
Západočeská univerzita v Plzni
Fakulta aplikovaných věd

Katedra kybernetiky

Diplomová práce

PLZEŇ, 2023 Jan Trejbal

PROHLÁŠEN Í

Předkládám tímto kposouzenía obhajobě diplomovou práci zpracovanou na závěr studia na
Fakultě aplikovaných věd Západočeské univerzity v Plzni.

Prohlašuji, že jsem diplomovou práci vypracoval samostatně a výhradně s použitím odborné
literatury a pramenů, jejichž úplný seznam je jejísoučástí.

V Plzni dne 19.5.2023

Abstrakt
Diplomová práce se zabývá úlohou odhadu stavu stochastických nelineárńıch
dynamických systémů. Ćılem této diplomové práce je určit optimálńı umı́stěńı
bod̊u numerických metod řešeńı bayesovských rekurzivńıch vztah̊u. Numerické
metody řešeńı bayesovských vztah̊u jsou využ́ıvány v úloze odhadu stavu
nelineárńıch systému, např́ıklad v úloze terénńı navigace. Teoretická část této
práce se nejdř́ıve zabývá analýzou filtr̊u založených na dvou hlavńıch př́ıstupech –
filtru bodových mas založeném na deterministickém př́ıstupu a částicovém filtru
založeném na stochastickém př́ıstupu. Následně byly tyto dva filtry porovnány a
analyzovány jejich výhody a nevýhody a uvažována možnost tvorby filtru
spojuj́ıćıho oba př́ıstupy za účelem vytvořeńı filtru se silnými stránkami obou
filtr̊u. Nakonec byly provedeny simulace za účelem porovnáńı kvality odhadu a
výpočetńı náročnosti globálńıch filtr̊u. V těchto simulaćıch byly globálńı filtry
diskutované v teoretické části porovnávány nejen proti sobě, ale i proti Kálmánovo
filtru a filtr̊um z něj odvozených. Na základě výsledk̊u simulaćı bylo navrženo
optimálńı umı́stěńı bod̊u.

Kĺıčová slova: filtr bodových mas, částicový filtr, particle-point mass fusion
filter, odhad stavu, nelineárńı filtrace, stavový model

Abstract
The thesis deals with the problem of state estimation of stochastic nonlinear
dynamical systems. The aim of this thesis is to determine the optimal location of
the points of numerical methods for solving Bayesian recursive relations.
Numerical methods for solving Bayesian relations are used in the problem of state
estimation of nonlinear systems, for example, in the problem of terrain aided
navigation. The theoretical part of this thesis first deals with the analysis of filters
based on two main approaches solving Bayesian relations - the point mass filter
based on the deterministic approach and the particle filter based on the stochastic
approach. Subsequently, these two filters were compared and their advantages and
disadvantages were analyzed and the possibility to create a filter that fuses both
approaches in order to create a filter with the strengths of both filters was
considered. Finally, simulations were performed to compare the estimation quality
and computational complexity of the global filters. In these simulations, the global
filters discussed in the theoretical part were compared not only against each other,
but also against the Kalman filter and filters derived from it. Based on the results
of the simulations, the optimal placement of the points was proposed.

Keywords: point mass filter, particle filter, particle-point mass fusion filter, state
estimation, nonlinear filtering, state-space model

University of West Bohemia
Faculty of Applied Sciences
Department of Cybernetics

MASTER’S THESIS

Numerical solutions to Bayesian recursive relations for
terrain-aided navigation

PILSEN, 2023 Jan Trejbal

Contents

List of Figures 3

Used Symbols and Abbreviations 4

1 Introduction 5
1.1 Terrain Aided Navigation . 5
1.2 System Description . 6
1.3 Bayesian Methods . 6

1.3.1 Derivation of Equations . 6
1.3.2 Meaning of the Word Filter 8
1.3.3 Motivation and Aim of the Thesis 9

2 Point-Mass Filter 10
2.1 Computational Complexity of the Point Mass Filter 12
2.2 General Point Mass Filter Algorithm 12

2.2.1 Basic PMF Algorithm Steps 13
2.3 Grid Adaptation/Redesign . 14

3 Particle Filter 17
3.1 Basic PF algorithm . 18
3.2 Implementation Challenges Associated with the Design and Imple-

mentation of PF . 19
3.2.1 Degeneracy Problem . 20
3.2.2 Sample Impoverishment . 20
3.2.3 Particle Filter Divergence . 20
3.2.4 Real Time Execution and Accuracy 21

3.3 Resampling . 22
3.3.1 Resampling Algorithms . 23
3.3.2 Resampling Schemes . 23
3.3.3 Resampling Implementation Pseudocode 24

3.4 General Particle Filter Algorithm with Resampling 24

4 Comparison and Fusion of PF and PMF 27
4.1 Alternative PMF Algorithm . 28
4.2 Particle-Point Mass Fusion Filter . 30
4.3 Particle-Point Mass Fusion Filter Algorithm 30

5 Kalman Filters 33
5.1 Linear System . 33
5.2 Kalman Filter Algorithm . 33
5.3 Kalman Filter Based Variants for Nonlinear Systems 34
5.4 Extended Kalman Filter . 35
5.5 Unscented Kalman Filter . 36

6 Simulation Setup 38

1

6.1 Systems Used for Simulations . 39
6.1.1 First System Used for Simulations 39
6.1.2 Second System Used for Simulations 40
6.1.3 Third System Used for Simulations 40

7 Simulation Results 42
7.1 Results of Simulation with the First System 42
7.2 Results of Simulations with the Second System 45
7.3 Results of Simulations with the Third System 47

7.3.1 First Simulation Using the Third System 48
7.3.2 Second Simulation Using the Third System 49
7.3.3 Final filter comparison . 50

8 Conclusion 51

2

List of Figures

2.1 Illustration of the coverage of the one-dimensional state space by PMF
grid. 10

2.2 Comparison of approaches to grid redesign 16

3.1 Illustration of the coverage of the one-dimensional state space by par-
ticles . 17

4.1 Comparison of state space coverage by supports (grid points and par-
ticles) for different filters. 28

6.1 Terrain map used in the third system 41

7.1 Simulation result - RMSE during the trajectory of the first system . . 43
7.2 Simulation result - SD during the trajectory of the first system 43
7.3 Simulation result - Covariance during the trajectory of the first system 44
7.4 Simulation result - Inaccuracy during the trajectory of the first system 44
7.5 Example of the trajectory used in the simulation with the second system 45
7.6 Simulation result - RMSE during the trajectory of the second system 46
7.7 Simulation result - SD during the trajectory of the second system . . 46
7.8 Example of the trajectory used in the simulation with the third system 47
7.9 Simulation result - RMSE during the trajectory of the third system . 48
7.10 Simulation result - SD during the trajectory of the third system . . . 48
7.11 Simulation result - RMSE during the trajectory of the third system . 49
7.12 Simulation result - SD during the trajectory of the third system . . . 50

3

Used Symbols and Abbreviations

N(x̄, P) normal distribution with mean x̄ and covariance P .

EKF extended Kalman filter.

KF Kalman filter.

PDF probability density function.

PF particle filter.

PMF point mass filter.

PPFF particle-point mass fusion filter.

UKF unscented Kalman filter.

4

1. Introduction

Accurate, reliable and robust navigation is key to the safe operation of both civil
and military aviation. Knowing the exact state of the aircraft is crucial especially
at low altitudes, i.e. during take-off and landing, to ensure sufficient clearance
from obstacles and terrain. In addition to a reliable estimate of the aircraft state,
the navigation system is required to provide information on the accuracy of this
estimate.

The simplest method of navigation is the use of a global navigation satellite
system (GNSS), such as the Global Positioning System (GPS). GPS provides a
continuous estimate of position and speed anywhere on the Earth with high accuracy
and low cost. Due to weak signal strength, GPS is vulnerable to both accidental and
deliberate jamming (blocking or interfering with GPS signals) and spoofing (fooling
the receiver with a false signal, which can lead to the receiver providing a false
location estimate) [19].

Other important method of navigation used in aviation is radio navigation. Radio
navigation uses one or more radio beacons whose position is known. These beacons
transmit electromagnetic signals which can be used to determine the position of the
aircraft relative to these beacons. The disadvantage is that these signals can also
be jammed, or spoofed [2].

Another possible approach to navigation is to use a known initial state(position,
orientation and velocity) and track the current position and orientation using con-
tinuous series of measurements from accelerometers and gyroscopes. This approach
is used in Inertial navigation. An inertial navigation system abbreviated as INS
is used to continuously calculate the current position along the trajectory by inte-
grating signals from accelerometers and gyroscopes. Inertial navigation is used in a
wide range of applications including the navigation of aircraft, tactical and strategic
missiles, spacecraft, submarines and ships [20].

Inertial navigation is theoretically independent of external inputs. However,
unfortunately, dead reckoning error accumulates over time. INS therefore require
continuous alignment. The usual approach is therefore to use a combination of
dead-reckoning navigation using INS and fix position updates. A simple solution
is to use GPS for this alignment, but this results in a loss of independence from
external inputs. If we want to avoid the use of external inputs for INS alignment, it
is possible to use TAN(Terrain Aided Navigation) [20, 19].

1.1 Terrain Aided Navigation

The main idea of TAN is to measure the height of the terrain beneath the aircraft
and determine the position of the aircraft by comparing it to a known reference
map. The altitude of the terrain can be determined by comparing the altitude
of the aircraft over mean sea-level measured with a barometric altimeter with the
distance of the aircraft from the terrain below, which is measured with a radar
altimeter. In order to obtain an estimate of the aircraft position using TAN, it is
necessary to solve a nonlinear recursive estimation problem. Kalman filter-based

5

methods(local filters) for solving the nonlinear recursive estimation problem have
proven to be an unsuitable solution in many cases due to the strong nonlinearity of
the measurements. Global filters based on Bayesian methods/approach have been
successfully tested for various TAN cases [1, 2].

1.2 System Description

In the theoretical part of this thesis the following discrete time state-space model of
a stochastic dynamic system with additive noises was considered

xk+1 = fk(xk, uk) + wk, k = 1, 2, · · · (1.1)

zk = hk(xk) + vk, k = 1, 2, · · · (1.2)

The measurement and input vectors zk ∈ Rnz , uk ∈ Rnu are assumed to be
known and the state vector xk ∈ Rnx is assumed to be unknown. The state and
measurement functions fk : Rnx×nu → Rnx , hk : Rnx → Rnz are considered as known.
The actual realizations of the noises vk and wk are unknown, but their probability
density functions p(vk) and p(wk) are assumed to be known and independent of
the probability density function (hereafter abbreviated as PDF) of the initial state
p(x0|Z−1) [10].

pvk(x) describes the probability density value corresponding to the measurement
noise evaluated at point x. If the additive measurement noise is determined by a
normal distribution with zero mean and covariance Rk, then pvk(x) = N(x,Rk). In
a similar way, pwk

(x) describes the probability density value corresponding to the
system noise evaluated at point x. If the additive system noise is determined by a
normal distribution with zero mean and covariance Qk, then pwk

(x) = N(x,Qk).

1.3 Bayesian Methods

The goal of the state estimation algorithm is to estimate the state xk at time k
based on all available measurements Zk = (z)k0 up to time k. For this, the well-
known Bayes’ theorem will be used:

p(A|B) =
p(A,B)

p(B)
=

p(B|A)p(A)
p(B)

(1.3)

The probabilities should also be conditioned on the known input uk, but for the
clarity of the text this conditionality will not be stated. In TAN, the state can be
the position and velocity of the moving aircraft.

1.3.1 Derivation of Equations

The PDF p(xk|Zk) can be determined using Bayes’ theorem as:

p(xk|Zk) =
p(zk|xk)p(xk|Zk−1)

p(zk|Zk−1)
(1.4)

The individual terms of Bayes’ theorem can be referred to as:

posterior =
likelihood · prior

marginal likelihood
(1.5)

6

• posterior = p(xk|Zk) is a conditional probability distribution expressing what
states are likely after incorporating the current measurement based on prior
knowledge of the state.

• likelihood = p(zk|xk) describes the probability that the actual measurement
(realization) was measured under the condition that the system is in the state
xk. Likelihood is based on the measurement equation (1.2)

• prior = p(xk|Zk−1) describes previous knowledge of the state xk. based on past
measurements - prediction.

• marginal likelihood = p(zk|Zk−1) corresponds to the probability of generating
a received measurement from the prior.

By combining the system model with the equation (1.4), the following equations can
be derived

p(xk|Zk) = α−1
k pvk(zk − h(xk))p(xk|Zk−1) (1.6)

αk =

∫
pvk(zk − h(xk))p(xk|Zk−1)dxk (1.7)

Where αk is the normalisation constant
The PDF p(xk|Zk−1) is a one-step prediction that can be determined using the

Chapman-Kolmogorov equation:

p(xk|Zk−1) =

∫
p(xk|xk−1)p(xk−1|Zk−1)dxk−1 (1.8)

Where p(xk|xk−1) can be determined using known state update equation (1.1)
The density update between two moments can be derived by combining the

system model with the equation (1.8). The resulting density update equations are

p(xk+1|Zk) =

∫
pwk

(xk+1 − fk(xk, uk))p(xk|Zk)dxk (1.9)

These equations determine the recursive solution for calculating the state esti-
mate.

After initialization p(x0|Z−1) = p(x0) the conditional probability density can be
calculated by recursion:

• 1. step: Filtering/Measurement update

p(xk|Zk) = α−1
k pvk(zk − h(xk))p(xk|Zk−1) (1.10)

Normalisation constant αk is calculated as:

αk =

∫
pvk(zk − h(xk))p(xk|Zk−1)dxk (1.11)

• 2. step :Prediction/Time update

p(xk+1|Zk) =

∫
pwk

(xk+1 − fk(xk, uk))p(xk|Zk)dxk (1.12)

7

Bayesian recursive relations provide estimates in the form of probability densities.
If we want an estimate in the form of a point estimate and covariance it can be
easily calculated. Point estimate at time k is determined as:

x̂k =

∫
xkp(xk|Zk)dxk (1.13)

If we assume unbiased estimates, the covariance at time k can be determined:

Ck =

∫
(xk − x̂k)(xk − x̂k)

Tp(xk|Zk)dxk (1.14)

This algorithm requires solving several integrals for each time k. For a general non-
linear system there is no analytical solution of integrals in equations (1.11) ,(1.12),
(1.13) and (1.14). There are various ways to approximate the probabilities so that
these integrals can be solved [2].

If the system is linear with white Gaussian noises, then the Kalman filter is the
optimal estimator.

The Kalman filter can only be used for a linear system. For a non-linear sys-
tem it is necessary to use one of the local filters based on the Kalman filter. The
performance of local filters based on the Kalman filter - the extended Kalman fil-
ter and the unscented Kalman filter, etc. is limited because they work only with
the first two moments of the conditional PDF - the conditional mean and covari-
ance, which makes them computationally inexpensive. The extended Kalman filter
uses a local approximation of nonlinear functions, which can easily lead to diver-
gence. This makes it questionable to how wide range of systems it can be applied
to. The unscented Kalman filter can be applied to a wide range of systems if the
probability density is reasonable - it can be reasonably represented by the first two
moments[18, 17, 14].

Global filters, in contrast, make no assumptions about the form of the probabil-
ity density and approximate the conditional probability density, which significantly
reduces the probability of divergence at the cost of higher computational demands.
In the case of strongly nonlinear systems, the estimation capability of local filters
is severely limited, while global filters are able to provide a reasonable estimate
[15, 2, 10].

1.3.2 Meaning of the Word Filter

The goal of a filter is usually to let something pass and do not let something else
pass. For example, a water filter is designed to allow water to pass through but not
microbiological contamination, unwanted metals (iron manganese), etc. A low-pass
filter will allow a low-frequency signal that contains a required information to pass
through and will not allow high-frequency noise to pass through. The filters that
will be discussed later - point mass filter, particle filter, Kalman filter, etc. work
with information input that contains noise, uncertainty and may contain erroneous
measurements. These filters try to separate(let through) useful information from
noise/errors(which they do not let through) from this information input and provide
the correct output/estimate containing the least amount of uncertainty [14].

8

1.3.3 Motivation and Aim of the Thesis

The theory and application of the point mass filter and the particle filter are often
discussed in the literature. Both of these filters have advantages and disadvantages,
so neither can be considered generally better than the other. Unfortunately, the
research and development of each of these filters is often done by different groups, so
comparisons between them are rarely made. There are even papers in the literature
discussing filters that combine the point mass filter and the particle filter. The goal
of combining these filters is to create a filter that has the strengths of both of these
filters.

The main objective of this thesis is to investigate and compare different ap-
proaches to approximate probabilities in the problem of global state estimation using
a finite number of grid points/particles. In this thesis, the particle filter (stochastic
approach), the point mass filter (deterministic approach) and their combination will
be presented and analyzed. Different grid choices will be explored for the point mass
filter. Finally, Monte Carlo simulations will be performed to compare the different
filter variants and the results will be commented.

9

2. Point-Mass Filter

The main idea of the point-mass filter (hereafter abbreviated as PMF) is to use a
probability density approximation in the form of a piece-wise constant probability
density further called point-mass density - PMD.

The main idea of the point mass-filter (hereafter abbreviated as PMF) is to
approximate conditional probability densities in Bayesian recursive relations by a
piece-wise constant probability density, which is called the point mass density ab-
breviated as PMD. The probability density is evaluated in N grid points (ξ)Ni=1, and
is assumed to be constant around a grid point. The neighborhood of all points have
usually the same size and these neighborhoods do not overlap but fully covers the
whole considered part of the state space.

-4 -3 -2 -1 0 1 2 3 4

x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
D

F

PMF

true PDF

grid points

PMD

Figure 2.1: Illustration of the coverage of the one-dimensional state space by PMF
grid.

In dissertation of Bergman [2] several approaches that can be used to obtain the
point-mass algorithm are mentioned, for example:

• Discretize the state space and restrict the considered values of xk ∈ Rnx to a
finite number of levels

• Perform numerical approximation of integrals by Riemann sums over finite in-
tervals

• Divide the state space into regions and express the probability that the current
state is in that region.

10

The algorithms obtained by the different approaches are almost identical, therefore
only one general PMF algorithm will be considered.

The resulting Point-Mass Approximation of probability densities can be de-
scribed as:[10]

p(xk|Zm) ≈ p̂(xk|Zm; ξk) =
N∑
i=1

Pk|m(ξ
(i)
k)S{xk; ξ

(i)
k ; ∆k}. (2.1)

This expression is the predictive PDF approximation for m = k−1 and the filtering
PDF approximation for m = k. The individual terms in (2.1) mean:

• ξ
(i)
k is the ith grid point at time k,

• Pk|m(ξ
(i)
k) = ckP̃k|m(ξ

(i)
k), where P̃k|m(ξ

(i)) denotes p(ξ
(i)
k |Zm) - value of the condi-

tional PDF evaluated at ith grid point at time k, ck = δk
∑N

i=1 P̃k|m(ξ
(i)
k) denotes

normalization constant, where δk is a volume of neighbourhood of a each grid
points, if the neighbourhood volumes of all points are equal. If the neighborhood
volumes of the grid points are not the same for all points, the formula must be
adjusted. The volume of the neighborhood of a point becomes dependent on
the individual grid point in the case of unequal neighborhoods of individual grid
points and would be a function of the point δk(ξ

(i)
k),

• ∆k =
[
∆k(1) ∆k(2) · · · ∆k(nx),

]
denotes the hyperrectangular neighbor-

hood of the grid point ξ
(i)
k in which the PDF is considered constant.

• S{xk; ξ
(i)
k ; ∆k} denotes the selection function that is defined:

S{xk; ξ
(i)
k ; ∆k} =

{
1 if xk(d) ∈ [ξk(d)− 0.5∆k(d), ξk(d) + 0.5∆k(d)] ∀ d = 1 . . . nx

0 otherwise

(2.2)
where xk(d) denotes d

th element of the vectors xk(d). That is, the selection function

is equal to one if xk is in the neighborhood of the grid point ξ
(i)
k .

• As a result: ∫
S{xk; ξ

(i)
k }dxk = ∆k(1)× · · · ×∆k(nx) = δk (2.3)

By combining the Bayesian relations(1.10) ,(1.11), (1.12) ,(1.14) and (1.13)) with the
point-mass approximation (2.1) of the probability density, the following equations
can be obtained [2, 10]:

αk =
N∑
i=1

p(zk|xk = ξ
(i)
k)Pk|k−1(ξ

(i)
k)δk(ξ

(i)
k) (2.4)

=
N∑
i=1

pvk(zk − h(ξ
(i)
k))Pk|k−1(ξ

(i)
k)δk(ξ

(i)
k)

Pk|k(ξ
(i)
k) = α−1

k p(zk|xk = ξ
(i)
k)Pk|k−1(ξ

(i)
k) (2.5)

= α−1
k pvk(zk − h(ξ

(i)
k))Pk|k−1(ξ

(i)
k)

11

Point estimate at time k is determined as:

x̂k =
N∑
i=1

ξ
(i)
k Pk|k(ξ

(i)
k)δk(ξ

(i)
k) (2.6)

And if we assume unbiased estimates, the covariance at time k can be determined:

Ck =
N∑
i=1

(ξ
(i)
k − x̂k)(ξ

(i)
k − x̂k)

TPk|k(ξ
(i)
k)δk(ξ

(i)
k) (2.7)

If we consider that the grid points at time k+1 may be different from the grid points
at time k, we need to calculate the PDF at each point of the new grid separately.
This step is very time-consuming, because the effect of the PDF of each point of the
old grid on the PDF of each point of the new grid must be calculated. For each j
grid point at time k + 1 it is necessary to perform the calculation:

Pk+1|k(ξ
(j)
k+1) =

N∑
i=1

p(ξ
(j)
k+1|xk = ξ

(i)
k)Pk|k(ξ

(i)
k)δk(ξ

(i)
k) (2.8)

=
N∑
i=1

pwk
(ξ

(j)
k+1 − fk(ξ

(i)
k , uk))Pk|k(ξ

(i)
k)δk(ξ

(i)
k)

2.1 Computational Complexity of the Point Mass

Filter

The most computationally demanding part of the PMF is usually recalculating the
PDF values between the old and new grid points after a new grid has been con-
structed. The computational complexity of this process increases as a quadratic
function of the number of grid points. Possible ways of solving this problem are to use
Rao-Blackkwelization or parallel computing, see subsection 3.2.4, or to use a com-
putationally efficient implementation of the predictive step of the PMF algorithm-
convolution. Due to the quadratic growth in computational complexity, one step of
the PMF algorithm with N grid points, for a reasonably large N , takes significantly
longer to compute than one step of the particle filter algorithm with N particles ,
because the standard version of particle filter does not calculate all particles against
all particles.

2.2 General Point Mass Filter Algorithm

The general PMF algorithm consists of several steps. The first/null step is to initial-
ize the grid based on the initial state estimate and its covariance. This is followed by
iterative steps: a measurement update - filtering step, see 1. step subsection 1.3.1,
and a predictive step consisting of grid adaptation and calculation of predictive
PDFs at the new grid points, see 2. step subsection 1.3.1. The presented algorithm
will be based on the assumption that a new measurement is available for each time
instant k - no multi-step prediction is considered.

12

2.2.1 Basic PMF Algorithm Steps

1. Initialization of the grid based on the known initial PDF p(x0|Z−1) .

p̂(x0|Z−1; ξk) =
N∑
i=1

P1|0(ξ
(i)
1)S{x1; ξ

(i)
1 ; ∆1} (2.9)

A grid is created covering the part of the state space where the initial PDF has
significant values and conditional PDF is calculated at all grid points based on
known initial PDF.

Set k = 1

2. Recalculation of the conditional PDF at all grid points based on newly
available measurements

p̂(xk|Zk; ξk) =
N∑
i=1

Pk|k(ξ
(i)
k)S{xk; ξ

(i)
k ; ∆k} (2.10)

αk =
N∑
i=1

p(zk|xk = ξ
(i)
k)Pk|k−1(ξ

(i)
k)δk(ξ

(i)
k) (2.11)

=
N∑
i=1

pvk(zk − h(ξ
(i)
k))Pk|k−1(ξ

(i)
k)δk(ξ

(i)
k)

Pk|k(ξ
(i)
k) = α−1

k p(zk|xk = ξ
(i)
k)Pk|k−1(ξ

(i)
k) (2.12)

= α−1
k pvk(zk − h(ξ

(i)
k))Pk|k−1(ξ

(i)
k)

Based on the recalculated values of the conditional PDF, an estimate of the
current state and its covariance is calculated

x̂k =
N∑
i=1

Pk|k(ξ
(i)
k)S{xk; ξ

(i)
k ; ∆k} =

N∑
i=1

ξ
(i)
k Pk|k(ξ

(i)
k)δk(ξ

(i)
k) (2.13)

Ck =
N∑
i=1

(ξ
(i)
k − x̂k)(ξ

(i)
k − x̂k)

TPk|k(ξ
(i)
k)δk(ξ

(i)
k) (2.14)

3. Grid adaptation is based on the state equation and filtering PMD p̂(xk|Zk; ξk).

A new grid is calculated whose points ξ
(j)
k+1 cover the expected state at time k+1.

Different approaches to grid adaptation are described in the section 2.3.

4. Calculation of the predictive PDF at the new grid points based on the old
grid.

p̂(xk + 1|Zm; ξk) =
N∑
i=1

Pk+1|m(ξ
(i)
k+1)S{xk+1; ξ

(j)
k+1; ∆k+1} (2.15)

13

P̃k+1|k(ξ
(j)
k+1) =

N∑
i=1

p(ξ
(j)
k+1|xk = ξ

(i)
k)Pk|k(ξ

(i)
k)δk(ξ

(i)
k) (2.16)

=
N∑
i=1

pwk
(ξ

(j)
k+1 − fk(ξ

(i)
k , uk))Pk|k(ξ

(i)
k)δk(ξ

(i)
k)

P̃k+1|k(ξ
(j)
k+1) are normalized similarly to step 2:

Pk+1|k(ξ
(j)
k+1) =

P̃k+1|k(ξ
(j)
k+1)∑N

i=1 P̃k+1|k(ξ
(j)
k+1)δk+1(ξ

(j)
k+1)

(2.17)

5. Awaiting the arrival of a new measurement and then return to step 2.

This algorithm is based on [2, 10].

2.3 Grid Adaptation/Redesign

The choice of grid points is a critical part of the PMF algorithm. The grid must
cover a sufficiently large region of the state space to contain a significant portion
of the conditional PDF, and it is also necessary that this space is covered densely
enough. In contrast, the grid is usually required to have no more than a certain
number of points, due to the computational complexity and the requirement that the
incoming measurement must be processed before a new one arrives. One approach
[3] that seems reasonable is to calculate/attempt to estimate the first two predictive
moments, the mean and covariance, and use them to determine the area to be covered
by the grid. The grid should cover the area around the predicted mean and its size
should depend on the predicted covariance. It seems reasonable to cover the area
±lσ, (σ is the Standard Deviation, which corresponds to the predicted (co)variance)
around the predicted mean, and the value of l can be chosen depending on how
confident we want to be that the grid will cover the actual position. If the computed
values of the mean and covariance were accurate and the predictive PDF had a
close to normal distribution, then the ±5σ region should cover the area that should
cover the actual position to more than 99.9999% [10]. The predictive covariance
and mean can be estimated by Kalman filter (if the state equation is linear) or
by unscented Kalman filter (if the state equation is nonlinear). The basic variant
is a hyperrectangular grid with uniformly distributed points. The disadvantage of
this approach is that the approximation of the real PDF by a piecewise continuous
function is not accurate and the error of this approximation depends on the steepness
of the approximated function. One would expect the real PDF to have significantly
more steepness around the mean value-that is, the approximation error would be
higher around the mean value. While the tail regions of the PDF will be much more
flat- we can expect smaller approximation errors. One possible solution proposed in
[10] is to use unevenly spaced points - it would make sense to make the grid denser
around the middle value and less dense at the tail of the PDF.

If we compare the two approaches to grid adaptation (assuming that the number
of grid points depends only on the available computing power and the required
computation time - it is not user-defined) :

14

• Normal approach to grid formation - The region to be covered by the grid
is specified - the region ±l1σ around the predicted mean - the value of σ is tied to
the predicted covariance, which together with the predicted mean is determined
by a fast local filter from the filter estimates at the previous time step. This
region is then covered by equdistantly spaced grid points. The only user-defined
parameter is the constant l1, which determines how large an area should be
covered.

• Density specific grid design The region to be covered by the grid is specified
- the region ±m1σ around the predicted mean. Subsequently, a central subregion
is identified in this region-this region should cover the vicinity of the mean value
where a larger slope/change in PDF can be expected. This central subregion is
identified in the vicinity of the mean value - ±m2σ. The rest of the region covered
by the grid that is not covered by the central subregion is the tail subregion. Next,
the number of points that will cover each of the subregions must be determined.
This number is determined from the number of available points using the constant
m3 - the central region is covered by m3N points, where N is the number of
available points and the tail subregion is covered by (1 − m3)N points. Each
of these subregions is covered by equally spaced points(within the region). The
aggregated grid is covered by unevenly spaced points. This has to be taken into
consideration in all steps of the PMF algorithm - the neighborhood of point δk
is no longer constant, but is a function of the individual points, which makes the
neighborhood size of point δk a function of the individual points. The number
of user-defined parameters has increased to three - the contants m1, m2 and m3.

These different approaches to grid design are described in [10, 11].

15

PDF approximation using different filters

-6 -4 -2 0 2 4 6

x

0

0.1

0.2

0.3

0.4

P
D

F

Density specific PMF

true PDF

grid points

PMD

-6 -4 -2 0 2 4 6

x

-0.05

0

0.05

A
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r

Density specific PMF

-6 -4 -2 0 2 4 6

x

0

0.1

0.2

0.3

0.4

P
D

F

Normal PMF
true PDF

grid points

PMD

-6 -4 -2 0 2 4 6

x

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

A
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r

Normal PMF

Figure 2.2: Comparison of approaches to grid redesign

In this case, if we compare the integral of the absolute approximation error,
we find that the density specific grid design has a smaller overall approximation
error. The approximation error of the density specific grid design is smaller in
the neighborhood of the mean and larger in the tails, due to the fact that the
neighborhood of the mean is covered more densely by grid points at the cost of
worse coverage of the tails compared to the normal grid redesign approach.

16

3. Particle Filter

The main idea of the particle filter (hereafter abbreviated as PF) is to approximate
the PDF by the sum of the weighted samples/particles. The approximation of the
filtering PDF is determined by a set of Ns samples of state xk, where each sample
represents a possible realization of the state sequence and by the weights assigned
to each sample [5, 16]. The empirical density used by the PF is:

p(xk|Zk) ≈
Ns∑
i=1

w
(i)
k (x

(i)
k)δdir(xk − x

(i)
k). (3.1)

where

• The individual samples at time k are denoted as: x
(i)
k and its corresponding

weight as: w
(i)
k (x

(i)
k)

• Sample weights represent the relative importance(
∑Ns

i=1 w
(i)
k (x

(i)
k) = 1) of in-

dividual samples - samples with high weights should be closer to the real state
than samples with low weights.

• The Dirac delta function δdir(µ) is equal to zero everywhere except the point µ
and its integral is equal to one.

• Unlike in the PMF, where the probability density is approximated by a piece-wise
continuous probability density that covers a significant part of the state space, in
the PF the probability density is approximated by the sum of the particle weights
multiplied by the Dirac pulse - the approximation of the probability density is
not piece-wise continuous.

-6 -4 -2 0 2 4 6

x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
D

F

PF

true PDF

PF particles

Figure 3.1: Illustration of the coverage of the one-dimensional state space by parti-
cles

17

The ideal option would be to take a sufficient number of samples from the poste-
rior PDF, then assign relative weights to them and obtain an approximation of the
PDF based on these weighted particles. The obvious problem is the fact that the
posterior PDF is unknown, thus it is impossible to obtain samples from it. There-
fore, it is necessary to sample from some other distribution. This other/alternate
distribution is usually called the importance density or proposal density and will
be denoted as q. The only requirement for a function to be used as an importance
density is that it must be positive where the posterior is positive. The weights make
it possible to use samples from one distribution to reasonably approximate another
distribution, as long as the distributions cover the same space and the weights are
chosen accordingly [5].

Now the question is how to compute the weights accordingly without knowledge
of the posterior but with knowledge of the importance density. It has been proven
that the correct way to calculate the weights is [5, 16] :

w
(i)
k (x

(i)
k) ∝ p(x

(i)
0:k|Zk)

q(x
(i)
0:k|Zk)

(3.2)

where ∝ means proportional to. This equation can be modified into a form for
recursive filtering:

w
(i)
k (x

(i)
k) ∝ w

(i)
k−1(x

(i)
k−1)

p(zk|x(i)
k)p(x

(i)
k |x(i)

k−1)

q((x
(i)
k |x(i)

k−1, zk)
(3.3)

where w
(i)
k−1(x

(i)
k−1) denotes the weight of the ith sample at time k − 1.

The most common choice of importance density is p(x
(i)
k |x(i)

k−1). For this choice,
the relation (3.3) simplifies to:

w
(i)
k (x

(i)
k) ∝ w

(i)
k−1(x

(i)
k−1)p(zk|x

(i)
k) (3.4)

3.1 Basic PF algorithm

The basic PF algorithm [5] (without resampling) can be summarized as follows:

1. Initialization of particles and their weights based on the known initial PDF
p(x0|Z−1) . Ns samples are selected from the initial PDF. The weights are ini-
tialized to the identical value The weights are then normalized:

w
(i)
0 (x

(i)
1) = 1/Ns ∀ i = 1 . . . Ns (3.5)

Set k = 1

2. Weight assignment - filtering step is based on the equation (3.3). For

the choice of the importance density as p(x
(i)
k |x(i)

k−1) and when the additive noise
of the vk measurement is considered as vk ∼ N(0, R), the temporary particle
weights are determined as:

w̃
(i)
k (x

(i)
k) = w

(i)
k−1(x

(i)
k)p(zk|x(i)

k) (3.6)

18

where p(zk|x(i)
k) is calculated as:

p(zk|x(i)
k) = N(zk − hk(x

(i)
k), R) (3.7)

Once all the temporary weights have been calculated, they must be normalised:

w
(i)
k (x

(i)
k) =

w̃
(i)
k (x

(i)
k)∑Ns

i=1 w̃
(i)
k (x

(i)
k)

(3.8)

And based on the recalculated values of the conditional PDF(weights), an esti-
mate of the current state and its covariance is calculated:

x̂k =
Ns∑
i=1

x
(i)
k w

(i)
k (x

(i)
k) (3.9)

Ck =

∑Ns
i=1w

(i)
k (x

(i)
k)(x

(i)
k − x̂k)(x

(i)
k − x̂k)

T

1−
∑Ns

i=1w
(i)
k (x

(i)
k)2

(3.10)

3. Particle Propagation - prediction step Ns samples are drawn from the im-
portance density q(x

(i)
k+1|x

(i)
k , zk). For the choice of the importance density as

p(x
(i)
k+1|x

(i)
k) and when the additive state noise wk is considered as wk ∼ N(0, Q),

the individual particles are drawn from a normal distribution with mean corre-
sponding to the expected particle position at time k + 1 based on the position
at time k and input uk and with covariance Q:

x
(i)
k+1 ∼ N(fk(x

(i)
k , uk), Q) (3.11)

The weights of these new/propagated particles are the same as those of the old
particles:

w
(i)
k (x

(i)
k+1) = w

(i)
k (x

(i)
k) ∀ i = 1 . . . Ns (3.12)

4. k = k + 1 and return to step 2

3.2 Implementation Challenges Associated with

the Design and Implementation of PF

The paper [5] proved to be a good single entry point into particle filters. In this
article, five challenges associated with the design and implementation of a particle
filter were presented and their solutions were reviewed and discussed.

1. Degeneracy Problem

2. Sample Impoverishment

3. Particle Filter Divergence

4. Selecting the Importance Density

5. Real Time Execution

19

3.2.1 Degeneracy Problem

When using the basic PF algorithm (without resampling), after several iterations
the weight of one particle is close to one, while the weights of the other particles are
negligible. This problem cannot be avoided when using the basic PF algorithm. As
a result, the contribution of all but one part is very small and the computational
effort invested in them is almost irrelevant for state estimation. The estimation is
based on a single particle that represents only one point of the state space. Thus,
we lose the ability to represent/approximate the PDF. The state estimation will be
poor and the PF will diverge. Since the main reason for introducing PF was to
represent probabilities using a finite number of particles, a change to the basic PF
algorithm is necessary.

The solution to this problem is the use of resampling. After the third step -
Weight assignment, the additional step will be added. In this step, a new set of
particles is selected based on the current set of particles and their weights. The
number of particles usually remains constant. New particles are usually selected
stochastically from the current particles, with the probability of selecting a particle
corresponding to its weight - particles with larger weights are more likely to be
selected for the new particle set. The set of new particles is likely to contain several
copies of particles with large weights, while particles with small weights will cease
to exist. There are many different ways of how and when to perform resampling.
Some of them will be presented in the section 3.3.

3.2.2 Sample Impoverishment

During the resampling step, which is necessary to avoid the degeneracy problem,
multiple copies of particles with large weights are created. If we consider importance
density as p(x

(i)
k |x(i)

k−1) and additive additive state noise wk as wk ∼ N(0, Q), then
particle propagation consists of a deterministic part - converting the state of the
particle at time k − 1 using the state function fk and the known input uk to the
mean value of the expected state of the particle at time k, and a stochastic part -
drawing a sample. x

(i)
k ∼ N(fk(x

(i)
k−1, uk), Q) Identical particles (copies created dur-

ing resampling) are converted into different particles during the particle propagation
step, due to state noise wk. If the state noise wk is too small, then these particles
will be converted to almost identical particles - the converted particles will be close
to each other in the state space. In a few steps, the particles will accumulate at
one point in the state space. These particles will again represent only one point of
the PDF, which is not desirable. If the state noise wk is large enough, then nothing
needs to be done. Otherwise, the algorithm must be modified. One possible solution
is roughening, where the state noise is artificially increased. One possibility is, for
example, to add artificial noise after resampling, or to modify the process model
used in particle propagation.

3.2.3 Particle Filter Divergence

When designing a particle filter for a real-world problem, it is always necessary to
consider the risk of divergence. If the PF divergence occurs, the filter is unable
to provide correct estimates. Monitoring the PF divergence should be part of the

20

particle filter deployed on real problems. If the PF divergence occurs, the easiest
solution is to reinitialize the PF. The PF divergence can occur due to various reasons:

• If the process model does not cover all possible state transitions, the actual state
of the system may be in a region into which no particles are propagated. In this
case, the particles are not able to accurately represent the real state.

• If the modeled measurement noise is significantly smaller than the real mea-
surement noise, then very small weights may be assigned to particles that may
represent the real state. If too little measurement noise is considered, then based
on the measurements we believe that the real state is very likely to be in a
significantly smaller neighborhood of the expected state (the state that would
correspond to the measurement with zero additive measurement noise) than it
may actually be. As a result, a particle very close to the real state can be as-
signed a small weight. The assignment of small weights results in the loss of
most of these particles during resampling, and consequent under-coverage of the
part of the state space where the real state may be located.

• The use of measurements affected by unmodeled noise error e.g. by unwanted
radar reflections, jamming, etc.

3.2.4 Real Time Execution and Accuracy

The number of particles required to cover the state space increases exponentially
with the dimension of the state space [5] . One way to deal with this curse of dimen-
sionality is to use Rao-Blackwellization. In Rao-Blackwellization, the state is split
into two sub-states, with one of the sub-states depending only on the measurement
linearly and the other on the measurement non-linearly and potentially the other
sub-state. The idea is that the Kalman filter can be used to solve one of these sub-
states, which makes it necessary to solve a lower dimensional estimation problem
using PF, resulting in lower computational cost.

Another important option is the use of parallel computing to reduce computation
time. For example, it is possible to divide the state space into disjoint subspaces
and perform calculations in parallel in each subspace separately [5, 8].

Interesting option is to use adaptive particle filters. Their main idea is to main-
tain a certain minimum quality of estimation, using the minimum number of particles
required [16].

One interesting approach to adapt the PF particle number is to use the Kullback-
Leibler distance. The Kullback-Leibler (KL) distance determines the distance/dis-
crapancy between two PDFs p1(x) and p2(x). Therefore, it is possible to measure
the difference between the approximated filtering PDF and the sample based ap-
proximation in the form of PF. The Kullback-Leibler (KL) distance is given by:

D(p1, p2) =

∫
p1(x) log

p1(x)

p2(x)
dx (3.13)

This equation can be rewritten as the difference of two components:

D(p1, p2) =

∫
p1(x) log

1

p2(x)
dx︸ ︷︷ ︸

K(p1, p2)

−
∫

p1(x) log
1

p1(x)
dx︸ ︷︷ ︸

H(p1)

(3.14)

21

where K(p1, p2) is inaccuracy and H(p1) is a Shannon differential entropy (SDE).
Inaccuracy is given by the difference between the PDFs p1(x) and p2(x). The SDE
is determined by the entropy measure p1(x). This relation for calculating the KL
distance using two components has a convenient form for comparing the emperical
PDF, which is denoted as rN(x), (the PDF given by the weights and PF particles)
with the real filtering PDF. If the emperical PDF rN(x) is substituted for p1(x) and
the filtering denisty p(x) is substituted for p2(x), the component H(p1) drops out of
the relation. The resulting relationship for calculating the innacurancy for PF will
be:

1
Ns

∑Ns
i=1 w

(i)
k (x

(i)
k)log 1

p(x
(i)
k)

1
Ns

∑Ns
i=1w

(i)
k (x

(i)
k)

(3.15)

The innacurancy for PMF can be calculated in a similar way:

Pk|k(ξ
(i)
k) δk log

1

p(ξ
(i)
k)

(3.16)

Since both filters approximate the real probability density with the number of
particles/grid points N limitingly close to infinity N → ∞ exactly, the following
applies:

lim
N→∞

K(rN , p) = K(p, p) = H(p) (3.17)

It is therefore possible to measure the difference between the SDE H(p) and the
calculated inaccurancy. Inaccurancy is a random variable, so it is possible to let
the user choose the probability that the difference between SDE and inaccurancy is
within certain limits.

If we take the value of innacurancy as the quality of the approximation, then
it is possible to measure the effect of the number of particles on the quality of the
approximation PDF. One can assume that from a certain number of particles that
sufficiently covers the state space, the value of innacurancy will decrease very slowly
and it is clear that it will not fall below the threshold H(p). In testing/simulations,
one must keep in mind that innacurancy depends on the particles, so the PF can
have different values of innacurancy for the same trajectory due to stochastic nature
of the particle propagation step.[5, 16]

3.3 Resampling

The degeneracy problem makes resampling a necessary part of any PF. The main
requirement for resampling is that the new set of particles should contain particles
that are a good representation of the part of the state space where the real state
is likely to be located. Typically, new particles are selected from old particles, and
we require that particles with larger weights have a better chance of being selected
for the new set of particles, potentially in multiple copies. The number of the new
particles may or may not be the same as the number of the old particles. We have
two main questions / topics:

1. How to create a new set of particles - different resampling algorithms.

2. When resampling should take place - different resampling schemes.

After the resampling is complete, the weights of the new set of particles are in most
cases reset and set to: w

(i)
k (x

(i)
k) = 1/Ns ∀ i = 1 . . . Ns.

22

3.3.1 Resampling Algorithms

There is a large number of resampling algorithms. A thorough analysis and compar-
ison of all possible approaches and algorithms would be a topic for a whole thesis.
In [8], the following classification of resampling methods is proposed:

• Sequential implementation

– Single distribution sampling

– Compound-sampling

– Special strategies

• Parallel implementation

Despite the existence of a large number of resampling algorithms, most particle fil-
ters use one of four basic algorithms: multinomial, systematic, stratified, residual.
All these four algorithms fall into the group of single distribution sampling. Opin-
ions vary as to which of these four basic algorithms is best. In general, it cannot be
claimed that any of these algorithms is the best. It depends on which property of
the algorithm we take as the parameter on which to base the comparison, whether
computational complexity, standard deviation of the number of times each particle
is replicated, number of random numbers used and so on. The main idea of multino-
mial, systematic, stratified resampling algorithms is to create a vector containing a
cumulative sum of particle weights - at nth place in the vector is the sum of particle
weights from one to n. Then, a number from zero to one is repeatedly generated,
and the particle whose cumulative sum of weights is greater than the generated num-
ber and whose cumulative sum of weights is the smallest among the set of particles
that satisfy the condition that their cumulative sum of weights is greater than the
generated number is selected to be part of the set of new particles [8, 5].

From the resampling algorithms, the Stratified resampling algorithm was selected
for comparison of different filters.

3.3.2 Resampling Schemes

The simplest choice is to perform resampling at each time step of the algorithm. The
disadvantage is that particle diversity is reduced during resampling and resampling
has a notable computational cost. In [5], 3 resampling schemes are proposed:

1. Resampling at every time step

2. Every time step N̂eff = 1∑Ns
i=1(w

(i)
k (x

(i)
k))2

is calculated and if N̂eff < Ns/p1 resam-

pling is performed. The proposed value of threshold p1 is 4.

3. If 1/max(w
(i)
k (x

(i)
k)) < (1/p2), then resampling is performed. he proposed value

of threshold p2 is 0.005.

From these resampling schemes, the scheme 2 was selected for further testing and
algorithm comparison [5].

23

3.3.3 Resampling Implementation Pseudocode

In this subsection, the pseudocodes necessary to implement the stratified resampling
algorithm will be presented. For the stratified resampling algorithms, it is necessary
to compute the cumulative sum of the normalized weights. The basic algorithm for
computing the cumulative sum is [8]

Algorithm 1 Cumulative sum function

function cumsum({w(i)
k (x

(i)
k)}Ns

i=1)

Q
(1)
k = Q

(1)
k

for m = 2 : Ns do
Q

(m)
k = Q

(m−1)
k + w

(m)
k (x

(m)
k)

end for
return {Q(i)

k }Ns
i=1 ▷ Cumulative sum

end function

An algortim to compute stratified resampling, where N is the number of particles
in the new particle set - the goal is to sample N particles and ∼ U(0, l) means
randomly selected from a uniform distribution between 0 and l, without zero [8]

Algorithm 2 Stratified resampling function

function stratified resampling({w(i)
k (x

(i)
k)}Ns

i=1 , {x(i)
k }Ns

i=1,N)

{Q(i)
k }Ns

i=1 = cumsum({w(i)
k (x

(i)
k)}Ns

i=1)
m = 1
while n ≤ N do

u0 ∼ U(0, 1/N)
u = u0 + n/N

while Q
(m)
k < u do

m = m+ 1
end while
n = n+ 1
χn
k − xm

k ▷ χn
k is nth particle selected to new set of particles

end while
return {χj

k}Nj=1 ▷ New particles
end function

3.4 General Particle Filter Algorithm with Re-

sampling

This presented algorithm is based on [5, 16].

1. Initialization of particles and their weights based on the known initial PDF
p(x0|Z−1) . Ns samples are selected from the initial PDF. The weights are ini-
tialized to the identical value The weights are then normalized:

w
(i)
0 (x

(i)
1) = 1/Ns ∀ i = 1 . . . Ns (3.18)

24

Set k = 1

2. Weight assignment - filtering step is based on the equation (3.3). For

the choice of the importance density as p(x
(i)
k |x(i)

k−1) and when the additive noise
of the vk measurement is considered as vk ∼ N(0, R), the temporary particle
weights are determined as:

w̃
(i)
k (x

(i)
k) = w

(i)
k−1(x

(i)
k)p(zk|x(i)

k) (3.19)

Where p(zk|x(i)
k) is calculated as:

p(zk|x(i)
k) = N(zk − hk(x

(i)
k), R) (3.20)

Once all the temporary weights have been calculated, they must be normalised:

w
(i)
k (x

(i)
k) =

w̃
(i)
k (x

(i)
k)∑Ns

i=1 w̃
(i)
k (x

(i)
k)

(3.21)

And based on the recalculated values of the conditional PDF(weights), an esti-
mate of the current state and its covariance is calculated:

x̂k =
Ns∑
i=1

x
(i)
k w

(i)
k (x

(i)
k) (3.22)

Ck =

∑Ns
i=1w

(i)
k (x

(i)
k)(x

(i)
k − x̂k)(x

(i)
k − x̂k)

T

1−
∑Ns

i=1w
(i)
k (x

(i)
k)2

(3.23)

3. Test of Particle Degeneracy The value of N̂eff which indicates particle
degeneracy is calculated.

N̂eff =
1∑Ns

i=1(w
(i)
k (x

(i)
k))2

(3.24)

A threshold crossing test is performed. If the condition:

N̂eff < Ns/p1 (3.25)

is true, then resampling is performed. Else it is proceeded to the step 6.

4. Resampling Resampling is discussed in section 3.3. The Stratified resampling
algorithm that was used in the simulations is shown in subsection 3.3.3.

5. Particles weights reset

w
(i)
k (x

(i)
k) = 1/Ns ∀ i = 1 . . . Ns (3.26)

25

6. Prediction stepNs samples are drawn from the importance density q(x
(i)
k+1|x

(i)
k , zk).

For the choice of the importance density as p(x
(i)
k+1|x

(i)
k) and when the additive

state noise wk is considered as wk ∼ N(0, Q), the individual particles are drawn
from a normal distribution with mean corresponding to the expected particle
position at time k + 1 based on the position at time k and input uk and with
covariance Q:

x
(i)
k+1 ∼ N(fk(x

(i)
k , uk), Q) (3.27)

The weights of these new/propagated particles are the same as those of the old
particles:

w
(i)
k (x

(i)
k+1) = w

(i)
k (x

(i)
k) ∀ i = 1 . . . Ns (3.28)

7. k = k + 1 and return to step 2

26

4. Comparison and Fusion of PF
and PMF

Both previously discussed global filters used for state estimation of nonlinear sys-
tems have their advantages and drawbacks. If the estimated probability density was
spiky and did not have significant tails the system model was accurate and there
were no sudden disturbances or faulty measurements, then PF should provide bet-
ter estimates than PMF and with significantly less computational effort [9] After
convergence, the PF particles cover well those regions of the state space where the
value of the PDF is significant, but the tail regions of the PDF are usually not well
covered. When estimating the state in a TAN, sensor errors or sudden state changes
can easily occur due to nonlinearity in altimeter measurements, etc. [9]. The PF
struggles to react quickly enough to these sudden changes after convergence and the
quality of its estimation can be significantly degraded. The PMF is significantly
more robust against these abrupt changes compared to the PF at the cost of higher
computational complexity [12, 9]. PMF typically covers a sufficiently large area of
the state space with its grid, but at the cost of lower resolution. Another impor-
tant difference between PF and PMF is that while the PMF is deterministic - for
repetetive processing the same trajectory, its estimates remain the same. The PF is
stochastic due to particle propagation - by sampling particles from the importance
density.

The idea of combining PF and PMF to achieve a more robust and accurate filter
was introduced in [12] and developed in [9] , where the Rao-Blackwellised particle-
point mass fusion filter (hereafter abbreviated as (RB)PPFF) was introduced. The
original work was based on the idea that the state transition p(xk|xk−1) can be
decomposed into the product of two components - high tailed and low tailed

p(xk|xk−1) = βpht(xk|xk−1) + (1− β)plt(xk|xk−1) (4.1)

This separation is also transcribed into the resulting algorithm. In addition, the
proposed algorithm contains the user-defined parameter, which value determines the
trade-off between the variance of the weights and the randomness of the resampled
density [12]. This parameter has to be tuned manually. In contrast, the (RB)PPFF
does not rely on splitting the state transition p(xk|xk−1) into two parts and does
not contain the user-defined parameter [9]. Due to the fact that it is not easy to
decompose the state transition of simulated systems into a sum of high and low tailed
state transitions and manual tuning of the user-defined parameter can be tricky and
its wrong value could invalidate the simulation results, the PPFF algorithm was
selected for comparison in the simulation part.

Before presenting the PPFF algorithm, it is necessary to present an alternative
version of the PMF algorithm. In this alternative version, the weights correspond
to the grid points of the PMF, similar to the PF algorithm, and the weights are
also normalized as in the PF algorithm. As a result, these grid points can then be
combined with the PF particles to form total support and their corresponding total
weights [12, 9].

27

PDF approximation using different filters

-6 -4 -2 0 2 4 6

x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
D

F

PF

true PDF

PF particles

-6 -4 -2 0 2 4 6

x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
D

F

Normal PMF

true PDF

PMF grid points

-6 -4 -2 0 2 4 6

x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
D

F

Density specific PMF

true PDF

PMF grid points

-6 -4 -2 0 2 4 6

x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
D

F

PPFF

true PDF

supports

Figure 4.1: Comparison of state space coverage by supports (grid points and parti-
cles) for different filters.

We can see that the normal PMF covers the entire state space equally densely.
The density specific PMF covers the center of the PDF more densely at the cost of
slightly worse tail coverage, see section. The PF covers the state space around the
center of the PDF well, but more or less does not cover the tails. The PPFF covers
the center well due to stochastic PF particles, while also covering the tails to some
extent due to the deterministic PMF grid points.

4.1 Alternative PMF Algorithm

For the equidistant grid, it is possible to adapt the PMF algorithm into a form that
is suitable for fusing the PMF and PF algorithms.

1. Initialization of the grid based on the known initial PDF p(x0|Z−1) .

p̂(x0|Z−1; ξk) =
N∑
i=1

ω1|0(ξ
(i)
1)ξ

(i)
1 (4.2)

Set k = 1

28

2. Recalculation of the grid points weights based on newly available measure-
ments:

w̃
(i)
k|k(ξ

(i)
k) = w

(i)
k|k−1(ξ

(i)
k)p(zk|ξ(i)k) (4.3)

Where p(zk|ξ(i)k) is calculated as:

p(zk|ξ(i)k) = N(zk − hk(ξ
(i)
k), R) (4.4)

Once all the temporary weights have been calculated, they must be normalised:

w
(i)
k|k(ξ

(i)
k) =

w̃
(i)
k|k(ξ

(i)
k)∑Ns

i=1 w̃
(i)
k|k(ξ

(i)
k)

(4.5)

And based on the recalculated values of the conditional PDF, an estimate of the
current state and its covariance is calculated

x̂k =
N∑
i=1

ξ
(i)
k w

(i)
k|k(ξ

(i)
k) (4.6)

Ck =

∑N
i=1 w

(i)
k|k(ξ

(i)
k)(ξ

(i)
k − x̂k)(ξ

(i)
k − x̂k)

T

1−
∑N

i=1 w
(i)
k|k(ξ

(i)
k)2

(4.7)

3. Grid adaptation is based on the state equation and filtering estimation PDF
p̂(xk|Zk; ξk). A new grid is calculated whose points ξk + 1(j) cover the expected
state at time k+1.

4. Calculation of predictive weights at the new grid points based on the old
grid.

ω̃k+1|k(ξ
(j)
k+1) =

N∑
i=1

p(ξ
(j)
k+1|xk = ξ

(i)
k)ωk|k(ξ

(i)
k) (4.8)

=
N∑
i=1

pwk
(ξ

(j)
k+1 − fk(ξ

(i)
k , uk))ωk|k(ξ

(i)
k)

Once all the temporary weights have been calculated, they must be normalised:

w
(i)
k+1|k(ξ

(j)
k+1) =

w̃
(j)
k+1|k(ξ

(j)
k+1)∑N

j=1 w̃
(j)
k+1|k(ξ

(j)
k+1)

(4.9)

5. k = k + 1 and return to step 2

This algorithm differs from the normal PMF algorithm in that instead of the values
of the conditional PDF Pk|m(ξ

(i)
k), which are normalized so that the PMD integral is

equal to one, the weights are used, which are normalized in the same way that the
weights in PF - so that their sum is equal to one. This alternative form can only be
used for a PMF with an equidistant grid.

29

4.2 Particle-Point Mass Fusion Filter

As already mentioned, the goal of the PPFF is to create a filter that is robust to
sudden measurement errors and sudden state changes, while at the same time having
the best possible quality of estimation. This is achieved by combining the PF and
the PMF. The idea is that these two filters will interact with each other - the PF will
improve the accuracy of the PMF by using the PF particles during grid redesign,
and the PMF will improve the robustness of the PF by having the PMF grid points
sampled into the PF particles during resampling.

Due to the fact that the PPFF includes two subfilters, it is first necessary to
choose the number of supports and how they will be labeled. The total number of
supports will be labeled N and it is known that the total set of supports N consists
of ND deterministic grid points of the PMF and NS stochastic particles of the PF.
Hence, that N = ND +NS.

The resulting algorithm can be again divided into initialization, Prediction step/-
time propagation(Grid adaptation + Calculation of the predictive PDF + Particle
propagation) and Filtering step/Measurment update(weights assigment and normal-
ization for PF and PMF + resampling).

4.3 Particle-Point Mass Fusion Filter Algorithm

1. Initialization of the grid points and particles and their weights based on the
known initial PDF p(x0|Z−1) .

• PMF: A grid is created covering the part of the state space where the initial
PDF has significant values and the weights of the grid points are determined
based on the PDF. Temporary grid points weights are calculated as:

w̃
(i)
0 (ξ

(i)
1) = p(x0|Z−1). (4.10)

. The weights are then normalized:

w
(i)
0 (ξ

(i)
1) =

w̃
(i)
0 (ξ

(i)
1)∑Ns

i=1 w̃
(i)
0 (ξ

(i)
1)

(4.11)

.

• PF: Ns samples are selected from the initial PDF. The weights are initialized
to the identical value

w
(i)
0 (x

(i)
1) = 1/Ns ∀ i = 1 . . . Ns (4.12)

• Set k = 1

2. Measurment update - filtering step+resampling

• PMF: Recalculation of the grid points weights based on newly available
measurements:

w̃
(i)
k|k(ξ

(i)
k) = w

(i)
k|k−1(ξ

(i)
k)p(zk|ξ(i)k) (4.13)

30

where p(zk|ξ(i)k) is calculated as:

p(zk|ξ(i)k) = N(zk − hk(ξ
(i)
k), R) (4.14)

Once all the temporary weights have been calculated, they must be nor-
malised:

w
(i)
k|k(ξ

(i)
k) =

w̃
(i)
k|k(ξ

(i)
k)∑Ns

i=1 w̃
(i)
k|k(ξ

(i)
k)

(4.15)

• PF For the choice of the importance density as p(x
(i)
k |x(i)

k−1) and when the
additive noise of the vk measurement is considered as vk ∼ N(0, R), the
temporary particle weights are determined as:

w̃
(i)
k (x

(i)
k) = w

(i)
k−1(x

(i)
k)p(zk|x(i)

k) (4.16)

Where p(zk|x(i)
k) is calculated as:

p(zk|x(i)
k) = N(zk − hk(x

(i)
k), R) (4.17)

Once all the temporary weights have been calculated, they must be nor-
malised:

w
(i)
k (x

(i)
k) =

w̃
(i)
k (x

(i)
k)∑Ns

1 w̃
(i)
k (x

(i)
k)

(4.18)

• Total resampling Resampling is a necessary part of any particle filter. Total
resampling is designed to sample the PMF grid points into a new set of the
PF particles at a predetermined ratio.

For resampling, the PF particles and the PMF grid points are used to form a
so-called total support - a joint matrix containing both PF particles and PMF
grid points. Similarly, a vector containing both weights of the PF particles
and the PMF grid points is created. This vector is called the total weight.
To make the sum of the weights in the total weight equal to one, the weights
corresponding to PMF are multiplied by γ and the weights corresponding to
PF are multiplied by 1−γ. Then the normal resampling algorithm (Stratified
resampling) is performed - whereby the total support is sampled based on the
corresponding weights in the total weight. The value of the parameter γ is
determined by the proportion of deterministic supports to the total number
of supports - the number of PMF grid points compared to the total number
of supports:

γ =
ND

N
=

ND

ND +NS

(4.19)

Total support:

Xk =
[
ξ
(i)
k x

(i)
k

]
=

[
ξ
(1)
k · · · ξ(ND)

k x
(1)
k · · ·x(NS)

k

]
(4.20)

Total weight:

Ωk =
[
γw

(i)
k (ξ

(i)
k) (1− γ)w

(i)
k (x

(i)
k)

]
=

[
γw

(1)
k (ξ

(1)
k) · · · γw(ND)

k (ξ
(ND)
k) (1− γ)w

(1)
k (x

(1)
k) · · · (1− γ)w

(NS)
k (x

(NS)
k)

]
(4.21)

31

After the resampling is complete, the PF weights are reset:

w
(i)
k (x

(i)
k) = 1/Ns ∀ i = 1 . . . Ns (4.22)

3. Time update - prediction step

• PMF: As already mentioned, during grid redesign the PMF is affected by PF
particles. The estimate of the system state at time k on which the new grid
placement is based is determined both by the old PMF grid points and by the
PF particles. The point estimate at time k, which corresponds to the mean
value of total support and forms the centre of the new grid, is determined as

x̂k =

ND∑
i=1

(
γξ

(i)
k w

(i)
k (ξ

(i)
k)

)
+

NS∑
i=1

(
(1− γ)x

(i)
k w

(i)
k (x

(i)
k)

)
(4.23)

To calculate the covariance of the estimate, total support and total weights
were again created, see equations 4.20 4.21. The following equation was used
to calculate the PPFF covariance

Ck =
N∑
i=1

(X
(i)
k − x̂k)(X

(i)
k − x̂k)

TΩ
(i)
k (X

(i)
k) (4.24)

Based on the calculated mean x̂k and covariance Ck and knowledge of the
system dynamics, the mean and covariance are estimated at time k+1. Based
on these, a new grid is constructed. For each point of the new grid, its
predictive weight is calculated:

ω̃k+1|k(ξ
(j)
k+1) =

N∑
i=1

p(ξ
(j)
k+1|xk = ξ

(i)
k)ωk|k(ξ

(i)
k) =

N∑
i=1

pwk
(ξ

(j)
k+1−fk(ξ

(i)
k , uk))ωk|k(ξ

(i)
k)

(4.25)
Once all the temporary weights have been calculated, they must be nor-
malised:

w
(i)
k+1|k(ξ

(j)
k+1) =

w̃
(j)
k+1|k(ξ

(j)
k+1)∑N

j=1 w̃
(j)
k+1|k(ξ

(j)
k+1)

(4.26)

• PF: Ns samples are drawn from the importance density q(x
(i)
k+1|x

(i)
k , zk). As

already mentioned, for the choice of the importance density as p(x
(i)
k+1|x

(i)
k)

and when the additive state noise wk is considered as wk ∼ N(0, Q) this
corresponds to

x
(i)
k+1 ∼ N(fk(x

(i)
k , uk), Q) (4.27)

The weights of these new/propagated particles are the same as those of the
old particles:

w
(i)
k (x

(i)
k+1) = w

(i)
k (x

(i)
k) ∀ i = 1 . . . Ns (4.28)

4. k = k + 1 and return to step 2

This algorithm was introduced in [9].

32

5. Kalman Filters

The Kalman filter, hereafter abbreviated as KF, is named after Rudolf E. Kálmán,
who was one of its co-authors and creators. Other co-authors included his collabo-
rator R. S. Bucy and Stanley F. Schmidt, who worked for NASA and whose group
implemented the KF on a digital computer, verified by Monte Carlo simulations
that it is possible to estimate uncertainty using the Riccati equation, and designed
the extended Kalman filter. The Kalman filter builds on the ideas of Wiener and
Kolmogorov - the Wiener filter. These earlier works had been derived in the fre-
quency domain, while KF is in the time domain. The KF was first proposed in the
late sixties and early seventies. In the 1970s it was significantly developed and even
used successfully in the Apollo programme. The use of the Kalman filter back in the
seventies was made possible by the fact that the KF has very little computational
requirements and requires very little memory to store variables [6].

The Kalman filter can be viewed as a solution to Bayesian relations for linear
system under Gaussianity assumptions, or as an incremental fusing of estimates. In
other words, we actually want to fuse all available estimates/measurements in order
to get the best estimate of the current state [13].

The Kalman filter was used as a benchmark in simulations using a linear system
(a system with a linear state function and a linear measurement function). For
a linear system with white additive noise, the Kalman filter is the optimal linear
unbiased estimator (BLUE) in the sense of minimizing the MSE. For non-Gaussian
additive noises, the Kalman filter is the optimal linear estimator/filter - there may
be a nonlinear unbiased estimator for non-Gaussian additive noises whose MSE will
be lower.

5.1 Linear System

In order to present the KF algorithm, it is first necessary to give the equations of
the linear system to make it clear what each matrix/symbol means. This system is
a specific variant of the system presented in the introduction of the thesis.

xk+1 = Fkxk +Gkuk + wk, k = 1, 2, · · · (5.1)

zk = Hkxk + vk, k = 1, 2, · · · (5.2)

Additive noise of the vk measurement is vk ∼ N(0, Rk) and additive state is noise
wk ∼ N(0, Qk). The mean and covariance of the initial state p(x0|Z−1) = N(x1|0, P1|0)
is known, but its exact realization is unknown.

5.2 Kalman Filter Algorithm

As any Bayesian estimator the Kalman filter algorithm repeats two steps - prediction
and correction. During prediction, an estimate of the expected future state is made
and during correction, a correction of this estimate is made based on the available

33

measurements. The correction rate depends on the Kalman gain multiplied by
the difference between the output prediction - the expected measurement if the
predictive estimate were accurate - and the actual measurement. The covariance
estimate can be expected to increase during prediction-we predict the future state,
which is affected by noise, about whose realization we have no information, and to
decrease during correction-we use the newly obtained information. The state and
covariance estimates after correction will be considered as the output of the filter.

The prior estimate of the state and covariance - the output of the prediction will
be denoted x̂k+1|k or x̂k|k−1 in next step and P̂k+1|kor P̂k|k−1 in next step and the
posterior estimate of the state and covariance - the output of the correction will be
denoted: x̂k|k and P̂k|k . I is the Identity matrix nx × nx where nx is the dimension
of the state space [13, 14].

1. Initialization The estimation of the mean and covariance is initialized based on
the inital state: x̂1|0 = x1|0 andP̂1|0 = P1|0 Set k = 1

2. Correction - filtering step First, the Kalman gain is calculated

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1 (5.3)

Then a correction is made to the state estimate

x̂k|k = x̂k|k−1 +Kk(zk −Hkx̂k|k−1) (5.4)

Finally, the covariance estimate is recalculated: The basic equation for recalcu-
lating the covariance is

P̂k|k = (I −KkHk)P̂k|k−1 (5.5)

An alternative numerically stable Joseph form has been implemented

P̂k|k = (I −KkHk)P̂k|k−1(I −KkHk)
T +KkRkK

T
k (5.6)

3. Prediction - prediction step State and covariance prediction is performed

x̂k+1|k = Fkx̂k|k +Gkuk (5.7)

P̂k+1|k = FkP̂k|kF
T
k +Qk (5.8)

4. k = k + 1 and return to step 2

5.3 Kalman Filter Based Variants for Nonlinear

Systems

The Kalman filter algorithm works only for linear systems. If we would like to
use the KF-based algorithm for nonlinear systems, we need to modify the basic
KF algorithm. There is a huge number of different modifications of KF. The two
main ways in which KF algorithms can be modified for use with nonlinear systems
are the extended Kalman filter (hereafter abbreviated as EKF) and the unscented
Kalman filter (hereafter abbreviated as UKF). The EKF uses a linear approximation
of the nonlinear functions f and h in (1.1),(1.2) using a Taylor Series with neglect

34

of higher order terms. The UKF approximates probability distributions using a set
of weighted sigma points. The sigma points, together with the weights, are chosen
to preserve the mean and covariance of the probability distribution. These points
are then propagated through the non-linear state equations and after propagation
the weighted mean and covariance are computed [13].

5.4 Extended Kalman Filter

If we consider a system with a nonlinear state and measurement equation, then
KF cannot be applied to that system because we do not have the state matrix Fk

and the measurement matrix Hk that we need to calculate the covariance matrices.
If the nonlinear state and measurement equations and their first derivatives are
continuous, then it is possible to linearize them in the neighborhood of the current
state estimate. If an approximation of the nonlinear functions fk and hk in the
neighborhood of the current state estimate x̂k is used in the form first two terms of
Taylor series

fk(xk, uk) = fk(x̂k, uk) + Jf,k(x̂k)(xk − x̂k) (5.9)

where Jf,k =
∂fk
∂x

|x̂k,uk
is the Jacobian of fk.

hk(xk) = hk(x̂k, uk) + Jh,k(x̂k)(xk − x̂k) (5.10)

where Jh,k =
∂hk

∂x
|x̂k,uk

is the Jacobian of hk.
Higher order terms of the Taylor expansion are neglected. Using this approxima-

tion, the resulting EKF algorithm can be derived. In this algorithm, the Jacobians
of the nonlinear functions f and h evaluated in the current state estimation are used
instead of the state and measurement matrices [18, 7].

The resulting EKF algorithm is [18]:

1. Initialization The estimation of the mean and covariance is initialized based on
the inital state: x̂1|0 = x1|0 andP̂1|0 = P1|0 Set k = 1

2. Correction - filtering step Kalman gain is calculated:

Kk = Pk|k−1Jh,k(x̂k|k−1)
T (Jh,k(x̂k|k−1)Pk|k−1Jh,k(x̂k|k−1)

T +Rk)
−1 (5.11)

Then a correction is made to the state estimate

x̂k|k = x̂k|k−1 +Kk(zk − hk(x̂k|k−1)) (5.12)

The covariance matrix is then recalculated

P̂k|k = (I −KkHk)P̂k|k−1 (5.13)

An alternative numerically stable Joseph form of calculation of the covariance
matrix has been implemented

P̂k|k = (I −KkJh,k(x̂k|k−1))P̂k|k−1(I −KkJh,k(x̂k|k−1))
T +KkRkK

T
k (5.14)

3. Prediction - prediction step State and covariance prediction is performed

x̂k+1|k = fk(x̂k|k, uk) (5.15)

P̂k+1|k = Jf,k(x̂k|k, uk)P̂k|kJf,k(x̂k|k, uk)
T +Qk (5.16)

4. k = k + 1 and return to step 2

35

5.5 Unscented Kalman Filter

The main idea of the UKF is to use a set of deterministically chosen weighted points,
called sigma points, to represent prior distibution. The sigma points are chosen so
that their weighted mean and covariance are the same as the mean and covariance
of the prior distibution. These points are then propagated through the nonlinear
measurement/state functions. After propagation, the weighted sigma points are
used to compute a new estimate of the mean and covariance. This process is called
unscented transformation. A major advantage of the UKF over the EKF is that
in the EKF, higher order terms are neglected during linearization, which can lead
to poor estimation quality if the higher order terms are significant. There is also
no need to deal with the analytical calculation of the Jacobian, unlike in the case
of EKF, which can be challenging or even impossible. In general, the UKF should
be more robust and accurate, but may require more computational overhead than
the EKF. The comparison of the computational demands of EKF and UKF is not
entirely clear, because the computation of the Jacobian matrix in EKF can be
very demanding, which makes EKF slower than UKF under certain circumstances
[7, 17, 13].

The resulting UKF algorithm can again be divided into two recursive steps -
prediction and filtering: Good value for the scaling parameter κ is κ = 3 − nx for
nx ≤ 3 and κ = 0 for nx > 3.

1. Initialization The estimation of the mean and covariance is initialized based on
the inital state: x̂1|0 = x1|0 andP̂1|0 = P1|0 Set k = 1

2. Correction - filtering step First, 2nx + 1 sigma points with their weights
Xk|k−1 = {χi

k|k−1,Wi}2nxi=0 are selected/determined according to the formula

χ0
k|k−1 = x̂k|k−1 (5.17)

χi
k|k−1 = x̂k|k−1 +

√
nx+ κ sik|k−1 , i = 1, . . . nx (5.18)

χj
k|k−1 = x̂k|k−1 +

√
nx+ κ sj−nx

k|k−1 , j = nx+ 1, . . . 2nx (5.19)

W0 =
κ

nx+ κ
(5.20)

Wi =
1

2(nx+ κ)
, i = 1, . . . 2nx (5.21)

where κ is the scaling parameter and sik|k−1 is the ith column of the matrix

Sk|k−1 that satisfies the equation Sk|k−1S
T
k|k−1 = Pk|k−1. The weighted mean

and covariance of the points selected using this formula equals xk|k−1 and Pk|k−1

as required. These sigma points are then propagated through the nonlinear
measurement function h

Z i
k|k−1 = hk(χ

i
k|k−1), i = 0, . . . 2nx (5.22)

And based on the propagated points Z i
k, the predictive characteristics are calcu-

lated

ẑk|k−1 =
2nx∑
i=0

WiZ i
k|k−1 (5.23)

36

P z
k|k−1 =

2nx∑
i=0

Wi(Z i
k|k−1 − ẑk|k−1)(Z i

k|k−1 − ẑk|k−1)
T +Rk (5.24)

P xz
k|k−1 =

2nx∑
i=0

Wi(χ
i
k|k−1 − xk|k−1)(Z i

k|k−1 − ẑk|k−1)
T (5.25)

These predictive moments are fed into an alternative form of equations to calcu-
late the filtering mean and covariance in the KF

x̂k|k = x̂k|k−1 + P xz
k|k−1(P

z
k|k−1)

−1(zk − ẑk|k−1) (5.26)

P̂k|k = P̂k|k−1P
xz
k|k−1(P

z
k|k−1)

−1(P xz
k|k−1)

T (5.27)

3. Prediction - prediction step At the beginning of the predictive step, it is
necessary to calculate a new set of sigma points and their weights based on the
filtering mean and covariance

χ0
k|k = x̂k|k (5.28)

χi
k|k = x̂k|k +

√
nx+ κ sik|k , i = 1, . . . nx (5.29)

χj
k|k = x̂k|k +

√
nx+ κ sj−nx

k|k , j = nx+ 1, . . . 2nx (5.30)

where κ is the scaling parameter and sik|k is the ith column of the matrix Sk|k

that satisfies the equation Sk|kS
T
k|k = Pk|k. The weights are the same as in the

filtering step because they are not a function of the mean and covariance, but only
of the state dimension nx and κ and The sigma points are propagated through
the nonlinear state function f and a prediction of the mean and covariance is
calculated based on the propagated points

χi
k+1|k = fk(χ

i
k|k, uk), i = 0, . . . 2nx (5.31)

x̂k+1|k =
2nx∑
i=0

Wiχ
i
k+1|k (5.32)

P̂k+1|k =
2nx∑
i=0

Wi(χ
i
k+1|k − x̂k+1|k)(χ

i
k+1|k − x̂k+1|k)

T +Qk (5.33)

4. k = k + 1 and return to step 2 [4]

37

6. Simulation Setup

A series of Monte Carlo simulations were performed in Matlab to verify the perfor-
mance of the different global filters and their support selection method. Matlab was
chosen for the simulations due to the fact that I have good experience with it, it is
frequently used in the Department of Cybernetics, it allows easy implementation ,
testing and debugging of algorithms, a large amount of and open-source code is avail-
able, and it allows a good and easy graphical representation of the results. The goal
of these simulations is to examine different methods of selecting supports. Different
proposed and/or used support selection methods in global filters have been discussed
in the theoretical part of this thesis and for further comparison the following global
filters have been selected:

• Particle Filter - In tables and graphs with simulation results abbreviated as PF

• Point Mass Filter with adapting grid and normal approach to grid redesign - In
tables and graphs with simulation results abbreviated as PMF normal

• Point Mass Filter with partially adapting grid and normal approach to grid
redesign - In tables and graphs with simulation results abbreviated as PMF
alter

• Point Mass Filter with adapting grid and density specific approach to grid re-
design In tables and graphs with simulation results abbreviated as - In tables
and graphs with simulation results abbreviated as PMF double

• Particle-Point Mass Fusion Filter - In tables and graphs with simulation results
abbreviated as PPFF

PMF that is part of PPFF is PMF with adapting grid and normal approach to
grid formation - PMF normal. Partially adapting grid means that the grid size
is predefined - the number of points in each dimension is predefined and when
redesigning the grid, only the area of the state space that should be covered is
decided, whereas in the case of a fully adaptive grid, the number of points in each
dimension is adjusted according to the proportions of predicted variance in each
of those dimensions. The filters were not implemented in the Rao Blackwellized
version, due to the fact that dealing with the Rao Blackwellized version of all filters
would be quite challenging and beyond the scope of this manuscript. Filters based
on the Kalman filter were also implemented as a benchmark:

• Kalman Filter - In tables and graphs with simulation results abbreviated as KF

• Extended Kalman Filter (EKF) - In tables and graphs with simulation results
abbreviated as EKF

• Unscented Kalman Filter(UKF) - In tables and graphs with simulation results
abbreviated as UKF

38

6.1 Systems Used for Simulations

In the simulation part of this work, 3 systems were used. All of these systems had
a two-dimensional state, because it is easy to display the position of the supports
(PMF grid and PF particles) in a two-dimensional state space, and it is still possible
to display the position of the supports along with their weights - the combination of
supports with their corresponding weights is still three-dimensional, so reasonably
displayable. Another reason I chose two-dimensional systems is that PMF suffers
from the curse of dimensionality, so simulations for a high-dimensional system would
take an unpleasantly long time. Each of these systems allows certain properties of
the filters to be verified/explored. All systems satisfy the general equations (1.1)
(1.2) and the noises of all systems are white, Gaussian, have zero mean and are
described by their covariance matrix - wk ∼ N(0, Q) and vk ∼ N(0, R). The initial
state of the systems was generated for each trajectory from a normal distribution
with known mean and covariance - p(x0|Z−1) ∼ N(x̄0, P̄0).

6.1.1 First System Used for Simulations

The first system is a purely linear system. The advantage of the linear system is
the possibility of using the Kalman filter as a benchmark. This allows me to verify
that with a sufficiently large number of supports, the global filters provide as good
an estimate as the Kalman filter. It is also easy to verify that the filters provide a
consistent estimate of the covariance/standard deviation. This system is described
by the following state equation and measurement equation

xk+1 =

[
1 1
0 1

]
xk + uk + wk, k = 1, 2, · · · (6.1)

zk =
[
1 0

]
xk + vk, k = 1, 2, · · · (6.2)

Noise covariance matrices have the following values

• Q =

[
3 0.2
0.2 0.5

]
• R =

[
10
]

The mean and covariance of the initial state was given by

• x̄0 =

[
10
1

]

• P̄0 =

[
10 0
0 1

]
This system represents one dimensional motion - the first state represents position
and the second state represents velocity. The velocity is only changed by external
input using uk and by the state noise wk. If the input uk is not used, the motion is
a motion with randomly changing velocity. The position is measured - i.e. the first
state. The velocity must be estimated from the measured position. In the simulation
with the first system, the input was not used, so the system used in simulation was
a system with random velocity.

39

6.1.2 Second System Used for Simulations

The second system has a linear state equation and a non-linear measurement equa-
tion. Second system represents the measurement of the position of an object using
bearing only radar. This radar is placed at the beginning of the coordinate system

- its coordinates are

[
0
0

]
. The state vector contains the x and y coordinates of the

object’s position in the two-dimensional state space. The bearing is measured using
the Matlab function atan2. This function provides a four-quadrant inverse tangent
based on the x and y position of the object. The state is only changed by the input
uk and the state noise wk - the object should move along a fixed trajectory deter-
mined by the sequence of inputs uk, but due to the state noise it will only move
in its proximity. The planed trajectory is known, but of course its realization is
not. I chose this system to test the global filters in a semi-nonlinear environment
and to make a basic comparison of their performance against the EKF and UKF.
Furthermore, this system is intuitive and allows intuitive display of trajectory and
state estimates using different filters. The last important thing is that there is an
analytically calculable Jacobian of the nonlinear function h and this Jacobian is not
too complex. The state and measurement equations of the second system are

xk+1 =

[
1 0
0 1

]
xk + uk + wk, k = 1, 2, · · · (6.3)

zk = h(xk)vk, k = 1, 2, · · · (6.4)

Where the function h is atan2. The noise covariance matrices were chosen as follows

• Q =

[
0.5 0.25
0.25 0.5

]
• R =

[
0.05

]
The mean and covariance of the initial state was given by

• x̄0 =

[
10
0

]

• P̄0 =

[
10 5
5 10

]
The Jacobian of atan2 is

Jh =
[

∂h
∂x1

∂h
∂x2

]
=

[
−x2

x2
1+x2

2

x1

x2
1+x2

2

]
(6.5)

6.1.3 Third System Used for Simulations

The third system represents the TAN in the simulation environment. The state of
the system is again defined by the x and y coordinates of the object - it can be
thought of as an aircraft. A key aspect of this system is the terrain map.

40

Figure 6.1: Terrain map used in the third system

The nonlinear measurement function of the third system h works by interpolating
a known grid of terrain points to obtain the terrain height at a given point. This
interpolation is done using the Maltab griddedInterpolant function. The analytical
Jacobian of the measurement function cannot be calculated, so the Jacobian of the
h function was calculated numerically. The error in the terrain height measurement
is represented by the additive measurement noise. The state equation was chosen
identically as in the case of the second system - the states are changed only by the
input uk, which defines relative movement of the object between two subsequent time
instant. The planned trajectory was chosen to pass through different environments
(terrain height). The third system is described by the same measurement and state
equations as the second system

xk+1 =

[
1 0
0 1

]
xk + uk + wk, k = 1, 2, · · · (6.6)

zk = hk(xk) + vk, k = 1, 2, · · · (6.7)

The noise covariance matrices are

• Q =

[
10 0
0 10

]
• R =

[
64
]

I chose the center of the grid as the mean of the initial state and the covariance of
the initial state was

P̄0 =

[
100 50
50 100

]

41

7. Simulation Results

In this section the results of Monte Carlo simulations will be presented. The results
of the simulations with each system will be presented in individual sections. The
filters were compared using the Root Mean Squared Error (abbreviated as RMSE)
of their estimate, their estimated Standard Deviation (abbreviated as SD) , and
in some cases the covariance of their estimate and inaccuracy. RMSE /SD xk(m)
means RMSE/ SD of the mth state. Furthermore, the computation time of the filter
for one trajectory - runtime is compared. The number of used PMF grid points
and/or PF particles will significantly affect the performance of the global filters -
an insufficient number of supports reduces the quality of the estimation and may
lead to divergence, but on the other hand, a higher number of supports significantly
increases the time required for computation, especially in the case of PMF.The
number of supports for all global filters was chosen in such a way that their runtime
is similar.

The tables always show the average RMSE, SD and inaccuracy of all experi-
ments/trajectories and all time steps. The graphs always show the average over the
different trajectories, but without averaging over the individual time steps. Run-
time is averaged over the different trajectories and is the sum of the times spent
calculating over all trajectory steps.

All Monte Carlo simulations consisted of 100 trajectories. I consider this num-
ber to be large enough to ensure that the results are not significantly affected by
randomness, and at the same time reasonably large to ensure that the simulations
do not take an unreasonably long time.

7.1 Results of Simulation with the First System

The goal of the simulation with the first system was to verify the expectation that
with a sufficiently large number of supports, the performance of the global filters
should be close to the performance of the KF.

42

0 5 10 15 20 25 30 35 40 45 50

k

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

R
M

S
E

 RMSE of estimate using differnt filters

x
k
(1) KF

x
k
(2) KF

x
k
(1) PF

x
k
(2) PF

x
k
(1) PMF normal

x
k
(2) PMF normal

x
k
(1) PPFF

x
k
(2) PPFF

x
k
(1) PMF alter

x
k
(2) PMF alter

x
k
(1) PMF double

x
k
(2) PMF double

Figure 7.1: Simulation result - RMSE during the trajectory of the first system

0 5 10 15 20 25 30 35 40 45 50

k

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

S
D

SD of estimate using different filters

x
k
(1) KF

x
k
(2) KF

x
k
(1) PF

x
k
(2) PF

x
k
(1) PMF normal

x
k
(2) PMF normal

x
k
(1) PPFF

x
k
(2) PPFF

x
k
(1) PMF alter

x
k
(2) PMF alter

x
k
(1) PMF double

x
k
(2) PMF double

Figure 7.2: Simulation result - SD during the trajectory of the first system

43

0 5 10 15 20 25 30 35 40 45 50

k

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

c
o

v
 (

x
k
(1

)
x

k
(2

))

Covariance of estimate using different filters

 KF

 PF

 PMF normal

 PPFF

 PMF alter

 PMF double

Figure 7.3: Simulation result - Covariance during the trajectory of the first system

0 5 10 15 20 25 30 35 40 45 50

k

1.58

1.6

1.62

1.64

1.66

1.68

1.7

in
a

c
c
u

ra
c
y

Inaccuracy of different filters

PF

PMF normal

PPFF

 PMF alter

PMF double

Figure 7.4: Simulation result - Inaccuracy during the trajectory of the first system

filter RMSE xk(1) RMSE xk(2) SD xk(1) SD xk(2) runtime [s] inaccuracy
KF 1.902 1.1227 2.3821 1.3183 6.8515 · 10−4 undefined
PF 1.9071 1.1256 2.383 1.3166 0.46193 1.6794

PMF normal 1.9021 1.1227 2.3787 1.3155 0.44751 1.6771
MF alter 1.902 1.1228 2.3814 1.3178 0.45501 1.6788

PMF double 1.903 1.1235 2.3761 1.3171 0.42604 1.6781
PPFF 1.9027 1.1218 2.3736 1.3117 0.36434 1.6741

Table 7.1: Results of simulations with the first system

Simulation results show that with a sufficiently large number of supports, the
performance of all global filters matches the performance of Kalman filter quite well

44

for a linear system. The differences of the global filter results(RMSE and SD) from
the KF results(RMSE and SD) are well below one percent. Based on these results,
I deduce that with a sufficient number of supports, the quality of the estimation of
all considered global filters for the linear system is the same as the quality of the
estimation by KF-that is, the best possible.

The inaccuracy of all filters was very similar. PF had slightly higher inaccuracy,
which corresponds to its slightly worse results. The inaccuracy of the PPFF may
have been biased by the fact that the prescription for calculating the inaccuracy of
the PF was used to calculate it, due to the fact that there is not enough literature
available about the PPFF. It is questionable whether this is a completely correct
approach.

7.2 Results of Simulations with the Second Sys-

tem

The aim of the simulation with the second system was to compare performance of
local and global filters in a simple nonlinear estimation problem. I expect that with
enough support, the quality of estimation using global filters should be at least as
good as local filters. I also expect the UKF to perform better, at most as well as
the EKF, due to the absence of linearization errors.

-40 -20 0 20 40 60 80 100

x coordinate

-80

-70

-60

-50

-40

-30

-20

-10

0

10

y
 c

o
o

rd
in

a
te

One of the generated trajectories

trajectory

Figure 7.5: Example of the trajectory used in the simulation with the second system

45

0 5 10 15 20 25 30 35 40

k

1

1.5

2

2.5

3

3.5

4

R
M

S
E

 RMSE of estimate using different filters

x
k
(1) EKF

x
k
(2) EKF

x
k
(1) UKF

x
k
(2) UKF

x
k
(1) PF

x
k
(2) PF

x
k
(1) PMF normal

x
k
(2) PMF normal

x
k
(1) PPFF

x
k
(2) PPFF

x
k
(1) PMF alter

x
k
(2) PMF alter

x
k
(1) PMF double

x
k
(2) PMF double

Figure 7.6: Simulation result - RMSE during the trajectory of the second system

0 5 10 15 20 25 30 35 40

k

1.5

2

2.5

3

3.5

4

S
D

SD of estimate using different filters

x
k
(1) EKF

x
k
(2) EKF

x
k
(1) UKF

x
k
(2) UKF

x
k
(1) PF

x
k
(2) PF

x
k
(1) PMF normal

x
k
(2) PMF normal

x
k
(1) PPFF

x
k
(2) PPFF

x
k
(1) PMF alter

x
k
(2) PMF alter

x
k
(1) PMF double

x
k
(2) PMF double

Figure 7.7: Simulation result - SD during the trajectory of the second system

46

filter RMSE xk(1) RMSE xk(2) SD xk(1) SD xk(2) runtime [s]
EKF 2.7429 2.2979 2.8182 2.7007 1.0768 · 10−3

UKF 2.6878 2.2151 2.8205 2.7327 1.7554 · 10−3

PF 2.4426 2.1297 2.784 2.7003 0.36303
PMF normal 2.4945 2.1585 2.6376 2.5897 0.3224
PMF alter 2.6801 2.2528 2.2345 2.0818 0.31989
PMF double 2.4663 2.1296 2.6333 2.5821 0.30844

PPFF 2.4676 2.1413 2.6011 2.5322 0.2557

The results of the simulations with the second system are partially consistent
with expectations. The only surprise is the poor performance of the alternative
version of PMF. It turns out that a grid with the same number of points in each
dimension is not as efficient as grids in which the number of points in a dimension
is a function of the SD if the number of grid points is constrained to the same
maximum value. A grid where the number of points in a dimension is a function
of the current SD estimate is likely to cover the state space better and should be
a better choice for real applications. As expected, the performance of the EKF is
worse than that of the UKF. All global filters except the PMF alter achieved better
results than EKF and UKF. The PMF with density specific grid design had better
performance than the PMF with normal grid redesign method. PF and PMF double
had the best results among the global filters. The PPFF performance was neither
significantly good nor significantly poor.

7.3 Results of Simulations with the Third System

Two simulations were performed with the third system. Both simulations had the
same planed trajectory, but the first simulation was not affected in any way, while in
the second simulation the tenth measurement is deliberately biased. This distortion
simulates a sensor error. Thus, the goal of the first simulation is to evaluate and
compare the performance of different filters in the TAN estimation problem and the
goal of the second simulation is to test the response to sensor error.

Figure 7.8: Example of the trajectory used in the simulation with the third system

47

7.3.1 First Simulation Using the Third System

0 5 10 15 20 25 30 35 40

k

6

8

10

12

14

16

18

R
M

S
E

 RMSE of estimate using different filters

x
k
(1) EKF

x
k
(2) EKF

x
k
(1) UKF

x
k
(2) UKF

x
k
(1) PF

x
k
(2) PF

x
k
(1) PMF normal

x
k
(2) PMF normal

x
k
(1) PPFF

x
k
(2) PPFF

x
k
(1) PMF alter

x
k
(2) PMF alter

x
k
(1) PMF double

x
k
(2) PMF double

Figure 7.9: Simulation result - RMSE during the trajectory of the third system

0 5 10 15 20 25 30 35 40

k

9

10

11

12

13

14

15

16

17

S
D

SD of estimate using different filters

x
k
(1) EKF

x
k
(2) EKF

x
k
(1) UKF

x
k
(2) UKF

x
k
(1) PF

x
k
(2) PF

x
k
(1) PMF normal

x
k
(2) PMF normal

x
k
(1) PPFF

x
k
(2) PPFF

x
k
(1) PMF alter

x
k
(2) PMF alter

x
k
(1) PMF double

x
k
(2) PMF double

Figure 7.10: Simulation result - SD during the trajectory of the third system

48

filter RMSE xk(1) RMSE xk(2) SD xk(1) SD xk(2) runtime [s]
EKF 11.6117 10.3452 14.0149 13.0641 1.2333 · 10−2

UKF 11.6931 10.2598 14.114 13.3977 2.964 · 10−3

PF 11.564 10.2239 14.2744 13.3736 0.26562
PMF normal 11.709 10.3569 13.4812 12.7473 0.32685
PMF alter 12.2877 10.8112 11.1746 10.7359 0.33295
PMF double 11.5649 10.1887 13.6338 12.9644 0.31546

PPFF 12.0107 10.3424 13.1856 12.4894 0.26875

Table 7.2: Results of first simulation with the third system

The results of the first simulation with the third system are somewhat similar to the
results of the simulation with the second system. The difference is that the EKF
achieved slightly better results for the xk(1) estimate than the UKF and the UKF
achieved better results for the xk(2) estimate than the EKF. It is also no longer true
that all global filters except the PMF alter had better results than EKF and UKF.
As in the case of the simulation with the second system, the PMF double and the
PF achieved the best results. The performance of the PPFF was not clearly better
than the performance of any other filter except PMF alter.

7.3.2 Second Simulation Using the Third System

0 5 10 15 20 25 30 35 40

k

5

10

15

20

25

30

35

40

45

R
M

S
E

 RMSE of estimate using different filters

x
k
(1) EKF

x
k
(2) EKF

x
k
(1) UKF

x
k
(2) UKF

x
k
(1) PF

x
k
(2) PF

x
k
(1) PMF normal

x
k
(2) PMF normal

x
k
(1) PPFF

x
k
(2) PPFF

x
k
(1) PMF alter

x
k
(2) PMF alter

x
k
(1) PMF double

x
k
(2) PMF double

Figure 7.11: Simulation result - RMSE during the trajectory of the third system

49

0 5 10 15 20 25 30 35 40

k

8

9

10

11

12

13

14

15

16

17

S
D

SD of estimate using different filters

x
k
(1) EKF

x
k
(2) EKF

x
k
(1) UKF

x
k
(2) UKF

x
k
(1) PF

x
k
(2) PF

x
k
(1) PMF normal

x
k
(2) PMF normal

x
k
(1) PPFF

x
k
(2) PPFF

x
k
(1) PMF alter

x
k
(2) PMF alter

x
k
(1) PMF double

x
k
(2) PMF double

Figure 7.12: Simulation result - SD during the trajectory of the third system

filter RMSE xk(1) RMSE xk(2) SD xk(1) SD xk(2) runtime [s]
EKF 12.9488 21.1758 14.1112 13.3556 1.273 · 10−2

UKF 12.7477 20.9272 14.2464 13.4517 3.0152 · 10−3

PF 12.8921 19.4796 13.5481 12.9514 0.38972
PMF normal 12.9377 19.6567 12.9633 12.6985 0.3546
PMF alter 13.6251 18.4848 11.2064 11.0431 0.37616
PMF double 12.5776 18.3811 12.4101 12.2632 0.3399

PPFF 12.9342 19.4038 12.6995 12.5327 0.29879

Table 7.3: Results of second simulation with the third system

In the ability to deal with wrong measurements, the PMF double clearly won. The
UKF achieved the second smallest error in the xk(1) estimate, but at the cost of a
large error in the xk(2) estimate. The performance of the PPFF is better than that
of the PMF normal and similar to that of the PF. The performance of the UKF was
better than that of the EKF. The performance of the global filters except the PMF
alter was better than that of the local filters.

7.3.3 Final filter comparison

In my opinion, the winner of the simulations is PMF double - PMF with density
specific grid design. PPFF failed to outperform the other global filters. It is possible
that the simulations performed did not contain scenarios that would clearly show
the weaknesses of the other filters, so I do not dare to claim that PPFF is a worse
filter. Considering that one of the ideas behind both PMF double and PPFF is to
cover the area around the center of the grid, where the expected value of the PDF is
high, more efficiently with supports than in the case of PMF with equidistant grid,
it seems that the approach used in the case of PMF with density specific grid design
is better. UKF has shown that by not using linearization, it can outperform EKF.

50

8. Conclusion

In this thesis, I studied numerical methods for solving the problem of state esti-
mation in Bayesian frames - global filters. These numerical methods are used for
nonlinear estimation, for example in the problem of terrain aided navigation(TAN).
Two main approaches were first presented - Point Mass Filter(PMF), which is based
on deterministic coverage of the state space by grid points, and Particle Filter(PF),
which is based on a stochastic approach. In the chapter dedicated to PMF, be-
sides introducing PMF, the ideas behind it and giving its algorithm, two approaches
to grid redesign - Normal approach and Density specific approach to grid redesign
were discussed. The idea behind the Density specific approach to grid redesign
is to cover the state space more efficiently by making better use of the available
computational power(number of grid points) and thus improving the quality of the
estimation. The chapter dedicated to PF included, besides the introduction of the
filter, its idea, algorithm, also a section dedicated to the challenges associated with
the implementation and design of PF and a section dedicated to resampling, which
is a key component of PF. The last chapter dedicated to global filters dealt with
the comparison of PF and PMF, stating its advantages and disadvantages. This
chapter also introduced the idea of a filter that combines PF and PMF, which aims
to take advantage of the strengths of both filters. The result of this idea is the
Particle-Point Mass Fusion Filter (PPFF) which algorithm was presented. The last
chapter of the theoretical part of this thesis dealt with local filters - the Kalman
filter(KF) and its derivatives Extended Kalman filter (EKF) and Unscented Kalmn
filter (UKF). The Kalman filter was used as a benchmark to verify the performance
of the global filters in a simulation with a linear system. EKF and UKF were used
as reference in simulations with a nonlinear system.s The last chapter focuses on
simulations, the aim of which is to verify and compare the performance of different
filters.

Based on the simulations, I selected PMF with density specific grid redesign as
the best way to cover the state space with supports. The question is how to evaluate
the performance of PPFF in simulations. The performance of PPFF was reasonably
good, but it could not outperform that of PMF with density specific grid redesign,
nor could it consistently outperform that of PF and PMF with normal approach to
grid redesign. The idea of combining PMF and PF sounds interesting and could be
the subject of future work. In this future work, it might be interesting to try to
design a filter based on the original idea presented [12] in and use neural networks
to select user defined parameters.

51

References

[1] Kjetil Bergh Ånonsen and Ove Kent Hagen. An analysis of real-time terrain
aided navigation results from a HUGIN AUV. In OCEANS 2010 MTS/IEEE
SEATTLE, pages 1–9. IEEE, 2010.

[2] Niclas Bergman. Recursive Bayesian estimation: Navigation and tracking ap-
plications. PhD thesis, Linköping University, 1999.

[3] Jindřich Duńık, Miloš Soták, Miloš Veselỳ, Ondřej Straka, and Wesley Hawkin-
son. Design of Rao–Blackwellized point-mass filter with application in terrain
aided navigation. IEEE Transactions on Aerospace and Electronic Systems,
55(1):251–272, 2018.

[4] Jindřich Duńık. Identifikace systém̊u a filtrace. 2. přeprac. a rozš́ıř. vyd.
Západočeská univerzita v Plzni, 2018.

[5] Jos Elfring, Elena Torta, and René van de Molengraft. Particle filters: A hands-
on tutorial. Sensors, 21(2):438, 2021.

[6] Mohinder S Grewal and Angus P Andrews. Applications of Kalman filtering in
aerospace 1960 to the present [historical perspectives]. IEEE Control Systems
Magazine, 30(3):69–78, 2010.

[7] Hesam Khazraj, F Faria Da Silva, and Claus Leth Bak. A performance compar-
ison between extended Kalman Filter and unscented Kalman Filter in power
system dynamic state estimation. In 2016 51st International Universities Power
Engineering Conference (UPEC), pages 1–6. IEEE, 2016.

[8] Tiancheng Li, Miodrag Bolic, and Petar M Djuric. Resampling methods for
particle filtering: classification, implementation, and strategies. IEEE Signal
Processing Magazine, 32(3):70–86, 2015.

[9] Jong Nam Lim and Chan Gook Park. RBPPFF for robust TAN. IET Radar,
Sonar & Navigation, 13(12):2230–2243, 2019.

[10] Jakub Matoušek, Jindřich Duńık, and Ondřej Straka. Point-mass filter: Density
specific grid design and implementation. In 15th European Workshop on Ad-
vanced Control and Diagnosis (ACD 2019) Proceedings of the Workshop Held
in Bologna, Italy, on November 21–22, 2019, pages 1093–1115. Springer, 2022.

[11] Jakub Matoušek, Jindřich Duńık, and Ondřej Straka. Density Difference Grid
Design in a Point-Mass Filter. Energies, 13:4080, 08 2020.

52

[12] Umut Orguner, Per Skoglar, David Törnqvist, and Fredrik Gustafsson. Com-
bined point-mass and particle filter for target tracking. In 2010 IEEE Aerospace
Conference, pages 1–10. IEEE, 2010.

[13] Yan Pei, Swarnendu Biswas, Donald S Fussell, and Keshav Pingali. An el-
ementary introduction to Kalman filtering. Communications of the ACM,
62(11):122–133, 2019.

[14] Matthew B Rhudy, Roger A Salguero, and Keaton Holappa. A Kalman filtering
tutorial for undergraduate students. International Journal of Computer Science
& Engineering Survey, 8(1):1–9, 2017.

[15] Simo Särkkä. Bayesian filtering and smoothing. Cambridge university press,
2013.

[16] Ondřej Straka and Miroslav Šimandl. Adaptive particle filter with fixed empir-
ical density quality. IFAC Proceedings Volumes, 41(2):6484–6489, 2008.

[17] Gabriel A Terejanu. Unscented Kalman filter tutorial. Technical report, Uni-
versity at Buffalo, 2011.

[18] Gabriel A Terejanu et al. Extended Kalman Filter Tutorial. Technical report,
University at Buffalo, 2008.

[19] Daniela Vaman. A GPS inspired terrain referenced navigation algorithm. PhD
thesis, Technische Universiteit Delft, 2014.

[20] Oliver J Woodman. An introduction to inertial navigation. Technical report,
University of Cambridge, Computer Laboratory, 2007.

53

	List of Figures
	Used Symbols and Abbreviations
	Introduction
	Terrain Aided Navigation
	System Description
	 Bayesian Methods
	Derivation of Equations
	Meaning of the Word Filter
	Motivation and Aim of the Thesis

	Point-Mass Filter
	Computational Complexity of the Point Mass Filter
	General Point Mass Filter Algorithm
	Basic PMF Algorithm Steps

	Grid Adaptation/Redesign

	Particle Filter
	Basic PF algorithm
	Implementation Challenges Associated with the Design and Implementation of PF
	Degeneracy Problem
	Sample Impoverishment
	Particle Filter Divergence
	Real Time Execution and Accuracy

	Resampling
	Resampling Algorithms
	Resampling Schemes
	Resampling Implementation Pseudocode

	General Particle Filter Algorithm with Resampling

	Comparison and Fusion of PF and PMF
	Alternative PMF Algorithm
	Particle-Point Mass Fusion Filter
	Particle-Point Mass Fusion Filter Algorithm

	Kalman Filters
	Linear System
	Kalman Filter Algorithm
	Kalman Filter Based Variants for Nonlinear Systems
	Extended Kalman Filter
	Unscented Kalman Filter

	Simulation Setup
	Systems Used for Simulations
	First System Used for Simulations
	Second System Used for Simulations
	Third System Used for Simulations

	Simulation Results
	Results of Simulation with the First System
	Results of Simulations with the Second System
	Results of Simulations with the Third System
	First Simulation Using the Third System
	Second Simulation Using the Third System
	Final filter comparison

	Conclusion

