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Abstract: The researchers use the SEM-based multivariate approach to analyze the data 
in different fields, including management sciences and economics. Partial least square structural 
equation modeling (PLS-SEM) and covariance-based structural equation modeling (CB-SEM) are 
powerful data analysis techniques. This paper aims to compare both models, their efficiencies 
and deficiencies, methodologies, procedures, and how to employ the models. The outcomes 
of this paper exhibited that the PLS-SEM is a technique that combines the strengths of structural 
equation modeling and partial least squares. It is imperative to know that the PLS-SEM is a powerful 
technique that can handle measurement error at the highest levels, trim and unbalanced datasets, 
and latent variables. It is beneficial for analyzing relationships among latent constructs that may not be 
candidly witnessed and might not be applied in situations where traditional SEM would be infeasible. 
However, the CB-SEM approach is a procedure that pools the strengths of both structural equation 
modeling and confirmatory factor analysis. The CB-SEM is a dominant multivariate technique that 
can grip multiple groups and indicators; it is beneficial for analyzing relationships among latent 
variables and multiple manifest variables, which can be directly observed. The paper concluded 
that the PLS-SEM is a more suitable technique for analyzing relations among latent constructs, 
generally for a small dataset, and the measurement error is high. However, the CB-SEM is suitable 
for analyzing compound latent and manifest constructs, mainly when the goal is to generalize 
results to specific population subgroups. The PLS-SEM and CB-SEM have specific efficiencies and 
deficiencies that determine which technique to use depending on resource availability, the research 
question, the dataset, and the available time.
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Introduction
The researchers use covariance-based structur-
al equation modeling (CB-SEM) and partial least 
square structural equation modeling (CB-SEM) 
to analyze the data of complicated connec-
tions among the latent and manifest constructs 
(Ahmed et al., 2021; Hair et al., 2022). Still, there 
are some vital differences between the two mul-
tivariate techniques; for example, PLS-SEM and 
CB-SEM modeling handle collinearity differently 
(Ahmed et al., 2022; Hair et al., 2019; Sarstedt 
et al., 2019). However, the PLS-SEM is very 
beneficial for managing data with a high degree 
of collinearity because it divides the data into la-
tent variables uncorrelated using the PLS-SEM 
method (Sarstedt et al., 2022). On the other 
hand, the CB-SEM modeling is founded on mul-
tivariate normality and necessitates the data 
to be uncorrelated, as highlighted by Lu et al. 
(2020) and Hair Jr. et al. (2017). When the data 
is highly correlated, CB-SEM may generate 
unreliable or inconsistent results (Becker et al., 
2022; Legate et al., 2022). Another difference 
is how the models are estimated, as Sarstedt 
et al. (2019) demonstrate. The PLS-SEM mod-
eling uses a technique called bootstrapping 
to estimate the model parameters. This method 
can be computationally intensive but allows 
for a trustworthy approximation of factors 
in the presence of outliers and non-normality. 
The CB-SEM uses maximum likelihood ap-
proximation, which is computationally efficient 
but may not work well with non-normal data or 
outliers, according to Hair Jr. et al. (2017) and 
Mueller and Hancock (2018). The CB-SEM 
bases its assumptions on the multivariate nor-
mality hypothesis and demands that the data 
be uncorrelated (Ahmed et al., 2021; Hair et al., 
2019; Hayes et al., 2017). For handling data 
with non-normality, outliers, and missing values, 
the PLS-SEM is not based on distributional 
assumptions and is, therefore, more flexible 
(Ringle et al., 2022; Sarstedt & Cheah, 2019). 
In light of this, it has been proven by Hwang 
et al. (2020), Ringle et al. (2015), and Hair et al. 
(2018) that PLS-SEM is a more reliable and 
adaptable method for assessing complex and 
correlated data than CB-SEM, which is based 
on multivariate normality assumptions. Howev-
er, the technique chosen depends on the goals, 
research questions, and dataset characteristics 
(Hair et al., 2022). The CB-SEM and PLS-SEM 
are multivariate methodologies, but each has 
strengths and weaknesses.

The PLS-SEM is a statistical technique that 
combines the benefits of structural equation 
modeling partial and least squares to evaluate 
complex associations between latent vari-
ables and observable datasets, as highlighted 
by Sarstedt et al. (2019), and Ahmed et al. 
(2022). The PLS-SEM is particularly helpful 
in handling data with a high degree of collinear-
ity since it uses the PLS-SEM technique to break 
the dataset down into uncorrelated latent vari-
ables. The PLS-SEM employs a more suitable 
parameter estimation technique for examining 
the model’s parameters in the presence of out-
liers and non-normality (Memon et al., 2019). 
PLS-SEM has excellent flexibility because 
it does not rely on distributional assumptions 
and can handle data with non-normality, outli-
ers, and missing values, according to Hair et al. 
(2010) and Sarstedt et al. (2021). The PLS-SEM 
technique can estimate latent variables that 
symbolize unobserved or underlying constructs 
in the data (Hair & Sarstedt, 2021; Legate 
et al., 2022). The PLS-SEM technique permits 
the study of numerous groups/subpopulations 
in the data, which can help compare groups 
or measurement invariance tests. According 
to Sarstedt et al. (2019) claim, the PLS-SEM can 
also handle correlations between constructs that 
are not linear. The PLS-SEM enables an under-
standing of the interactions between constructs 
by providing details on the intensity and direc-
tion of the associations and the comparative 
significance of each construct in the considered 
model (Legate et al., 2022). The PLS-SEM anal-
ysis can be performed using various programs, 
including the Smart-PLS, Warp-PLS, XLSTAT, 
and R packages for PLS-SEM (Memon et al., 
2019; Parmar et al., 2022). Hence, it can be 
supposed that the PLS-SEM is an effective tech-
nique for evaluating complex, highly connected 
data since it enables the modeling and handling 
of non-linear relationships in a robust, flexible, 
and understandable manner (Hair et al., 2014; 
Hair et al., 2019). 

The CB-SEM is used by Hayes et al. (2017) 
and Lu et al. (2020) to examine a complicated 
relationship between latent constructs and 
observable data. The CB-SEM uses maximum 
likelihood approximation to estimate the model 
parameters, which is computationally ef-
ficient as one of its essential characteristics 
(Ahmed et al., 2022; Hooper et al., 2008). 
Given that the CB-SEM technique is founded 
on the assumptions of multivariate normality, 
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an uncorrelated dataset is needed (Hair et al., 
2018). Latent variables, or unseen or underly-
ing constructs in the data, can be estimated 
using CB-SEM (Hair et al., 2011; Hooper et al., 
2008). The CB-SEM offers many fit indices that 
could be employed to examine the model fit and 
spot any potential issues under consideration 
(Bentler, 1990). Several groups or subpopula-
tions can be analyzed using CB-SEM, allowing 
for comparing groups or testing invariance 
measurements (Sarstedt et al., 2021). Ac-
cording to Sarstedt et al. (2019) and Rigdon 
(2016), the CB-SEM enables model adjustment 
by introducing or eliminating latent structures 
or routes. Various softwares are available for 
CB-SEM analysis, including AMOS, LISREL, 
and M-Plus (Becker et al., 2022; Hair et al., 
2018). By providing details on the strength and 
direction of the link and the relative prominence 
of each construct in the model under consider-
ation, CB-SEM enables the analysis of relation-
ships between variables (Parmar et al., 2022). 
Thus, it is debated that CB-SEM is a statistical 
methodology using the computationally effec-
tive maximum likelihood method to examine 
the model’s parameters. It is predicated on mul-
tivariate normalcy and necessitates the ab-
sence of correlation in the data. Additionally, 
it offers many goodness-of-fit statistics, allows 
for model adjustment and estimation of la-
tent variables, and makes software available 
(Hair et al., 2014).

This paper’s goal is to assess and contrast 
PLS-SEM vs. CB-SEM modeling. This study 
may be helpful to future researchers, who may 
use it to decide which approach to use under 
particular circumstances. The CB-SEM and 
PLS-SEM multivariate approaches are also cov-
ered comprehensively in this study. The CB-SEM 
and PLS-SEM multivariate approaches have 
also been described in earlier research, but that 
literature does not discuss every aspect of both 
multivariate techniques (Becker et al., 2022; Hair 
et al., 2019; Legate et al., 2022; Ringle et al., 
2022), and several other studies, which had 
several drawbacks. Previous literature, for in-
stance, does not address several features, such 
as sample size, multicollinearity issues, compo-
nents, types of CB-SEM and PLS-SEM, model 
fit indices, measurement, and structural models. 
The current study provides an in-depth analy-
sis of the CB-SEM and PLS-SEM multivariate 
techniques’ features, benefits, shortcomings, 
and methodology.

The remaining sections of the paper are 
divided into numerous sections, such as sec-
tion 2 (Theoretical Background), section 3 
(Research methodology), section 4 (Results 
and discussion), section 5 (Conclusions), and 
Limitations and future research orientations.

1. Theoretical background
Previous literature has explored the difference 
between PLS-SEM and CB-SEM modeling. 
The literature differentiated their categories 
and demonstrated the efficiencies and de-
ficiencies of both models (Hair et al., 2006; 
Hair & Sarstedt, 2021). Several studies have 
demonstrated that PLS-SEM is an SEM to ex-
plore complex relationships between numerous 
parameters (Hair et al., 2022; Henseler et al., 
2015). Similarly, previous literature exhibited 
that CB-SEM models could be used depend-
ing on the research goals, research questions, 
and data arrangements. PLS-PM (PLS path 
modeling) is a PLS-SEM variant used to evalu-
ate associations between observed and unob-
served elements in the model and to estimate 
the path coefficients connecting these vari-
ables. PLS-SEM and CB-SEM modeling come 
in a multiplicity of different forms (Memon et al., 
2019; Ringle et al., 2015). According to Hair 
et al. (2022) and Sarstedt and Cheah (2019), 
PLS-CFA (PLS-confirmatory factor analysis) 
is used to gauge theories about the structure 
of the measurement model, including theories 
about the number of components, factor load-
ings, and measurement errors. The PLS-SEM 
is a method to estimate the path coefficients 
between constructs and investigate associa-
tions between unobserved elements in a model 
(Ringle et al., 2022). PLS-regression is accus-
tomed to evaluating the association among 
predetermined predictors of a construct of in-
terest, such as a dependent variable (Hair 
& Sarstedt, 2021; Legate et al., 2022). By iden-
tifying the linear blend of components that 
maximizes the covariance among constructs, 
PLS-canonical analysis is used to categorize 
the underlying structure of a dataset, as dem-
onstrated by Richter et al. (2020) and Hair et al. 
(2017). A set of data is divided into groups using 
PLS-DA (PLS-discriminant analysis), a kind 
of PLS-SEM grounded on the values of predic-
tors (Hair et al., 2022). PLS-SEM with small 
data is the type of PLS-SEM that is very helpful 
when several constructs are more incredibly 
associated with a small sample size; missing 
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data, non-normality, and multicollinearity can 
all be accommodated by it (Matthews, 2017; 
Ringle et al., 2015).

According to previous studies, there are 
other varieties of CB-SEM modeling, including 
confirmatory factor analysis, a sort of CB-SEM 
accustomed to testing a considered measure-
ment model based on fixed latent variables and 
preset manifest factors (Ahmed et al., 2022; 
Hair et al., 2022). It could support or disprove 
a scale’s or measure’s factor structure (Hair 
et al., 2010; Hussain & Ahmed, 2020). Path 
analysis assesses the direction, strength, 
and correlation between various parameters. 
It can evaluate theories of causal relationships 
between many components (Hayes et al., 
2017). This kind of CB-SEM, known as latent 
growth curve modeling (LGCM), looks at how 
variables change over time. Examining a vari-
able’s rate of change and its consistency across 
time is a common practice (Hair et al., 2011). 
Grounded on the provisions of answers to a set 
of observed factors, latent class analysis (LCA) 
is frequently used to ascertain subdivisions 
or classes within a population (Nunkoo et al., 
2020). The CB-SEM method, known as multi-
group SEM, compares an association among 
constructs across various groups or populations. 
It can be used to look for variations or patterns 
in the relationships between variables between 
various groups (Cohen, 1992; Hayes et al., 
2017). This kind of CB-SEM, SEM with miss-
ing data, deals with missing data in the analy-
sis. It is customary to look at the parameters 
of the model and missing data simultaneously 
(Hair et al., 2006). SEM without normality data 
is the type of CB-SEM that works with non-
normal data for the analysis. Using reliable 
estimating approaches, the model’s parameters 
could be evaluated (Henseler et al., 2015).

According to Ringle et al. (2015) and Hair 
et al. (2010), the sample size for PLS-SEM 
should be sizable to ensure adequate power 
for the statistical analysis and to obtain a suit-
able level of generalizability (Hair et al., 2010; 
Ringle et al., 2015). However, PLS-SEM 
sample size recommendations are less ac-
curate than those for traditional SEM (Sharma 
et al., 2021). PLS-SEM is considered a more 
reliable method than traditional SEM regarding 
sample size and measurement error because 
it can tolerate higher levels of measurement 
error (Ahmed et al., 2019; Hair et al., 2019). As 
a result, PLS-SEM frequently has more flexible 

sample size requirements than typical SEM. 
It is vital to keep in mind that sample size 
is always determined by the study purpose, 
the resources available, and the amount of time 
available, even if some studies have shown that 
PLS-SEM may be employed with datasets as 
low as 50–100 instances (Hayes et al., 2017). 

Previous literature also discussed the re-
quired sample for PLS-SEM modeling; accord-
ing to Hussain and Ahmed (2020), Hussain 
et al. (2021), and Zaidi et al. (2022), the sample 
size required to achieve a specific power level, 
for instance, 80% or 90%, can be determined 
in various ways, including simulation studies 
and power analysis techniques. The sample 
size is calculated considering the research 
topic, the resources available, and the amount 
of time available. It is crucial to remember that 
sample size estimations are frequently ap-
proximate. It is also critical to remember that 
the PLS-SEM sample size requirements vary 
depending on the number of predictors and 
model complexity (Sarstedt & Cheah, 2019). 
As models become more complicated, sample 
sizes become more critical. The sample size 
must be proficient at ensuring the accuracy and 
objectivity of the estimated values (Shmueli 
et al., 2019). Similarly, previous literature also 
discussed that the sample size is a vital concern 
in the CB-SEM technique since it can affect 
the valuation of the considered model’s param-
eters and the model’s capacity to fix the dataset. 
A larger sample size will produce more precise 
parameter estimates and a better model-data 
fit (Hair et al., 2014; Sharma et al., 2021). 

According to Hair et al. (2011), the optimal 
sample size will depend on the complexity 
of the model, the number of indicators, the la-
tent factors quantity, and the level of measure-
ment error. There are numerous methods for 
computing the sample size for the CB-SEM. 
The recommendations for the sample size 
for the CB-SEM depend on various aspects, 
among them the number of factors, the num-
ber of estimated parameters, and the amount 
of measurement error (Hair et al., 2011). One 
of several recommended sample size criteria 
is the “10:1 rule”, which describes that the sam-
ple size must be ten times the parameters, 
which has to be evaluated. This rule, though, 
only functions under certain circumstances 
(Hussain & Ahmed, 2020; Streukens & Leroi-
Werelds, 2016). Power analysis techniques 
or simulation studies can be used to calculate 
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the sample size required to attain a given power 
level, for instance, 80% or 90%, to establish 
the sample size that provides a high likelihood 
of detecting a particular effect. In general, 
SEM requires a sample size of 200 or more. 
However, this guideline might only apply 
to particular models; thus, employing more so-
phisticated sample size estimation techniques 
is always a good idea.

According to Kang (2021) and Hoenig and 
Heisey (2001), power analysis can decide 
the desired sample size to identify a particular 
effect size at a specific power level. Power anal-
ysis can consider the magnitude of measure-
ment error, the complexity of the model, and 
the number of indicators. Simulators de Monte 
Carlo – this method simulates data and figures 
out the sample size necessary to accurately 
estimate model parameters (Hayes et al., 2017; 
Kroese et al., 2014). It can be accomplished 
by relating the Akaike information criterion (AIC) 
or the Bayesian information criterion (BIC) for 
various sample sizes. It is crucial to remember 
that sample size is only one consideration when 
evaluating the fit of a model. Several additional 
elements, for instance, the number of indicators, 
the considered model’s complexity, the data 
distribution, and the estimation method, impact 
the model fit (Hoenig & Heisey, 2001).

Previous literature demonstrated that mul-
ticollinearity is a common problem in PLS-SEM 
and CB-SEM, which occurs when two or more 
predictor variables are closely associated 
(Grewal et al., 2004). It occurs when two or 
more independent variables exhibit strong cor-
relations, and estimating models and explaining 
their results can be challenging (Wondola et al., 
2020). For example, a correlation matrix can 
determine how every independent construct 
connects with others to find multicollinear-
ity in PLS-SEM and CB-SEM. Multicollinear-
ity may be present if there is a significant 
correlation between two or more independent 
constructs (Wondola et al., 2020). The degree 
of multicollinearity in a multiple regression 
model is measured by the variance inflation 
factor (VIF). The VIF of 1 shows the absence 
of multicollinearity, while a VIF bigger than 1 
specifies the occurrence of multicollinearity. 
High multicollinearity is frequently indicated 
by a VIF more significant than five (Chan et al., 
2022; Hussain & Ahmed, 2020). The variance 
amount in a predictor, which other predictors 
cannot describe, is represented by tolerance, 

which is the reciprocal of VIF. There is high 
multicollinearity when the tolerance value is be-
low 0.2. The condition index gauges the level 
of multicollinearity in a multiple regression mod-
el. Multicollinearity is indicated by a number 
higher than 30 (Arminger & Schoenberg, 1989; 
Chan et al., 2022). The previous literature has 
discussed and identified several positive and 
negative aspects of PLS-SEM and CB-SEM 
techniques, however, numerous factors are still 
missing to establish the differentiation between 
both modeling techniques, thus the current 
study answers those questions.

2. Research methodology
2.1 Research design and estimation 

techniques
The undertaking is a comparative study, which 
has differentiated PLS-SEM and CB-SEM mod-
eling; the study also considers the efficiencies 
and deficiencies of both models in the manage-
ment sciences field. The comparative studies 
could be performed qualitatively or quantitative-
ly. However, the research design of this study 
is qualitative, and researchers have stated 
the pros and cons of PLS-SEM and CB-SEM 
techniques; they also compare different param-
eters of both techniques. This study has used 
previous literature and thoroughly reviewed 
previous studies, books, and other relevant 
publications to analyze both models. This study 
also used graphical analysis to distinguish be-
tween PLS-SEM and CB-SEM modeling. 

The study examined the criteria to validate 
measurement models, such as convergent 
and discriminant validities, using factor loading 
of items, Cronbach’s alpha, composite reliability, 
and average variance extracted of constructs 
to validate the convergent validity and reliabil-
ity in both PLS-SEM and CB-SEM techniques. 
Moreover, this study analyzed HTMT, Fornell-
Larcker criterion, and cross-loading to validate 
discriminant validity for both SEM techniques. 
Similarly, this study also examined the parame-
ters for validating a structural model for PLS-SEM 
modeling. For this purpose, the researchers 
used the coefficient of determination (R2), effect 
size (f 2), path coefficient analysis (direct, indirect 
relationship of constructs), goodness of fit mea-
sures, and predictive relevance (Q2). 

This research used confirmatory factor 
analysis, structural equation modeling, path 
coefficient analysis (direct, indirect relationship 
of constructs), and goodness of fit measures 
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to validate structural models in CB-SEM tech-
niques. This study also used the graphical 
analysis to examine the observed, unobserved, 
convergent, and discriminant validity to endorse 
the measurement model for both PLS-SEM 
and CB-SEM techniques. The graphical analy-
sis also defined the path coefficient relationship 

(direct and indirect relationship of constructs) 
to validate the structural model for both 
PLS-SEM and CB-SEM techniques.

2.2 Acronyms and full names
Tab. 1 exhibited the acronyms and full names 
of different abbreviations used in this paper.

3. Results and discussion
The results of this study demonstrated the param-
eters of the measurement and structu ral models 
for both PLS-SEM and CB-SEM techniques.

3.1 The measurement model in CB-SEM 
and PLS-SEM modeling

In PLS-SEM & CB-SEM modeling, validating 
the measurement model entails evaluating 
the fitness of the dataset and the reliability of in-
dicators chosen to represent the latent variables 
(Hair et al., 2019). This procedure includes 

the following steps as the factor loadings indi-
cate how intensely indicators and unobserved 
factors are linked. Significant factor loadings 
show that the indicators and latent variables are 
closely connected (Hair et al., 2014; Rigdon, 
2016). Factor loadings have a conventional 
cut-off of 0.7, which can change depending 
on the research environment (Ringle et al., 
2015). The measuring model must be validated 
by evaluating the indicators’ reliability and va-
lidity. While validity narrates how well the indi-
cators measure the latent variable, reliability 

Acronyms Full names Acronyms Full names

PLS-SEM Partial least square structural 
equation modeling PLS-CFA Partial least square confirmatory 

factor analysis

CB-SEM Covariance-based structural 
equation modeling PLS-DA Partial least square discriminant 

analysis

SEM Structural equation modeling LGCM Latent growth curve modeling

Smart-PLS Smart partial least square software LCA Latent class analysis

Warp-PLS
Variance-based and factor-based 
structural equation modeling 
software

SRMR Standardized root mean square 
residual

XLSTAT Excel statistical software HTMT Heterotrait monotrait ratio 
of correlation

AMOS Analysis of moment structures AVE Average variance extracted

LISREL Linear structure relations D_ULS The squared euclidean distance

M-Plus Microdia plus software AGFI Adjusted goodness of fit index

RMSEA Root mean square error 
of approximation RNI Relative non-centrality index

CFI Comparative fit index PCFI Parsimonious-adjusted fit index

GFI The goodness of the fit index PNFI Parsimony-adjusted normed fit index

TLI Tucker Lewis index G_D Geodesic distance

NFI Normal fit index VIF Variance inflation factor

Source: own

Tab. 1: Acronyms and full names
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refers to the indicators’ consistency across time 
(Byrne, 2013; Ringle et al., 2015).

The model must offer a good match for 
the dataset; in PLS-SEM modeling, sev-
eral fit indices, including R2 and Q2, can be 
applied to measure how well the model fixes 
the dataset. These indices show the percent-
age of the variance in outcome constructs 
the model justifications (Henseler et al., 2015; 
Parmar et al., 2022). Similarly, many fit indices, 
including the RMSEA, chi-square statistic, and 
comparative fit index (CFI), can be applied 
to measure the model’s fitness in CB-SEM 
modeling (Hooper et al., 2008). The importance 
of path coefficients and the overall model should 
be tested by examining the structural model 
(Bentler & Bonett, 1980; Hair et al., 2022). 

Suppose the factor loadings or the model 
do not match the data well. In that case, it may be 
essential to re-specify the model by modifying 
the path coefficients, adding or removing vari-
ables, or making other modifications (Sarstedt 

et al., 2022). It is essential to remember that 
measurement model validation is an iterative 
process, and the model should be refined and 
re-evaluated as needed until an acceptable lev-
el. It is crucial to remember that when working 
with CB-SEM, using multiple data sources, such 
as self-report surveys, behavioral observations, 
and physiological measures, can increase 
the rationality of the measurement model. Ad-
ditionally, the validation process should be done 
with the sample used in the study and not just 
in the population in general (Hair et al., 2014). 
The annotated graphical form of the measure-
ment model of PLS-SEM is provided in Fig. 1 
(Ahmed et al., 2021). Fig. 1 demonstrated that 
the factor loadings of each item are higher 
than 0.70, and the average variance extracted 
is more significant than 0.50, which fulfilled 
the convergent validity requirement. Moreover, 
the path analysis between the construct validat-
ed the discriminant validity; thus, this endorsed 
the measurement model.

Fig. 1: Measurement model in PLS-SEM modeling

Source: Ahmed et al. (2021)
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The annotated graphical form of the mea-
surement model of CB-SEM is provided in Fig. 2 
(Ashraf et al., 2018). Fig. 2 also demonstrated 
that each observed variable has a factor load-
ing of more than 0.70, values of path coef-
ficient between the unobserved variables, 
and values of goodness of fit measures have 
followed the cut-offs. Thus, Fig. 2 demonstra-
tes that the measurement model is validated 
in CB-SEM modeling. 

3.2 The structural model in CB-SEM and 
PLS-SEM modeling

In CB-SEM and PLS-SEM modeling, validating 
the structural model entails analyzing the mod-
el’s fitness to the dataset, determining the im-
portance of the path coefficient, and reviewing 
the overall model (Kline, 2015). This procedure 
includes several steps; for example, the path 
coefficients show how strong and in what di-
rection the latent variables are related. High 

positive path coefficients indicate a strong posi-
tive relationship between the latent variables, 
while high negative path coefficients indicate 
a strong negative relationship (Hair et al., 2019; 
Raza et al., 2021). T-tests or bootstrapping tech-
niques can be used to conclude the significance 
of the path coefficients. If the path coefficient 
is significant, the latent variables must be sta-
tistically related (Hair et al., 2014; Hayes et al., 
2017; Henseler et al., 2015). 

In PLS-SEM modeling, fit indices like R2 
and Q2 could be applied to measure the overall 
fitness of the model. These indices indicate 
the variance proportion in dependent factors that 
the model explains (Bentler, 1990). The overall 
fitness of the CB-SEM model can be evalu-
ated using fit indices such as the RMSEA, chi-
square statistic, and comparative fit index (CFI; 
Hooper et al., 2008). Discriminant validity ex-
amines how little latent variables connect with 
measurements of unrelated constructs. It can 

Fig. 2: Measurement model in CB-SEM modeling

Source: Ashraf et al. (2018)
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be assessed by contrasting the latent variables’ 
average variance extracted with their squared 
correlation to unrelated factors (Ahmed et al., 
2021; Fornell & Larcker, 1981; Hair Jr. et al., 
2017; Malhotra et al., 2006). 

The model may need to be re-specified 
by adding or removing variables, changing 
the path coefficients, or modifying the model 
in other ways if it does not fit the data well 
or if the path coefficients are not significant 
(Kaufmann & Gaeckler, 2015; Sarstedt et al., 
2022). It is crucial to remember that struc-
tural model validation is an iterative process. 
The model must be polished and reexamined 
until an acceptable fit level and significance 
are achieved (Sarstedt et al., 2019). It is es-
sential to remember that when working with 
CB-SEM, using multiple data sources, such 
as self-report surveys, behavioral observa-
tions, and physiological measures, can 
increase the validity of the structural model. 

Additionally, the validation process should be 
done with the sample used in the study and not 
just in the population in general (Malhotra et al., 
2006). The annotated graphical form depicted 
the structural model of PLS-SEM in Fig. 3 
(Ahmed et al., 2021). Fig. 3 demonstrated 
the path coefficient between the constructs 
(direct and indirect relationship), which shows 
significant values; moreover, R-square values 
showed the impact of exogenous variables 
on endogenous variables. Thus, Fig. 3 validat-
ed the structural model in PLS-SEM modeling.

The annotated graphical shape of the 
structural model of CB-SEM is provided 
in Fig. 4 (Ashraf et al., 2018). Fig. 4 demon-
strates the path coefficient between the con-
structs (direct and indirect relationship), which 
shows significant values. Moreover, fit in-
dices values meet the required threshold. 
Thus, Fig. 4 validated the structural model for 
CB-SEM modeling.

Fig. 3: Structural model in PLS-SEM

Source: Ahmed et al. (2021)
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3.3 Threshold values to validate  
the CB-SEM and PLS-SEM modeling 

When validating a measurement or structural 
model in PLS-SEM or CB-SEM, several thresh-
old values are commonly used to measure 
the accuracy, model, and reliability. Now, we 
have an overview of some of the most common-
ly used threshold values; for instance, a stan-
dard threshold for factor loadings is 0.70, but 
it can vary depending on the research context 
(Henseler et al., 2015; Kline, 2015). The typical 

Cronbach’s alpha threshold is 0.70; however, 
it may change depending on the research situ-
ation (Hair et al., 2014; Miles & Shevlin, 2007). 

Composite reliability depends on the re-
search environment; the composite reliability 
criterion of 0.70 is typically adequate (Ringle 
et al., 2015). The AVE cut-off is often set at 0.50 
but might change depending on the research 
environment. Good discriminant validity 
is often indicated by values higher than 0.50 
(Fornell & Larcker, 1981; Hair et al., 2009). 

Fig. 4: Structural model in CB-SEM

Source: Ashraf et al. (2018)

Measures Threshold values
Factor loading (FL) Equal and higher 0.70

Cronbach’s alpha (CA) Equal and higher 0.70

Composite reliability (CR) Equal and higher 0.70

Average variance extracted (AVE) >0.50

Source: own

Tab. 2: Threshold values of reliability and validity
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The typical correlation threshold is 0.70; how-
ever, it can change depending on the research 
circumstances. Correlations above 0.70 
generally indicate a strong relationship be-
tween two variables (Hussain & Ahmed, 2020; 
Maydeu-Olivares et al., 2018). Tab. 2 exhibited 
the threshold values of factor loading, Cron-
bach’s alpha, composite reliability, and average 
variance extracted.

3.4 The PLS-SEM modeling goodness 
of fit measures

In PLS-SEM, model fitness could be evaluated 
using a multiplicity of metrics, such as R2, which 
gauges the proportion of the outcome con-
struct’s variance that could be accounted for 
by independent constructs (Hair et al., 2019). 
The variance amid the perceived projected 
covariance matrix is measured by the RMSEA, 
with readings nearer to 0 signifying a better 
fit (Hooper et al., 2008). The goodness-of-fit 
index (GFI) measures how considerably 
the variance in the observed variables can be 
accounted for by the model, with values nearer 1 
suggesting a good fit (Hu & Bentler, 1999; Hair 
et al., 2019). The normal fit index (NFI), a vari-
ant of the GFI that accounts for the parameters 
in the considered model, has values closer to 1 
than those that indicate a better fit (Ringle et al., 
2022). The SRMR, a well-known measure 
fit of the overall model, is used in PLS-SEM. 
The SRMR measures the difference between 
observed and predicted covariance matrices. 
It varies from 0 to 1, where a value of 0 desig-
nates a complete fit, and a value of 1 specifies 
that the model cannot replicate the observed 
covariance matrices (Bollen & Davis, 2009). 
Less than 0.08 is the suggested cut-off value for 
the SRMR, which denotes an acceptable model 
fit to the dataset. However, the research field 
and sample size can affect the allowable value 
of SRMR (Ringle et al., 2015). 

It is imperative to remember that SRMR 
is a sample-based measure calculated based 
on the sample, not the population. Moreover, 
it takes into account both structural and mea-
surement models. It is not sensitive to the sam-
ple size; thus, it is a more robust gauge for model 
fit than other fit statistics such as RMSEA or CFI 
(Henseler et al., 2015; Kline, 2015). The CFI 
should be 1 for saturated models, and the 
RMSEA should be close to 0. It means that 
the model accurately describes all variations 
in the observed variables and is a perfect fit for 

the dataset (Hair et al., 2019; Mouri, 2005). 
RMSEA < 0.08 and CFI > 0.95 are the suggest-
ed cut-off values for estimated models. These 
results demonstrate that the model demonstra-
tes the relationship among variables in the data 
and fits the data very well. These cut-off num-
bers, however, may change based on the re-
search area and circumstance (Memon et al., 
2019; Raza et al., 2021). CFI (comparative 
fit index) is comparable to NFI but also justifies 
the complexity of the model compared to a null 
model, with values closer to 1 suggesting a bet-
ter match (Bentler, 1990; Bollen & Davis, 2009). 
It is worth noting that no one metric is a silver 
bullet, and it is consistently substantial to evalu-
ate different metrics for different purposes (Hair 
et al., 2018; McDonald & Ho, 2002).

3.5 Discriminant validity in PLS-SEM 
Discriminant validity in PLS-SEM refers 
to a construct’s or latent variable’s capaci ty 
to stand out from other constructs or unob-
served constructs’ in the considered model. 
It ensures that the factor measures what it in-
tends to measure and not some other construct 
(Cheah et al., 2019; Raza et al., 2021). There 
are various techniques to evaluate the discrimi-
nant validity of PLS-SEM; for instance, the cor-
relation ratio relates the connection between 
two factors to the square root of the AVE of one 
component. The ratio must be more significant 
than one to prove discriminant validity (Chin, 
2010; Fornell & Larcker, 1981). 

The Fornell-Larcker criterion equates 
the squared correlation between an indicator 
and the unobserved construct to the product 
of the unobserved construct’s AVE, the indica-
tor’s squared loading on the latent variable 
(Cohen, 1994; Fornell & Larcker, 1981). 
D_ULS (discriminant validity – uniqueness) and 
D_G (discriminant validity – Fornell-Larcker 
criterion) are measures of the degree to which 
a factor’s variance is unique, meaning other 
factors do not explain it in the model. A high 
D_ULS or D_G value indicates a construct’s 
uniqueness, which is desirable for good dis-
criminant validity (Franke & Sarstedt, 2019; 
Henseler et al., 2015). 

The suggested cut-off value for D_ULS 
and D_G is typically more than 0.5. However, 
the acceptable value of D_ULS and D_G may 
change based on the investigation area, 
the size of the sample, and the research cir-
cumstances (Ringle et al., 2022). It is significant 
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to remember that D_G and D_ULS are not 
the only processes for discriminant validity. 
Other measures can be used, such as cross-
loadings, AVE (average variance extracted), or 
the Fornell-Larcker criterion (Fornell & Larcker, 
1981; Henseler, 2021). While these techniques 
can aid in establishing discriminant validity, 
it is essential to keep in mind that they should 
be used in conjunction with other approaches, 
for instance, Factor loading evaluation, cross-
loading, correlation matrix evaluation, and mod-
el-specific theoretical construct and relationship 
analysis (Ahmed et al., 2020; Hult et al., 2018).

3.6 F-square values in PLS-SEM
F-square values are frequently used in PLS-SEM 
to measure the relative significance of predic-
tors. The F-square value gauges how much 
of a dependent variable’s variance each predic-
tor contributes to (Henseler et al., 2015; Hwang 
et al., 2020). Each predictor in the model has 
an F-square value ranging from 0 to 1, with 
1 denoting that the predictor fully explicates 
the variance in an outcome construct (Ringle 
et al., 2015). F-square values can be used 
to compare the relative weights of several 
model predictors. For example, a predictor with 
an F-square value of 0.8 would be consid-
ered more critical than one with an F-square 
value of 0.2 (Sarstedt et al., 2022). It is critical 

to remember that F-square values are relative 
measurements determined by the proportion 
of variance explicated through the model’s 
predictors, not by the total amount of variance 
explicated (Ahmed et al., 2019). Moreover, 
PLS-regression (PLS-R) is the only version that 
supports it; PLS-path modeling (PLS-PM) does 
not (Henseler et al., 2015).

3.7 Predictive relevance (Q2) in PLS-SEM 
Predictive relevance, sometimes referred 
to as Q2, is used in PLS-SEM to assess the mod-
el’s capacity for prediction. It is a measurement 
of the percentage of an outcome construct’s 
variation that the latent constructs in the model 
can accurately predict (Henseler et al., 2015; 
Liengaard et al., 2021). The PLS-SEM model’s 
foreseen values for an outcome variable are 
compared to the actual values for the depen-
dent variable to determine Q2. The relevant 
research subject and environment will deter-
mine the appropriate value of Q2 (Hair et al., 
2017; Ringle et al., 2015; Shmueli et al., 2019). 
It is crucial to remember that Q2 is a relative 
measure, meaning that the proportion of devia-
tion determines it explained through the model 
rather than the total variance (Henseler, 2021; 
Shi & Maydeu-Olivares, 2020). Tab. 3 indicates 
the interpretations of predictive relevance 
(Q2) values.

3.8 Confirmatory factor analysis (CFA) 
in CB-SEM modeling

A statistical technique called CFA is employed 
in (CB-SEM) to examine a measurement model 
structure. A latent variable estimate based 
on several indications is possible using CB-SEM. 
The factor structure of the indicators and the con-
nection between the unobserved variables and 
the indicators are tested using CFA (Zhang et al., 

2020). By contrasting the manifest covariance 
matrix with the projected covariance matrix based 
on loadings and error variances of indicators, 
CFA is modified to assess the measurement 
structure of the model in CB-SEM. If the obser-
ved and projected covariance matrices match, 
the model is deemed a well-fit (Raza et al., 2021). 

CB-SEM also uses CFA to examine a mea-
surement model invariance through clusters 

Predictive relevance (Q2) values Interpretations

Q2 = 0 A Q2 value of 0 means the model cannot forecast any  
deviation in an outcome construct

Q2 ≥ 0.5 Q2 values of 0.5 or above have good predictive power  
in real-world applications 

Q2 = 1 A Q2 value of 1 means the model can perfectly forecast  
all deviations in an outcome construct

Source: own

Tab. 3: Predictive relevance (Q2)
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or time. It denotes the predicted consistency 
of the element configuration and the link be-
tween the unobserved variables and the indica-
tors across groups or time (Ahmed et al., 2022; 
Bollen & Davis, 2009). It is vital to remember that 
CFA is a confirmatory technique that examines 
a particular theory regarding the factor structure 
and the relationship between the unobserved 
variables and indicators. Also, it is crucial to note 
that CFA is a typical and crucial stage in CB-SEM 
modeling, earlier touching on the structural 
model component (Hair et al., 2019).

3.9 Structural equation modeling  
in CB-SEM modeling

CB-SEM uses structural equation modeling, 
a statistical approach to examine the structural 
links between latent and observable variables. 
Complex models with numerous unobserved 
constructs and indicators for every construct 
can be estimated using SEM (Ahmed et al., 
2019; Hair et al., 2022). CB-SEM uses SEM 
to measure the structural links between the la-
tent and observable variables by estimating 
the path coefficients and error variances of un-
observed constructs and indicators. If the ob-
served and projected covariance matrices 
match, the considered model fits well. 

A range of hypotheses can be tested using 
CB-SEM, including those involving direct and 

indirect effects, mediation and moderation ef-
fects, and latent interactions. CB-SEM can also 
be attuned to test for measurement invariance 
across groups or time (Hair et al., 2019; Raza 
et al., 2021; Zhang et al., 2020). In order to test 
a specific hypothesis about the structural as-
sociations among the unobserved and observ-
able constructs, SEM is a confirmatory method, 
which is essential to note. Moreover, after es-
tablishing the measurement framework and as-
sociations among the unobserved constructs, 
SEM is a typical and crucial stage in CB-SEM 
modeling (Kline, 2015).

3.10 The CB-SEM modeling goodness 
of fit measures

The goodness-of-fit of the measurement 
and structural models is measured through 
fit indices in CB-SEM. They indicate how well 
the model captures the data and can be used 
to pinpoint areas where the model requires im-
provement (Byrne, 2013; Hooper et al., 2008). 
Several fit indices in CB-SEM, such as χ2/df and 
probability, are known as the absolute fit indices 
in CB-SEM modeling (Bentler & Bonett, 1980; 
Bollen, 1989; Lu et al., 2020). The goodness-of-fit 
index (GFI) indicator evaluates an association 
between the model’s justified covariance and 
the data’s total covariance (Byrne, 2013; Hu 
& Bentler, 1999). The adjusted goodness-of-fit 

Fit-indices Threshold values
χ2/df and probability χ2/df > 5.0 and p < 0.05

GFI Range of 0 to 1, with values around 1 (>0.95) a solid fit

AGFI AGFI varies from 0 to 1, with a reading close to 1 (>0.95) satisfactory fit

RMSEA <0.05 good fit, between 0.05 and 0.10 acceptable, and >0.10 poor fit

SRMR
A good fit is indicated by values less than 0.08, a good fit is shown 

by readings ranges 0.08–0.10, and a poor fit is indicated by readings 
higher than 0.10

RNI The RNI index is 0 to 1, with values nearer 1 (>0.95), indicating a better 
model-to-data fit

CFI >0.90 acceptable and >0.95 good fit

NFI The NFI index is 0 to 1, with values nearer 1 (>0.95), indicating a better 
model-to-data fit

PCFI 0.75 or higher

PNFI 0.75 or higher

Source: own

Tab. 4: Fit indices and threshold values
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index (AGFI), an amended form of the GFI, 
takes into account the model’s independent 
variable count, the absolute fit indices, also 
known as the GFI and AGFI (Barbić et al., 2019; 
Bentler, 1990). The RMSEA measures the in-
consistency amid the manifest and anticipated 
covariance matrix (Tanaka, 1993). The stan-
dard root mean square residual (SRMR) metric 
contrasts the model’s residuals with the vari-
ances of the observed variables (Hooper et al., 
2008; Ringle et al., 2015). The RNI (relative 
non-centrality index) fit index is a statistical met-
ric to assess how sound a model fits a specific 
dataset collection. Considering the variance 
of the observed values, it calculates the vari-
ance amid the actual values and values fore-
casted through the model (Ahmed et al., 2021; 
Oliver, 2014). Other frequently used fit indices 
in CB-SEM are the comparative fit index (CFI), 
Trucker-Lewis index (TLI), and normal fit in-
dex (NFI). These are comparable to traditional 
SEM’s goodness-of-fit index (GFI) and adjusted 
goodness-of-fit index (AGFI) (Hair et al., 2019; 
Raza et al., 2021; Tucker & Lewis, 1973).

To calculate PCFI (parsimonious-adjusted 
fit index), subtract the model’s CFI from the CFI 
of a null model, then divide the outcome 
by the change in degrees of freedom between 
the two models (Barbić et al., 2019; Bentler, 
1990; Blackwell et al., 2001; Byrne, 2013). 
The difference between the model’s normalized 
fit index and the normalized fit index of a null 
model is used to produce the PNFI (parsimony-
adjusted normed fit index), which is then divided 
by the variance in degrees of freedom between 
the two models (Hu & Bentler, 1999). It is critical 
to understand that many fit indices must be cali-
brated to estimate the model and that no single 
fit index is considered the best. The context 
of the research topic and the study’s objectives 
must be justified while assessing the fit indices 
(Astrachan et al., 2014; Hair et al., 2019; Tucker 
& Lewis, 1973). Threshold values of fit indices 
are exhibited in Tab. 4.

Conclusions
The CB-SEM is a powerful technique for 
analyzing complex relationships among mul-
tiple variables. Both methods have advantages 
and disadvantages, and the approach relies 
on the study issue, the availabili ty of resources, 
and the time available. PLS-SEM is a robust 
technique that can handle high levels of mea-
surement error and can be applied to small and 

unbalanced datasets. It helps look at correlations 
between unobserved factors that are one, which 
could not be observed directly. When conven-
tional SEM is not practical, PLS-SEM is es-
pecially helpful. On the other hand, CB-SEM 
is a powerful technique that can handle numer-
ous groups and various signs. It helps examine 
connections between several manifest factors, 
or those that can be directly observed, and nu-
merous latent variables (Henseler et al., 2015; 
Kline, 2015). CB-SEM is especially helpful when 
the objective is to generalize findings to spe-
cific demographic subgroups. PLS-SEM and 
CB-SEM are valuable tools for examining 
structural equation models. The study question 
and the characteristics of the population being 
investigated influence the technique selection. 
When selecting the best technique for their 
research, researchers must consider both ap-
proaches’ drawbacks and underlying assump-
tions. The research issue and the features 
of the population being examined determine 
the theoretical implications of the comparison 
between CB-SEM and PLS-SEM (Ahmed et al., 
2021). PLS-SEM is a data-driven approach that 
does not rely on a priori postulations regarding 
the structure of the associations among factors. 
Researchers can use PLS-SEM to uncover la-
tent relationships among variables that may not 
be immediately apparent from the data. It can 
benefit researchers interested in exploring 
new or complex relationships among variables 
(Hair et al., 2022). Contrarily, CB-SEM is more 
theory-driven and is based on presumptions 
about the structure of the correlations among 
factors. To test particular propositions regarding 
the relationships between factors, research-
ers can employ CB-SEM. Researchers inter-
ested in putting tested theories or hypotheses 
to the test may find it helpful. PLS-SEM offers 
greater flexibility and exploration of the data, 
whereas CB-SEM offers greater rigor and 
testing of particular hypotheses. Both meth-
ods have advantages and limitations, and 
the choice of which technique to use depends 
on the characteristics of the population re-
search question being studied (Hair et al., 
2019; Zhang et al., 2020). 

Additionally, PLS-SEM is more robust 
to multicollinearity and measurement error, 
which can be an issue in CB-SEM, where the as-
sumptions of independence among the pre-
dictors and measurement invariance across 
groups should be met. PLS-SEM is viewed as 
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a more recent and less well-established tech-
nique than CB-SEM; despite this, PLS-SEM 
is becoming more and more well-liked and com-
mon in use, particularly in industries like mar-
keting, psychology, and management (Ahmed 
et al., 2022; Hair et al., 2022). The study is-
sue and the characteristics of the population 
will determine the managerial implications 
of the comparison between CB-SEM and 
PLS-SEM. PLS-SEM is a dominant procedure 
that can handle high measurement error levels, 
small and unbalanced datasets, and latent vari-
ables. PLS-SEM could be used in conditions 
where traditional SEM would be infeasible. 
Even when the sample size is unbalanced or 
small, and the measurement error is signifi-
cant, PLS-SEM can be particularly valuable for 
managers and practitioners interested in un-
derstanding the underlying relationships among 
factors (Wondola et al., 2020). On the con-
trary, CB-SEM is a powerful technique that 
can handle numerous groups and various 
signs. CB-SEM can be applied when the goal 
is to generalize results to specific population 
subgroups. CB-SEM can be particularly use-
ful for managers and practitioners interested 
in understanding associations between multiple 
unobserved and manifest factors and general-
izing results to specific population subgroups. 
PLS-SEM offers greater flexibility and data 
exploration, whereas CB-SEM allows for more 
incredible rigors and testing of particular hy-
potheses, which has managerial consequences. 
The decision of which methodology to employ 
relies on the research issue and the character-
istics of the population being examined. Both 
methods offer benefits and drawbacks (Kline, 
2015). Additionally, PLS-SEM is more robust 
to multicollinearity and measurement error, which 
can be an issue in CB-SEM, where the assump-
tions of independence among the predictors 
and measurement invariance across groups 
should be met. It is also significant to note that 
PLS-SEM can be helpful in practice, particu-
larly in industries like marketing, psycholo gy, 
and management, where practitioners and 
researchers must deal with complicated and 
unbalanced datasets and where an explor-
atory approach is required (Henseler, 2021; Shi 
& Maydeu-Olivares, 2020).

Limitations and future research orientations
PLS-SEM and CB-SEM are powerful techni-
ques for analyzing complex relationships 

among multiple variables; however, they also 
have some limitations. Some of the limitations 
of PLS-SEM include the following: PLS-SEM 
is less established and less well-known than 
traditional SEM, which may be less familiar 
to some researchers (Wondola et al., 2020). 
PLS-SEM does not rely on a priori supposi-
tions regarding the structure of the relation-
ships among the factors, making interpreting 
the results challenging (Hair et al., 2022). Thus, 
it is recommended that future researchers study 
this limitation. PLS-SEM is sensitive to outliers 
and extreme observations, which can affect 
the analysis results. PLS-SEM does not offer 
a test for overall model fit. The following are some 
CB-SEM drawbacks: when a priori postulations 
vis-à-vis the nature of interactions between 
the factors are not achieved, CB-SEM is used, 
making it challenging to interpret the results. 
Thus, it is recommended that future research-
ers carry out their studies on this topic. Another 
critical limitation of PLS-SEM & CB-SEM mod-
eling is not to provide a cause-effect between 
the constructs (Ahmed et al., 2022). Therefore, 
it is recommended that the researchers estab-
lish cause and effect between the variables; 
they must use some additional models, includ-
ing Toda and Yamamoto (1995).
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