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1 Introduction  

A brain-computer interface system (BCI) is a control pathway created through a form of 

communication between the neural activity of the human brain and the outside world via brain 

signal recording and decoding techniques. The methods for recording brain activity are 

categorized into invasive and noninvasive groups. While some noninvasive technologies offer 

superior spatial resolution, such as fMRI, EEG has proved to be the most popular method for 

its ability to directly measure neural activity, cost effectiveness, and portability for clinical 

applications. EEG signals have been used to control assistive and rehabilitation devices. Motor 

imagery involves the brain’s imagination without actual physical movement. The contralateral 

sensorimotor cortical EEG signals in the alpha band (8–12 Hz) and beta band (13–30 Hz) 

exhibit a decrease in amplitude during unimanual preparation and execution of a movement. 

This phenomenon is known as event related desynchronization (ERD), which represents a 

decrease in the amplitude of the activated cortical EEG signals. Simultaneously, there is an 

increase in the amplitude of the ipsilateral sensorimotor cortical EEG signals in the alpha and 

beta frequency bands, which is called event-related synchronization (ERS) and represents an 

increase in the amplitude of the corresponding cortical signals in the resting state. The 

ERD/ERS observed in the μ and β frequency bands of the brain motor-sensory cortices indicates 

the activation or deactivation state of the central region of the brain ( Khoshkhooy Titkanlou et 

al., 2024). Deep neural networks, which can extract complex features from raw data 

automatically, have received significant attention in motor imagery signal classification. 

Convolutional neural networks have proposed neural network models with various 

architectures to classify motor imagery signals. We proposed EEG-ITNet and EEG-ITT, which 

can extract rich spectral, spatial, and temporal information from multi-channel EEG signals 

with less complexity by using inception modules and causal convolutions with dilation. Also, 

we proposed hybrid models like CNN-LSTM and CNN-Transformer. 

2 Material and Methods 

Four cycles in the entire EEG scenario are used for measurement, with a resting and a 

stimulating phase in each cycle. Every cycle begins with the subject resting for one minute, 

during which they are required to sit motionless and at complete rest. Following the resting 

phase, the participant moves their wrists with either their left or right hand for two minutes 

during the stimulation phase. Following a five-second break, the subject completes the assigned 

task during the stimulation phase. A green LED positioned in front of the subject alerts them to 

the phase shift. Each cycle lasts exactly 9 minutes. The cycles differ from each other by the task 

performed by the subject in the stimulation phase, which is optionally combined with 

alternating open or closed eyes. The dataset was gathered at the University of West Bohemia in 

the Czech Republic. 29 healthy people were measured (men aged 21-26 and women aged 18-
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23) (Kodera et al., 2023). The nurse placed an EEG cap with Ag/AgCl electrodes on the 

subject's head using a 10–20 system. Afterward, she attached two electrodes to the subject's 

hand and one ground electrode below the elbow because the distance to the bone is smallest 

there. Lastly, a reference electrode of the EEG cap was attached to the earlobe. Fz, Cz, Pz, F3, 

F4, P3, P4, C3 and C4 were used for the measurement.   

We used EEG-ITNet, CNN-LSTM, CNN-Transformer and EEG-ITT methods to improve 

the classification accuracy of motor imagery EEG signals. We first used 10-fold (for EEG-

ITNet, CNN-LSTM, CNN-Transformer) and 5-fold (for EEG-ITT) cross-validation with 100 

epochs. Before classification, 20% of the samples were separated for testing purposes, and the 

remaining 80% was utilized for training. The learning rate value was 0.001. The models were 

implemented in Keras. 

3 Results 

Table 1 contains the resulting metrics (Accuracy, Precision, Recall and F1 Score) which 

compare binary classification performance of our proposed methods (CNN-LSTM, CNN-

Transformer, EEG-ITNet and EEG-ITT) and combination of these models with NI 

augmentation method, with (Mouček et al., 2024) which used this dataset. It is worth 

mentioning that our papers which used CNN-LSTM, CNN-Transformer and EEG-ITT methods 

submitted. Based on the table 1, EEG-ITT model has best results compared to other models. 
  

Method Accuracy Precision Recall F1 Score 

CNN (Mouček et al., 2024) 76.00±0.80 76.73±0.75 76.05±0.79 75.86±0.90 

NI CNN (Mouček et al., 2024) 75.34±1.09 76.69±0.67 75.41±1.07 75.05±1.30 

EEG-ITNet (Khoshkhooy Titkanlou et al., 2024) 75.45±1.43 76.43±0.96 75.50±1.40 75.23±1.58 

NI EEG-ITNet (Khoshkhooy Titkanlou et al., 2024) 75.86±1.21 76.31±1.06 75.89±1.21 75.77±1.27 

CNN-LSTM 79.06±1.47 79.13±1.41 79.07±1.47 79.05±1.48 

NI CNN-LSTM 79.03±0.89 79.04±0.89 79.03±0.89 79.03±0.89 

CNN-Transformer 77.93±0.68 77.96±0.69 77.93±0.68 77.92±0.68 

NI CNN-Transformer 78.64±0.98 78.66±0.97 78.65±0.97 78.64±0.98 

EEG-ITT 79.53±1.19 79.78±1.13 79.56±1.18 79.50±1.20 

NI EEG-ITT 78.40±0.75 78.50±0.78 78.41±0.76 78.38±0.75 

Table 1: Classification results. 
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