves localization
capability even more. This method shares similarities with [24] and [23]. The
goal of this method is to generate a new training sample (x̂, ŷ) by combining
two training samples (xi, yi), (xj , yj), where the combination is defined:

x̂ = M⊙ xi + (1 −M) ⊙ xj (4.3)

ŷ = λyi + (1 − λ)yj (4.4)

Where M denotes a binary mask indicating where to drop out and fill in.
In this particular implementation, the dropout region is chosen in a similar way
as in Cutout. This region is then filled with information from another image.
Cutmix is an augmentation that changes the labels of training images. That is
done by taking the ratio between the original image area and the ratio of the
filled-in image’s label.

Figure 4.13: Original image before CutMix

These 4.13 are the reference images before CutMix is applied. In the left
image, we can clearly see an antelope; in the right image, we can see a hidden
leopard behind a tree.
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Figure 4.14: CutMix example

In the 4.14, we can see two images with Cutmix being applied. The labels
are also changed according to the area changed. This 4.15 is an example of
how labels are changed with these 4.14 images. The labels are changed for both
images, with the changed area being about 15 %.

Figure 4.15: Example of how labels are changed

Cutmix performs better than the other two methods, as demonstrated in
the original paper. However, we’ll combine all three approaches to achieve
our goals. There is always room for improvement regarding the choice of the
hyperparameters of used augmentations.

4.3 Neural network architecture

In this section, we will focus on exploring and selecting architectures that are
suitable for this competition. First up we have ResNet50 [15]. This network
was also used to obtain 1st place on the ILSVRC 2015 classification task. The
second network is ResNeXt [26], as the name suggests, it is a follow-up to
the work of ResNet. ResNeXt iterates a building block that aggregates a set of
transformations with the same topology. Compared to ResNet, a new dimension
called cardinality arises here, which is the size of the set of transformations,
which is a large factor of the neural network, along with the depth and width
dimensions. SE-ResNeXt50 [27] is the third selected architecture. Again, this
is a modification of the previous architecture, in this case it is the addition
of a Squeeze-and-Excitation block, that adaptively recalibrates channel-wise
feature responses by explicitly modeling interdependencies between channels .
EfficientNet [28] is another candidate for this task. This architecture adds a new
way in which the model is scaled, resulting in better accuracy and effectiveness.
This is achieved by balancing depth, width, and resolution using a compound
coefficient . The last architecture we will focus on will be the Vision Transformer
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[18]. Transformer architecture, which is mainly used in the field of natural
language, is applied to sequences of image patches and shows very good results
on image classification tasks.

4.4 Baseline

This section will contain the implementation procedure and a description of the
baseline that will be used for classification. It will also be mentioned how the
data is used and first results from experiments [29].

We must first split the image set into training and validation sets. To guar-
antee that the relative frequencies of each class in the training and validation
sets are comparable, we will stratify by the target labels [20]. Validation set
will contain 25% of the data and training set will contain the rest. As the
baseline pre-trained ResNet50 is chosen, this is a pretty common convolution
neural network used as a starting point for different types of tasks such as clas-
sification or detection [15]. This architecture will create our backbone. The
2048-dimension embedding produced by the pre-trained model is connected to
one additional dense layer. In ResNet this last dense layer would be connecting
the 2048-dimension embedding to a 1000-dimension output used in ImageNet.
In our case, we will connect 2048-dimension embedding to a 100-dimension lin-
ear layer, which is connected via ReLU and Dropout to an 8-dimension output.
These last layers are the new ”head” of our model this let us convert the image
embeddings generated by the pre-trained ”backbone” into the 8-dimensional
output. The ReLU introduces a non-linearity into the head and the dropout is
a regularization component helping with overfitting. Cross-entropy will be used
as a loss function which is commonly used in multi-class classification. Stochas-
tic gradient descent will be used as our optimizer. This optimizer works with
learning rate and momentum parameters. For now, the learning rate will be set
to 0.001 and the momentum to 0.9. The number of epochs is initially set to
only one, but in later stages, we will mainly work with fifty epochs.

Even before we start making big changes, either to the data or to the way of
training or changing parameters, it is advisable to first look at one of our goals,
and whether it is appropriate to use a pre-trained model right from the start,
as it is written in the previous paragraph, or whether it is better to try to train
the model from scratch only on our data.

The advantage of using the pre-trained model is its speed of training and
getting the first results. Training on our data takes much more time and we risk
not having enough data for the network to be able to learn all the necessary
patterns that can occur in unseen images. After the first few trained models
see Table 4.4, it is clear that to obtain better results, but also to save time, we
will make use of the pre-trained models. To save time and get the opportunity
to train more models, we will use external servers. It would be demanding to
obtain parameters again and again for each new architecture.

Now that we are able to train the model, it is important to track parameters
that will help us determine, how well a given neural network setup performs.
Accuracy and loss are introduced both for training data and validation data.
These values along with the number of epochs will be stored. For storing pur-
poses Wandb [30] is going to be used which is a central dashboard to keep track
of your hyperparameters, system metrics, and predictions so you can compare
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Models
Architecture Applied methods Accuracy on validation set
ResNet50 Pre-trained 46%
ResNet50 Not pre-trained 14%

Table 4.4: Pre-trained vs trained just on seen data

models live, and share your findings.
According to these values, models with the lowest loss and the highest accu-

racy will be stored and used to create submissions on testing data. The accuracy
and loss used for competiton is calculated on the validation set from predictions
made by the neural network.

One parameter for assessing classification models is accuracy. Accuracy is
the fraction of predictions our model got right. We can define it:

Accuracy =
Number of correct predictions

Number of all predictions
(4.5)

The accuracy 4.5 is calculated over the entire batch and then it is added to
the following batches after a constant number of batches, the average accuracy
is validated. In this way, we are able to track the progression of accuracy and
learning on the training set. Accuracy on validation set is validated in the same
manner.

Log loss [20] , 4.6 was chosen as the performance metric to judge the progress
of neural network training. Primarily because it is similar to the performance
metric employed in the competition in which we are taking part. Let the true
labels for a set of samples be encoded as a 1-of-K binary indicator matrix Y,
yi,k = 1 if sample i has label k taken from a set of K labels. Let P be a matrix
of probability estimates, with pi,k = Pr(yi,k = 1) then log loss is :

Llog(Y, P ) = −logPr(Y |P ) = − 1

N

N−1∑
i=0

K−1∑
k=0

yi,klogpi,k (4.6)

Now we want to look at the predictions made by the neural network and also
participate in the competition. Predictions will be made in the same way as for
the validation set, but this time the test set will be used. We will provide the
likelihood for each of the eight potential classes for each image in test features
in order to compete in this competition [6].

Submission format contains nine columns, with id and with a column for
each of the eight possible classes containing the probability that the image is
of that class. These values range between 0.0 and 1.0, with each row adding
up to 1. We will now take a closer look at the performance metric used by the
competition. They decided to use a loss metric instead of an accuracy one and
use a similar log loss function to ours. We will want to get as low values as
possible. Log loss defined for the competition:

loss = − 1

N
·

N∑
i=1

M∑
j=1

yij logpij (4.7)
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Where N is the number of observations, M is the number of classes, yij is
a binary variable indicating if classification for observation i was correct, and
pij was the user-predicted probability that label j applies to observation i.

The results are sent in .csv format and the corresponding loss value is given
to us.

4.5 Improving baseline

In this section, numerous adjustments, experiments, and other methodologies
will be mentioned. Our goal will be to obtain the smallest possible competition
loss and generally avoid overfitting. The majority of these procedures will be
written in the order in which they were tested or used.

Transferring training from the CPU to the GPU is among the first adjust-
ments to be made when training the network. Despite the fact that training on
the GPU significantly accelerates performance, using external servers with more
powerful computers becomes necessary as training times and epochs increase.
For these purposes MetaCentrum [31] will be used. In the beginning phases
only part of the data and a low number of epochs were used. Now the logical
step is to increase the number of epochs and use the whole training set. With
these changes, the loss worsened dramatically, overfitting showed itself to be the
issue, which we will attempt to minimize.

We will focus on experiments that could help in the fight against overfitting.
The first is a change in the used loss function for training and validation. Focal
loss [32] is selected for this purpose. This loss function is a direct modification of
the Cross-entropy loss function. Focal loss is mainly intended for problems with
unbalanced classes during training. This problem is frequently solved by adding
a weighting factor α, which is commonly used as the inverse class frequency.

CE(pt) = −αtlog(pt) (4.8)

We also use α as a hyperparameter, even though we don’t suffer that much
from class imbalance 4.1. This may slightly improve our neural network perfor-
mance. The second part, which is more important to us, is reshaping the loss
function to down-weight the simple cases and adequately focus on the hard neg-
atives. This is done by introducing a modulating factor (1−pt)

γ with a tunable
γ focusing parameter. When γ = 0, Focal loss is equal to Cross-entropy loss,
with an increasing value of γ, we can adjust the rate at which easy examples
are down-weighted. Focal loss is defined as:

CL(pt) = −(1 − pt)
γ log(pt) (4.9)

We will use the α version:

CL(pt) = −αt(1 − pt)
γ log(pt) (4.10)

With this new loss function, we get two new hyperparameters, which we
need to determine. For now, we’ll set them to the values that achieved the best
results in the paper [32].
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Over time, it became clear that it is possible to reduce the size of the ”head”
of the neural network. This means a transition to 2048-dimension embedding
connected directly to 8-dimensional output with the removal of Dropout and
ReLU.

4.6 Sweep

As mentioned in the previous sections, we have a large number of hyper pa-
rameters that need to be determined and optimized as much as possible. For
this purpose, a sweep [30] will be used, which automatically searches for hy-
perparameters and explores the space of possible models. Sweep works on the
principle of selecting various parameters and then testing them during training.
We have a variety of choices for searching, but it is recommended to start by
running several searches with parameters that were chosen at random. From
the best results, you can then choose the hyperparameters that are the most
appropriate. Due to their quantity and duration, it is not advisable to start
the search by searching all possible parameter combinations. It is essential to
choose a parameter that we will aim to enhance during the search in order for
it to operate properly. Either accuracy or loss function is suitable for this, we
will try to maximize accuracy on unseen data.

4.6.1 Sweeping main parameters

We will try to concentrate first on the most important variables. This means
the parameters that have the greatest influence on training and thus are able to
influence our result the most. The first parameter to be changed is the batch
size which is not needed to be fine-tuned as we will try to mimic the size used
for training our particular baseline. Now to the parameters, we will change
and fine-tune. Learning rate is one of the most important hyperparameters for
training. With changing learning rate, we have an opportunity to try different
optimizers. We will try SGD, Adam [33] and AdamW. The values from the
previously mentioned Focal Loss function are among the last two parameters
that we will attempt to optimize, those are focusing and weighting parameters.

Using a random sweep, over three hundred models with different parameters
were trained. Now it is necessary to go through all the models and find the
ones that met our condition of maximizing accuracy. During the search, we will
also possibly pay attention to the loss function; if it were lower than usual for a
specific model, it is undoubtedly advisable to examine this model more closely.
When using a sweep, we have the advantage that it also provides us with the
importance and correlation of the parameters we are looking for according to the
selected condition. As expected, the learning rate has the largest contribution
to the accuracy improvement followed by alpha and gamma. The three different
optimizers have a smaller share in improving the accuracy. Adam and AdamW
have a negative correlation, which means that when they are used, the results
deteriorate compared to SGD 4.5.
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This 4.16 is what a graphical representation of the sweep might look like:

Figure 4.16: Sweep example

The best models are selected according to the facts mentioned; not a single
one of them uses an Adam or AdamW optimizer. At the end, we selected six
models 4.5 that we will try to submit and evaluate on the test set. These are:

Sweep models
Alpha Gamma Learning rate Optimizer

1. 0.75 0.1 0.005006900569993443 SGD
2. 0.4 0.2 0.005357456544183196 SGD
3. 0.6 0.2 0.0034535583484160883 SGD
4. 0.6 5.0 0.007732227549238594 SGD
5. 0.1 0.2 0.0009314258069920744 SGD
6. 0.8 0.1 0.0022513333338251484 SGD

Table 4.5: Table of sweep models

Ultimately, model number four was the best-performing model on the test
set. Now we have the model with the best performance and semi-optimized
parameters. We will try to look at the variants with K-fold. We do not expect
improvement in individual folds, but we will need them in the next part to
see if any fold will perform better on the test set. Each model learns from a
partially different data set; thus, individual models can better recognize specific
characteristics and overall searched for animals. As expected, individual folds
do not have a better result. Now we will try to use a combination of these
models.

4.7 Ensemble

Another method to improve performance is the ensemble [34]. The ensemble is a
way to achieve a better whole from individual parts. In this case, a combination
of predictions from individual models. Neural networks generally have a high
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variance from the principle of stochastic learning. One of the ways to reduce this
variance is to train several neural network models and combine their predictions.
An ensemble not only reduces the variance of predictions, but can also lead to
overall improved predictions that are better than any single model.

There are several ways to combine models. If we know how the given model
predicts specific labels, we can adjust the weight of these predictions. In this
way, we would obtain a weighted combination of models. For now, however, we
will settle for the variant where we consider the models equal and weight the
predictions by the mean value of all models.

The number of models used for the ensemble is often small, due to compu-
tational duration and also diminishing returns in performance by adding more
models. The most commonly used quantities are three, five and ten.

When using the ensemble, it is possible to combine three main elements
that can be improved in this way. First is the variation of the training data.
In this case, each model is trained on different data. As already mentioned
in the previous sections, in our case the ensemble will be composed of five
models using k-fold cross-validation. Another element is the use of various
models, the optimization problem that the network is trying to solve has multiple
possibilities for the successful mapping of inputs to outputs. We will use this
combination in the next chapters. How to combine the predictions of these
models is the last element.

Although our combination now uses all the training data, unfortunately in
our case there will be no improvement over the currently best performing model.
Ensemble did not contribute to better results with the ResNet50 architecture
used, but later it will be used again when the architecture is changed, in which
case the performance will improve.

4.8 Post-processing

In this section, we will look at the predictions received by our model on the
validation set and try to improve the results on the test set. In general, it is a
procedure to adjust the final data obtained based on the knowledge of the given
problem. For this purpose, we will use the confusion matrix and the distribution
of which labels have the second and third-largest predicted values. From the
submitted results, we know that the first split has a fairly good correlation
between the loss function on the validation set and the loss function on the test
set at this stage.

As we can see on 4.17, the neural network confuses animals of similar sizes,
such as civets and rodents in general. The same can be said about hogs and
leopards. And lastly, we can see an overabundance of empty image predictions.
It is important to mention that only the information contained in the columns
is relevant for us, since the row information about the correct predictions will
not be available for the predictions on the test set. However, this information
is only partial. First of all, it is an estimate of the top-1 classification, but
we are evaluated with an overall loss function that penalizes us for all other
predictions as well. Second, we assume that the results on the validation set
will be of the same quality as on the test set. Therefore, we will also look at the
top-2 distributions for predictions, where we will try to improve, for example,
blank images.
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Figure 4.17: Confusion matrix of true and predicted labels

As you can see 4.18, the top-2 predictions are similarly divided as they were
in the confusion matrix column. Nevertheless, we will try to get the best possible
overview of the network’s capabilities from all this information and adjust the
data based on this fact for a better result. These predictions have a mean value
of 0.21 and a mean deviation of 0.11. This means that if the network is very
confident, it does not make sense to consider using these specific values, but if
the network is not confident about the blank image, it gives us the possibility
to further modify this data.

Figure 4.18: Distribution of top-2 blank images

As an example of how to use this data, if we look at 4.18 we can see that
if the result for leopards and hogs is swapped when predicting a hog, the loss
function must improve.
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4.9 Vision Transformer

After inspecting the architectures in earlier section, now is the time to re-
visit these architectures. After trying different techniques and continuously
improving results, we are going to see if there are ways to improve the baselines
used. Let’s take a look at the frequently used architectures: ResNeXt50, SE-
ResNeXt50, EfficientNet and Vision Transformer. On all of these models, we’ll
start training with the best settings we’ve found so far on the current baseline.
However, it is necessary to adjust some parts of the training process again, since
each model is pre-trained on different data and on different augmentations.

Models
Architecture Cross-entropy Loss
ResNeXt50 1.693

SE-ResNeXt50 1.557
EfficientNet 1.688

ViT 1.298

Table 4.6: Results on different models

These 4.6 are the results of selected models. The values of the loss function
are obtained from the predictions on the validation set. As we can see the first
three models have similar results, with the SE-ResNeXt50 performing a little
better. The best result was achieved by Vision Transformer.

After examining the results, the best improvement was found when using
the Vision Transformer. Nevertheless, we return to element two of the ensemble
method and try to combine predictions from different architecture types. Their
combination has relatively good results, but the Vision Transformer itself re-
mains the best performing model. Now we know that the Vision Transformer
responds well to our task, so it is appropriate to explore different variants of this
architecture, whether it is depth, the number of heads, patch size or embedding
dimension. The selected Vision Transformer is of medium size and has a patch
size of 16, being pre-trained on images of 224 pixels in size, as was the case with
ResNet50.

So we settled on the Vision Transformer variant. Now it is necessary to
iteratively go through some of the steps that we performed with the previous
architecture. First, we’ll look at the sweep again. We cannot expect the semi-
optimal hyperparameters to be the same for our new architecture. So we will
again search for learning rate, alpha, gamma, and optimizers. This time, how-
ever, we will choose a straight loss function as the criterion condition, since we
found out in the previous experiment that it has a much greater influence on
the overall success of the model.
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Figure 4.19: Sweep training results example

Again, it is fitting that learning rate and gamma have the largest share
in reducing the loss function in this case. Compared to ResNet50, however,
stochastic gradient descent shows the worst performance and thus a negative
correlation with better results. As in the previous version, the six best models
were selected, which must then be trained and compared with each other.

Sweep models
Alpha Gamma Learning rate Optimizer

1. 0.5 2 0.003661243065019472 SGD
2. 0.2 1 0.005574236194484602 SGD
3. 0.7 2 0.0004827695883935068 SGD
4. 0.7 2 0.00003345107853573892 AdamW
5. 0.6 2 0.00007013683802495341 AdamW
6. 0.3 2 0.0002980929812770572 SGD

Table 4.7: Table of sweep models 2

From 4.7, the fourth model had the best performance. So we will continue
with this model. Since the model has quite a large variance of results, this
model will be iteratively trained several times to achieve the best results. As
we can see, the winning optimizer in this case was AdamW.

So the next step is the ensemble. With the newly trained models, it is
possible to try the ensemble again. We will look again at both variants, where we
will first try the ensemble using k-fold cross-validation. And as a second option,
we will try an ensemble of different architectures, which means a combination
of k-fold ResNet50 and Vision Transformer, as well as a combination of the two
best-performing models from both architectures.

The first variant, the Vision Transformer 5-fold ensemble, is created using the
mean value of the results of all five models. Ensemble of ResNet50 and Vision
Transformer is performed again using the average, but now of ten models, where
five models are trained on each of the architectures. Another way is to combine
the mean prediction values of the two best models from each of the five. All
these ensembles have a significant effect on improving the results. However, the
best scoring among these models was the ensemble of five models, all using the
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Vision Transformer. An ensemble of these five models is tested last, with the
best ResNet50 added as the last of the six or as a pair of 5-fold plus ResNet50.
Unfortunately, neither of the last two experiments yielded better results on the
test set.

4.9.1 Vision Transformer - post-processing

From the previous section we got a new model which is a combination of Vision
Transformer models. Post-processing at this point is not as straightforward
as it was in the last part when we focused on this task. There are several
problems here. The first problem is that since it is a combination of models,
we do not have results on the validation set, and thus it is not clear how to
construct the confusion matrix. It is also unclear whether the confusion matrix
would correlate between the test and validation sets due to the improvement
of results compared to individual models on the test set. Nevertheless, we will
try to bypass these issues and find some patterns that would help us improve
predictions. We will first try to construct a confusion matrix not from the
whole but from the concatenation of predictions from individual models and
their respective true labels.

Figure 4.20: Confusion matrix for model ensemble
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This 4.20 confusion matrix, therefore, consists of all the training data, which
means five times more values than when we dealt with post-processing last time.
This matrix is normalized in the column direction since it is the only useful
information for us on the test set. We can see that, in this way, the models
individually have a problem classifying part of the blank images. Also, civets
and rodents are being mixed up. Lastly, when predicting antelopes, part of
those predictions are incorrect and they should be rather hogs.

When dividing the matrix into two parts for very confident predictions and
those where the models were not very sure, the results for confident predictions
are much better than what can be seen in the confusion matrix. Therefore, we
will mainly deal with the post-processing of data for uncertain predictions.

Here 4.21 we can see that if the model is not very confident, that means a
prediction smaller than 0.6, the model makes mistakes much more often. It can
be assumed that the error rate also increases with uncertainty. This, however,
gives us room to improve, especially on these predictions. We see similar prob-
lems as with the previous confusion matrix. There is also increasing uncertainty
in the predictions of antelopes and also in the predictions of monkeys.

Figure 4.21: Confusion matrix for unsure predictions
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4.10 Results

In this section, we will look at a summary of the progress of the entire compe-
tition and take a closer look at the specific results of individual experiments.

Models
Architecture Applied methods Competition loss
ResNet50 Stratified K-fold , split - 0.75/0.25 3.5242
ResNet50 Stratified group K-fold, split - 0.8/0.2 1.9200
ResNet50 Label smoothing, augmentations 1.5826
ResNet50 Improving augmentations, Focal loss 1.5246
ResNet50 Sweep hyperparameters 1.4749

ViT - 1.4657
ViT Sweep hyperparameters 1.3125
ViT Re-trained 1.2743
ViT Post-processing 1.2156
ViT Ensemble 1.1143
ViT Post-processing 1.1087

Table 4.8: Competition Results

In the following table 4.8, the models and methods applied to them will be
written, if the architecture is not changed or the same type of method as in
the previous step is not changed, this means that the previous method is also
applied even if it is not written for the given model. In particular, the models
that influenced shifting and improving the results at the competition will be
present. Re-trained in this case means that the model was repeatedly trained
with the same parameters because the variance of the results was higher in order
to continue with the best possible model.

From the final table, it is easy to see which procedures had the greatest
influence on improving the results. Of course, there is the biggest room for
improvement at the beginning, so you can see bigger jumps in the score achieved
at the start. The implementation of the Stratified group K-fold, which improved
the overall distribution of training and validation data, as well as augmentations
with subsequent modifications of the loss function, had a great influence on the
results. The last big improvement comes when the architecture itself is changed
to Vision Transformer.

As you can see, some of the steps mentioned in the previous chapters are
not listed in the table because they did not have a noticeable effect on the
results at the given moment or did not provide improvement at all. The last
row represents the last submitted model at the competition and thus our final
model along with our final ranking. A graphic representation of the training
process can be viewed in this report2.

2https://wandb.ai/scrower/resnet50_strat/reports/Results-Report--Vmlldzo0MjcwNzEx
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Figure 4.22: Ranking in competition

At the time of writing this part and ending further participation and at-
tempts to improve, our final place in the competition was fifth, out of a total of
553 competitors.
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Conclusions

This thesis shows that the application of computer vision methods to camera
trap images is a useful tool for wildlife observation. For most projects that
deal with monitoring animal populations and want to achieve improvements,
it is certainly appropriate to include and implement computer vision methods
and tools in purely ecological projects. The inclusion of these tools should save
time spent working with the data and potentially allow researchers to obtain
more information. The Vision Transformer shows great promise for use on the
given dataset and, in this case, reaches the potential of outperforming otherwise
well-established CNNs that are otherwise used for image classification. The
most important changes going forward would be to improve the performance of
small animals that are similar in size and to each other and also to reduce the
dependence on the background of the image. In the competition, our best result
achieved is 1.1087, as a score that comes from a loss function. Since this score
includes the overall quality of the model’s predictions, it is not entirely clear
what the actual accuracy is on the test data set. For comparison, this result is
worthy of fifth place out of about 500 competitors at the time of writing this.

Surprisingly, most of the architectures, except for the two finally used, did
not perform well in this task. The advanced augmentations, which generally did
not have a noticeable effect on improving the performance of the models, were
equally unsatisfactory. Because the model can only be as good as its dataset.
In order to improve the results, I would suggest that the competition provides
a larger dataset, or if it is planned to use computer vision for this problem,
the unification of the used camera traps and the selection of the places, where
camera traps are installed. Using camera traps with computer vision in mind
would certainly lead to improvement. Furthermore, possibly provide additional
information regarding these images, such as the distance of these traps and their
location or the hierarchy of the given animals that occur in the images. Relevant
additional information can be used to improve results.

To further pursue this problem, I suggest trying the following experiments
and other improvements. Try other custom models that might better fit this
type of problem. Try connecting other branches of computer vision, such as
object detection. Further division of the classification labels into smaller cate-
gories, for example, a specific type of rodent. Instead of using only one image,
use a larger number of images from one event, where all images from the event
would be classified as one label.
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