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Abstract

Regarding aerodynamic bearings, mainly two basic types can be distinguished: air bearings with a rigid housing
and air foil bearings with an elastic supporting structure. Here, a modified bearing concept – called air ring bearing
– is investigated, which may be considered as a further development of rigid air bearings or as a combination of
the two basic bearing types. The idea of air ring bearings is to insert a ring-shaped bearing bushing between the
shaft and the foil structure. Alternatively, a visco-elastic supporting structure (e.g., an elastomer) can be applied to
connect the bushing ring with the housing. In the first case, external dissipation is mainly generated by dry friction.
In the latter case, viscous damping is used to provide external dissipation. Due to the external friction/damping
generated by the ring mounting structure, rotor systems with air ring bearings can be operated above the linear
threshold speed of instability so that stable self-excited vibrations with moderate amplitudes can be achieved in the
complete speed range. Here, a detailed transient co-simulation model for rotor systems with air ring bearings is
presented. The rotor is represented by a multibody model. The air films of the two bearings are represented by two
nonlinear time-dependent finite element systems. The multibody model and the two finite element subsystems are
solved simultaneously by means of an explicit sequential co-simulation technique. Due to the strong nonlinearities,
the system shows interesting vibration and bifurcation effects, which are investigated in detail with the help of run-
up simulations.
© 2023 University of West Bohemia.
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1. Introduction

Air bearings may be used in many technical applications, particularly in cases where oil-free
operating conditions are necessary. They may be subdivided into two classes: (i) air bearings
with a rigid housing and (ii) air foil bearings. Rigid air bearings have a rigid bearing housing
and the air film is generated between the rotor journal and the inner bearing surface. The bearing
properties (e.g., load capacity) and the dynamic behavior of the rotor/bearing system are mainly
determined by the bore geometry [1]. Applying a plain cylindrical bore geometry usually entails
a poor rotordynamic stability behavior, i.e., the rotor gets unstable at very low rotor speeds.
Stability of the rotor/bearing system can be improved by using a multi-lobe bore geometry and
especially by applying a herringbone geometry [13,23,39]. Foil bearings usually consist of a top
foil and a compliant substructure [28]. As a consequence, the air gap between the rotor journal
and the top foil is depending on the top foil deformation. With respect to the elastic substructure,
foil bearings can be subdivided into different categories. Often bump foils [3,15,22] are used as
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compliant substructure. Alternatively, beam foils [9], a metal mesh [29], springs [35] or wing
foils [36] can be applied. The dynamic behavior of foil bearings is investigated experimentally
and numerically in [4, 7, 16, 19, 27], for instance. Numerical and experimental studies on the
lift-off speed can, for instance, be found in [2, 20]. Thermal models for air foil bearings are,
e.g., discussed in [21, 25, 30].

Properly designing air foil bearings, a stable operation (or at least self-excited oscillations
with moderate amplitudes) of the rotor system can be achieved within the considered speed
range. Foil bearings are rather robust and frequently applied in practice. Calculation models
for foil bearings are extraordinary involved. The numerical prediction of the stability of rotor
systems with air foil bearings is very complicated. The dynamical behavior of such systems
can even change during the operation due to wear in the top-foil coating. Regarding bearings
with a rigid housing, the bore geometry has to be chosen carefully to achieve a stable rotor
behavior. Due to the low viscosity of air, rigid air bearings frequently suffer from a reduced
stability behavior. Even if a multi-lobe bore geometry is used, instability problems may occur
already for low rotor speeds. Stable operation above the (linear) threshold speed of instability
is usually not possible due to the very small damping property of air. To obtain a stable rotor
behavior, frequently rigid bearings with a herringbone-geometry are used [6, 10, 17, 23, 39].
While herringbone bearings often provide an excellent rotor stability, they suffer from different
technical problems (e.g., small clearances, involved thermo-management, manufacturing costs).

Air ring bearings can be an interesting alternative to air foil bearings and rigid air bearings.
They can be considered as a simple and very obvious further development of rigid air bearings.
The idea is simply to mount the bearing bushing with an elastomer [26, 38, 40], with a flexible
membrane [5], springs [34] or with a foil structure [41] in the housing, see Fig. 1. The elastomer
(foil structure) provides additional external damping (friction) to the rotor system so that the
vibration behavior is improved. Properly designed air ring bearings may provide a stable rotor
operation within the complete speed range or at least self-excited oscillations with moderate
amplitudes. Here, air ring bearings with a three-lobe bore geometry are considered, where the
ring is visco-elastically mounted in the housing (elastomer). Ring bearings mounted in a foil
structure are, for instance, treated in [41].

The vibration and bifurcation behavior of rotor systems with air ring bearings is rather in-
teresting. Typically, three different bifurcation paths may be detected for high-speed rotors
supported in air ring bearings:

• For the case that the supporting structure of the ring is rather stiff and the external damp-
ing/friction low, bifurcation path 1 is observed. This bifurcation path is dangerous and

Fig. 1. Air ring bearing with (a) foil structure and (b) elastomer (visco-elastic mounting), see [41]
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has to be omitted by a proper design of the rotor/bearing system, because self-excited
oscillations with very large amplitudes are detected.

• For moderate ring stiffnesses and larger ring damping/friction, the harmless bifurcation
path 2a is observed, where self-excited vibrations with moderate amplitudes occur.

• For very low ring stiffnesses, low damping and rather large ring masses, bifurcation
path 2b can be detected, which should also be prevented in technical applications due
to large rotor amplitudes.

It should be stressed that the basin of attraction for bifurcation path 2a is typically relatively
large. Therefore, the rotor and especially the bearing parameters can in practice be determined
in such a way that bifurcation path 1 and bifurcation path 2b can be omitted.

The new contributions of this work are:
• The influence of the bore geometry of the inner ring surface on the stability and bifur-

cation behavior is analyzed in detail by numerical run-up simulations. Specifically, the
effect of the nominal bearing clearance and the slope of the lobes is investigated.

• In [41], only the influence of the stiffness and damping of the ring supporting structure
on the rotordynamic behavior has been analyzed. Here, comprehensive numerical studies
are presented, where the effect of the bearing bore geometry on the system dynamics is
examined.

• It is shown that both parameters – nominal bearing clearance and lobe geometry – have a
very significant influence on the vibration and bifurcation behavior of the system.

• Based on the simulation results, practical design recommendations are given.
To carry out the run-up simulations, a detailed physical model for the air films is used, which
are discretized by a finite element approach. The rotor is modeled as a 3D multibody system.
The multibody model is coupled with the two finite element models of the air films with a co-
simulation approach. With the coupled co-simulation model, the nonlinear system behavior is
investigated.

The paper is organized as follows: The rotor/bearing co-simulation model is described in
Section 2. The three bifurcation paths, typically observed in high-speed rotor systems with air
ring bearings, are shortly recapped in Section 3. A detailed parameter and optimization study
concerning the optimal choice of the air film geometry is presented in Section 4. The manuscript
is concluded in Section 5.

2. Rotor/bearing simulation model of high-speed turbo compressor

2.1. Multibody model of the rotor

The considered rotor/bearing system is sketched in Fig. 2 and modelled as a multibody system,
see [14, 32]. It is composed of the rotor shaft, the two wheels (compressor- and turbine-side
wheel) and the two rigid bearing rings. In addition, two small imbalance masses are attached at
the wheels. The axial coordinate zRotor characterizes the center of mass CMRotor of the complete
rotor (shaft plus wheels). The middle planes of the turbine- and compressor-side bearing are
defined by the axial coordinates zJT and zJC . The center of mass of the turbine CMT and
compressor wheel CMC are termed by zT and zC , respectively.

For integrating the multibody system, the index-2 equations of motion (stabilized index-2
formulation according to [11]) are applied, which are given by

M (t,x)v̇ = fe(t,x,v,uMBS)−GT (t,x)λ, (1)
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Fig. 2. High-speed rotor system: Turbo-compressor supported in two air ring bearings, see [41]

M (t,x)ẋ = M (t,x)v −GT (t,x)µ, (2)
0 = g(t,x), (3)
0 = ġ(t,x,v). (4)

The vector x = [x1, . . . , xκ]
T ∈ Rκ collects the κ (generalized) coordinates of the multibody

system and the vector v = [v1, . . . , vκ]
T ∈ Rκ the (generalized) velocities. M (t,x) ∈ Rκ×κ is

the mass matrix. The vector fe (t,x,v,uMBS) terms the externally applied forces/torques, the
centrifugal and Coriolis forces. Gravity g acts in negative y-direction, see Fig. 2. Equation (1)
are the force/torques balances. Equation (2) represents the kinematic differential equations,
where the mass matrix is used as a scaling matrix to improve the numerical procedure [33].
The multibody system contains κc rheonomic algebraic constraint equations gi (t,x) = 0
(i = 1, . . . , κc), which are collected in the constraint vector g ∈ Rκc . The term GT (t,x)λ
characterizes the constraint forces, where G = ∂g/∂x ∈ Rκc×κ represents the constraint-
Jacobian. The vector λ = [λ1, . . . , λκc ]

T ∈ Rκc contains the Lagrange multipliers. According
to the stabilized index-2 formulation [11], the algebraic constraint equations 0 = ġ (t,x,v)
on velocity level are included into the equations of motion with the help of the additional La-
grange multipliers µ = [µ1, . . . , µκc ]

T ∈ Rκc . The input variables of the multibody system are
collected in the vector uMBS(t) and represent the resulting bearing forces of the two air films.
It should be noted that the output vector yMBS(t) =

[
∆rT

1 ,∆ṙT
1 ,∆rT

2 ,∆ṙT
2 ,Ω

]T of the multi-
body subsystem consists of the angular velocity of the rotor and of the relative displacement
and velocity coordinates of the compressor- and turbine-side journal. These output variables
are directly used as input variables for the two finite element subsystems for calculating the
resulting bearing forces of the two air films.

In this work, the ring is assumed to be connected to the housing by a visco-elastic material
(elastomer). To simplify the analysis, an isotropic linear visco-elastic material is considered,
which is described by the force law F = −c rR − d ṙR with the stiffness coefficient c and the
damping coefficient d.

2.2. Finite element model of the air film

Fig. 3 depicts the gap of the air film of an air ring bearing with a three-lobe geometry. The
space-fixed x, y-reference system is placed in the center O of the bearing housing. It is assumed
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Fig. 3. Three-lobe air ring bearing geometry, see [41]

that the ring is able to move in x- and y-direction. The rotation around the z-axis is blocked
(i.e., planar motion with two degrees of freedom). rR = [xR, yR]

T is the position vector of the
ring center MR and rJ = [xJ , yJ ]

T the position vector of the rotor journal MJ . The relative
displacement vector of MJ with respect to MR is denoted by ∆r = rJ − rR = [∆x,∆y]T .
The relative velocity of MJ with respect to MR is defined by ∆ṙ = d/dt (∆r). Furthermore,
ring-fixed polar coordinates ∆r = |∆r| and δ = atan2 (∆y,∆x) − α are introduced, which
time derivatives are given by ∆ṙ = 1/∆r (∆r ·∆ṙ) and δ̇ = 1/∆r2 (∆x∆ẏ −∆y∆ẋ). The
orientation of the ring relative to the housing is specified by the angle α (α = const). The lobe
region is defined by the angle φt. Three pockets are used for the air supply (circumferential
extension 2π/3−φt). Here, ambient pressure is assumed. Moreover, C is the nominal clearance
and ∆H the height of the step between the lobe region and the pocket. The angular coordinate
φ, which is an auxiliary coordinate, is used for computing the pressure field with the Reynolds
equation.

The pressure field p(φ, z, t) in the air film is computed with the isothermal Reynolds equa-
tion for compressible fluids [18, 37]

1

r2
∂

∂φ

(
ph3 ∂p

∂φ

)
+

∂

∂z

(
ph3∂p

∂z

)
= 6Ωη

∂(ph)

∂φ
+ 12η

∂(ph)

∂t
, (5)

where the fluid is assumed to be an ideal gas described by the relationship ϱ = p/(RairTair)
(Rair – specific gas constant of air, Tair – prescribed constant air film temperature), η terms
the dynamic viscosity of air, ϱ(φ, z, t) is the density field, Ω represents the rotor speed, r
is the journal radius, h(φ, t) describes the gap function and b denotes the bearing width. φ
terms the circumferential and z the axial coordinate. The pressure is only computed in the
lobe regions Slobe = {[0, φt] , [2π/3, 2π/3 + φt] , [4π/3, 4π/3 + φt]}. Ambient pressure pa is
assumed in the pockets. The gap function h in the lobe regions is characterized by h (φ) =
C − ∆r cos (φ− δ) + ∆H {1 + 2π/(3φt) ⌊3φ/ (2π)⌋ − φ/φt} with φ ∈ Slobe, where ⌊. . .⌋
denotes the floor function. Because journal misalignment is not considered here, symmetry
boundary conditions can be applied with respect to the middle plane of the bearing for solving
the Reynolds equation. At the remaining boundaries, the Dirichlet boundary condition p = pa
is used.
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The Reynolds equation is discretized with the help of a finite element approach, i.e., the
time dependent pressure field p (φ, z, t) is approximated by p̃i(φ, z, t) =

∑nk

i=1 Ni (φ, z) pi(t).
Ni (φ, z) represent the ansatz functions and pi(t) the pressure variables at the finite element
nodes (nk is the number of finite element nodes). Due to symmetry, only half the bearing needs
to be discretized. Here, 360 finite elements (quadratic ansatz functions) are used, which result in
nk = 1599 pressure degrees of freedom. From the mathematical point of view, the discretized
Reynolds equation represents a nonlinear ODE system (system of ordinary differential equa-
tions) for calculating the unknown pressure variables pi(t), which are arranged in the vector
p = [p1, . . . , pnk

]T .
The nonlinear ODE system f (p, ṗ, t) = 0 for the pressure variables pi(t) is solved with

an implicit time integration algorithm. The global components Fpx(t), Fpy(t) of the resulting
bearing forces are computed by an integration of the pressure field over the bearing surface

Fpx =

2π∫
0

b∫
0

p (φ, z) r cos (φ+ α) dz dφ, (6)

Fpy =

2π∫
0

b∫
0

p (φ, z) r sin (φ+ α) dz dφ. (7)

The output variables of the finite element subsystem are the resultant bearing forces. They are
arranged in the output vector [Fpx, Fpy]

T . The rotor speed Ω and the relative journal displace-
ment vector ∆r = [∆x,∆y]T in combination with its time derivative ∆ṙ = [∆ẋ,∆ẏ]T define
the input variables of the finite element subsystem. Because the rotor system has two air films,
the two output vectors y FEM1 = [Fpx1, Fpy1]

T and y FEM2 = [Fpx2, Fpy2]
T and the resulting output

vector y FEM = [Fpx1, Fpy1, Fpx2, Fpy2]
T are introduced. The output variables y FEM of the finite

element subsystems are the input variables uMBS for the multibody subsystem (uMBS = y FEM).
Final remark on the calculation of the bearing forces: The bearing forces according to

(6) and (7) represent pure hydrodynamic forces. If the bearing eccentricities become large,
the gap height h (φ, t) between rotor and journal may get very small so that mixed lubrication
effects occur. Then, a mere hydrodynamic approach based on the Reynolds equation will not
be sufficient.

Here, a straightforward mixed lubrication approach has been applied [2, 3, 8, 37]. If the dis-
tance between the ring and the journal gets below a critical value – i.e., if the gap function h(φ, t)
is locally smaller than the user-defined value hcon – mixed lubrication is assumed to occur at
this gap point. In this work, hcon has been set to 0.04C. At gap points where h (φ, t) ≤ hcon,
additional contact forces at journal and ring are superimposed to the pure hydrodynamic forces
resulting from the Reynolds equation. The mechanical approach used here for the asperity con-
tact forces of the two contacting surfaces is described by a penalty force model with a penalty
stiffness of ccon = 107 N mm−3.

The simulations in Sections 3 and 4 have shown that mixed lubrication only very rarely
occurs with the actual rotor/bearing system. Even in whirl/whip regions with large bearing
eccentricities, no mechanical contact is observed between ring and rotor journal as can, for
instance, be seen in the orbit plots in Section 3.
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2.3. Linearization and modal analysis

The considered rotor/bearing system is highly nonlinear. Nevertheless, different characteristic
vibration mode shapes and corresponding frequencies – excited by the rotor imbalance and es-
pecially by the whirl/whip frequencies of the air films – can be observed in the frequency spec-
tra of run-up simulations. To get a closer insight into these vibration modes, the rotor/bearing
system is linearized and an eigenmode analysis is carried out. For that purpose, the air films
have to be linearized. The stiffness behavior of the air film is highly nonlinear and a function
of the bearing eccentricity. Fig. 4 depicts an approximate calculation of the radial film stiff-
ness as a function of the relative journal displacement ε = | [0,−∆y]T |/C for C = 20µm,
∆H = 40µm, Ω = 1 000Hz and different values of ∆y.

Fig. 4. Approximate calculation of the radial air film stiffness as a function of the bearing eccentricity ε

It should be noted that the rotor is rather stiff (shaft radius r = 15mm) and may therefore be
regarded as a rigid body. The first free-free bending eigenfrequency of the rotor is ≈ 2 600Hz
and well above the maximum rotor speed of 2 000Hz. Furthermore, it should be mentioned that
damping effects have been neglected in the eigenmode analysis. Finally, it should be stressed
that tilting of the rings is not considered in the calculation, since the rings can only move in the
x, y-plane in our model.

For the eigenmode analysis, the ring mounting stiffness and the ring damping parameter
have been set to c = 500N mm−1 and d = 0N s m−1, respectively. The air film of each bearing
has been replaced by two linear springs acting in x- and y-direction with spring constants cair,x =
cair,y = 2000N mm−1 (estimated air film stiffness for ε ≈ 0.5). The results of the eigenmode
calculation are (see Fig. 5):

• Mode 1(b) and Mode 1(f) are conical modes with a vibration node at the compressor-side
bearing (backward mode Mode 1(b) ≈ 125Hz; forward mode Mode 1(f) ≈ 145Hz).

• Mode 2(b) and Mode 2(f) are conical modes with a vibration node at the turbine-side
bearing (backward mode Mode 2(b) ≈ 156Hz; forward mode Mode 2(f) ≈ 181Hz).

• Mode 3(b) and Mode 3(f) are conical modes with a vibration node at the compressor-side
bearing (backward mode Mode 3(b) ≈ 1 161Hz; forward mode Mode 3(f) ≈ 1 162Hz).

• Mode 4(b) and Mode 4(f) are conical modes with a vibration node at the turbine-side
bearing (backward mode Mode 4(b) ≈ 1 176Hz; forward mode Mode 4(f) ≈ 1 179Hz).

2.4. Co-simulation model of the overall system

The coupled system consisting of the rotor and the two bearings is integrated in the time do-
main using a co-simulation approach [12, 24, 31]. Therefore, the overall system is decomposed
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Fig. 5. Rigid body forward mode shapes

into three different subsystems. The first subsystem (multibody subsystem, MBS) contains the
rotor. The second and third subsystems are the two finite element subsystems of the discretized
Reynolds equations (FEM1 and FEM2).

To accomplish the co-simulation, appropriate coupling variables have to be introduced (in-
put/output variables, see above). They characterize the mathematical connection between the
three subsystems. Moreover, a communication-time grid has to be defined. Therefore, the
macro-time points TN (N = 0, 1, 2, . . .) are introduced. In the framework of a co-simulation,
the subsystems can be integrated independently within the macro-step TN → TN+1. Infor-
mation, i.e., coupling variables, are interchanged only at the macro-time points. Within the
macro-interval [TN , TN+1], the coupling variables are approximated. Therefore, appropriate
extrapolation and interpolation polynomials are used.

Here, an explicit co-simulation technique, namely the sequential Gauss-Seidel scheme, is
used. In the current implementation, the multibody subsystem is considered as the master sub-
system.

3. Simulation results: Basic bifurcation behavior

All simulations in Section 3 have been accomplished with the following parameters: m = 830 g,
inertia tensor JRotor = diag

(
2 500 kg mm2, 2 500 kg mm2, 120 kg mm2

)
with respect to the

center of mass, journal radius r = 15mm, l = 250mm, zRotor = 125mm, zJC = 170mm,
zJT = 60mm, mR = 50 g (mR = 150 g in Section 3.3), ring width b = 28.6mm. The bear-
ing parameters are: air viscosity ηair = 20.936 × 10−6 kg m−1 s−1 (assumed fluid temperature:
Tair = 80◦ C), bearing clearance C = 20µm (warm clearance; rotor expansion due to cen-
trifugal forces is neglected), step height ∆H = 40µm, lobe angle φt = 110◦, ring orientation
angle α = π − φt. To analyze the possible bifurcations of the high-speed rotor/bearing system,
the stiffness parameter c as well as the damping parameter d are varied. At the beginning of
the run-up simulations, the rotor and the two rings are centered at the space-fixed z-axis and
zero velocity is assumed. The rotor speed Ω(t) is linearly increased. The maximum speed of
2 000Hz is reached in 3 s, i.e., Ω(t) = 2π/3 · 2 000t s−2. To discuss the occurring bifurcations
of the system vividly, the rotor unbalance is assumed to be zero. The effect of imbalance on the
dynamical behavior of the system is discussed in [41].
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3.1. Rotor run-up simulation: Bifurcation path 1

Simulation results of a rotor run-up with the parameters c = 1000N mm−1 and d = 50N s m−1

are arranged in Fig. 6. The figure depicts the dimensionless bearing eccentricities εC = ∆rC/C
and εT = ∆rT/C of the compressor- and turbine-side bearing, the vertical displacement of the
compressor yJC(t) and turbine wheel yJT (t) and the corresponding frequency spectra. Note
that the dimensionless eccentricities εC and εT are defined by using the minimal clearance C.
Since the maximum clearance is C + ∆H at the beginning of the lobe regions, εC and εT can
get larger than 1 without the journal contacting the ring. The figure also contains compressor-
and turbine-side orbit plots of the relative journal displacements ∆rC(t) and ∆rT (t). It should
be mentioned that the three green spirals represent the three lobes of the inner ring surface.

• In the range 0 ≤ t ≤ 1 150ms (0 ≤ Ω ≤ 767Hz), the rotor is rotating in a stable
equilibrium position.

Fig. 6. Bifurcation path 1 with c = 1000N mm−1, d = 50N s m−1: (a) dimensionless bearing eccentric-
ities εC(t) and εT (t), (b) vertical journal displacements yJC(t) and yJT (t), (c) frequency spectrum of
yJC(t), (d) frequency spectrum of yJT (t), (e)–(f) compressor- and turbine-side orbit plots of the relative
journal displacements ∆rC(t) and ∆rT (t)
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• At t ≈ 1 150ms, the equilibrium position becomes unstable by means of a Hopf bifurca-
tion and stable quasiperiodic oscillations are observed (so-called whirl/whip vibrations).
Firstly, a whirl/whip primarily generated by the turbine-side bearing is observed. At
t ≈ 1 350ms, also a whirl/whip produced by the compressor-side bearing is detected.

• At t ≈ 2 100ms, a synchronization effect takes place: the turbine-side whirl/whip fre-
quency shows a jump and synchronizes with the compressor-side whirl/whip. Then, the
synchronized whirls/whips are exciting a cylindrical forward mode.

• Further increasing the speed of the rotor system has only little influence on the frequencies
and the amplitudes.

• Since the bearing eccentricities and the rotor amplitudes are typically very large in con-
nection with bifurcation path 1, a secure operation of the rotor/bearing system is usually
not possible within bifurcation path 1.

Fig. 7. Bifurcation path 2a with c = 500N mm−1, d = 50N s m−1: (a) dimensionless bearing eccentric-
ities εC(t) and εT (t), (b) vertical journal displacements yJC(t) and yJT (t), (c) frequency spectrum of
yJC(t), (d) frequency spectrum of yJT (t), (e)–(f) compressor- and turbine-side orbit plots of the relative
journal displacements ∆rC(t) and ∆rT (t)
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3.2. Rotor run-up simulation: Bifurcation path 2a

For this run-up simulation, the stiffness is decreased to c = 500N mm−1. The damping coeffi-
cient remains d = 50N s m−1. The results are collected in Fig. 7.

• At t ≈ 2 000ms, the rotor equilibrium position becomes unstable. A stable whirl/whip
vibration is detected. The amplitudes of the whirl/whip are rather low so that the system
can be run safely in the whirl/whip regime, i.e., in the complete speed range.

• Here, the compressor- and the turbine-side whirl/whip have the same frequency.

3.3. Rotor run-up simulation: Bifurcation path 2b

Now, the stiffness is further decreased to c = 100N mm−1. The damping coefficient is again
d = 50N s m−1. It should be mentioned that the mass of the ring has been increased to
mR = 150 g in this run-up simulation. The simulation results can be seen in Fig. 8.

Fig. 8. Bifurcation path 2b with c = 100N mm−1, d = 50N s m−1, mR = 150 g: (a) dimensionless
bearing eccentricities εC(t) and εT (t), (b) vertical journal displacements yJC(t) and yJT (t), (c) fre-
quency spectrum of yJC(t), (d) frequency spectrum of yJT (t), (e)–(f) compressor- and turbine-side orbit
plots of the relative journal displacements ∆rC(t) and ∆rT (t)
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• At t ≈ 2 050ms, the equilibrium position becomes unstable by means of a Hopf bifurca-
tion and self-excited vibrations are observed. Here, the whirl/whip frequencies of the two
air films excite special ring mode shapes [41]. In the range 2 050ms ≤ t ≤ 2 500ms, the
frequencies of the whirls/whips generated by the two bearings are almost equal.

• As the rotor speed increases, the bearing eccentricities rise to a critical level. The whirl/whip
frequencies increase almost linearly with the rotor speed. Since the bearing eccentricities
are usually very large in connection with bifurcation path 2b, a secure operation of the
rotor/bearing system within bifurcation path 2b is generally not possible.

• For t > 2 500ms, the frequencies of the whirls/whips are identical (i.e., a full synchro-
nization occurs). A cylindrically-shaped ring mode shape is observed.

4. Parameter studies and optimization

As mentioned above, a three-lobe bearing geometry is used here, which is mainly specified
by the bearing clearance C (warm clearance) and the step height ∆H . In this section, C and

Fig. 9. Case 1 (C = 10µm, ∆H = 20µm), compressor- and turbine-side bearing eccentricities εC(t)
and εT (t): (a)–(b) d = 50N s m−1, (c)–(d) d = 500N s m−1, (e)–(f) d = 2000N s m−1
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∆H are varied in order to study their influence on the bifurcation behavior of the rotor/bearing
system.

Case 1: Fig. 9 shows the compressor- and turbine-side bearing eccentricities for C = 10µm
and ∆H = 20µm for three different elastomer stiffnesses c (1 500N mm−1, 1 000N mm−1,
500N mm−1) and three different damping parameters d (2 000N s m−1, 500N s m−1, 50N s m−1).
As can be seen, all simulations are stable (rotor rotation around a stable equilibrium point) with
only one exception: for the case c = 1500N mm−1 in combination with the very low damping
d = 50N s m−1, the critical bifurcation path 1 is detected. The corresponding vertical displace-
ments of the compressor yJC(t) and turbine wheel yJT (t) are collected in Fig. 10 and also cor-
responding frequency spectra for the parameters d = 50N s m−1 and c = 1500N mm−1. Since
the run-up simulations have been carried out with zero imbalance, the stable simulations do not
exhibit any vibrations so that the frequency spectra become trivial. If imbalance would be taken
into account, stable imbalance vibrations around the equilibrium position would be observed (at
least for small imbalances). The frequency spectra for d = 50N s m−1 and c = 1500N mm−1

only exhibit a subsynchronous frequency resulting from the whirl/whip motion. Of course, if

Fig. 10. Case 1 (C = 10µm, ∆H = 20µm): (a)–(b) compressor and turbine-side rotor displacements
yJC(t) and yJT (t), (c)–(d) frequency spectra of yJC(t) and yJT (t) for the parameters d = 50N s m−1

and c = 1500N mm−1
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Fig. 11. Case 2 (C = 15µm, ∆H = 30µm), compressor- and turbine-side bearing eccentricities εC(t)
and εT (t): (a)–(b) d = 50N s m−1, (c)–(d) d = 500N s m−1, (e)–(f) d = 2000N s m−1

imbalance would be considered, also the rotor speed would be observed in the spectra.
Case 2: Equivalent simulations are carried out for C = 15µm and ∆H = 30µm, see

Figs. 11 and 12. The results are quite similar to the former case. Now, the simulations
with c = 1500N mm−1 and c = 1000N mm−1 in combination with the damping coefficient
d = 50N s m−1 exhibit the dangerous bifurcation path 1.

Case 3: Simulation results for C = 20µm and ∆H = 40µm are depicted in Figs. 13 and
14. The stability behavior is similar to case 2 with one exception: for c = 500N mm−1 and
d = 50N s m−1, bifurcation path 2a is observed.

Case 4: Finally, the bearing parameters C = 30µm and ∆H = 60µm are considered, see
Figs. 15 and 16. For d = 50N s m−1, all three simulations exhibit the problematic bifurca-
tion path 1. With the larger damping coefficient d = 500N s m−1, the simulation with the low
stiffness of c = 500N mm−1 is stable in the complete speed range. The simulation with the
parameters c = 1000N mm−1 and d = 500N s m−1 exhibits a Hopf bifurcation at t ≈ 1 800ms
into bifurcation path 2a. For c = 1500N mm−1 and d = 500N s m−1, bifurcation path 1 is ob-
served. The simulations with the large damping coefficient d = 2000N s m−1 show bifurcation
path 2a. Due to the large damping, the amplitudes of the whirl/whip are not decreasing with

182



P. Zeise et al. / Applied and Computational Mechanics 17 (2023) 169–190

Fig. 12. Case 2 (C = 15µm, ∆H = 30µm): (a)–(b) compressor and turbine-side rotor displacements
yJC(t) and yJT (t), (c)–(d) frequency spectra of yJC(t) and yJT (t) for the parameters d = 50N s m−1

and c = 1500N mm−1

increasing rotor speed.
An overview on the influence of the stiffness and damping coefficients c and d on the sta-

bility and bifurcation behavior of the rotor/bearing system is presented in Fig. 17 in the form of
bifurcation maps. As can be seen, the smaller the bearing clearance gets, the larger becomes the
stable region. Furthermore, two basic trends may be observed in the stability/bifurcation plots:

(i) Increasing the stiffness c, the risk of reaching the dangerous bifurcation path 1 increases
(especially for smaller values of d).

(ii) Increasing the damping d (so that the system might even become overdamped), the pos-
sibility increases that the system bifurcates into bifurcation path 2a. The whirl/whip am-
plitudes generally remain moderate so that the system can be operated securely within
bifurcation path 2a.

Case study on the step height ∆H: In Fig. 18, a case study for C = 15µm and c =
1000N mm−1 is presented and the influence of the step height ∆H is investigated. As can be
seen, for ∆H = 0 all simulations become unstable at very low rotor speeds. Hence, bearing
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Fig. 13. Case 3 (C = 20µm, ∆H = 40µm), compressor- and turbine-side bearing eccentricities εC(t)
and εT (t): (a)–(b) d = 50N s m−1, (c)–(d) d = 500N s m−1, (e)–(f) d = 2000N s m−1

geometries with ∆H = 0 – and also bearing geometries with a plain circular bearing geometry
(not shown here) – are from the practical point of view of no interest. For ∆H = 15µm, the
simulation with d = 50N s m−1 exhibits the dangerous bifurcation path 1, while the run-up
simulation with the larger damping d = 500N s m−1 is stable in the entire speed range. Similar
results are observed for the case ∆H = 30µm and ∆H = 45µm: the bearing eccentricities for
the simulations with d = 50N s m−1 are smaller compared to the simulation with ∆H = 15µm.

Summary: Air ring bearings with small clearances C show a very good stability behavior
even for larger values of c and smaller values d. If very small bearing clearances cannot be
realized for practical/technical reasons (e.g., problems due to thermal expansion, manufacturing
costs), an increase of d or a decrease of c may enable a stable rotor operation (or at least self-
excited vibrations with moderate and technically uncritical amplitudes). However, if d is chosen
too large, overdamping may occur, which can yield large and critical amplitudes. The run-up
simulations also show that the step height ∆H should be chosen properly, i.e., not too small.
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Fig. 14. Case 3 (C = 20µm, ∆H = 40µm): (a)–(b) compressor and turbine-side rotor displacements
yJC(t) and yJT (t), (c)–(d) frequency spectra of yJC(t) and yJT (t) for the parameters d = 50N s m−1

and c = 1500N mm−1

5. Conclusion

Air ring bearings might be considered as a further development of rigid air bearings. The idea is
to connect the bearing bushing – i.e., the bushing ring – elastically with the housing. Therefore,
an elastomer might be used or a foil structure. Here, a visco-elastically mounting of the bushing
ring has been considered. The ring mounting also introduces external damping to the system,
which can significantly improve the performance of the rotor/bearing system. The inner surface
of the ring considered here has a three-lobed geometry.

Properly choosing the bearing parameters, air ring bearings might be an interesting alter-
native to classical air foil bearings. Considering air foil bearings, they often suffer from wear
occurring in the top foil coating. As a consequence, the mechanical behavior of the bearing
will change during operation and the number of start/stop operations is usually limited. Fur-
thermore, the lift-off speed and power loss of foil bearings are comparatively large compared to
rigid air bearings.

Air ring bearings also have different advantages compared to rigid herringbone bearings. A
main advantage of herringbone bearings is their excellent stability behavior (stable operation
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Fig. 15. Case 4 (C = 30µm, ∆H = 60µm), compressor- and turbine-side bearing eccentricities εC(t)
and εT (t): (a)–(b) d = 50N s m−1, (c)–(d) d = 500N s m−1, (e)–(f) d = 2000N s m−1

in the complete speed range). Therefore, very small bearing clearances are required and in
consequence a rather expensive thermo-management. A very good stability and vibration be-
havior may also be achieved with air ring bearings. Especially for smaller bearing clearances,
a stable operation in the complete speed range can be achieved. Rotors in air ring bearings
may – in contrast to rotors in rigid herringbone bearings – however also be operated above the
linear threshold speed of instability. By properly choosing the stiffness and damping proper-
ties of the ring supporting structure, stable self-excited oscillations with moderate amplitudes
may be obtained (bifurcation path 2a) even for larger bearing clearances so that an elaborate
thermo-management will not be necessary.

Rotors supported in air ring bearings may therefore be considered as rather robust systems.
In a wide parameter range, the system is completely stable (the rotor runs in a stable equilibrium
position) or self-excited oscillations with technically harmless amplitudes occur (bifurcation
path 2a). The system can, however, not been operated within bifurcation paths 1 and 2b, since
the amplitudes usually exceed critical values, which prevents a secure operation.
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Fig. 16. Case 4 (C = 30µm, ∆H = 60µm): (a)–(b) compressor and turbine-side rotor displacements
yJC(t) and yJT (t), (c)–(d) frequency spectra of yJC(t) and yJT (t) for the parameters d = 50N s m−1

and c = 1500N mm−1
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