
Západočeská univerzita v Plzni

Fakulta aplikovaných věd

Katedra kybernetiky

DIPLOMOVÁ PRÁCE

Advanced Tools for Interactive Design of
Simple Controllers

Plzeň, 2023 Bc. Vilém Žán

P R O H L Á Š E N Í

Předkládám t́ımto k posouzeńı a obhajobě diplomovou práci zpracovanou na závěr studia na
Fakultě aplikovaných věd Západočeské univerzity v Plzni.

Prohlašuji, že jsem diplomovou práci vypracoval samostatně a výhradně s použit́ım odborné liter-
atury a pramen̊u, jejichž úplný seznam je jej́ı součást́ı.

V Plzni dne 18. května 2023
..

vlastnoručńı podpis

Poděkováńı

T́ımto bych chtěl poděkovat vedoućımu své práce panu Ing. Martinu Čechovi, Ph.D. za odborné
vedeńı, za cenné a četné rady a konzultace a za vstř́ıcný př́ıstup.

Dále bych chtěl poděkovat Bc. Daliboru Májovi za poskytnutý inkubátor, na kterém mohla
být tato práce validována.

Anotace

Ćılem této práce je návrh nástroj̊u pro identifikaci modelu reálného procesu, návrh robustńıho
regulátoru pro procesy s neurčitost́ı, optimalizaci chováńı zpětnovazebńı smyčky v časové oblasti.

V prvńı části práce je vysvětlena část teorie ř́ızeńı, která byla použita pro autorovo řešeńı. Au-
tor̊uv př́ıstup je zaměřen na metodu laděńı regulátor̊u pomoćı robustńıch region̊u stability pro PI
regulátory, procesy s neurčitost́ı, množinový model a integrálńı kritéria optimality v časové oblasti.
V druhé části práce je analyzovaný současný stav nástroj̊u pro návrh regulátor̊u a identifikaci pro-
ces̊u. Ve třet́ı části je popsána implementace identifikačńıho modulu, návrh robustńıho regulátoru
pro procesy s neurčitost́ı a nástroj pro optimalizaci chováńı zpětnovazebné smyčky v časové oblasti
pomoćı integrálńıch kritéríı. Je zde také představena metoda gradientńı optimalizace. V závěrečné
části této práce je ověřena funkčnost vyvinutých nástroj̊u na reálném systému.

Kĺıčová slova: teorie ř́ızeńı, PID regulace, PI regulátor, regiony robustńı stability, neurčitost,
experimentálńı identifikace, integrálńı kritéria optimality, Matlab, GUI, optimalizace, gradientńı
optimalizace

Annotation

The aim of this thesis is to develop tools for process model identification, robust controller design
for processes with uncertainty, and closed-loop performance optimization in the time domain.

In the first part, the control theory used in the author’s approach is explained. The approach
is focused on the controller tuning method using the robust stability regions for PI controllers,
processes with uncertainty, the Model set approach, and the time domain integral criteria of
optimality. In the second part, the state-of-the-art of the current controller design and process
identification tools is analyzed. In the third part, the implementation of the identification module,
robust controller design for processes with uncertainty, and a tool for closed-loop optimization
in the time domain using the integral criteria is described. The gradient optimization method is
shown here. In the final part, the functionality of the developed tools is validated on a real system.

Keywords: control theory, PID control, PI controller, robust stability regions, uncertainty,
experimental identification, integral criteria of optimality, Matlab, GUI, optimization, gradient
optimization

Contents

1 Introduction 1
1.1 General Introduction . 1

2 Concept and Approach 4
2.1 Process and Controller in the Open Loop . 4
2.2 Feedback Control . 4

2.2.1 PID Control . 6
2.3 Controller Tuning . 7

2.3.1 Design Criteria . 7
2.3.2 Nyquist Plot Shaping . 8

2.4 Robust Stability Regions for Simple Controllers . 10
2.4.1 PI Robust Stability Regions . 11

2.5 Uncertainty in Process Control . 12
2.5.1 Identification Part . 14
2.5.2 Model Set . 15
2.5.3 Robust Controller Design . 16

2.6 Integral Criteria of Optimality . 17

3 State of the Art of Current Controller Design and Process Identification Tools 19
3.1 PID H∞ Designer . 19

3.1.1 Conclusion . 23
3.2 REXYGEN Blocks . 24

3.2.1 Conclusion . 25
3.3 Matlab Identification Tools . 25

3.3.1 System Identification Toolbox . 26

4 Implementation of Advanced Tools for Simple Controller Design 29
4.1 Previously Developed Controller Design Tool . 29
4.2 Identification Module . 31

4.2.1 Process Model Identification Using Matlab Functions 31
4.2.2 FOPMDT Process Model Identification . 32
4.2.3 Model Uncertainty . 37

4.3 Robust Controller Design for Process with Uncertainty 38
4.4 Closed-Loop Time Domain Performance Optimization Tool 42

4.4.1 Integral Criteria Standard Optimization . 47
4.4.2 Integral Criteria Gradient Optimization . 50
4.4.3 Comparison of Standard and Gradient Optimization Methods 58

5 Validation on Real Process 63
5.1 Validation of Estimated Matlab Process Model . 64
5.2 Validation of Estimated FOPMDT Process Model 65

6 Conclusion 68
6.1 Future Works . 69

References 71

1 Introduction

Process control is by no means a nontrivial discipline. Nowadays, the feedback loop containing
a proportional-integral-derivative (PID) controller forms the basis of modern process control [6,
24, 58]. The PID controllers are used mainly due to the simplicity of the control law leading to
the necessity to tune maximally three parameters. Moreover, PID controller parameters have clear
physical interpretation [16, 66]. Besides the process control, the PID controllers are also used in
energetic, chemical, robotics, or e.g., embedded systems[1, 5, 23].

Literature states that PID controllers make up almost 90% of all controllers [8]. The majority
of them (97%) do not use the derivative term, i.e. are just proportional-integral (PI) types.
Considering the history of PID control, its importance in industrial processes, and the software
tools available for detecting and fixing poor performance, it is surprising, that still many of these
PI controllers (70%) are tuned improperly or work just with default parameters [17, 33, 58, 67].

If used properly, the feedback control can bring huge energy and material savings, product
quality, and other economic benefits [7]. This idea has been the main motivation behind the
controller tuning methods that have made an appearance over the years.

One of the oldest and still the most popular controller tuning method is the Ziegler-Nichols
method [8, 50, 68]. Consequently, during the evolution of industrial technology, many PID con-
troller tuning methods have emerged. Unfortunately, the vast majority of these methods, including
the Ziegler-Nichols method, often lead to an unstable feedback loop, and thus these methods are
not very reliable [51].

Hence it was necessary to find more exact analytical approaches [67]. General overview of PID
control system analysis, analytical or numerical design methods in time and frequency domain,
and technology were introduced e.g., in [2, 35].

Over time, also model uncertainties were considered in the process identification, mainly to
reflect the unmodelled dynamics of the real system. In the past, huge amounts of different identi-
fication methods have been developed mainly based on standard methods of linear identification
[36]. However, these methods are not too suitable for automatic procedures because of the strong
dependency on the model structure. Moreover, these methods provide nominal models without
any estimation of model uncertainty. In process control, it is useful to have some a priori in-
formation about the physical nature of the real system. If the a priori information is combined
with the knowledge of the first few process characteristic numbers obtained from the experimental
identification, it is possible to compute the exact frequency domain limits on the process transfer
function. These limits play a key role in the robust controller design [15, 56].

This led to the development of methods for robust control, e.g., the robust stability regions
method [55]. The robust controller design based on robust stability regions brings a lot of principal
trade-offs which are discussed in [27]. Moreover, it has a wide range of applications, such as a
battery-super-capacitor energy storage system, a continuous stirred tank reactor, or a large wind
turbine with communication delays [32, 38, 64, 67].

1.1 General Introduction

This thesis is focused on the identification of processes with uncertainty, robust controller
design, and closed-loop time domain performance optimization. In this thesis, we have added a
module for process identification, a tool for closed-loop time domain performance optimization,
and we have designed a robust controller for process with uncertainty.

The robust controller design tool was introduced in the author’s previous work [66]. Hence, this
method implements tools in the interactive graphical user interface (GUI) which was developed by
the author in the MathWorks app building interface App Designer [61]. The GUI uses powerful
Matlab commands to automatically perform all complex calculations used in the implementation,
making it an easy-to-use for any user.

The developed GUI uses robust stability regions as the controller design method. Firstly, the
controller design is carried out in the frequency domain. The design criteria are defined as shaping
points in the complex plane for the Nyquist curve [55]. It is possible to select multiple shaping
points for the Nyquist curve. A set of controllers satisfying one design requirement for one process

1

is represented by a robust stability region. The solution is in the form of an intersection of all
robust stability regions (if it exists). The intersection area contains an infinite number of controllers
[50]. Here are all controllers satisfying given shaping conditions [19, 21].

In this thesis, we will measure the time domain performance of each closed loop from the
intersection area. All closed loops containing all controllers from the region will be evaluated using
the integral criteria of optimality, for example, Integral Error (IE), Integral of Time-weighted
Absolute Error (ITAE) etc. [43]. Then we will search for the closed loop with a minimal value of
the given criterion. We will use standard and gradient optimization methods.

If we want to control a process we should understand process dynamics and its limitations in
the time and frequency domain. However, the mathematical model of the controlled process is not
always known, and therefore it needs to be identified. There are several methods for experimen-
tal identification. We should also know which controllers, tuning techniques and right tools. In
this thesis, we will work with Matlab [63]. Matlab is a proprietary multi-paradigm programming
language and numeric computing environment developed by MathWorks, which also provides ap-
plications in practice. Specifically, it can be, for example, the automotive industry. Matlab can
be supplemented with special tools for automatic code generation, thanks to which the entire SW
development process is significantly faster. [29, 34].

It is also worth noting that process identification for purposes of automatic tuning of industrial
controllers is an important area of automatic control that attracts both researchers and control
engineers. Common requirements on such identification are quickness and simplicity of the corre-
sponding procedure [56].

VA
LI

DA
TI

O
N

PH
AS

E

Business
requirement

specification

System
requirement

specification

High level
design

Low level
design

Coding

Unit testing

Component
testing

System
integration

testing

Acceptance
testing

VERIFICATIO
N PHASE

V - Model

Testing

Testing

Testing

Testing

GUI

Figure 1: The role of the designed GUI in the SW develop-
ment process described by the V-Model

The classic product or SW devel-
opment process is shown in Figure 1
and is a well-known graph - the so-
called V-diagram [29]. This graph
thus links the processes of design, de-
velopment and subsequent testing of
the given product. As part of the de-
sign, a model is built, for example in
Matlab or Simulink, where it is im-
mediately tested. This phase is called
Model in the Loop (MIL). The cre-
ated and further described GUI tool,
whose inclusion is shown in green
in Figure 1 could also be included
here. The next step is programming
the given function according to the
model, i.e. creating SW. It is then
tested at its level, which is referred to
as Software in the Loop (SIL). For ex-
ample, unit tests or integration tests
could be included here. At the mo-
ment when the compiled SW is up-

loaded to the unit, it is time to test this unit with real communications. This phase is referred to
as Hardware in the Loop (HIL). Acceptance tests or customer tests come last [11, 29, 34].

In recent times, efforts to extend this process to other stages can also be encountered, where
the Model Checking method is particularly worth mentioning [11]. This method deals with formal
verification and verification that the created model has not deviated from predefined requirements.
Using this method, test scenarios can also be generated that can be used across all phases of
testing. This idea has already proven its value when the safety systems of a nuclear power plant
were tested with its help [9, 10, 12].

This entire process is of course supplemented by quality control and at the same time several
standards are observed, based on the industry in which we operate. It is also worth mentioning
that different standards are used in the automotive industry than in the development of SW for
a nuclear power plant. The goal of all these actions is to create the highest quality and safest

2

product possible. The amount of testing is of primary importance in that the earlier an error is
discovered in the process, the easier and cheaper the overall fix [11, 34].

This thesis is organized as follows: The concept and approach used in this thesis are formulated
in Section 2. This chapter describes feedback control, frequency domain design requirements,
the robust stability region design method, uncertainty modeling, Model set approach, process
identification, and the time domain integral criteria of optimality. State of the art of present-day
controller design and process identification software tools is the subject of Section 3. Three tools
analysed in this thesis are: PID H∞ Designer [45], REXYGEN [46], and MathWorks’ System
identification toolbox [62]. Section 4 is focused on the implementation of developed tools in this
thesis. In this Section, we will show the previously developed robust controller design tool [66],
the module for process identification, then we will show the robust controller design for processes
with uncertainty, and last, we will introduce the tool for optimal robust controller search where
we will compare standard and gradient optimization method. Section 5 provides the validation of
developed tools on a real process. Section 6 contains concluding remarks as well as possible topics
for future works.

3

2 Concept and Approach

Our approach focuses on robust feedback (or closed-loop) control [5]. The concept of the robust
controller design is to find all controllers satisfying all design requirements for all processes. First,
the design requirements are defined in the frequency domain as shaping points for the Nyquist
curve. The solution comes in the form of the intersection of the robust stability regions, one for
each design requirement for each process [15, 54].

In this thesis, we will also focus on processes with non-structural uncertainty. Hence no mathe-
matical model is exactly accurate, the uncertainty gives us information about the relative accuracy
of the process model [50]. The uncertainty will be implemented using the Model set approach
[53, 57]. To obtain the Model set, we will use the identification method estimating the process
characteristic numbers which parameterize the Model set. The provided result of the identification
method will be a set of processes that will later be used for the robust controller design [20].

The next task is to find the optimal controller from the intersection region. Optimal closed-loop
performance leads to the minimal value of the given time domain integral criterion of optimality
[7, 8, 65]. In this thesis, we will introduce a gradient method searching for the optimal controller,
and compare it to the standard optimization method.

The following chapters bring just a brief introduction to the control theory used in this thesis.

2.1 Process and Controller in the Open Loop

In the field of process control, we are dealing with dynamic processes (or systems) which we
want to control. A process can have various forms, such as mechanical process, thermodynamic
process, chemical process, et cetera. In general, a dynamic process could be defined as a process
in which behavior changes in time, or as a process with a memory [41].

In order to operate with the given process we need to describe it with an appropriate model.
A model is a simplified representation of reality. The control theory uses a mathematical model
for describing system behavior which can be based on a differential equation. Another form of the
process model, which will be shown in this thesis, is a transfer function that can be obtained as a
Laplace transformation of the differential equation of the linear system. To perform analysis and
various simulations, we need a linear model of the observed system. Hence the vast majority of
real systems are non-linear, and there are no general controller tuning methods for the non-linear
processes, the non-linear system has to be linearized.

Once we have a model of the system, we can design a controller. The controller is designed
according to specific design criteria. The properly tuned robust controller should ensure the sta-
bility and sufficient quality of the closed-loop system. When the controller is connected directly to
the process, the open loop is obtained. A simple scheme of process and controller connected in an
open loop can be seen in Figure 2 [8].

Controller Process

Process
Input

Process
Output

Reference
Signal

Figure 2: Open-loop schema consisting of process and controller models

However, in practice, the open-loop control is very difficult to execute. First, it requires a
completely accurate model for the control system to achieve the exact desired response. Second,
it can be easily influenced by disturbances that will dramatically alter the response of the system.
Both problems can be fixed by feedback control [25].

2.2 Feedback Control

The feedback control is based on correcting actions on the difference between the desired and
actual performance. The use of feedback has often resulted in vast improvements in system ca-

4

pability [3]. The fundamental requirement for the feedback loop is the ability to follow reference
signal, and to compensate the effects of load disturbance [4].

In Figure 3, we can see the classical structure of a feedback control loop [8]. The process model
is considered linear, and it is described by a transfer function P (s). The C(s) block represents the
linear model of the controller [67].

Table 1 shows the notation of signals which appear in the closed-loop system.

Figure 3: Feedback control loop schema

P (s) Process
C(s) Controller
r(t) Reference signal
di(t) Input disturbance
do(t) Output disturbance
u(t) Controller output
y(t) Process output
ŷ(t) Measured process output
e(t) Control error

Table 1: Closed-loop signals notation

The performance and robustness of the closed loop can be well analyzed from the behavior of
the sensitivity functions. These functions have to be stable to achieve closed-loop stability. When
designing a robust controller, the following sensitivity functions are often shaped and constrained
to reach required process performance. Sensitivity functions are mentioned in Table 2. Since there
are four sensitivity functions, they are called the Gang of Four [3].

Sensitivity function S(s)
Complementary sensitivity function T (s)
Control sensitivity function CS(s)
Input sensitivity function PS(s)

Table 2: Sensitivity functions

The control sensitivity function can be also called the noise sensitivity function. Similarly,
the input sensitivity function is also called the load disturbance function [4]. Most importantly,
the sensitivity function S(s) represents the effects of output disturbance do(t) on the process
output y(t), and the complementary sensitivity function T (s) shows how is the reference signal
r(t) transferred to the process output y(t) [8].

The sensitivity functions are given by the following transfer functions

S(s) =
1

1 + C(s)P (s)
, T (s) =

C(s)P (s)

1 + C(s)P (s)
, CS(s) =

C(s)

1 + C(s)P (s)
, PS(s) =

P (s)

1 + C(s)P (s)
. (1)

5

2.2.1 PID Control

It has been found empirically that a useful controller structure is represented by Proportional
Integral Derivative (PID) controller. PID controllers are found in large numbers in all industries.
The controllers come in many different forms. The PID controller has several important functions:
it provides feedback, it has the ability to eliminate steady state offsets through integral action, it
can anticipate the future through derivative action [5].

Figure 4: Non-interactive form of PID controller

The control law for a non-interactive form of PID controller is given by the formula

u(t) = K

(
e(t) +

1

Ti

∫ t

0

e(τ)dτ + Td
de(t)

dt

)
, (2)

where K is gain, Ti is integral time constant, Td is derivative time constant. This is an ideal
version of the PID controller, hence it has a non-filtered derivative term. However, an ideal
derivative is not causal, so implementations of PID controllers include additional low-pass filtering
for the derivative term to limit the high-frequency gain and noise. PID controller with the filtered
derivative term can be expressed as

CPIDf
(s) = K

(
1 +

1

Tis
+

Tds
Td

N s+ 1

)
. (3)

Very often, we have to operate with the closed-loop system in the frequency domain. It is
better to express the PID controller with a non-filtered derivative as a transfer function given by
the formula

CPID(s) = Kp +
Ki

s
+Kds, (4)

where Kp is proportional gain, Ki is integral gain, Kd is derivative gain. This form is obtained
after the Laplace transformation of (2).

Most PID controllers do not use derivative action, so they should strictly speaking be called PI
controllers. However, the term PID is used as a generic term for this class of controllers [8]. The
transfer functions for P, PI and PD controllers are given as

CP (s) = Kp, CPI(s) = Kp +
Ki

s
, CPD(s) = Kp +Kds. (5)

The proportional term serves as a static controller, the derivative term helps speed up the
system response, and the integral term helps reduce the steady-state error.

6

2.3 Controller Tuning

Although the PID controller is unquestionably the most commonly used control algorithm,
it seems surprising that there exists no generally accepted design method for this controller [6].
Moreover, vast majority of generally used design methods, such as Ziegler-Nichols [68], are outdated
and can lead to unstable feedback loop. These methods often work with nominal model of the
process which does not include uncertainty. Thus, they do not provide robust controller.

However, in the field of process control there is often a need to design a robust controller.
One of the main reasons is the necessity to compensate the load disturbances affecting the system
behaviour. Other practical reasons are that the controlled system components are wearing of over
the time, or when another system or controller is being added to the currently controlled system
causing changes in the system behaviour. These changes affect the system dynamics, because the
technical parameters of the system (e.g. stiffness, damping, or torque coefficients) obtained from
the system identification change over the time. This leads to a stage where previously designed
controller may not function correctly [66].

First, in order to tune any controller, it is necessary to specify a design criteria for the feedback
loop. Our approach focuses on criteria in the frequency domain.

2.3.1 Design Criteria

Design criteria represent requirements for the closed-loop system. It is an expert task to decide
what type of criterion we want to choose and how to set its value to achieve required behavior
of the closed loop. However, in the vast majority of cases, the most important is the closed-loop
stability of a given system [13]. Furthermore, very often, it is required that the closed loop satisfies
multiple design criteria at once.

In this thesis, we will firstly define design criteria in the frequency domain. In the Table 3,
there can be seen six frequency domain design criteria.

Gain margin GM
Phase margin PM
Sensitivity function S(jω) maximal value MS

Complementary sensitivity function T (jω) maximal value MT

Low-frequency disturbance rejection εS
Bandwidth of the control loop εT

Table 3: Design criteria

First two design criteria, GM and PM, express how far is the Nyquist curve from the critical
point [−1, j0]. The remaining criteria, MS , MT , εS and εT , create limits for the magnitude of
sensitivity functions S(jω) and T (jω), and for the behaviour of Nyquist curve in form of the
M -circles and ε-circles.

The disturbance rejection parameter εS could be expressed as the magnitude limit of the
sensitivity function S(jω) on the low frequencies ω ∈ [0, ωd] (Subfigure 5a). The bandwidth
parameter εT represents magnitude limit of the complementary sensitivity function T (jω) in the
frequency interval ω ∈ [ωn,∞] (Subfigure 5b) [66].

7

(a) Magnitude of S(jω) (b) Magnitude of T (jω)

Figure 5: Design requirements expressed as magnitude constraints for Sensitivity function S(jω)
and Complementary sensitivity function T (jω) [15]

Ideal sensitivity functions S(jω), T (jω) requirements are

|S(jω)| = 0, ∀ω, |T (jω)| = 1, ∀ω. (6)

However, due to the physical limitations, these requirements can not be satisfied. This problem
is covered by Bode integral formula [49] which can be expressed as∫ ∞

0

ln |S(jω)|dω =

∫ ∞

0

ln

∣∣∣∣ 1

1 + L(jω)

∣∣∣∣ dω = π
∑

Re(pk)−
π

2
lim
s→∞

sL(s), (7)

where pk are the unstable poles of L(s). If L(s) has at least two more poles than zeros, and
has no unstable poles (is stable), the equation simplifies to∫ ∞

0

ln |S(jω)|dω = 0. (8)

This equality shows that if sensitivity to disturbance is suppressed at some frequency range, it
is necessarily increased at some other range. This has been called the ”waterbed effect.” [40] In
practice, we are operating on low frequencies where |S(jω)| and |T (jω)| are close to desired values
0 and 1.

Since there are physical limitations for S(jω) and T (jω), we are only able to satisfy ”real”
requirements for sensitivity functions constraints (Figure 5) according to the equations

|S(jω)| < εS , ∀ω ∈ [0, ωd], |S(jω)| < MS , ∀ω, (9)

|T (jω)| < MT , ∀ω, |T (jω)| < εT , ∀ω ∈ [ωn,∞]. (10)

2.3.2 Nyquist Plot Shaping

Sensitivity functions constraints mentioned in equations (9) and (10) can be displayed in the
complex plane in the form of M -circles and ε-circles (Figure 6). The center and radius of the
MS-circle is given as

cS = [−1, j0], rS =
1

MS
. (11)

The center and radius of the εS-circle is

cεS = [−1, j0], rS =
1

εS
. (12)

8

The center and radius of the MT -circle can be expressed as

cT =

[
− M2

T

M2
T − 1

, j0

]
, rT =

M2
T

|M2
T − 1|

. (13)

The center and radius of the εT -circle can be obtained as

cεT =

[
− ε2T
ε2T − 1

, j0

]
, rεT =

ε2T
|ε2T − 1|

. (14)

In Figure 6 we can see that M -circles and ε-circles create boundaries for the Nyquist curve of
the open loop system. This way we can perform Nyquist plot shaping.

(a) MS and εS circles (b) MT and εT circles

Figure 6: Nyquist plot shaping according to the M -circles and ε-circles [15]

Figure 7: Nyquist plot shaping [15]

According to the Nyquist stabil-
ity criterion, the number of counter-
clockwise encirclements about the
critical point [−1, j0] must be equal
to the number of open-loop unstable
poles [42]. Hence, the Nyquist curve
passes on the right side of the [−1, j0]
for the stable open loop. If the open
loop is stable, then the frequency do-
main design criteria GM, PM, MS ,
MT , εS , εT mentioned in Table 3 can
be represented as shaping points in
the complex plane.

Shaping points representing this
criteria are special case of the gen-
eral shaping points in the complex
plane. General shaping point can be
expressed as X = u + jv. If X ap-
pears on the real axis (v = 0), then
1/u is equal to the GM. If X lies on

the unit circle (or when u = v), then the arctan(v/u) is equal to the PM. M -circles and ε-circles
can be represented as a set of shaping points. However we can select any general shaping point as
a design requirement.

These shaping points then represent limitations for the Nyquist curve L(jω) = C(jω)P (jω)
(Figure 7). In order to satisfy GM and PM, the Nyquist curve has to be placed on the right side of

9

the GM and PM shaping points. The requirement on the sensitivity functions peaks MS and MT is
satisfied when the Nyquist curve does not enter the M -circles (Figure 6). To satisfy low-frequency
disturbance rejection εS , the Nyquist curve has to be outside of the εS-circle until its frequency
reaches the ωd frequency (Figure 6a). Requirement for the bandwidth of the control loop εT is
met when the Nyquist curve is inside the εT -circle from the frequency ωn (Figure 6b) [66].

2.4 Robust Stability Regions for Simple Controllers

The main reason why we select the shaping point X is that from its real and imaginary co-
ordinates together with the real and imaginary parts of the open loop L, we can compute all
possible PID controller parameters, ensuring that the shaping point X lies on the right of the
passing Nyquist curve, and thus, the design requirement represented by X is satisfied (for stable
processes). This set of all admissible PID parameters is called the robust stability region, and it is
the center of our robust controller design method. An illustrative example can be seen in Figure
8.

Figure 8: Nyquist plot shaping [52]

If we put

L(jω)
!
= X, (15)

C(jω)P (jω)
!
= u+ jv, (16)

we can derive the analytical expression for the boundary of
the robust stability region in the [Kp,Ki] plane. In order to do
so, we need the frequency response of the controller C(jω) and
process P (jω). Frequency response of the controller depends
on the type of controller. In this thesis, the PI controller
will be used to compute robust stability region. Frequency

response of a process P (s) can be obtained by putting s
!
= jω,

and thus P (s)
!
= P (jω). Frequency response can be expressed

as

P (jω) = a(ω) + jb(ω), (17)

where a(ω) is real and b(ω) is imaginary part of the fre-
quency response, j is the imaginary unit.

After the design criteria are selected, our design method
obtains set of all possible controllers satisfying this requirement in the form of robust stability
region. In the practice, it is often required to select more design criteria at one time. Our method
provides this possibility. For each design requirement there is one region. If we want to find all
controllers satisfying multiple design requirements, we need to find the intersection of regions.
However, the intersection does not have to exist. An example of three robust stability regions
each associated to one design requirement can be seen in Figure 9a. In Figure 9b, we can see the
intersection of these regions.

Selecting one or more design requirements for more processes is also possible. Our tool can
compute each robust stability region for each of M processes for each of N design requirements
and then find its intersection - if it exists. One of the most significant advantages of this method
is that it finds all solutions for the specified problem in the form of the intersection of regions.
Otherwise, it easily shows that there is no solution because there is no intersection. Another
significant advantage is that the boundary of the region can be analytically computed, and thus
its calculation can be algorithmized.

The intersection region consists of an infinite number of controllers [15, 65]. However, only
one controller can be used for our implementation. The subsequent task is to find the optimal
controller which minimizes the time domain integral criteria of optimality. In Section 2.6, the time
domain integral criteria of optimality will be introduced.

10

(a) Robust stability regions (b) Intersection of regions

Figure 9: Illustration of robust stability regions and its intersection

2.4.1 PI Robust Stability Regions

Frequency response of the PI controller is given by formula

C(jω) = Kp(ω) +
Ki(ω)

jω
, (18)

where Kp(ω) and Ki(ω) are PI controller parameters parametrized by frequency ω, ω ∈ (0,∞).
After substituting into (15), we get(

Kp(ω) +
Ki(ω)

jω

)
· (a(ω) + jb(ω))

!
= u+ jv. (19)

From this equation we can get the analytic expression of the Kp(ω) and Ki(ω) parameters of
the PI controllers boundary [15]. Proof has been made in authors previous work [66]. Kp(ω) and
Ki(ω) are given by formulas

Kp(ω) =
ua(ω) + vb(ω)

a2(ω) + b2(ω)
, Kp > 0, (20)

Ki(ω) =
ω (ub(ω)− va(ω))

a2(ω) + b2(ω)
, Ki > 0. (21)

Similarly, the analytic expressions are defined for the PID controller parameters Kp(ω), Ki(ω),
andKd(ω). However, for the PID controller, the region boundary computation becomes non-trivial.
Hence, the PID robust stability region is a three-dimensional object. If we want to compute its
border, numerical problems occur. The border of the region comes in the form of the solution of
higher-order polynomial roots which are numerically computed. Moreover, it is difficult to visualize
the 3D object and to operate with it in a user-friendly manner.

Another possibility is to define the ratio f = Ti/Td between the integral and derivative time
constants, and the filter in the derivative term N . The ratio f is usually near 0.25 and the filter
in derivative term is often chosen in the interval N ⟨2, 10⟩ according to the signal/noise ratio in
the individual control application [15, 68]. This approach results in the region appearing in the
[Ki,Kp] plane in two dimensions. This approach leads to a more user-friendly solution, hence,
operating with the 2D plot is much less difficult. However, two more design parameters need to
be set in the form of f and N .

11

2.5 Uncertainty in Process Control

In this thesis, we will also focus on process uncertainty. There are various ways of describing
uncertainty. It can be divided into two main branches, structural and non-structural uncertainty.

As for the structural uncertainty, the system model is considered accurate except for the values
of its parameters. Uncertainty in the parameters can be caused by external conditions or imprecise
measurement. A significant part of the study of the process with structural uncertainty is the
analysis of its stability. This study is covered in Kharitonov’s theorem (Kharitonov 1978). The
stability of the dynamical process corresponds with the position of the characteristic polynomial
roots (or poles) in the complex plane. Roots of the characteristic polynomial can be obtained from
the equation

sn + an−1s
n−1 + an−2s

n−2 + · · ·+ a1s+ a0 = 0, (22)

where n is the process order, and ai ∈
〈
amin
i , amax

i

〉
, ∀i = 0, 1, . . . , n− 1 express the structural

uncertainty. For the dynamical process to be stable, its poles must be located in the left half
plane of the complex plane ∀ai. It has been proven that it is sufficient to test only four so-called
Kharitonov polynomials [30], which is by no means a great result of stability analysis.

However, the structural uncertainty can be impractical. Hence, it does not operate in the
process’s frequency domain and does not consider the real physical constraints of the process
model. It supposes that the structural uncertainty is the same on all frequencies.

In this thesis, we will deal with non-structural uncertainty. We will switch to the frequency
domain. Hence, it is usually assumed that the frequency response of the “true” system lies for each
frequency on regions of the complex plane [20, 48]. Non-structural uncertainty includes the process
dynamics and its physical limitations in the form of frequency-dependent intervals containing a
frequency response of the set of process models. This set is called a Model set, and it can be
described as

P (s) = P0(s) (1 +Wm(s)∆) , ||∆||∞ ≤ 1 (23)

Figure 10: Non-structural uncertainty in the frequency do-
main

where P0(s) is the nominal model
of the process, which is obtained
by a simple identification algorithm
(e.g., minimum mean square error
method), Wm(s) is the weighting
function which defines the process
uncertainty for all frequencies ω, ∆
determines the area of the unit cir-
cle. This form of non-structural un-
certainty is called multiplicative. An-
other form of non-structural uncer-
tainty is the additive form, which can
be expressed as

P (s) = P0(s) +Wa(s)∆, (24)

where Wa(s) is the weighting
function representing the additive
uncertainty. The multiplicative
model can be easily recomputed to

additive form and vice versa.
While working with the process with non-structural uncertainty, we want to achieve robust

stability and sufficient control quality. These requirements can be expressed as weighting functions
WS(s) and WT (s) for the sensitivity functions S(s) and T (s). The weighting functions WS(s)
and WT (s) are assumed to be stable rational functions with no poles on the imaginary axis. The
main function of the weighting functions is to suppress sensitivity functions on certain frequency
intervals. That leads to improved reduction of load disturbances and set point tracking [55].

12

This requirement alongside other mentioned closed-loop requirements can often be expressed
by the general condition

∥H(s)∥∞ < γ, (25)

where H(s) denotes a stable closed-loop-related transfer function, ∥H(s)∥∞ ≜ sup∀ω |H(jω)|
and γ is the design parameter [39]. The H∞ norm represents the maximum singular value of the
function. The following performance specifications are considered:

∥WS(s)S(s)∥∞ < γS , (26)

∥WT (s)T (s)∥∞ < γT , (27)

where γS , and γT represent design parameters for sensitivity functions S(s), and T (s) [55].
With this definition of sensitivity function requirements, we can specify the conditions for robust
stability and robust control quality.

Robust stability can be expressed as

C(s), P0(s) are stable ∧ ||WT (s)T0(s)||∞ < 1, (28)

where C(s) is controller, P0(s) is the nominal process model, WT (s) is weighting function, and
T0(s) is the nominal complementary sensitivity function.

Control quality can be expressed as

||WS(s)S0(s)||∞ < 1, (29)

where WS(s) is the weighting function for the nominal sensitivity function S0(s).
Often, these two requirements merge into one, the robust control quality, which can be defined

as

∣∣∣∣ |WT (s)T0(s)|+ |WS(s)S0(s)|
∣∣∣∣
∞ < 1. (30)

After sufficient robust control quality is achieved, it is still wise to improve the robustness of
the designed controller. We can specify certain sensitivity function criteria which would allow us
to do so.

The previously mentioned assumptions on the weighting functions are not always necessary.
For the special case WS(s) = WT (s) = 1 and γS = MS , γT = MT , (26) and (27) are converted to
well-known conditions [6, 55]

∥S(s)∥∞ < MS , (31)

∥T (s)∥∞ < MT . (32)

If we choose

WS(ω) =

{
1 for ω ∈ [0, ωS]

0 otherwise
, (33)

WT (ω) =

{
1 for ω ∈ [ωT ,∞)

0 otherwise
, (34)

we obtain other very useful, but not so often used criteria

|S(jω)| ≤ ϵS , ω ∈ [0, ωS], (35)

|T (jω)| ≤ ϵT , ω ∈ [ωT ,∞). (36)

This approach is implemented in the controller design tool PID H∞ Designer which will be
mentioned further in Section 3.1 [55].

13

Figure 11: Model set approach diagram [20]

Besides, this thesis will focus on the Model
set of either fractional order (FO) or integer or-
der (IO) processes. FO processes will be men-
tioned; hence, in accordance with the majority
of works in the process control field, it is as-
sumed that the real process can be described
by a multiple fractional order pole model [20].
The fractional order model contains fractional
derivatives. They can be described by transfer
functions F (s), in which there are non-integer

powers of s, i.e. they are irrational. An example of the FO model is the heat dissipation model,
which can be expressed as F (s) = K/

√
sT [15, 44]. Another example of the FO model can be

the relationship between force and deformation for the visco-elastic materials having combined
properties of rigid and flexible elements [28].

To construct the Model set, we will use the identification method combining the knowledge
of a priori admissible systems and three characteristic process numbers measured from the in-
put/output data.

Then we will find the extremal processes of the Model set, which define the boundaries of
the process uncertainty. Then, the main aim is to design one robust controller C(s) capable of
satisfying all design requirements for all extremal processes. Figure 11 shows the diagram describing
the Model set identification and robust controller design. Figure 12 shows the task hierarchy of
the robust controller design.

Model Set Robust Controller Design

Obtaining all R controllers suitable
for all extremal processes

2

Obtaining the intersection
of sub-sets for all extremal
processes and all design

requirements

1

Obtaining a set of all
suitable controllers for one
extremal process and one

and one design
requirement

3

Obtaining the optimal
controller from the set of all

previously obtained
controllers R

Figure 12: Robust controller design task hierarchy with the Model set approach and the solution
procedure

2.5.1 Identification Part

The identification part in the Model set approach combines the a priori information about the
admissible processes and experimentaly measured characteristic process numbers.

Huge number of admissible processes can be described by transfer function shown in [22]. This
transfer function covers the majority of essentially monotone processes [7], it can be expressed as

P (s) =
K∏p

i=1(τis+ 1)ni
, (37)

where p is arbitrary integer number and K, τi, ni, i = 1, 2, . . . p are positive real numbers. The
equation (37) also contains the systems with dead-time [7, 18, 22, 31].

14

This theoretical information is then combined with experimental information. During the
experiment, the process is excited by the rectangle pulse and its response is measured. The
experimental information consists of three characteristic numbers {κ, µ, σ2} obtained from the
first three impulse response moments. These impulse response moments are generally defined as

mi =

∫ ∞

0

tih(t)dt, i = 0, 1, 2, (38)

where h(t) is the impulse response. In practice, moments mi are often computed from the
response on a rectangle pulse on the input. Output is then recomputed as if the experiment was
carried out with impulse response [15]. The characteristic numbers {κ, µ, σ2} are given as

κ =

∫ ∞

0

h(t)dt = m0, (39)

µ =

∫∞
0

th(t)dt∫∞
0

h(t)dt
=

m1

m0
, (40)

σ2 =

∫∞
0

(t− µ)2h(t)dt∫∞
0

h(t)dt
=

m2

m0
− m2

1

m2
0

. (41)

The computation of characteristic numbers is reasonable for monotone processes. For oscillatory
processes, it would make more sense to compute natural frequency [15].

It has been proved in Čech (2008) that for the process (37) these moments result in the following
relations

κ = K, µ =

p∑
i=1

τini, σ
2 =

p∑
i=1

τ2i ni. (42)

Meaning from a control point of view, κ is equal to process static gain, and µ represents the
residual time constant. Without loss of generality, the process can be normalized in gain and time,
thus κ̄ = 1, µ̄ = 1 and σ̄2 = σ2/µ2. The remaining parameter σ̄2 then has a meaning similar to
normalized dead time [20].

2.5.2 Model Set

From the characteristic numbers, we can obtain a Model set (or Moment-model set). Model set
can be expressed as Sn,m(κ, µ, σ2), where n ∈ R+ is the total order of the process, and m ∈ R+ is
the minimum allowed order of each fractional pole. Moment-model set contains admissible transfer
functions. Admissible transfer function P (s) has to be in the form (37) and ni ≥ m,∀i,

∑p
i=1 ni ≤

n, and it has to be consistent with experimental data and thus, to fulfill (42). For n ≥ 2m, the
Model set Sn,m(κ, µ, σ2) is not empty if and only if

1

n
≤ σ2

µ2
≤ 1

m
. (43)

If this inequality is satisfied, then the Model set contains an infinite number of processes for
given characteristic numbers {κ, µ, σ2}. After mapping into the frequency domain, the Model set
creates a connected area called Value set [18, 20]. The Value set is defined as

Vn,m
ω (κ, µ, σ2) =

{
P (jω) : P (s) ∈ Sn,m(κ, µ, σ2)

}
, ∀ω > 0. (44)

The process uncertainty limits are defined by the Value set boundary. Value set boundary in the
complex plane is denoted as ∂Vn,m

ω (κ, µ, σ2) and it is generated by so-called extremal transfer func-
tions. Extremal transfer function is an admissible transfer function defined as P (s) ∈ Sn,m(κ, µ, σ2)
for which exists ω > 0 such, that P (jω) ∈ ∂Vn,m

ω (κ, µ, σ2). Set of all extremal transfer function is

15

denoted as Sn,m
E (κ, µ, σ2). This set is independent of frequency ω if the conditions (37) and (42)

are met.
Since the processes of the order less than one do not have an equivalent in the real world, and

they extend the Model set uncertainty, it is acceptable to define the minimum pole order m as
m = 1. However, the maximum process order n does not need to be restricted because the Model
set uncertainty converges very quickly for n → ∞, and the generated extremal processes are quite
easier to simulate in the time domain. Therefore, the normalized Model set depends only on σ̄2.
It can be denoted as S∞,1(σ̄2). The set of its extremal processes can be denoted as S∞,1

E (σ̄2).
The set S∞,1(σ̄2) is non-empty if and only if σ̄2 ∈ ⟨0, 1⟩ [20]. If n → ∞ and m = 1, then for any
ω > 0 the Value set boundary ∂Vω of the normalized Model set S∞,1(σ̄2) consists of three arcs
Pi(s = jω, α), α ∈ Ii, i = 1, 2, 3. Arcs are defined as

P1(s, α) =
e−(1−σ

√
α)s(

σ√
α
s+ 1

)α , (45)

P2(s, α) =
1(

α−
√

αm[(m+α)σ2−1]

α(m+α) s+ 1

)α(
m+

√
αm[(m+α)σ2−1]

m(m+α) s+ 1

)m , (46)

P3(s, α) =
1(

m−
√

αm[(m+α)σ2−1]

m(m+α) s+ 1

)m(
α+

√
αm[(m+α)σ2−1]

α(m+α) s+ 1

)α . (47)

Intervals Ii, i = 1, 2, 3 are given as

I1 =

〈
m,

1

σ2

〉
, I2 =

〈
max

{
m,

1−mσ2

σ2

}
,∞
〉
, I3 =

〈
max

{
m,

1−mσ2

σ2

}
,
1

σ2

〉
. (48)

The mentioned equations for computing extremal processes for both IO and FO types of the
Model set can be seen in detail in [50, 53, 57]. In Section 2.5.3, the set of extremal processes will
be used for robust controller design. In Figure 13, we can see an example of value sets for varying
frequency ω and fixed σ2, and vice versa.

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

Re

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

Im

(a) ω = [1, 1.2, ..., 6], σ2 = 0.3443

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05

Re

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Im

(b) ω = 6, σ2 = [0.35, 0.40, ..., 0.95]

Figure 13: Extremal processes for varying frequency and σ2; κ = 1, µ = 1, n = 10, m = 1

2.5.3 Robust Controller Design

As it was shown in Figure 11, the last part of the Model set approach is the robust controller
design. We want to obtain the set of controllers satisfying all selected design criteria for all processes
from the Model set according to the diagram in Figure 12.

16

It can be proved that to find a solution, it is sufficient to consider only the extremal processes
S∞,1
E (σ̄2) forming the boundary of the range of values in the frequency domain exactly defined in

Section 2.5.2 [20]. This is a significant benefit since we do not have to consider all processes from
the Model set. For the numerical computation of the region, the Value set boundary is sampled.
Each arc is then represented by M processes.

Our aim is to obtain set controllers satisfying N design criteria for M extremal processes. This
set is given by the intersection of sub-sets for each design requirement for each process. Each set
of controllers (or robust stability region) is obtained by the procedure described in Section 2.4.

A robust controller is any controller from the final set. However, we are able to obtain the
optimal robust controller by numerically evaluating the integral criteria of optimality for parameters
from the final set. The optimal robust controller leads to the minimal value of chosen integral
criterion. Integral criteria implemented in this thesis are described in Section 2.6. In Section 4.4.2,
the gradient computation of integral criteria will be shown.

2.6 Integral Criteria of Optimality

After the resulting region is obtained, it contains an infinite number of controllers stabiliz-
ing the closed-loop system according to the chosen design criteria (for details see Section 2.3.1).
However, we want to select one controller which leads to optimal closed-loop performance in the
time domain. The closed-loop performance (or control quality) can be measured by the integral
criteria of optimality [43]. The optimal closed-loop performance can be achieved by minimizing
the integral criteria.

The integral criteria are time domain criteria that are widely used in academic journal papers
and simulation studies [8, 15, 65, 67]. The following six criteria will be considered in this thesis

• IE – Integral of Error

IE =

∫ +∞

0

e(t)dt, (49)

• ITE – Integral of Time Error

ITE =

∫ +∞

0

t · e(t)dt, (50)

• ITAE – Integral of Time Absolute Error

ITAE =

∫ +∞

0

t · |e(t)|dt, (51)

• IAE – Integral of Absolute Error

IAE =

∫ +∞

0

|e(t)|dt, (52)

• ISE – Integral of Square Error

ISE =

∫ +∞

0

e2(t)dt, (53)

• IGSE - Integral of Generalized Square Error

IGSE =

∫ +∞

0

[e2(t) + α · ė2(t)]dt, (54)

17

where e(t) is the control error, and α is a weighting parameter for the squared first derivative
of control error in (54). The higher value of α leads to the higher value of IGSE criterion [65].

In this thesis, the obtained robust stability region is sampled, and for all controllers, the closed-
loop performances are numerically evaluated according to the described criteria. For each integral
criterion, the minimum is obtained. We have implemented standard and gradient optimization
methods for integral criteria minimization. This optimization process will be described in detail
in Section 4.4.

Important to mention, the complexity of the optimization process does not depend on the choice
of integral criteria. The optimization could be performed for various signals, such as closed-loop
output y(t) or controller output u(t). It would be possible to define new previously unspecified
integral criteria in the form of a norm of the selected signal. This criterion would be then used for
minimization. The optimization complexity would not increase. In Section 4.4, the 3D visualization
of 2 and ∞ norms for closed-loops from the resulting region will be shown.

18

3 State of the Art of Current Controller Design and Process
Identification Tools

Part of this thesis was the analysis of the state of the art of current tools and methods for
process identification and controller design.

In terms of controller design, an analysis of some current controller design tools was made in the
bachelor thesis [66]. That analysis was mainly focused on PIDlab [26], Calerga software Sysquake
[14], and powerful Matlab controller design tools, such as Control System Tuner [60] and Control
System Toolbox [59].

PIDlab focuses on the interactive design of the robust controller using Nyquist plot shaping,
resulting in the robust stability regions containing all solutions for specified design criteria (if this
problem has a solution) [26]. Although PIDlab is suitable primarily for non-oscillatory or slightly
oscillatory linear systems with dead time, it is possible to define an oscillatory linear system and
design a controller. However, there are still some gaps in terms of sensitivity functions and Nyquist
plot shaping. It is an expert task to operate with the m-circles. It is not guaranteed that PIDlab
will prevent the Nyquist function to encircle the m-circles from the top which would lead to system
and controller instability. Moreover, Nyquist plot shaping becomes more complicated if the given
system is unstable. There is also no implemented solution for suppressing sensitivity functions S(s)
and T (s) on certain frequency intervals which would improve the reduction of load disturbances
and set point tracking. This method is not implemented for various reasons, one of them being its
computational expensiveness [55].

The main advantage of the Sysquake was the interactive display of the process control variables
in the time and frequency domain. Matlab tools provide great results in terms of computational
time; they support multiple controller design methods and closed-loop optimization methods.

However, both environments only work with a nominal process model and do not provide all
solutions for the specified problem. This unawareness of the set of all solutions can lead to a
situation when the user can create unsatisfiable requirements for the closed loop. This results in
the endless optimization process, where the stability of the closed loop can be endangered [66].

This thesis focuses on controller design and process identification. Hence, a few tools providing
identification methods will be mentioned here. However, we will focus on the controller design as
well.

In this thesis, we will focus on the PID H∞ Designer [45]. It provides a user-friendly environ-
ment for robust controller design in a few steps and other useful features for process analysis and
identification.

Next, we will analyze some blocks from the REXYGEN library from the REX Controls company[46].
Some provide process identification methods, and others controller tuning methods.

Lastly, we will focus on the System identification toolbox from MathWorks [62]. This toolbox
provides Matlab functions, Simulink blocks, and a user-friendly interface with many interesting
features for process identification.

3.1 PID H∞ Designer

First and perhaps most significant tool for robust controller design is the PID H∞ Designer
developed by REX Controls company. Aim of this tool is to easily design and tune robust and
optimal PID controller. Controller optimality is evaluated by time domain integral criteria, the
PID H∞ Designer implements Integral of Error, Integral of Absolute Error, Integral of Square
Error and Integral of Time Absolute Error as integral criteria (IE, IAE, ISE, ITAE). The Designer
also provides many tools for process and controller analysis [45].

The controller design is based on defining limits γ or weighting functions WS(s) and WT (s)
representing restrictions for sensitivity function S(s) and complementary sensitivity function T (s)
according to the equations (26), (27), (31), (32), (33), (34), (35), (36) mentioned in Chapter 2.5.
It is possible to select weighting function of limit for CS(s), PS(s) as well. Correct sensitivity
function shaping will lead to the required behavior of the closed loop.

We start in the System Editor, where the process model is defined as a transfer function. It
is possible to add multiple processes. It is also possible to go to the System Identification section

19

and upload experimental input/output data into the file manager. PID H∞ Designer uses Matlab
commands to identify the process transfer function from the i/o data. There are several models of
the transfer function, such as FOPDT, SOPDT, Second order with zero plus dead time, oscillating
second order plus dead time, general transfer function, or black box. We can also add parametric
uncertainty to our model after clicking the P.U. button.

Then the controller type is selected in the Controller section. H∞ Designer provides serial
and parallel PI or PID controller versions. We can choose between one or two degrees of freedom
realization. In the Hinf Design Specification, we are setting the constraints for any of the sensitivity
functions S(s), T (s), CS(s), PS(s) for any defined system we choose. We can choose either a
constant value or a specific transfer function as a constraint. Surprisingly, we can not select simple
stability margins GM or PM for the Nyquist curve, as it was possible in the environment for robust
controller design PIDlab which was previously developed at the Faculty of Applied Sciences [26].
Design requirement GM or PM would have to be expressed as the weighting function W (s) or
maximal magnitude γ for the sensitivity functions. That would be an expert task for the controller
designer.

Requirements for the sensitivity functions are then processed. The result is a robust stability
region formed by the intersection of regions each belonging to a selected constraint for a sensitivity
function for each process. Then we can select the optimal solution from the list of integral criteria
(IE, IAE, ISE, ITAE). H∞ Designer automatically finds the optimal values of the PID controller
which minimize selected integral criteria. An example can be seen in Figure 14.

Figure 14: Controller tuning in PID H∞ Designer [45]

20

Apart from this very effective and user-friendly controller design, the H∞ Designer provides
useful Characteristics and Auxiliary Tools.

First of the Characteristics is the Hinf Regions plot showing each region for each requirement.
Next there is Intersection Boundaries plot which shows the intersection of all regions. All charac-
teristics from this two plots can be seen in the All Curves Plot. In figure Nyquist of Open Loop
we can see M-circles and the Nyquist curve of the open loop. Here we can observe the Nyquist
loop shaping. In the Amplitude Frequency Response we can display amplitude response of each
sensitivity function as well as the open loop. Step responses of measured variable y(t), control
variable u(t) and control error e(t) can be seen in Characteristics Step Response of Closed Loop
and Step Response of Internal Closed Loop signals. Characteristics Response of Closed Loop to
Input Step Disturbance and Response of Internal Closed Loop signals to Input Step Disturbance
show responses of y(t), u(t) and e(t) to the input step disturbance.

First of the Auxiliary Tools is called Find the Minimum Gamma Value. There is an iterative
algorithm that computes the minimal value of the infinity norm for sensitivity and complementary
sensitivity function with respect to the selected design criteria for sensitivity functions. It is
possible to preset the top and bottom limit of the gamma value. This tool then shows the region
of controller parameters for the minimal gamma value.

Next tool is the Multipoint Analysis which shows performance of the control loop with controller
minimizing the value of integral criteria (IE, IAE, ISE, ITAE) either in time or frequency domain.
We can see here the Nyquist plot of open loop, step response of closed loop and response to input
step disturbance and amplitude frequency response. We can also select new point from the [Ki,Kp]
plane and the characteristics will be computed for it as well.

Figure 15: Performance Criteria Contour Line in PID
H∞ Designer [45]

Next tool is the Performance Crite-
ria Contour Line which shows computed
values of the integral criteria (IE, ISE or
ITAE) for each sample of the intersection
of regions as a surface of a 3D function
above the region. It is possible to compute
integral criteria for signals associated to
reference tracking, input disturbance re-
jection or both at the same time. We can
also select the optimal solution - this will
highlight the minimal value of the selected
integral criterion. To increase the preci-
sion of the graph, we can ad additional
contour lines. It is possible to change grid
density and contour line levels. Default
value of grid density is 20, value of contour
line levels is 300. If we set these numbers
higher, the computation time will rise sig-
nificantly. We can see that the integral cri-
teria are being computed even for [Ki,Kp]
values which are not in the intersection of
regions. This may or may not be helpful.
The graph for the integral criteria has an

offset in the Ki axis by 0.25 where the graph is not plotted. This has been preset by the developers
of the H∞ Designer because the values of the integral criteria for Ki < 0.25 were to high and would
ultimately distort the 3D plot.

Next, there is the Open Loop Value-Set Region/s tool. It can generate processes from the one
point of the frequency response Model set and its static gain. There are several parameters which
values can be set by user, such as r - magnitude, φ - offset, ω1 - measured frequency, n - order
of the process, # - samples, and ω - frequency of the frequency response Model set. Processes
from the Model set can then be added to the specification, and a solution according to design
requirements can be computed for them in form of the intersection of regions. This tool can find
which of these processes has the lowest robust. It is accomplished by finding the active frequency.

21

On this frequency, the frequency response of the closed loop from the Value set is equal to the
M -circle, which represents the design requirement. This tool can visualise the moment Model
set from the characteristic numbers κ, µ, σ2 which can be obtained from PIDMA block from the
REXYGEN environment.

Multiparametric Analysis is the next tool. It provides several characteristics for each value of
parameters Gamma, kd and tau. Parameter kd is the derivative gain, tau is a derivative time
constant. Among the characteristics, there are Hinf Regions, Amplitude Frequency Response,
Step Response of Closed Loop and Response of Closed Loop to Input Step Disturbance. This
visualization can be very helpful for the controller designer because it provides better understanding
of the systems behaviour with respect to the changes in the process parameters gamma, kd and
tau. This tool serves for the analysis of PID controller design. The PID controller design using
the H∞ approach is more sophisticated than the PI controller design. PID controller has three
parameters Kp, Ki and Kd, which causes a problem when solving the quartic equation to obtain
the region’s boundary [50]. Thus, the PID controller can be static, meaning that the Kd is selected
a priori. Otherwise, numerical optimization methods must be applied to find PID regions from
the quartic equation. These methods eventually lead to a sub-optimal solution. Furthermore, the
solution has to exist for the PI controller to exist for the PID controller. Meaning, that if there is
a process that can not be regulated by a PI controller, but could be by a PID controller, then the
optimization would not detect the solution for the PID controller.

This is a different approach compared to the environment PIDlab [26]. In the PIDlab, the user
could adjust the ratio Ti/Td. This had a practical impact because it was user-friendly and well
captured the feedback loop’s physical reality, e.g., the ratio 1/4 led to a band-stop filter.

Next auxiliary tool is called Tolerance Circles. It plots Nyquist curve of the nominal process
together with several tolerance circles according to the user input. User can also change the value
of gamma which represents the limitation for the T (s). Default value is 20 tolerance circles and
1.2 for gamma.

Another tool is the ε-Constrains which allows user to set magnitude limit ε to the sensitivity
function S(s) on the frequency interval from ω1 to ω2. This tool then shows ε-Constrains region
for S(s) in [Ki,Kp] plane which contains all possible controllers leading to that performance of
S(s). In Figure 16 we can see an example of ε-Constrains region for S(s) for ω1 = 0.1 rad/second,
ω2 = 0.3 rad/second, ε = 0.8. It can be well observed that a significant piece of region is missing
when compared to the region in Figure 14. This is caused exactly by selected constrains for S(s).
The resulting solution is the intersection of the space outside the circles representing constrains for
S(s) with the region. This tool very well reflects how the requirements in the amplitude frequency
domain affect the global solution for a robust controller.

Last, there is the Signal Response tool which simulates system output for several various types
of signals on the input. Among the signals there is for example sine wave, step signal, impulse
signal etc. Signals amplitude, frequency, bias etc. can be modified by user. As the input we can
select signals r(t), di(t), do(t), as the output there are signals y(t), e(t), u(t).

22

Figure 16: ε-Constrains region for sensitivity function S(s) in the PID H∞ Designer [45]

3.1.1 Conclusion

This tool provides many advantages in terms of robust PID controller design. The most sig-
nificant advantage is that it finds all solutions for specified design requirements in the form of
H∞ region. It provides an optimal controller by finding the minimum of the time domain integral
criteria. Every computation is automatic. The next advantages of PID H∞ Designer are that it
considers process uncertainty. It supports powerful Matlab commands for process identification
and control. It provides useful characteristics in the time and frequency domain and additional
tools for analyzing the problem we are currently dealing with. It is available online, and it is
user-friendly.

Another advantage of this tool is the management of data. Parameters and variables can be
stored in a file manager. Later, they can be transferred among the sections.

The disadvantage would be that we can not select simple stability margins, such as GM or PM,
for the Nyquist curve, leaving us with an expert task to define design requirements as requirements
for the sensitivity functions.

Another disadvantage would be the computational time of some functions. For example, the
computation time of integral criteria over the region. This tool does not include methods for
computational time optimization (e.g., gradient methods). However, these methods often end in a
local minimum, leaving us with a sub-optimal solution.

Also, saving the figures is a little bit more complicated. The figure is saved as an encrypted
text. The user has to paste this text to another tool which translates it into the desired format.

23

3.2 REXYGEN Blocks

REXYGEN software from REX Controls company is widely used in various fields of automation,
process control and robotics. REXYGEN Studio is a graphical programming environment with a
generous library of so-called function blocks with implemented algorithms typical for process control
[46]. There are blocks that implement controller tuning algorithms or identification algorithms.
Some of them will be mentioned in this section.

The first block is the State controller for 2nd order system with frequency autotuner (SC2FA)
(Figure 18a). It implements process identification and design of state controller for second order
system with frequency auto-tuner. Two points of frequency response with a given phase delay are
measured during the identification experiment. Identification is initialized by the rising edge of
the signal on the input RUN. Its output is a harmonic signal with frequency ω increasing from ωb to
ωf]. User must set phase delays φ1 and φ2. Their default values are φ1 = −60◦ and φ2 = −120◦,
respectively, but these can be changed to arbitrary values within the interval (−360◦, 0◦), where
φ1 > φ2. From this phase delays, the identification algorithm obtains two points of frequency
response which are successively used to compute the controlled process model in the form of

F (s) =
b1s+ b0

s2 + 2ξΩs+Ω2
, (55)

where Ω > 0 is the natural (undamped) frequency, ξ, 0 < ξ < 1, is the damping coefficient and
b1, b0 are arbitrary real numbers.

After successful identification, it is possible to generate the frequency response of the controlled
system model, which is initiated by a rising edge at the MFR input.

Then, if we want to design a state controller for the identified process model (55), we have
to switch to the ”Controller mode”. This mode has manual and automatic sub-modes. After the
identification, the state controller design is performed automatically. A simplified inner structure
of the frequency auto-tuning part of the controller can be seen in Figure 17. The diagram below
shows the state feedback, observer and integrator anti-wind-up. The diagram does not show that
the controller design block automatically adjusts the observer and state feedback parameters after
the identification experiment [47].

Figure 17: Diagram of the frequency auto-tuner implemented in the block SC2FA [47]

Next block is called Identification of a three parameter model (I3PM) (Figure 18b). The I3PM
block is based on the generalized moment identification method. It takes input/output data, and

24

provides a three parameter model of the system described by characteristic numbers {κ, µ, σ2}
mentioned in Section 2.5.2. It can also identify process in form of FOPDT model [47].

The last block picked for analysis in this thesis is PID controller with moment autotuner
(PIDMA) (Figure 18c). This block extends the control function of the standard PID controller
through the built-in auto-tuning feature. Before the start of the auto-tuner, the operator has to
reach the steady state of the process at a suitable working point (in manual or automatic mode)
and specify the required type of controller type (PI or PID) and other tuning parameters.

(a) SC2FA (b) I3PM (c) PIDMA

Figure 18: Identification and controller design
blocks in the REXYGEN environment [47]

The identification experiment is started by
the input TUNE and stopped by the input TBRK.
In this mode, first of all, the noise and possible
drift gradient are estimated during the user-
specified time. Then the rectangle pulse is ap-
plied to the input of the process, and the first
three process moments are identified from the
pulse response. The pulse amplitude is set by
the parameter amp. The pulse is finished when
the process variable pv deviates from the steady
value more than the dy threshold defines. The
threshold is an absolute difference. Therefore
it is always a positive value. The tuning ex-
periment’s duration depends on the process’s
dynamic behavior. The remaining time to the
end of the tuning is provided by the output
trem.

If the identification experiment is finished
correctly and the input ips equals zero, then
the optimal parameters immediately appear on
the block outputs. In the opposite case, the

output ite specifies the experiment error more closely. Other values of the ips input are reserved
for custom-specific purposes. At the end of the experiment, the function of the controller de-
pends on the current controller mode. If the TAFF = on, the designed controller parameters are
immediately accepted [47].

Illustration of mentioned blocks for process identification and controller design can be seen in
Figure 18.

3.2.1 Conclusion

REXYGEN is a real-time control software. It is capable of the automatic tuning of the PID
controller. In terms of identification, it implements the three-parameter model of the system, and
thus it takes process uncertainty into account. Apart from the REXYGEN Studio, this software
has more essential aspects. REXYGEN operates on a wide range of supported platforms, such as
Raspberry Pi. It supports multiple communication protocols, such as Modbus, OPC UA, OPC
DA, MQTT and SQL through ODBC [46].

However, in terms of controller design, it is more oriented toward the implementation of the
already designed controller on a target device. The environment is not primarily determined for
controller design or process identification. It might be complicated and unnecessary for users to use
this environment for controller design and process identification. That is because, the controller
design part is covered in the PID H∞ Designer.

3.3 Matlab Identification Tools

Last part of the research was the analysis of Matlab identification tools. There are several
commands for process identification in Matlab.

First, idproc model represents a system as a continuous-time process model with estimable
coefficients. idproc(Type) creates a continuous-time process model with estimable parameters

25

and sets the Type property. Type specifies aspects of the model structures, such as the number of
poles in the model, whether the model includes an integrator, and whether the model includes a
time delay. More generally, idproc can represent process models with up to three poles and one
zero [63].

Next, the command tfest estimates the continuous-time transfer function from the input/output
data. It is possible to specify the number of poles and the number of zeros. The input-output
delay can be specified as well, or estimated by the command delayest. Input/output data can be
from the time or frequency domain. This syntax can be used for SISO and MISO systems [63].

In the following section, we will focus mainly on the System identification toolbox, an interactive
environment which includes mentioned commands for process identification.

3.3.1 System Identification Toolbox

One of the most up-to-date system identification toolboxes is the System identification toolbox
designed by Mathworks. It is an app suitable for dynamic system modeling, time-series analysis,
and data forecasting. It automatically estimates transfer functions, process models, and state-space
models from either time domain data (i/o data) or frequency domain data (real and imaginary
parts of process frequency response). In this toolbox, we can work either in continuous or discrete
time. Besides process estimation, the toolbox can automatically generate C/C++ code for online
estimation algorithms to target embedded devices [62].

First, we import the data from the Matlab workspace. Then we have to select a form of model
that we want to estimate. For instance, if we choose a Transfer Function Model, the tool lets us
specify the number of poles and zeros of the estimated transfer function. It is also possible to
include a delay. The delay can be fixed or automatically set by the solver. We can try to estimate
several transfer functions, all of which can be seen in Model Views. An example is depicted in
Figure 19.

If we want to use simple transfer functions with a fixed structure to approximate our process,
we can select Process Models in the drop-down list of estimation options (Figure 20). A process
model can have up to 3 poles. We can specify the system’s damping, delay and whether or not
it should have zero or an integrator. If we know the values of some parameters, we can fix their
values or their bounds.

Figure 19: Matlab: System Identification Toolbox

26

Figure 20: Matlab: System Identification Toolbox

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 21: Comparison of measured data and identified systems

27

In Figure 21, we can see step responses of the measured process and two estimated process
models (Transfer Function Model and Process Model). Transfer functions of these models have
been estimated as

PTF (s) =
(21.92s+ 1.579e05)

(s2 + 70.31s+ 1.545e05)
e−0.003s, PPM (s) =

(2.799e− 07s+ 1.023)

(6.457e− 06s2 + 0.0004309s+ 1)
e−0.00304s.

Note: It is possible to estimate this models using commands tfest and procest in the Matlab
Command Window.

The System Identification Toolbox and the models provide information about estimation ac-
curacy. Three parameters give accuracy: Fit to Estimation Data (FED), Final Prediction Error
(FPE) and Mean Square Error (MSE). In Table 4, we can see results for mentioned estimated
models.

Estimated model FED FPE MSE

Transfer Function 90.24% 0.0006705 0.0006826
Process Model 89.82% 0.0006304 0.0005856

Table 4: Accuracy of estimated models in System Identification Toolbox

These statistics show that the quality of both estimates is similar. Moreover, Matlab pro-
vides information about the uncertainty of estimated transfer function parameters. The command
getpvec returns parameters of estimated process. It also returns the 1 standard deviation value
of the uncertainty associated with the system parameters [63].

Another way to represent uncertainty in Matlab is the covariance matrix of estimated param-
eters. It is obtained by the command getcov. Covariance matrices of parameters from estimated
transfer functions were computed as

P̂PM =

0.0000 −0.0000 −0.0000 −0.0001 −0.0001
−0.0000 0.0000 0.0000 0.0000 0.0000
−0.0000 0.0000 0.0000 0.0004 0.0004
−0.0001 0.0000 0.0004 0.2503 0.2503
−0.0001 0.0000 0.0004 0.2503 0.2503

 ,

P̂TF =

0.0001 −0.0056 −0.0000 −0.0054 0.0000
−0.0056 1.7358 0.0005 0.7815 0.0000
−0.0000 0.0005 0.0000 0.0002 0.0000
−0.0054 0.7815 0.0002 0.7089 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000

 · 106.

From the covariance matrices P̂PM and P̂TF we can see that the uncertainty of PTF parameters
is significantly bigger than uncertainty of the PPM parameters, despite the estimated transfer
functions PTF and PPM have been identified with almost the same precision (Table 4), and their
response

From this results we can conclude that the representation of uncertainty in Matlab can turn out
to be inconsistent. Moreover, it does not include a priori information about admissible processes
which is essential for the Model set approach defined in Section 2.5. Therefore, it does not include
extremal processes which create uncertainty boundary in the frequency domain.

28

4 Implementation of Advanced Tools for Simple Controller
Design

This thesis aimed to improve the graphical user interface (GUI) for robust controller design,
previously designed by the author [66]. The GUI was developed in the Matlab app building envi-
ronment App Designer using Matlab version 9.4 (R2018a). In this thesis, the GUI was redesigned
using Matlab version 9.10 (R2021a) [61, 63]. To access the GUI, the user has to enter command
appdesigner to the Matlab Command Window.

The previously designed GUI implemented algorithms for robust controller design. It provided
automatic computation of robust stability regions and their intersection for the PI controller. The
GUI also provided visualization and analysis of 3D robust stability regions for PIα controllers. A
short description of the developed controller design tool will be mentioned in Section 4.1.

In this thesis, the GUI was extended by a module for process identification. This module
implements standard Matlab commands for process identification and the first-order-plus-multiple-
dead-time (FOPMDT) model identification method. It includes process uncertainty in the form of
the Model set. The identification module will be introduced in Section 4.2.

In Section 4.3, we will show the possibility of robust controller design for processes with uncer-
tainty in the GUI.

The last extension was a closed-loop time domain performance optimization tool which was
searching for an optimal robust controller using the integral criteria of optimality. This tool
implements standard Matlab commands and the gradient method for finding extrema. It will be
described in Section 4.4.

4.1 Previously Developed Controller Design Tool

The tool for controller design implemented the robust region as described in Sections 2.3 and
2.4. In Figure 22, we can observe robust controller design and closed-loop characteristics in the
GUI. The nominal process P (s) used as an example has a form

P (s) =
s+ 1

s2 + 5s+ 6
e−2s. (56)

The process was inserted and its coefficients were shown in table by clicking the Load Process

button and Show Processes button, respectively. After that, the user could select multiple shaping
points in the complex plane representing design requirements. This tool computed one robust
region for each inserted process and each selected requirement. Then, the user had to choose a
point from the intersection of regions. This point represented the [Ki,Kp] coordinates of robust
PI controller leading to closed-loop behavior satisfying all design criteria for all processes. The
closed-loop performance could then be analyzed from multiple characteristics and plots.

Another useful feature was the visualization of three-dimensional PIα robust regions. The PIα

controller is defined as

C(s) = K +
Ki

sα
, (57)

C(jω) = K(ω) +
Ki(ω)

(jω)α
, (58)

where α ∈ R+ is the parameter representing controllers fractional order. Controller gains K(ω)
and Ki(ω) can be obtained as

K(ω) =
a(ω)v cosϕ+ b(ω)v sinϕ+ a(ω)u sinϕ− b(ω)u cosϕ

(a2(ω) + b2(ω)) sinϕ
, (59)

Ki(ω) =
ωα(ub(ω)− va(ω))

(a2(ω) + b2(ω)) sinϕ
, (60)

where ϕ =
(
1
2απ

)
, a(ω) and b(ω) are real and imaginary part of the process, u and v are real

and imaginary parts of the shaping point [15, 66]. An example of the PIα robust region can be
seen in Figure 23.

29

Figure 22: Robust PI controller design in the GUI for process (56)

Figure 23: PIα robust stability region for process (56)

30

4.2 Identification Module

The identification module consists of four sections (Figure 24). First, there is a section for
input/output (i/o) data import. The data should contain the measurement of impluse or step
response of the real process. It is beneficial, if the i/o data are in the steady state at the beginning,
and at the end of an experiment.

After clicking the Import Data button, we can select a data file. Data have to be ordered
into two columns, first for input data, and second for output data. It is recommended to use
.csv, .xlsx, or .txt as a data file format. Data have to be in the same folder as the GUI app,
otherwise, error occurs. After the file with i/o data is selected, it is important to wait a few
seconds, otherwise, an interrupt error appears. After importing the data, they can be plotted by
the Plot Data button. The user can also crop the data by clicking the Select Data button. The
i/o data are then stored as a global variable which can be easily accessed in the GUI. After the
data are imported, we can identify the process model.

Figure 24: The identification module

4.2.1 Process Model Identification Using Matlab Functions

The first method provides a nominal model identified using Matlab command tfest [63]. We
can enter the desired number of poles, number of zeros, sampling period and whether we want the
dead time or not. The identification procedure is initialized by clicking the Estimate Transfer

Function button. After the computation is finished, the response of the identified model is com-
pared with the data. The estimation error and mean square error (MSE) are evaluated. The
estimation error e[k] is given as

e[k] = y[k]− z[k], (61)

31

where y[k] is the sample of output data, z[k] is the sample of estimated output. The MSE is
defined as

MSE =
1

N

N∑
k=1

(y[k]− z[k])
2
, k = 1, . . . , N. (62)

The coefficients of the process model are stored in a table and can be later used for controller
design.

In Figure 25a we can see the step response of process y(t) and estimated model response ŷ(t)
using Matlab function tfest. Number of poles np and number of zeros nz were selected as np = 2
and nz = 1, respectivelly. Dead time was not selected. In Figure 25b we can observe the estimation
error e[k] and MSE of the estimated model.

Since it is an expert task to estimate the correct number of poles and zeros from the i/o data,
the identified process model is not always accurate. This method serves more as a comparison to
the following method in Section 4.2.2.

0 100 200 300 400 500 600 700 800 900 1000

0

0.2

0.4

0.6

0.8

1

(a) Step response estimation

0 100 200 300 400 500 600 700 800 900 1000

-0.005

0

0.005

0.01

0.015

0.02

0.025

(b) Estimation error

Figure 25: Process identification using Matlab function tfest

In the GUI, there is a possibility to include model uncertainty in the form of a Model set.
The normalized characteristic numbers

{
κ̄, µ̄, σ̄2

}
are automatically computed after clicking the

Compute Normalized Kappa, Mu, Sigma button. The GUI provides reliable results for the i/o
data obtained from impulse response. Characteristic numbers are later used for Model set com-
putation. The section in the GUI which implements the Model set will be described in Section
4.2.3.

4.2.2 FOPMDT Process Model Identification

The next method for process experimental identification implemented in this thesis is based on
the assumption that the process model can be sufficiently approximated by the first-order-plus-
multiple-dead-time (FOPMDT) model, for details, see [56]. This method consists of two steps.
The first one is the FOPMDT model identification, and the second is the computation of the
characteristic numbers {κ, µ, σ2} from the identified transfer function. The FOPMDT model can
be described by the formula

P̂ (s) =
1

τs+ 1

n∑
i=0

Aie
−ids, (63)

where τ is a time constant with smoothing functionality, d is a time constant representing
sampling period, Ai is the magnitude representing the weight of the i-th dead-time, n represents
the number of dead-times used in the approximation. The detailed structure of the FOPMDT
model can be seen in Figure 26.

32

blim

Figure 26: FOPMDT model structure

Involved continuous signals u(t), v(t), iw(t) and z(t) can be sampled as

uk = u(kd), (64)

vk = v(kd), (65)
iwk =i w(kd), (66)

zk = z(kd). (67)

From the diagram in Figure 26 we can determine the time change of continuous signal v(t) as
a derivative v̇(t) given as

v̇(t) =
1

τ
v(t) +

1

τ
u(t). (68)

After discretization we obtain

vk+1 = αvk + (1− α)uk, (69)

where α = e−d/τ . Next, the term iw(t) expressing the i-th delayed signal is represented as

iw(t) = v(t− id). (70)

Discretized form is given as

iwk = vk−i. (71)

Continuous and discrete forms of FOPMDT model output are expressed as

z(t) =

n∑
i=0

Ai
iw(t), (72)

zk =

n∑
i=0

Ai
iwk. (73)

It is assumed that the number of dead times n as well as both time constants τ and d are
known. In our GUI it is up to the user to define its values. Parameter d represents sampling. If
we set its value is too small, we can lose information about the process dynamics. If its value is
too high, it can lead to resampling which can cause numeric problems. Parameter τ represents a
smoothing function. It is good to select it in relation to d.

33

If it is supposed firstly that both time constants τ and d are known, then the magnitudes
A0, . . . , An may be determined by the mean square errors method. After the square-errors criterion
is minimized, we obtain the function

I(α) ≜ min
A0,...,An

{
N∑

k=0

(yk − zk)
2

}
, (74)

where yk and zk are discrete responses of the process and model, respectively, to the common
input uk, N is the number of samples. In the GUI, user can define the number of samples.
However the higher its value is, the lower the estimation accuracy. The final model parameters
of identification are determined by repeated minimization of I(a) with respect to indeterminate
variable α ∈ [0, 1] [56].

In Figure 27 we can observe a comparison of continuous response y(t), discrete response yk and
estimated discrete response zk to sine, relay, impulse and step input signal u(t). Parameters were
selected as d = 30, τ = 50, n = 20, N = 20. In Figure 28 we can see the estimation error e[k] and
MSE for each estimated response. Estimation error and MSE were computed according to (61)
and (62), respectively. Since the values of e[k] and MSE are very low, we can assume that the
identification was successful.

34

0 200 400 600 800 1000

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

-0.2

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 27: Process identification using FOPMDT model with sine, relay, impulse and step input
signal, parameters were d = 30, τ = 50, n = 20, N = 20

35

0 100 200 300 400 500 600 700 800 900

-4

-3

-2

-1

0

1

2
10

-16

0 100 200 300 400 500 600 700 800 900

-1.5

-1

-0.5

0

0.5

1

1.5

2
10

-16

0 100 200 300 400 500 600 700 800 900

-12

-10

-8

-6

-4

-2

0

2

4

6

8
10

-17

0 100 200 300 400 500 600 700 800 900

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5
10

-16

Figure 28: Estimation error e[k] = y[k]− z[k] of the FOPMDT model for sine, relay, impulse and
step input signal, parameters were d = 30, τ = 50, n = 20, N = 20

Final step of this identification method is the computation of the characteristic numbers of the
process. First four moments m0,m1,m2,m3 of the auxiliary transfer function

n∑
i=0

Aie
−ids (75)

are defined as

m0 =

n∑
i=0

Ai, m1 = d ·
n∑

i=0

i
Ai

m0
, m2 = d2 ·

n∑
i=0

i2
Ai

m0
, m3 = d3 ·

n∑
i=0

i3
Ai

m0
. (76)

The corresponding characteristic numbers of the process model σ0, σ1, σ2, σ3 are defined as

36

σ0 = m0, σ1 = m1 + τ, σ2 = m2 −m2
1 + τ2, σ3 =

1

2
m3 −

3

2
m1m2 +m3

1 + τ3. (77)

Then, if the assumptions described in Section 2.5.1 and 2.5.2 are met, the three characteristic
numbers {κ, µ, σ2} are given as

κ ≜ σ0, µ ≜ σ1, σ
2 ≜ σ2. (78)

The condition (37) then transforms to

P (s) =
K∏p

i=1(τis+ α)ni
. (79)

The characteristic numbers {κ, µ, σ2} are then used for the Value set boundary computation
according to the (45), (46), (47). In the GUI, the normalized characteristic numbers are automat-
ically computed after clicking the Compute Normalized Kappa, Mu, Sigma button.

This method works well for processes with monotone response, and it is suitable only for the
cases where identification starts in steady state. That does not conflict with the GUI which is
designed to operate with processes with monotone response [56, 66].

4.2.3 Model Uncertainty

The last part of the identification module covers the process model uncertainty in the form of
a Moment-model set. It is supposed that the assumptions described in Section 2.5.1 and 2.5.2 are
met.

The section for model uncertainty can be seen in the up-right corner of the identification module.
The whole procedure is implemented as a callback function of the Generate Moment-model set

button. First, it loads the characteristic numbers {κ, µ, σ2} from the table. Then, the Value set
boundary is computed according to the equations (45), (46), (47).

-0.24 -0.22 -0.2 -0.18 -0.16 -0.14 -0.12 -0.1 -0.08

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Figure 29: Value set boundary for m = 1, n → ∞,
ω = 6

It is up to the user to specify a mini-
mal order m, maximal order n, frequency
ω, and sampling of the Value set bound-
ary. It is possible to select a fractional or
integer order version of the Value set. It
can be also specified whether we want to
work with Matlab or FOPMDT model.

In Figure 29 we can see the three arcs
creating a Value set boundary for pro-
cess minimal order m = 1, maximal order
n → ∞ and frequency ω = 6. The Value
set boundary is plotted for fractional or-
der extremal processes P1(s, α), P2(s, α)
and P3(s, α) as it was described in (45),
(46), (47). The boundary is also sampled
creating integer order extremal processes
P IO
{1,2,3},i(s, α).
The set of IO extremal processes

P IO
{1,2,3},i(s, α) can be stored in the

table by clicking the Store Extremal

Processes button. This process set can be later used for robust controller design which will
be described in Section 4.3.

37

4.3 Robust Controller Design for Process with Uncertainty

Since this thesis focuses on processes with uncertainty, part of the implementation focused on
including the robust controller design for processes with uncertainty to the GUI.

Process uncertainty is included in the form of normalized Moment-model set Sn,m(κ, µ, σ2) in
the Process Identification section in the GUI, where the characteristic numbers are obtained from
the i/o data.

-0.12 -0.11 -0.1 -0.09 -0.08 -0.07 -0.06

0.1

0.15

0.2

0.25

0.3

Figure 30: Value set boundary for {κ̄, µ̄, σ̄2} =
{1, 1, 0.2385}, m = 1, n → ∞, ω = 6, max. 10 samples
per arc

As an example, we will use the charac-
teristic numbers set

{κ̄, µ̄, σ̄2} = {1, 1, 0.2385}. (80)

After clicking the Generate Moment-

model set button we are able to obtain
the Value set boundary represented by FO
extremal processes P1(s, α), P2(s, α) and
P3(s, α), see equations (45), (46) and (47).
Since Matlab does not support fractional
order transfer functions, each arc of the
Value set boundary is sampled, creating a
set of IO extremal processes P IO

{1,2,3},i(s, α)
as described in Section 4.2.3. For n → ∞
it is possible to select the maximal value
of samples per arc. In Figure 30 we can
see three arcs represented by frequency re-
sponses of FO processes P1(s, α), P2(s, α),
P3(s, α) and IO processes P IO

{1,2,3},i(s, α).
The coefficients of the IO extremal

process set P IO
{1,2,3},i(s, α) are then stored by Store Extremal Processes button. For our ex-

ample, the IO extremal process set has a form

P IO
1,1 (s, α) =

1

0.4884s+ 1
e(−0.512s), (81)

P IO
1,2 (s, α) =

1

0.1192s2 + 0.6907s+ 1
e(−0.309s), (82)

P IO
1,3 (s, α) =

1

0.02242s3 + 0.2385s2 + 0.8459s+ 1
e(−0.154s), (83)

P IO
1,4 (s, α) =

1

0.003555s4 + 0.05824s3 + 0.3578s2 + 0.9767s+ 1
e(−0.0233s), (84)

P IO
2,1 (s, α) =

1

0.0002231s5 + 0.00631s4 + 0.07014s3 + 0.3808s2 + s+ 1
, (85)

...

P IO
3,1 (s, α) =

1

8.667e− 05s5 + 0.004959s4 + 0.06676s3 + 0.3807s2 + s+ 1
. (86)

This process Model set can be loaded in the Controller Design section by clicking the Load

Extremal Processes button. After the set is loaded, we can see the process model coefficients in
the table (Figure 34). Now, it is our task to select the design criteria in the form of shaping points
in the complex plane. This functionality is implemented as a callback function of the Select

Point button above the Process Nyquist Plot. As an example, we have selected three shaping
points X1 = u1 + jv1, X2 = u2 + jv2, X3 = u3 + jv3 each representing one design requirement.
Shaping points and matching design requirements are mentioned in Table 5.

38

Index of shaping point Coordinates Design criteria

1. point X1 = −0.5 + 0.000j GM = 2
2. point X2 = −0.5− 0.866j PM = 60◦

3. point X3 = −0.5− 0.375j MS = 1.6

Table 5: Shaping points

The GUI then automatically computes a robust stability region for each process from the
P IO
{1,2,3},i(s, α) set for each design requirement. Robust stability regions for design criteria X1, X2,

X3 can be seen in Figure 31.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a) 1. shaping point X1

0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(b) 2. shaping point X2

0 0.2 0.4 0.6 0.8 1 1.2

0

0.5

1

1.5

(c) 3. shaping point X3

Figure 31: Robust stability regions for sampled IO extremal processes P IO
{1,2,3},i(s, α) for shaping

points X1, X2, X3 representing design requirements described in Table 5

In the GUI, the regions are visualized in one plot (Figure 32a). After clicking the Intersection
Region button, we can see the intersection (if it exists) of these regions (Figure 32b). In order to
finish the robust controller design, we have to click the Select Point button to select [Ki,Kp]]
coordinates from the intersection of robust stability regions, and thus to satisfy defined design re-
quirements for the closed-loop. In this example, we have selected coordinates [Ki,Kp] = [1.1, 0.685].
It is recommended to select the point with the highest value of the Ki coordinate, hence, it leads
to the minimal value of the IE criterion.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a) Robust stability regions (b) Intersection of regions

Figure 32: Intersection of Robust stability regions for sampled IO extremal processes P IO
{1,2,3},i(s, α)

for design requirements X1, X2, X3 described in Table 5 together with the selected PI controller
coordinates [Ki,Kp] = [1.1, 0.685]

39

-1 -0.5 0.5 1

-1

-0.5

0.5

1

Figure 33: Open-loop Nyquist plot

This way we have designed the robust
PI controller satisfying all defined design
criteria for all IO extremal processes.

In Figure 33 we can see the Nyquist
plot of the open loop in the form

Li(s) = P IO
{1,2,3},i(s, α)C(s), (87)

where i = 1, . . . , N , N is the number
of extremal IO processes, and C(s) is the
designed robust PI controller

C(s) = Kp +
Ki

s
= 0.685 +

1.1

s
. (88)

In Figure 33 we can see that the
Nyquist curve of the open loop passes on
the right side of the specified design cri-
teria X1, X2, X3. Thus, according to the

theory described in Section 2.4, those design criteria have been satisfied.

Figure 34: Robust PI controller design for process with uncertainty in the GUI

40

The GUI further provides characteristics for verification of the closed-loops performance as can
be seen in Figure 34. The set of closed-loop transfer functions is given as

Fi(s) =
Li(s)

1 + Li(s)
=

P IO
{1,2,3},i(s, α)C(s)

1 + P IO
{1,2,3},i(s, α)C(s)

, i = 1, . . . , N. (89)

In Figures 36 and 36 we can see the time and frequency characteristics of closed-loops each
consisting of one P IO

{1,2,3},i(s, α) process and designed PI controller.

In Figure 36 the user can observe step responses of closed-loop sensitivity functions S(s), T (s),
CS(s), PS(s). From this Figure, we can see that all four sensitivity functions have required
behavior.

Figure 35: Closed-loop sensitivity functions S(s), T (s), CS(s), PS(s) step responses, PI controller
parameters [Ki,Kp] = [1.1, 0.685]

41

In Figure 36 we can see the sensitivity functions S(s), T (s), CS(s), PS(s) magnitude and phase
frequency responses in the form of Bode plot. Bode plots are plotted on the logarithmic scale on
the frequency interval ω ∈

〈
10−1, 103

〉
rad/s. Due to the numerical issues the results of T (s) and

PS(s) phase responses are slightly distorted.

10
-1

10
0

10
1

10
2

10
3

-20

-10

0

10

10
-1

10
0

10
1

10
2

10
3

0

50

100

10
-1

10
0

10
1

10
2

10
3

-1000

-500

0

10
-1

10
0

10
1

10
2

10
3

-3000

-2000

-1000

0

10
-1

10
0

10
1

10
2

10
3

-5

0

5

10
-1

10
0

10
1

10
2

10
3

-40

-30

-20

-10

0

10
-1

10
0

10
1

10
2

10
3

-600

-400

-200

0

10
-1

10
0

10
1

10
2

10
3

-3000

-2000

-1000

0

Figure 36: Closed-loop sensitivity functions S(s), T (s), CS(s), PS(s) frequency responses, PI
controller parameters [Ki,Kp] = [1.1, 0.685]

4.4 Closed-Loop Time Domain Performance Optimization Tool

The next task of this thesis was to develop a tool for optimal robust controller search using the
integral criteria of optimality mentioned in Section 2.6. This tool improves the author’s previous
work firstly introduced in [67]. It focuses on measuring the closed-loop performance in the time
domain. Due to the computational and implementation complexity, this tool works only for one
process model, and for an arbitrary number of design criteria.

The aim of this tool is to sample the resulting intersection of robust stability regions and for
each [Ki,Kp] coordinate compute the control error e(t) of the closed-loop. The control error e(t)

42

is then used for computation of IE, ITE, ITAE, IAE, ISE, and IGSE according to the equations
(49), (50), (51), (52), (53), and (54). Next, the GUI automatically finds the optimal coordinates
leading to minimal values of each integral criterion. In this tool, we have implemented standard
minimization using the command min and gradient minimization.

To illustrate the functionality of this tool, we have selected the process model

P (s) =
s+ 1

s2 + 5s+ 6
e−0.2s, (90)

and three design criteria X1, X2, X3 mentioned in Table 5 for optimal robust controller search.
After the robust stability regions are computed for each design requirement, their intersection
is automatically evaluated and stored as a Matlab polyshape object (Figure 37a). In order to
evaluate the six mentioned integral criteria it is important to sample the intersection region. The
region was sampled as a mesh grid matrix with its limits set as the maximal values of Ki, Kp

coordinates. However, this sampling did not respect the irregular shape of the region creating
a rectangular grid. A cubic approximation of the sampled region had to be performed on the
obtained grid. As a result, it is then possible to approximate any irregular shape of the region for
its further processing. The sampled area is shown in Figure 37b. Default sampling has been set to
20x20 samples per rectangular mesh grid which results in approximately three hundred samples of
region coordinates [Ki,Kp] [67].

(a) The resulting intersection of regions

0 2 4 6 8 10 12

0

1

2

3

4

5

6

(b) Sampled area of the intersection

Figure 37: Intersection of robust stability regions and its sampling

In the GUI, the intersection area sampling is done in the Integral Criteria Optimization section
by clicking the Create Meshgrid and Sample Region buttons. Grid resolution can be selected as
20x20, 40x40, or 80x80 samples. The cubic approximation of the sampled region had one significant
disadvantage since it did not include its border. In general, the shape of the intersection area border
is irregular. Therefore, the borderline had to be additionally sampled and added to the cubical
approximation of the area.

After the intersection of regions was sampled, all obtained controllers were used for closed-loop
simulations. The performance of all closed-loops was evaluated according to the chosen integral
criteria of optimality. In Figure 38 we can see the three-dimensional surface of all six assumed
integral criteria.

The graphs depicted in Figure 38 show that all chosen criteria provide similar information. The
more fundamental difference between them is only in the steepness as the criterion grows. This is
primarily due to the contemplated shape of the system that was used as an example. In the case
of an oscillatory system, it would be possible to obtain graphs with various shapes. However, the
GUI focuses on essentially monotone processes, therefore, the surface shape will always be similar.
The criteria for ITE and ITAE achieve the highest values for example system. Furthermore, for
example, the ISE criterion provides the steepest course. Also worth mentioning here is the design

43

parameter α in the IGSE criterion. It serves as a weight of the first derivative of control error ė(t).
Its default value is α = 0.5. In the GUI user can adjust its value. For increasing α, the IGSE
reaches higher values [67].

These graphs thus provide an interesting insight into the evaluation of the resulting region.
Their results are used in further described optimization processes where we are searching for
optimal [Ki,Kp] coordinates which lead to the minimal value of each integral criteria of optimality.
In Section 4.4.1 we will describe standard optimization. In Section 4.4.2, the gradient optimization
method will be introduced.

44

Figure 38: 3D surface of integral criteria for the intersection of robust regions. The GUI can
visualize IE, ITE (on the top), ISE, IAE (in the middle), ITAE and IGSE (at the bottom) [67]

45

In authors previous work, the subsequent step in the region evaluation was the usage of the H2

and H∞ norms for each closed-loop system H(s) [67]. Both norms can be used as design criteria
for time domain optimization. The H2 norm can be expressed as

||H(s)||2
∆
=
(1

2π

∫ +∞

−∞
|H(jω)|2dω

) 1
2

. (91)

The H2 signal norm represents the energy it contains. Thus, it is equal to the ISE criterion.
The H∞ norm can be expressed as

∥H(s)∥∞ ≜ sup
∀ω

|H(jω)| (92)

If the system is a stable single-input-single-output system then the H∞ norm represents the
peak gain, the largest value of the frequency response magnitude.

The calculations were performed according to the formulas (91) and (92) for all closed-loop
systems from the intersection region. Even in this case, the resulting region was composed of
approximately three hundred controllers. The values obtained for both norms are displayed in
Figure 39. In Figure 39 on the left, the resulting region is evaluated using the H2 norm. On the
right, the resulting region is evaluated using the H∞ norm. The results for the H2 norm show that
as the value of Ki and Kp increases, the total energy of the system also increases. In the case of
the results for the H∞ norm, it is clear that almost all controllers are evaluated at 1. This means
that all obtained controllers stabilize the system and reach the required value. In this manner,
it converges to the value of the set point. Only the values for Ki = 0 do not achieve the value
of 1. These controllers do not attain the required value when it is caused by the absence of the
integration component in the controller. Consequently, only the proportional component is present
there, which is not enough to reach the set point. In this case, the considered PI controllers became
P controllers. This fact stems mainly from the shape of the resulting region [67].

Since the H∞ norm shows the maximum gain, it could be used for overshoot minimization. In
the case of an oscillatory process P (s), the 3D surface of H∞ plot could have various shapes, and
we would be able to select a controller leading to the minimal overshoot.

Figure 39: 3D visualisation of ||H||2 and ||H||∞ of the closed-loop obtained from the parameters of
the final robust region and defined nominal process. On the left there is 2-norm of the closed-loop.
On the right there is ∞-norm of the closed-loop [67]

46

4.4.1 Integral Criteria Standard Optimization

The first minimization method is simple. It starts with computing closed-loop transfer functions
for all controllers from the intersection region. Then it computes the integral criteria for all closed-
loops from the intersection and finds their minimal value using Matlab command min.

The resulting [Ki,Kp] coordinates and values of integral criteria can be seen in Table 6. From
the results, we can see that the [Ki,Kp] coordinates are similar in all cases, except for ISE and
IGSE criteria, where the values for Ki are lower, and for Kp higher. The final minimal value of
ISE is the lowest when compared with other criteria. The highest minimal value belongs to the
IAE criterion. The GUI can visualize the step responses of optimal closed-loops for each integral
criterion. Optimal closed-loop performances can be seen in Figure 40. From this plot, we can see
that the step response peak for ISE and IGSE is smaller than for other criteria.

Figure 41 shows the minimal values of integral criteria in the 3D graphs generated for each
criterion. 2D visualization can be seen in Figure 42. In all graphs, the minimum value is represented
by a green dot. The region consists of 353 samples.

Figure 43 shows implemented standard optimization algorithm in the GUI.

Integral criteria Ki value Kp value Integral criteria minimal values

IE Ki = 11.8485 Kp = 2.6582 IE = 5.0856
ITE Ki = 11.7818 Kp = 2.4776 ITE = 3.4821
ITAE Ki = 11.8445 Kp = 2.5743 ITAE = 3.6358
IAE Ki = 11.7761 Kp = 2.9057 IAE = 5.2245
ISE Ki = 10.9092 Kp = 3.5302 ISE = 3.2147
IGSE Ki = 11.0747 Kp = 3.4553 IGSE = 3.3550

Table 6: Integral criteria standard optimization results

Figure 40: Standard optimization: Step responses of closed-loops containing optimal PI controllers
in the sense of minimal corresponding integral criterion

47

Figure 41: Standard optimization: Minimal values of integral criteria of optimality shown in 3D
surfaces for 353 grid samples

48

Figure 42: Standard optimization: Minimal values of integral criteria of optimality shown in 2D
for 353 grid samples

49

Figure 43: Integral criteria standard optimization in the GUI

The biggest advantage of this method is that it provides a global minimum of the integral
criterion. The resulting [Ki,Kp] parameters as well as the minimal value of chosen criterion will
be the same after every simulation. The main disadvantage is the computational complexity and
therefore the long duration of the algorithm, hence the integral criteria have to be computed for
all closed-loops from the intersection area. With increasing mesh grid sampling the computational
duration significantly increases as well.

4.4.2 Integral Criteria Gradient Optimization

The second implemented minimization method uses a gradient approach. The gradient opti-
mization method does not compute integral criteria for all closed-loops from the sampled intersec-
tion region. This method is initiated in one [Ki,Kp] point from the region. For this point, the
closed-loop and selected integral criterion are computed. Next, the algorithm selects the nearest
neighboring [Ki,Kp] points and uses these controller parameters for the computation of corre-
sponding closed-loops and integral criteria. The algorithm selects the [Ki,Kp] point with the
lowest value of the chosen integral criterion, and repeats the previous step. In this manner, the
algorithm searches for minimal criterion value according to the maximal negative gradient. In the
GUI, it is possible to minimize previously mentioned criteria IE, ITE, ITAE, ISE, IAE, and IGSE.
It is also possible to select starting point from the sampled grid. The choice of the starting point
influences the results of this method.

As an illustrative example, we have run the gradient optimization algorithm three times, each
time with a different starting point. The mesh grid contained 20x20 samples, and the starting
points were

[X1, Y1] = [3, 7], [X2, Y2] = [1, 1], [X3, Y3] = [1, 20], (93)

where Xi, and Yi represent the column, and the row of the mesh grid respectively. Note:
Starting point in origin [X0, Y0] = [0, 0] would be at the bottom left of the intersection region.
The resulting [Ki,Kp] coordinates and values of integral criteria for each simulation can be seen
in Table 7. The results show that for IE and ITE, the [Ki,Kp] coordinates and integral criteria
minimal values are not always the same for each starting point. Since this method does not have

50

information about all closed-loops from the intersection area, these results were expected. For
other integral criteria, the results are consistent for each starting point. The final minimal value of
ISE is the lowest when compared with other criteria. The highest minimal value belongs to the IE
criterion in the case when the algorithm starts in the point [X3, Y3] = [1, 20]. Again, the GUI can
visualize the step responses of optimal closed-loops for each integral criterion. Optimal closed-loop
performances for each starting point can be seen in Figure 44. All three graphs look very similar.
The only difference is in the shape of closed-loop response minimizing IE and ITE criteria.

Figures 45, 47, and 49 show the process of gradient optimization in the 3D graphs leading to
a local minimum for each criterion for starting points [X1, Y1], [X2, Y2], and [X3, Y3]. Figures 46,
48, and 50 provide 2D visualizations of the gradient method. In all graphs, the starting point
is represented by a pink dot, the path to the local minimum is marked by green dots, and blue
dots represent the nearest neighbors which had been selected during the iterations of gradient
optimization.

Figure 51 shows implemented gradient optimization algorithm in the GUI.

Integral criteria Ki value Kp value Integral criteria minimal values

IE1 Ki = 11.2252 Kp = 2.1234 IE1 = 5.36251
IE2 Ki = 11.2252 Kp = 2.1234 IE2 = 5.3625
IE3 Ki = 10.6016 Kp = 1.5925 IE3 = 5.6726

ITE1 Ki = 8.7307 Kp = 0.5308 ITE1 = 4.8886
ITE2 Ki = 10.6016 Kp = 1.5925 ITE2 = 3.8491
ITE3 Ki = 8.7307 Kp = 0.5308 ITE3 = 4.8886

ITAE1 Ki = 11.2252 Kp = 2.1234 ITAE1 = 3.8212
ITAE2 Ki = 11.2252 Kp = 2.1234 ITAE2 = 3.8212
ITAE3 Ki = 11.2252 Kp = 2.1234 ITAE3 = 3.8212

IAE1 Ki = 11.2252 Kp = 2.9196 IAE1 = 5.3680
IAE2 Ki = 11.2252 Kp = 2.9196 IAE2 = 5.3680
IAE3 Ki = 11.2252 Kp = 2.9196 IAE3 = 5.3680

ISE1 Ki = 10.6016 Kp = 3.4505 ISE1 = 3.2514
ISE2 Ki = 10.6016 Kp = 3.4505 ISE2 = 3.2514
ISE3 Ki = 10.6016 Kp = 3.4505 ISE3 = 3.2514

IGSE Ki = 10.6016 Kp = 3.4505 IGSE = 3.38593
IGSE Ki = 10.6016 Kp = 3.4505 IGSE = 3.38593
IGSE Ki = 10.6016 Kp = 3.4505 IGSE = 3.38593

Table 7: Integral criteria gradient optimization results for all three starting points

(a) Starting point [X1, Y1] (b) Starting point [X2, Y2] (c) Starting point [X3, Y3]

Figure 44: Gradient optimization: Step responses of closed-loops containing optimal PI controllers
in the sense of minimal corresponding integral criterion

51

Figure 45: Gradient optimization: Minimal values of integral criteria of optimality shown in 3D
surfaces for 353 grid samples

52

Figure 46: Gradient optimization: Minimal values of integral criteria of optimality shown in 2D
for 353 grid samples

53

Figure 47: Gradient optimization: Minimal values of integral criteria of optimality shown in 3D
surfaces for 353 grid samples

54

Figure 48: Gradient optimization: Minimal values of integral criteria of optimality shown in 2D
for 353 grid samples

55

Figure 49: Gradient optimization: Minimal values of integral criteria of optimality shown in 3D
surfaces for 353 grid samples

56

Figure 50: Gradient optimization: Minimal values of integral criteria of optimality shown in 2D
for 353 grid samples

57

Figure 51: Integral criteria gradient optimization in the GUI

From these results, we can see that the starting point plays a significant role. It can influence
the shape and distance of the path to the minimum. The closer it is to the supposed minimum, the
shorter the path and the computational time. Perhaps the biggest disadvantage of this method is
that it leads to a local minimum. Meaning, the resulting [Ki,Kp] parameters and the minimal value
of chosen criterion will not be the same after every simulation. Moreover, due to the irregular shape
of the sampled borderline, it could not be included. Hence, the algorithm operates with the regular
rectangular grid. Since, often the optimal [Ki,Kp] parameters lie on the border of the region, this
creates slight discrepancies between this method and the standard optimization method mentioned
earlier.

However, the biggest advantage of the gradient optimization method is its small computational
complexity and thus the algorithm duration. The computational duration is significantly smaller
when compared to the standard minimization, as it will be shown in Section 4.4.3.

4.4.3 Comparison of Standard and Gradient Optimization Methods

In this section, the comparison of the two mentioned methods will be shown. In the following
experiment, the optimization is executed for both gradient and standard methods. For an illus-
trative example, the optimization algorithms were performed for the IE criterion. Starting point
[X,Y] = [3, 7] was selected for the gradient method. This experiment consisted of three phases.
In each phase we have increased the mesh grid sampling, starting at 20x20 samples, followed by
40x40 samples, and finishing with 80x80 samples. In each phase, we have run 5 simulations for
standard and gradient optimization. We have mostly focused on the differences in computational
time and the final minimum value of the IE criterion. For a better comparison of both methods,
we have excluded the irregular borderline from the standard optimization method because the
gradient method can not operate with it.

Note: All calculations and simulations were performed on a computer with CPU I7 - 8700k
3.70GHz, 16GB RAM, 2TB HDD and Windows 10 64bit.

In the first phase, the simulation was performed on the 20x20 mesh grid samples. The elapsed
time of each simulation for both methods can be seen in Table 8. From this table, we can see
that the computational time of standard optimization has approximately double the value when
compared to the duration of gradient optimization.

58

Optimization method Elapsed time of each simulation

Gradient method 4.241939 s 4.045740 s 3.882915 s 4.041694 s 4.128104 s
Standard method 8.479173 s 8.252737 s 8.402302 s 8.200030 s 8.420921 s

Table 8: Results of the first phase, mesh grid sampling: 20x20

The IE minimum values for gradient optimization method IE
{min}
G , and standard optimization

method IE
{min}
S were

IE
{min}
G = 5.3625, IE

{min}
S = 5.3625. (94)

We can see that the final values of the IE criterion are the same for both methods. Even despite
the gradient method providing only a local minimum. Visual results of these methods can be seen
in Figure 52, and 53 respectively.

(a) 2D view (b) 3D view

Figure 52: IE gradient minimization, grid dimension 20x20

(a) 2D view (b) 3D view

Figure 53: IE standard minimization (border excluded), grid dimension 20x20

In the second phase, the simulation was executed for the 40x40 mesh grid sampling. The
elapsed time of each simulation for both methods can be seen in Table 9. This table shows
that the computational time value of standard optimization is almost four times higher than the
computational time value of gradient optimization.

59

Optimization method Elapsed time of each simulation

Gradient method 7.003348 s 6.961408 s 6.913999 s 6.759694 s 6.840178 s
Standard method 28.552841 s 28.174117 s 26.324839 s 27.072495 s 27.188183 s

Table 9: Results of the second phase, mesh grid sampling: 40x40

The IE minimum values for gradient optimization method IE
{min}
G , and standard optimization

method IE
{min}
S were

IE
{min}
G = 5.8204, IE

{min}
S = 5.2161. (95)

We can see that the final value of the IE criterion is different for each method. This is caused
because the gradient method provides only a local minimum. When compared to the previous

phase results (94), we can see that the IE
{min}
G value increased, and the IE

{min}
S value decreased.

These results indicate that the higher number of samples does not have to improve the gradient
method performance.

Visual results of these methods can be seen in Figure 54, and 55 respectively.

(a) 2D view (b) 3D view

Figure 54: IE gradient minimization, grid dimension 40x40

(a) 2D view (b) 3D view

Figure 55: IE standard minimization (border excluded), grid dimension 40x40

Finally, in the third phase, the simulation was run for the 80x80 mesh grid dimension. The
elapsed time of each simulation for both methods can be seen in Table 10. According to the

60

table, the computational time value of standard optimization is almost ten times higher than the
computational time value of gradient optimization.

Optimization method Elapsed time of each simulation

Gradient method 13.092232 s 12.715285 s 13.024894 s 13.217139 s 13.194521 s
Standard method 103.117455 s 104.984474 s 101.238183 s 103.115569 s 27.188183 s

Table 10: Results of the third phase, mesh grid sampling: 80x80

The IE minimum values for gradient optimization method IE
{min}
G , and standard optimization

method IE
{min}
S were

IE
{min}
G = 5.8941, IE

{min}
S = 5.1486. (96)

These results show that the final value of the IE criterion is different for each method. Again,
this difference is caused because the gradient method provides only a local minimum. We can see

that the IE
{min}
G value again increased, and the IE

{min}
S value again decreased when compared to

the previous phase results (94). Visual results of these methods can be seen in Figure 56, and 57
respectively.

(a) 2D view (b) 3D view

Figure 56: IE gradient minimization, grid dimension 80x80

(a) 2D view (b) 3D view

Figure 57: IE standard minimization (border excluded), grid dimension 80x80

61

To conclude this comparison, both methods have some advantages and disadvantages. The
standard method provides a global minimum. However, it has to compute the integral criterion for
each closed loop of the intersection area. The gradient method provides a sub-optimal solution in
the form of a local minimum. On the other hand, it does not have to compute the integral criterion
for all closed loops from the intersection. This creates a significant difference in the computational
time between the two methods. However, the more grid samples are selected, the harder it gets for
the gradient method to find (or at least get close to) the global minimum. Moreover, the borderline
for the standard minimization method was excluded for the results to be better comparable. If it
was included, the final minimal value of IE would be lower for the standard method.

62

5 Validation on Real Process

For the validation of this thesis, we have chosen the incubation device (Figure 58) where we
have measured the air temperature. The air is heated by the metal heating unit which serves as
the actuator. A detailed description of the device can be seen in [37]. The incubation device is
connected to the Monarco HAT and Raspberry Pi HW. The communication with the local PC is
provided by REXYGEN SW [46].

Figure 58: Open incubator with the Monarco HAT and Raspberry Pi [37]

The first part of the validation was the experimental identification of the process. As a process
variable, we have selected the air temperature. In order to perform the identification, we had to
measure the step response of the air temperature.

0 2000 4000 6000 8000 10000 12000

20

22

24

26

28

30

32

34

36

Figure 59: Measured response of the air temperature in the
incubation device

We have set the power of the heat-
ing unit to 30% which is equivalent to
the air temperature Tair = 32.5 ◦C in
the steady state. During the experi-
ment, the average ambient tempera-
ture was Tamb = 20.25 ◦C. In Figure
59, we can see the measured response
of the temperature in the incubator.
The air temperature starts at 20.25
◦C and finishes at 32.5 ◦C. The dura-
tion of this experiment is in the inter-
val from 14:27:58 to 18:14:49 (13611
seconds).

The measured data x were later
normalized according to the equation

(x− offset)

amplitude
=

(x− 20.25)

(32.5− 20.25)
. (97)

The data from step response were
used for Matlab and FOPMDT pro-
cess estimation.

The second part of the validation was the robust controller design. For the controller design

63

we have used design criteria X1 = −0.5 + 0.000j (GM = 2), X2 = −0.5 − 0.866j (PM = 60◦),
X3 = −0.5− 0.375j (MS = 1.6) which were mentioned in Table 5.

5.1 Validation of Estimated Matlab Process Model

The transfer function estimated using Matlab commands was

P̂ (s) =
(0.0001229s+ 6.542e− 09)

s2 + 0.0001991s+ 6.372e− 09)
e−72s (98)

The comparison of measured and estimated process response using Matlab commands can be
seen in Figure 60a. The estimation error is depicted in Figure 60b. From these pictures, we can
assume that the identification was precise.

0 2000 4000 6000 8000 10000 12000

0

0.2

0.4

0.6

0.8

1

1.2

(a) Estimated step response

0 2000 4000 6000 8000 10000 12000

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

(b) Estimation error

Figure 60: Comparison of measured and estimated process response using Matlab commands, and
the estimation error

The robust stability regions corresponding with the design criteria X1, X2, X3 for the pro-
cess model (98), and its intersection can be seen in Figure 61a, and 61b respectively. From
the intersection area, we have selected the PI controller parameters [Ki,Kp] = [0.038, 40] and
[Ki,Kp] = [0.019, 40].

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

10

20

30

40

50

60

70

80

(a) Robust stability regions (b) Intersection of regions

Figure 61: Robust stability regions and its intersection together with the selected PI controller
parameters [Ki,Kp] = [0.038, 40] and [Ki,Kp] = [0.019, 40]

Both PI controllers were used in the closed-loop system connected to the incubator through
REXYGEN. The closed-loop step response was measured for both PI controllers. In Figure 62a,

64

and 62b we can observe the step responses of closed-loops with PI controller parameters [Ki,Kp] =
[0.038, 40], and [Ki,Kp] = [0.019, 40] respectively. From both graphs, we can see that the measured
value of the air temperature reaches the set point. However, for the second closed loop, the set-
point is reached after a significantly longer time (approx 8000 seconds) when compared to the first
closed loop (approx. 3500 seconds). For the first closed loop, the rise time is approximately 4
times quicker than the original non-controlled rise time. For the second closed loop, the rise time
is approximately 1.5 times quicker than the original non-controlled rise time.

In Figure 63a, and 63b we can observe the courses of manipulated variable in percents for the
first, and second closed loop respectively.

0 500 1000 1500 2000 2500 3000 3500

0

0.2

0.4

0.6

0.8

1

1.2

(a) [Ki,Kp] = [0.038, 40]

0 2000 4000 6000 8000 10000

0

0.2

0.4

0.6

0.8

1

1.2

(b) [Ki,Kp] = [0.019, 40]

Figure 62: Closed-loop step responses containing PI controller parameters designed for X1, X2,
X3 design criteria for the Matlab model (98)

0 500 1000 1500 2000 2500 3000 3500

0

10

20

30

40

50

60

70

80

90

100

(a) [Ki,Kp] = [0.038, 40]

0 2000 4000 6000 8000 10000

0

10

20

30

40

50

60

70

80

90

100

(b) [Ki,Kp] = [0.019, 40]

Figure 63: Manipulated values (in percents) for both step responses

5.2 Validation of Estimated FOPMDT Process Model

The estimation using the FOPMDT model was performed for the parameters: N = 69, d = 30,
n = 1000, τ = 50 according to the procedure described in 4.2.2. The estimated transfer function
had a form

P̂ (s) =
1

50s+ 1

1000∑
i=0

Aie
−i30s. (99)

65

Again, the measured and estimated process responses can be seen in Figure 64a. The estimation
error is depicted in Figure 64b. The identification was precise, the estimation error has significantly
lesser values than in the previous case.

0 2000 4000 6000 8000 10000 12000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Estimated step response

0 2000 4000 6000 8000 10000 12000

-6

-4

-2

0

2

4

6

8
10

-16

(b) Estimation error

Figure 64: Comparison of measured and estimated process response using FOPMDT, and the
estimation error

In this part of the validation, we have considered process uncertainty. We have computed
the three characteristic numbers for the FOPMDT model according to the (76), (77), and (78).
The characteristic numbers were {κ = 0.9887, µ = 354.4626, σ2 = 9.1671e + 04}. The normalized
characteristic numbers set had a form {κ̄ = 1, µ̄ = 1, σ̄2 = 0.7296}. We have considered n → ∞
and m = 1. Thus, we have obtained the normalized Model set S∞,1(σ̄2).

Next, we have computed the extremal processes creating the Value set boundaries ∂Vω according
to the (45), (46), and (47). From the extremal processes, we have chosen 12 IO transfer functions
P IO
{1,2,3},i(s, α), i = 1, . . . , 12, for the robust controller design.
The robust stability regions corresponding with the design criteria X1, X2, X3 for the obtained

IO extremal process set P IO
{1,2,3},i(s, α), and its intersection can be seen in Figure 65a, and 65b

respectively. From the intersection area, we have selected the PI controller parameters [Ki,Kp] =
[3.6, 2.7] and [Ki,Kp] = [1.8, 2.7].

0 2 4 6 8 10 12 14 16

0

1

2

3

4

5

6

7

8

9

10

11

(a) Robust stability regions (b) Intersection of regions

Figure 65: Robust stability regions and its intersection together with the selected PI controller
parameters [Ki,Kp] = [3.6, 2.7] and [Ki,Kp] = [1.8, 2.7]

After the PI controller parameters were selected, it was important to denormalize them. The
denormalized controller parameters were [Ki,Kp] = [0.0038, 2.7309] and [Ki,Kp] = [0.0019, 2.7309]

66

The closed-loop step response was measured on the incubator through REXYGEN for both
PI controllers. In Figure 66a, and 66b we can observe the step responses of closed-loops with
PI controller parameters [Ki,Kp] = [0.0038, 2.7309], and [Ki,Kp] = [0.0019, 2.7309] respectively.
From the first graph, we can see that the measured output has approx. 30% overshoot. After
approx. 5250 seconds, the measured output stays in the 2% tolerance band. The rise time is
around 1000 seconds. In the second graph, we can see that the overshoot is smaller than in
the previous case reaching approx. 9% of the set-point value. After approx. 4885 seconds, the
measured output stays in the 2% tolerance band. The rise time takes around 1800 seconds. We
can observe that the Ki = 0.0038 leads to a more oscillatory course of the step response, higher
overshoot, and shorter rise time.

In Figure 67a, and 67b we can observe the course of manipulated variable in percents for the
first, and second closed loop respectively. The first graph shows, that the manipulated variable
for Ki = 0.0038 does not go above 75% of the power. Higher values of the manipulated variable
lead to a higher overshoot in the closed-loop step response. In the second graph, the manipulated
variable for Ki = 0.0019 does not exceed 42.5% of the power. The course of the manipulated
variable is less oscillatory than in the first graph, leading to the lower overshoot of the closed-loop
step response.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a) [Ki,Kp] = [0.0038, 2.7309]

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

0.2

0.4

0.6

0.8

1

1.2

(b) [Ki,Kp] = [0.0019, 2.7309]

Figure 66: Closed-loop step responses containing PI controller parameters designed for X1, X2,
X3 design criteria for FOPMDT model

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

10

20

30

40

50

60

70

80

(a) [Ki,Kp] = [0.0038, 2.7309]

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

5

10

15

20

25

30

35

40

45

(b) [Ki,Kp] = [0.0019, 2.7309]

Figure 67: Manipulated values (in percents) for both step responses

67

6 Conclusion

The main aim of this thesis was to develop tools for process model identification, robust con-
troller design for processes with uncertainty, and closed-loop performance optimization in the time
domain. These tools have been successfully implemented in the GUI developed earlier by the
author.

The first part focuses on the theoretical base of the author’s approach. Here, we have described
the robust controller tuning method based on the robust stability regions for PI controllers, the
modeling of the process non-structural uncertainty, the Model set approach which consists of the
experimental identification of the process moments, the construction of the model and Value set
and the computation of the extremal processes for FO and IO processes, and the robust controller
design, and finally we have mentioned the time domain integral criteria of optimality.

The concept of the used method began with defining the design criteria in the frequency do-
main, these criteria were then represented as the shaping points for the Nyquist curve. From the
experimental identification and the a priori assumptions, the moment Model set was obtained, and
the models of extremal processes were computed. Subsequently, for each design requirement for
each process model, one robust stability region was obtained. The solution emerged as an inter-
section of all robust stability regions (if it existed). The intersection area contained all controllers
which satisfied all design requirements for all processes. From the intersection area, one controller
was selected according to the minimal value of the given integral criterion which led to the optimal
time domain performance.

The second part of this thesis focused on the current state-of-the-art of controller design and
process identification tools. We have described the structure and functionality and pointed out the
advantages and disadvantages of each mentioned tool.

First, we have analyzed the PID H∞ Designer. Its main advantages were finding all solutions
(if the solution exists) using the H∞ regions, finding optimal controller in the time domain using
the integral criteria, including the uncertainty to the process model, automatic computations, data
management, tools for closed-loop performance analysis, etc. Among the disadvantages was the
computational time of some functions (e.g., the computational time of the integral criteria over
the region), or the inability to select simple stability margins for the Nyquist curve (e.g., GM or
PM).

Second, we have analyzed the functionality of some blocks in the REXYGEN studio. However,
it has been found, that it is more oriented toward the implementation of the already-designed
controller on a target device.

The third step was the analysis of Matlab’s System identification toolbox. Although this
toolbox provided good results in the process model estimation and important information about the
precision of model estimation, the representation of uncertainty could turn out to be inconsistent, it
did not include the extremal processes which create uncertainty boundary in the frequency domain.

In the third part of this thesis, we have described the implementation of developed tools. These
tools extended the previously developed GUI.

The first extension was the identification module. This module included the standard Matlab
commands for process identification which lead to a nominal process model, and the FOPMDT
identification method which resulted in the process model including the non-structural uncertainty
represented by the extremal processes obtained according to the Model set approach.

Next, the ability to design a robust controller for processes with uncertainty was shown. From
the extremal processes, the samples containing IO transfer functions were selected for the con-
troller design. Then three frequency domain controller requirements were specified, and for each
design requirement for each process from the IO extremal process set, the robust stability region
was obtained. Intersection was successfully found and one controller with approximately highest
value of Ki coordinate was selected. Time domain and frequency domain sensitivity functions
characteristics were depicted, all of which showing acceptable results. Thus, the robust controller
design for process with uncertainty was successfully performed.

The last part of the implementation described the closed-loop time domain performance op-
timization tool. This tool was designed to search for an optimal robust controller by minimizing
the integral criteria of optimality. This tool extended the author’s previous work in which the

68

intersection area of the robust stability regions was sampled, creating the mesh grid of [Ki,Kp]
parameters. For each PI controller sample, the closed loop was constructed and the selected inte-
gral criterion was computed resulting in 3D graphs depicting the integral criteria of optimality for
the whole intersection area. In this thesis, we have worked with six integral criteria of optimality:
IE, ISE, ITE, ITAE, IAE and IGSE. In this thesis, two optimization methods were shown.

First was the standard optimization method. It computed each integral criterion for all samples
of the intersection region and then found the controller with the smallest value of each integral
criterion. This method led to the global minimum of each integral criterion.

The second was the gradient optimization method. It started at some point of the sampled
[Ki,Kp] grid where it computed selected integral criterion. Then it computed the selected integral
criterion for its nearest neighbors and selected the lowest value. This process repeated until the
algorithm reached the local minimum of the integral criterion. Several experiments have been
performed with different starting points. The final values of each criterion were not always the
same, however, they were very similar, since they were located in the same close neighborhood.
This was caused due to the shape of the 3D region. The next limitation of the gradient optimization
method was the inability to include the region’s boundary. In our experiments, the true minimal
value of each integral criterion often appeared on the region’s boundary (as it was shown for the
standard optimization method). However, the final values of the gradient optimization method
were in the close neighborhood of the value on the region’s boundary.

Then, the standard and gradient optimization methods were compared for the changing mesh
grid sampling, starting at 20x20 samples, followed by 40x40 samples, and finishing with 80x80
samples. For both methods, the IE criterion was minimized. The final IE values were very similar
for both methods. The differences were given by the limiting attributes of the gradient optimization
method. However, the computation time of the gradient method was significantly lower than that
of the standard method. For the 20x20 samples, the difference between the methods was around
4 seconds, for the 40x40 samples, the difference was approximately 20 seconds, and for the 80x80
samples, the difference was around 90 seconds. Thus, despite the gradient method providing a
sub-optimal solution in the form of a local minimum, and not including the region’s boundary, it
leads to significantly shorter computational time.

In the last part of the thesis, we have validated the designed tool on the incubation device. We
have modeled the process response with sufficient precision using the Matlab commands as well as
the FOPMDT method. For both cases, the same set of controller design requirements has been
selected. For both models, we have obtained robust stability regions, and from the intersection
area, we have selected two controllers, one with higher and one with lower integral gain. These
controllers were used in the closed-loop systems connected to the incubator through REXYGEN.

At first, we have estimated the nominal process model using the Matlab commands. Then we
selected two sets of PI controller parameters from the intersection region. Both PI controllers were
tested on the incubation device. The first PI controller led to approximately 4 times quicker rise
time, second PI controller led to approximately 1.5 times quicker rise time.

Second, we have computed the three characteristic numbers for the FOPMDT model from
which the IO extremal processes were obtained. Robust stability regions and the intersection was
computed for all extremal processes and the selected design requirements. From the intersection
area, two sets of PI controller parameters were selected. Both PI controllers were tested on the
incubation device. The first PI controller led to approximately 30% overshoot in the step response,
1000 seconds-long rise time, and 5250 seconds until the output was in the 2% tolerance band.
The manipulated variable did not reach 75% of the heating power. The second PI controller has
a significantly lower overshoot in the step response (approximately 9%), longer rise time (1000
seconds), and shorter duration before the output was in the tolerance band (4885 seconds). The
manipulated variable of the second closed loop did not exceed 42.5% of the heating power. Thus,
the implemented robust controller design method was successfully validated.

6.1 Future Works

Despite this thesis brought several results, it also laid the foundation for some future works.
Here are some ideas which could be captured in the future works.

69

First, the PID and FO PIαDβ robust stability regions could be included in the controller design
method. Another tool could be implemented which would compute the intersection of the three-
dimensional regions. With the improving Matlab SW, it could be possible to operate with a 3D
graph and perhaps select a set of controller parameters from it.

Second, the Value set boundary for a finite total order of the process n could be implemented.
The whole structure of the IO value sets could be implemented as well, for in this thesis only the
vertices of IO value sets are implemented.

Next, in the closed-loop time domain performance optimization tool, in the case of more com-
plex shapes, it might be necessary to improve the approximation method of the shape of this
irregular region. Moreover, it would be ideal to include the region’s border in the gradient opti-
mization method.

Interesting would be the extension of the controller design section for the FO processes. Al-
though this thesis provides the identified FO Model set, the commands for FO process models are
not a standard part of the Matlab SW. However, there are advanced library-extensions where these
commands are implemented. Thus, this functionality could be implemented in the future.

70

References

[1] T. H. Akkermans and S. G. Stan. Digital servo ic for optical disc drives. Control Engineering
Practice, 9(11):1245–1253, 2001.

[2] K. H. Ang, G. Chong, and Y. Li. Pid control system analysis, design, and technology. IEEE
transactions on control systems technology, 13(4):559–576, 2005.

[3] K. J. Åström. Control system design lecture notes for me 155a. Department of Mechanical
and Environmental Engineering University of California Santa Barbara, 333, 2002.

[4] K. J. Åström. Feedback fundamentals. 2019.

[5] K. J. Åström and T. Hägglund. PID controllers: theory, design, and tuning, volume 2.
Instrument society of America Research Triangle Park, NC, 1995.

[6] K. J. Åström and T. Hägglund. The future of pid control. Control engineering practice,
9(11):1163–1175, 2001.

[7] K. J. Åström, T. Hägglund, and K. J. Astrom. Advanced PID control, volume 461. ISA-The
Instrumentation, Systems, and Automation Society Research Triangle Park, 2006.

[8] K. J. Åström and R. M. Murray. Feedback systems: an introduction for scientists and engi-
neers. Princeton university press, 2008.

[9] T. Ausberger, K. Kub́ıček, P. Medvecová, and T. Myslivec. Test case generation for function
block diagram based on blocks’ predefined behaviour. In 2021 23rd International Conference
on Process Control (PC), pages 206–211, 2021.

[10] T. Ausberger, K. Kub́ıček, P. Medvecová, T. Myslivec, and M. Štětina. Analytic method for
automatic test case generation for function block diagram. In 2020 25th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA), volume 1, pages
1799–1826, 2020.

[11] T. Ausberger, K. Kub́ıček, P. Medvecová, T. Myslivec, and M. Štětina. Model checking
application on function block diagram model. In 2020 25th IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA), volume 1, pages 1807–1814, 2020.

[12] T. Ausberger, K. Kub́ıček, P. Medvecová, and J. Wolf. Verification of a safety-related i&c sys-
tem for nuclear power plant by model checking, test case generation and automatic testing. In
2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation
(ETFA), pages 1–8, 2022.

[13] N. Bazylev Dmitry, A. Margun Alexei, A. Zimenko Konstantin, K. A. Sergeevich,
D. Ibraev Denis, and Č. Martin. Approaches for stabilizing of biped robots in a standing
position on movable support. Journal Scientific and Technical Of Information Technologies,
Mechanics and Optics, 97(3):418–425, 2015.

[14] Calerga Sarl. Calerga. https://calerga.com/products/Sysquake/index.html. Accessed:
15-03-2021.

[15] M. Čech. Návrh robustńıch regulátor̊u s omezenou strukturou pro systémy neceloč́ıselného
řádu. Plzeň: Disertačńı práce, ZČU Plzeň, 65:67, 2008.

[16] M. Čech. Web-based fractional pid controller design: www. pidlab. com. IFAC-PapersOnLine,
51(4):563–568, 2018.

[17] M. Čech, A.-J. Beltman, and K. Ozols. Pushing mechatronic applications to the limits via
smart motion control. Applied Sciences, 11(18):8337, 2021.

71

https://calerga.com/products/Sysquake/index.html

[18] M. Čech, J. Königsmarková, and M. Schlegel. Robust PID tuning rules for a class of fractional-
order processes, 2008.

[19] M. Čech and M. Schlegel. Interval pid tuning rules for a fractional-order model set. IFAC
Proceedings Volumes, 44(1):5359–5364, 2011.

[20] M. Čech and M. Schlegel. Computing pid tuning regions based on fractional-order model set.
IFAC Proceedings Volumes, 45(3):661–666, 2012.

[21] M. Čech and M. Schlegel. Generalized robust stability regions for fractional pid controllers.
In 2013 IEEE International Conference on Industrial Technology (ICIT), pages 76–81. IEEE,
2013.

[22] A. Charef, H. Sun, Y. Tsao, and B. Onaral. Fractal system as represented by singularity
function. IEEE Transactions on automatic Control, 37(9):1465–1470, 1992.

[23] L. Desborough and R. Miller. Increasing customer value of industrial control performance
monitoring-honeywell’s experience. In AIChE symposium series, number 326, pages 169–189.
New York; American Institute of Chemical Engineers; 1998, 2002.

[24] A. C. Dimian, C. S. Bildea, and A. A. Kiss. Integrated design and simulation of chemical
processes. Elsevier, 2014.

[25] J. J. DiStefano, A. R. Stubberud, and I. J. Williams. Feedback and control systems, volume 2.
McGraw-Hill, 2012.

[26] Faculty of applied sciences, Department of cybernetics. PIDlab. https://www.pidlab.com/
cs/. Accessed: 15-03-2021.

[27] O. Garpinger, T. Hägglund, and K. J. Åström. Performance and robustness trade-offs in pid
control. Journal of Process Control, 24(5):568–577, 2014.

[28] N. Heymans. Fractional calculus description of non-linear viscoelastic behaviour of polymers.
Nonlinear dynamics, 38:221–231, 2004.

[29] K. Karel. Modelově orientovaný vývoj softwaru: ř́ızeńı spojky automatické převodovky
kamion̊u, 2019.

[30] V. Kharitonov. Asymptotic stability of an equilibrium position of a family of systems of linear
differential equations. Differential’nye Uraveniya, 14:1483–1485, 1978.

[31] J. Königsmarková and M. Čech. Robust PI/PID parameter surfaces for a class of fractional-
order processes. IFAC-PapersOnLine, 51(4):763–768, 2018.

[32] Y. Kozhushko, D. Pavković, T. Karbivska, P. Safronov, and O. Bondarenko. Robust control
of battery-supercapacitor energy storage system using kharitonov theorem. In 2020 IEEE
14th International Conference on Compatibility, Power Electronics and Power Engineering
(CPE-POWERENG), volume 1, pages 550–555. IEEE, 2020.

[33] W. Krajewski, A. Lepschy, and U. Viaro. Designing pi controllers for robust stability and
performance. IEEE transactions on control systems technology, 12(6):973–983, 2004.

[34] K. Kub́ıček, M. Čech, and J. Škach. Continuous enhancement in model-based software de-
velopment and recent trends. In 2019 24th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), pages 71–78, 2019.

[35] Y. Li, K. H. Ang, and G. C. Chong. Pid control system analysis and design. IEEE Control
Systems Magazine, 26(1):32–41, 2006.

[36] L. Ljung. System identification-theory for the user 2nd edition ptr prentice-hall. Upper Saddle
River, NJ, 1999.

72

https://www.pidlab.com/cs/
https://www.pidlab.com/cs/

[37] D. Máj. Regulace teploty na modelu inkubačńıho zař́ızeńı. 2022.

[38] R. Matuš̊u, B. Şenol, and L. Pekař. Robust pi control of interval plants with gain and
phase margin specifications: Application to a continuous stirred tank reactor. IEEE Access,
8:145372–145380, 2020.

[39] D. McFarlane and K. Glover. A loop-shaping design procedure using H∞ synthesis. IEEE
transactions on automatic control, 37(6):759–769, 1992.

[40] A. Megretski. The waterbed effect, 2004.

[41] A. V. Mokshin, R. M. Yulmetyev, and P. Hänggi. Simple measure of memory for dynamical
processes described by a generalized langevin equation. Physical review letters, 95(20):200601,
2005.

[42] H. Nyquist. Regeneration theory. Bell system technical journal, 11(1):126–147, 1932.

[43] F. Pan, H. Liao, J. Luo, and Y. Xue. Itae-optimal pi controller based on genetic algorithm
for low-order process with large time delays. In 2014 20th International Conference on Au-
tomation and Computing, pages 134–139. IEEE, 2014.

[44] I. Podlubny. Fractional differential equations. 1999.

[45] REX Controls, s.r.o. PID Hinf Designer. https://www.pidlab.com/cs/. Accessed: 3-2-2023.

[46] REX Controls, s.r.o. REXYGEN. https://www.rexygen.com/. Accessed: 16-3-2023.

[47] REX Controls, s.r.o. Function Blocks of REXYGEN: Reference manual, version 2.50.12. 2022.

[48] H. Rotstein, N. Galperin, and P.-O. Gutman. Set membership approach for reducing value
sets in the frequency domain. IEEE transactions on automatic control, 43(9):1346–1350, 1998.

[49] H. Sandberg and B. Bernhardsson. A bode sensitivity integral for linear time-periodic systems.
Automatic Control, IEEE Transactions on, 50:2034 – 2039, 01 2006.

[50] M. Schlegel. New approach for robust design of industrial controllers. PhD thesis, Habilitation
thesis, University of West Bohemia, Pilsen, 2000.

[51] M. Schlegel. Exact revision of the ziegler-nichols frequency response method. In Proc. of
IASTED Int. Conf. on control and applications, Cancun, Mexico, 2002.

[52] M. Schlegel. Regulačńı smyčka. 2023.

[53] M. Schlegel, P. Balda, and M. Štetina. Robust pid autotuner–method of moments. Automa-
tizace, 46(4):242–246, 2003.

[54] M. Schlegel and M. Čech. Computing value sets from one point of frequency response with
applications. In Proceedings of the 16th IFAC world congress, volume 1, 2005.

[55] M. Schlegel and P. Medvecová. Design of PI controllers: H∞ region approach. IFAC-
papersonline, 51(6):13–17, 2018.

[56] M. Schlegel and J. Mertl. Process identification for automatic tuning of industrial controllers.
Process Control 2010, 2010.

[57] M. Schlegel and O. Večerek. Robust design of smith predictive controller for moment model
set. IFAC Proceedings Volumes, 38(1):427–432, 2005.

[58] J. F. Smuts. Process Control for Practitioners: How to Tune PID Controllers and Optimize
Control Loops. OptiControls, 2011.

[59] The MathWorks Inc. Control System Toolbox (R2021a). https://www.mathworks.com/

products/control.html. Accessed: 21-03-2021.

73

https://www.pidlab.com/cs/
https://www.rexygen.com/
https://www.mathworks.com/products/control.html
https://www.mathworks.com/products/control.html

[60] The MathWorks Inc. Control System Tuner (R2021a). https://www.mathworks.com/help/
slcontrol/tuning-with-control-system-tuner.html. Accessed: 29-03-2021.

[61] The MathWorks Inc. Matlab App Designer (R2021a). https://www.mathworks.com/

products/matlab/app-designer.html. Accessed: 07-03-2023.

[62] The MathWorks Inc. System Identification Toolbox (R2021a). https://www.mathworks.

com/products/sysid.html. Accessed: 21-11-2022.

[63] The MathWorks Inc. Matlab version: 9.10.0 (R2021a), 2021.

[64] O. Turksoy, S. Ayasun, Y. Hames, and Ş. Sönmez. Computation of robust pi-based pitch
controller parameters for large wind turbines. Canadian journal of electrical and computer
engineering, 43(1):57–63, 2019.

[65] H. Unbehauen. Controller design in time-domain. 2011.

[66] V. Žán. Interaktivńı nástroje pro výpočet v́ıcerozměrných regionŭ robustńı stability. 2021.

[67] V. Žán, K. Kub́ıček, and M. Čech. Design of robust pi controller by combining robustness
regions with time-domain criteria. In 2022 IEEE 27th International Conference on Emerging
Technologies and Factory Automation (ETFA), pages 1–8. IEEE, 2022.

[68] J. G. Ziegler, N. B. Nichols, et al. Optimum settings for automatic controllers. trans. ASME,
64(11), 1942.

74

https://www.mathworks.com/help/slcontrol/tuning-with-control-system-tuner.html
https://www.mathworks.com/help/slcontrol/tuning-with-control-system-tuner.html
https://www.mathworks.com/products/matlab/app-designer.html
https://www.mathworks.com/products/matlab/app-designer.html
https://www.mathworks.com/products/sysid.html
https://www.mathworks.com/products/sysid.html

	Introduction
	General Introduction

	Concept and Approach
	Process and Controller in the Open Loop
	Feedback Control
	PID Control

	Controller Tuning
	Design Criteria
	Nyquist Plot Shaping

	Robust Stability Regions for Simple Controllers
	PI Robust Stability Regions

	Uncertainty in Process Control
	Identification Part
	Model Set
	Robust Controller Design

	Integral Criteria of Optimality

	State of the Art of Current Controller Design and Process Identification Tools
	PID H Designer
	Conclusion

	REXYGEN Blocks
	Conclusion

	Matlab Identification Tools
	System Identification Toolbox

	Implementation of Advanced Tools for Simple Controller Design
	Previously Developed Controller Design Tool
	Identification Module
	Process Model Identification Using Matlab Functions
	FOPMDT Process Model Identification
	Model Uncertainty

	Robust Controller Design for Process with Uncertainty
	Closed-Loop Time Domain Performance Optimization Tool
	Integral Criteria Standard Optimization
	Integral Criteria Gradient Optimization
	Comparison of Standard and Gradient Optimization Methods

	Validation on Real Process
	Validation of Estimated Matlab Process Model
	Validation of Estimated FOPMDT Process Model

	Conclusion
	Future Works

	References

