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Abstract

This work focused on designing, testing and developing an automated system for

predicting the risk of worsening and cumulative probability of worsening of pa-

tients with multiple sclerosis. For this purpose, several datasets, models, and metrics

were selected and evaluated. Multiple standard methods, e.g., Random Forest, Gra-

dient Boosting, and even a novel transformer-based method, e.g., SurvTRACE, were

used to predict the multiple sclerosis progression. The considerable performance

increase was achieved by (i) hyper-parameter fine-tuning, (ii) validation procedure

and (iii) data pre-processing. The functionality of the newly proposed system was

tested and verified during the iDPP@CLEF challenge, which focused on providing

clinicians with AI-based methods for better prediction of multiple sclerosis progres-

sion. Participation in the competition provided excellent opportunities to compare

achieved results with the other competing teams. The accuracy was evaluated on

the validation and test sets within the competition, where the proposed methods

achieved two first places in four applied tasks. The methods achieved second and

third place in the others. The best method based on the Random Forest algorithm

achieved a mean C-Index of 0.834 when predicting the overall risk of worsening

and a mean AUROC score of 0.881 when predicting the cumulative probability of

worsening.
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Abstrakt

Cílem této práce bylo navrhnout, otestovat a vyvinout systém pro automatickou

predikci rizika zhoršení a kumulativní pravděpodobnosti zhoršení pacientů s roz-

troušenou sklerózou. Pro tento účel bylo vybranáno a otestováno několik datových

sad, modelů a metrik. Pro predikci vývoje roztroušené sklerózy jsme využili stan-

dardních metod, tj. Random Forest, Gradient Boosting, ale i nově navrženého trans-

formeru, tj. SurvTRACE, jež jsme dále významně zpřesnili díky (i) optimalizaci

trénovacích hyperparametrů, (ii) zvolení vhodné validační procedury a (iii) předzpra-

cováním dat. Funkčnost nově navrženého systému jsme ověřili v rámci soutěže

iDPP@CLEF, zaměřené na pomoc lékařům při predikci vývoje nemoci použitím

metod založených na umělé inteligenci. Účast v soutěži poskytla skvělé možnosti

pro srovnání dosažených výsledků s dalšími tými, jež se problematikou zabývají.

Přesnost jsme vyhodnotili jak na validační, tak na testovací sadě v rámci soutěže,

kde jsme dosáhli dvou prvních míst z celkem čtyř úloh, kterých jsme se účastnili. Ve

zbylých jsme získali druhé a třetí místo. Jako nejlepší se ukázala metoda založená na

algoritmu Random Forest, která dosáhla průměrného C-indexu 0.834 při predikci

celkového rizika zhoršení a průměrného skóre AUROC 0.881 při predikci kumula-

tivní pravděpodobnosti zhoršení.

Klíčová slova

Roztroušená skleróza • Umělá inteligence • Analýza přežítí • Gradient Boosting •

Transformery

(iii)



Acknowledgement

I would like to expressmy deep gratitude tomy thesis advisor, Ing. Lukáš Pick, Ph.D.,

for his guidance, patience, and feedback. At the same time, I want to thankmy father,

who wholeheartedly supported me throughout my studies, and my encouraging

friends and family.

(iv)



Contents
1 Introduction 3

2 Related Work 5
2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Tabular Datasets . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Image Segmentation Datasets . . . . . . . . . . . . . . . . 8

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Survival Analysis . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Traditional Approaches . . . . . . . . . . . . . . . . . . . . 10

2.2.3 SurvTRACE Transformer . . . . . . . . . . . . . . . . . . 11

2.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Methodology 17
3.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Predicting Risk of Disease Worsening . . . . . . . . . . . . 18

3.1.2 Predicting Cumulative Probability of Worsening . . . . . . 19

3.2 Data Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Training & Validation Strategy . . . . . . . . . . . . . . . . . . . . 22

3.5 Hyper-parameter Fine-tuning . . . . . . . . . . . . . . . . . . . . 22

3.6 Validation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Results 27
4.1 Predicting Risk of Disease Worsening . . . . . . . . . . . . . . . . 27

4.2 Predicting Cumulative Probability of Worsening . . . . . . . . . . 29

4.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Competition Results & Comparison . . . . . . . . . . . . . . . . . 34

5 Conclusion 37

A Searched Hyper-parameters 39

Bibliography 41

1





Introduction 1
Multiple sclerosis is a chronic autoimmune disease characterised by progressive

impairment of neurological functions, leading to a patient’s gradual loss of motor,

sensory, visual, or cognitive capabilities [1, 2]. It can lead to various physical andmen-

tal symptoms, while the progression and severity vary widely between individuals.

The multiple sclerosis is widely spread and affects primarily young adults, especially

women. Most people diagnosed are between 20 to 50 years old [3]. To provide con-

text: Over 2.8 million people suffer from multiple sclerosis worldwide, and around

300 people are diagnosed with it daily. The overall costs related to multiple sclerosis

treatment were estimated in 2019 at $85.3 billion, only in the US [4]. Heterogeneity

of each patient’s disease progression immensely increases the difficulty of selecting a

proper medical treatment andmotivates further clinical research. It urges a need for

novel and reliable methods that should assist the clinical decision-making process

and help advance the development of effective treatments, leading to better care of

patients. This issue is explored, and different approaches are further discussed. An

overall indicator of the patient’s status has to be defined to provide dynamic predic-

tions depending on a specific time horizon. These tasks can be solved using machine

learning methods that are usually data-hungry. Hence, a suitable dataset has to be

selected to train various predictive models and to evaluate their performance.

However, there exists an organization that shares the objectives of the thesis,

the iDPP@CLEF
1
[5, 6] (Intelligent Disease Progression Prediction) lab, which aims

to address this issue by opening international challenges. Proposed challenges aim

to provide an evaluation ground for developing new artificial intelligence and ma-

chine learning techniques to detect patient complications early, stratify individuals

according to their risk levels, and predict disease progression over time. The compe-

tition provides a highly curated dataset, presentingmany opportunities tomaximize

predictive performance. Moreover, the competition defines suitable evaluation met-

rics and provides a diverse ground for comparison of results achieved by different

approaches of competing teams. The 2023 edition offered three tasks:

1
https://brainteaser.health/
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1. Introduction

1. Predicting risk of disease worsening.

2. Predicting the probability of worsening at different time windows.

3. Impact of Exposition to Pollutants – Amyotrophic Lateral Sclerosis.

The first two tasks share the research goal of this paper and the proposed methods

were submitted to these tasks. The first task requires ranking subjects based on

the overall risk of worsening, while the second task specifies the required predic-

tions by explicitly assigning the cumulative probability of worsening at different

time intervals. Data for both tasks provide pre-computed data of occurrence and

time of worsening. These tasks, divided into two sub-tasks: A and B, provide two

unique datasets. These differ in the definition of worsening based on the Expanded

Disability Status Scale (EDSS) [7].

To address the risk and cumulative probability of multiple sclerosis worsening,

several artificial intelligence-based standard survival analysis methods are selected

which include Random Survival Forest and Gradient Boosting models [8]. Addition-

ally, a novel transformer-based SurvTRACEmodel [9] is more thoroughly described

and tested as well. Furthermore, an extensive overview of the hyper-parameter

fine-tuning of these selected methods is provided to achieve peak performance. In

a few cases, these trained models are combined by averaging their predictions to

create new ensemble model methods. To allow for robust evaluation of overall per-

formance, multiple metrics are selected based on the competition’s proposal, i.e.,

Harrell’s Concordance Index (C-Index) [10] for the first task of evaluating the over-

all risk and AUROC curve [11] with O/E ratio [12] for the second task of assessing

the cumulative predictions. The methods with the highest validation score, i.e., the

highest C-Index, were picked to produce the final predictions for the submissions.

The achieved results are then extensively described and compared. In addition, a

case study is provided to further qualitatively explain the best model’s predictions.

4



Related Work 2
The problem of predicting a disease progression contains multiple specific concepts

that are established in the following sections. The first section describes a variety of

available datasets in the multiple sclerosis research domain, i.e., their characteristics,

the dataset selected for development, and the reasons why it was picked. Compared

to other machine learning domains, the topic of multiple sclerosis worsening pre-

diction belongs to the field of survival analysis. The characteristics of this area of

research are addressed in the second section, followed by a brief overview of typ-

ical machine learning models, e.g., Random Survival Forest or Gradient Boosting

methods. Additionally, a deeper dive into an innovative transformer-based model,

SurvTRACE [9], is provided. Finally, several key metrics used for the evaluation of

predictive performance are defined and described, namely the C-Index, AUROC,

and O/E Ratio, which are used to assess the results of newly proposed methods.

2.1 Datasets

Machine-learning-based predictive methods are typically considered data-hun-gry

and require relatively large datasets. Thus, it is necessary to obtain a suitable, suffi-

ciently large dataset, which would contain information well-describing the under-

lying dependencies between the current patient state and the probability of multi-

ple sclerosis worsening. However, this problem domain is pretty unique, and the

amount of freely available datasets is sparse (BioGPS
1
) and many of them have dif-

ferent goals. For instance, many datasets are tabular and provide vast statistical

information about the disease progression of numerous patients. Conversely, many

datasets specialize inmultiple sclerosis predictions based on images fromMRI scans.

Therefore, several considerable datasets are discussed to highlight their advantages

and disadvantages.

1
http://biogps.org/dataset/tag/multiple%20sclerosis/
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2. Related Work

2.1.1 Tabular Datasets

iDPP Dataset. The data provided through the iDPP competition [5, 6] consists

of tabular data with static and dynamic features describing the patient state from

different perspectives. They are split between two datasets based on the sub-tasks A

and B, which differ in definitions of worsening corresponding and EDSS definitions

(Expanded Disability Status Scale) [7, 13], which provides an opportunity to test

the difference and impact on predictive performance. These datasets include the

medical history of 1,192 patients from two clinical institutions located in Pavia and

Turin, Italy. The dynamic data span over 2.5 years and are split into different subsets.

These comprise information on relapses, EDSS, Evoked Potentials, MRIs, and the

multiple sclerosis course. The ground-truth data, i.e., patient outcomes, include

the actual occurrence of worsening and the relative time of this occurrence. The

provided datasets for both sub-tasks (A, B) were split into training and test sub-sets

in approximately 80/20 ratio. The test dataset labels, i.e., outcomes, were kept secret

until the submission deadline.

The sub-task A provides data about 440 patients for training and 110 for testing.

In the case of sub-task B, information about 510 patients is available for training and

128 for testing. Even though the number of patients is relatively high, only a fraction

of them include all types ofmedical records. For reference, there are only 103 (23.4%)

patients in the training dataset A and 155 (30.4%) in the dataset B with medical

records from all dataset sub-sets. Eachmedical record refers to a single entry (row) in

the dataset. The number of unique patients and the number of their medical records

for the dataset subsets are listed in Table 2.1. The amount of data present differs

widely between patients, as indicated in Table 2.1. This significant data imbalance

poses an issue in the classification stage, as standard classifiers face challenges when

dealing with the class imbalance and often prioritize the larger classes and disregard

the smaller ones, reaching a sub-optimal solution [14]. However, the imbalance

is likely inherent to the problem. Furthermore, severe time gaps between clinical

visits of many patients are present, leaving out important information about the

time progression of the disease.

Dataset Static Outcomes EDSS EP Relapses MRI MS Type

Patients A 440 440 439 153 259 279 210

Records 440 440 2,661 1,211 481 960 310

Patients B 510 510 510 183 284 303 218

Records 510 510 3,069 1,522 553 966 325

Table 2.1: iDPP train dataset’s characteristics. Counts of unique patients andmedical

records in data sub-sets, included in the provided A and B datasets.

6



2.1.1. Tabular Datasets

The iDPP dataset provides numerous advantages. To name a few, it is freely

accessible via the competition. It is rich in volume and diverse in the number of

features. There are two very similar variants which provide compelling research

opportunities. Furthermore, there is the possibility to compare different approaches

of other competitors. Consequently, the dataset proved to be the best option and

was later selected for development.

CHUC Dataset. Another suitable tabular dataset was proposed by Olivera et al.
[2]. The dataset contains information about 187 distinct patients from a database

of the Neurology Department of Centro Hospitalar e Universitário de Coimbra

(CHUC). The general characteristics are provided in Table 2.2. In addition to having

similar features as mentioned in the iDPP dataset, e.g., static information, EDSS,

MRI, relapses, lesions, etc., the used database contained the whole medical history

of the patients, including all physical exams and family history. This means that the

provided features would be very versatile and could give a broader understanding

of the disease mechanism. However, the number of unique patients is more than six

times lower when compared to the iDPP dataset. Furthermore, the dataset is private

and proprietary, and thus, it is unsuitable in the terms of this work.

Other Datasets. A dataset worth considering for this topic isMotor evoked poten-
tials for multiple sclerosis, a multiyear follow-up dataset [15]. It consists of substantial
tabular data of 5,586 visits from about 963 patients monitored throughout 6 years.

According to the paper, it consists of static data, e.g., patient’s sex, date of birth,

etc. and dynamic data, which consists of only evoked potentials and EDSS scores.

Unfortunately, it seems the dataset is not openly available at the time of writing this

paper. Moreover, the dataset is comparatively less diverse than the iDPP dataset as it

provides fewer unique features. Another promising dataset would likely beMSDA-
Core Dataset [16]. However, it seems that the dataset has not been gathered yet at
the time of writing this paper. Therefore, it is not possible to evaluate the potential

usability of the dataset.

Patients SP developed Patient’s characteristics Visits in first 5 years

187 21 patients (11%)

Gender: 51 men (27%) 1st year: 1.57±0.93

Onset age: 31.10±10.54 2nd year: 1.25±1.27

Tracked years: 11.01±8.18 3rd year: 1.14±1.06

Annotated years 13.22±4.87 4th year: 1.19±1.03

5th year: 1.28±0.91

Table 2.2: The CHUC dataset’s characteristics [2]. SP stands for secondary progres-

sive and describes a specific multiple sclerosis course.

7



2. Related Work

2.1.2 Image Segmentation Datasets
Many available studies related to multiple sclerosis research aim at lesion image

segmentation. If they openly publish their datasets, these are usually smaller and

provide segmented images from MRI scans, with supplementary metadata describ-

ing general patient information. This is insufficient for this work’s goal as it is aimed

to provide a more general tool. For instance, these multiple sclerosis studies include:

• Brain MRI dataset of multiple sclerosis with consensus manual lesion seg-

mentation and patient meta information [17].

• Multiple sclerosis lesions segmentation from multiple experts: The MICCAI

2016 challenge dataset [18].

• Statistical mapping analysis of lesion location and neurological disability in

multiple sclerosis: application to 452 patient data sets [19].

2.2 Methods
The prediction of a disease progression, such as the risk of multiple sclerosis wors-

ening, naturally belongs to the statistical sub-field of survival analysis. The following

section provides a broad overview of machine learning methods used in this prob-

lem domain. Firstly, a description of survival analysis’smain concepts and challenges

is provided. Secondly, we will take a look into multiple machine learning methods

used in the field, e.g., random-forest-tree-based or gradient-boosting-based meth-

ods. Finally, a novel deep-learning approach using a transformer-based method to

solve the survival analysis task is extensively described.

2.2.1 Survival Analysis
Survival analysis is a branch of statistics which focuses on analyzing and under-

standing the data where the target is the time until an event of interest occurs - the

survival time. One of the main challenges in this context are instances where event

outcomes become unobservable after a certain amount of time or when, in some in-

stances, no event occurs during the monitoring period at all [20]. This phenomenon

is called censoring and, in general, can be produced by the following reasons: (i) a

patient has not experienced the relevant outcome, such as relapse or death, by the

end of the study; (ii) a patient is lost due to follow-up during the study period; (iii)

a patient experiences a different kind of event that makes further follow-up impos-

sible [21]. In this case, the assumed occurrence of an event happens after the end

of the study. This is called right censoring, and it is typically the most common in

survival data. We could visualize such an example of transferring real-world data

8



2.2.1. Survival Analysis

(death) data. Figure 1 (left) shows that four patients had a nonfatal
relapse, one was lost to follow-up, and seven patients died (five
from ovarian cancer). In the other plot, the data are presented in
the format for a survival analysis where all-cause mortality is the
event of interest. Each patient’s ‘survival’ time has been plotted as
the time from diagnosis. It is important to note that because
overall mortality is the event of interest, nonfatal relapses are
ignored, and those who have not died are considered (right)
censored. Figure 1 (right) is specific to the outcome or event of
interest. Here, death from any cause, often called overall survival,
was the outcome of interest. If we were interested solely in ovarian
cancer deaths, then patients 5 and 6 – those who died from
nonovarian causes – would be censored. In general, it is good
practice to choose an end-point that cannot be misclassified. All-
cause mortality is a more robust end-point than a specific cause of
death. If we were interested in time to relapse, those who did not
have a relapse (fatal or nonfatal) would be censored at either the
date of death or the date of last follow-up.

Lung cancer clinical trial data

These data originate from a phase III clinical trial of 164 patients
with surgically resected (non-small cell) lung cancer, randomised
between 1979 and 1985 to receive radiotherapy either with or with-
out adjuvant combination platinum-based chemotherapy (Lung
Cancer Study Group, 1988; Piantadosi, 1997). For the purposes of
this series, we will focus on the time to first relapse (including
death from lung cancer). Table 1 gives the time of the earliest 15
and latest five relapses for each treatment group, where it can be
seen that some patients were alive and relapse-free at the end of the
study. The relapse proportions in the radiotherapy and combina-
tion arms were 81.4% (70 out of 86) and 69.2% (54 out of 78), res-
pectively. However, these figures are potentially misleading as they
ignore the duration spent in remission before these events occurred.

SURVIVAL AND HAZARD

Survival data are generally described and modelled in terms of two
related probabilities, namely survival and hazard. The survival
probability (which is also called the survivor function) S(t) is the

probability that an individual survives from the time origin (e.g.
diagnosis of cancer) to a specified future time t. It is fundamental
to a survival analysis because survival probabilities for different
values of t provide crucial summary information from time to
event data. These values describe directly the survival experience
of a study cohort.
The hazard is usually denoted by h(t) or l(t) and is the

probability that an individual who is under observation at a time t
has an event at that time. Put another way, it represents the
instantaneous event rate for an individual who has already
survived to time t. Note that, in contrast to the survivor function,
which focuses on not having an event, the hazard function focuses
on the event occurring. It is of interest because it provides insight
into the conditional failure rates and provides a vehicle for
specifying a survival model. In summary, the hazard relates to the
incident (current) event rate, while survival reflects the cumulative
non-occurrence.

KAPLAN–MEIER SURVIVAL ESTIMATE

The survival probability can be estimated nonparametrically from
observed survival times, both censored and uncensored, using the
KM (or product-limit) method (Kaplan and Meier, 1958). Suppose
that k patients have events in the period of follow-up at distinct
times t1ot2ot3ot4ot5o?otk. As events are assumed to occur
independently of one another, the probabilities of surviving from
one interval to the next may be multiplied together to give the
cumulative survival probability. More formally, the probability of
being alive at time tj, S(tj), is calculated from S(tj!1) the probability
of being alive at tj!1, nj the number of patients alive just before tj,
and dj the number of events at tj, by

SðtjÞ ¼ Sðtj!1Þ 1!
dj
nj

! "

where t0¼ 0 and S(0)¼ 1. The value of S(t) is constant between
times of events, and therefore the estimated probability is a step
function that changes value only at the time of each event. This
estimator allows each patient to contribute information to the
calculations for as long as they are known to be event-free. Were
every individual to experience the event (i.e. no censoring), this
estimator would simply reduce to the ratio of the number of
individuals events free at time t divided by the number of people
who entered the study.
Confidence intervals for the survival probability can also be

calculated. The KM survival curve, a plot of the KM survival
probability against time, provides a useful summary of the data
that can be used to estimate measures such as median survival
time. The large skew encountered in the distribution of most
survival data is the reason that the mean is not often used.

Survival analysis of the lung cancer trial

Table 2 shows the essential features of the KM survival probability.
The estimator at any point in time is obtained by multiplying a
sequence of conditional survival probabilities, with the estimate
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Figure 1 Converting calendar time in the ovarian cancer study to a
survival analysis format. Dashed vertical line is the date of the last follow-up,
R¼ relapse, D¼ death from ovarian cancer, Do¼ death from other cause,
A¼ attended last clinic visit (alive), L¼ loss to follow-up, X¼ death,
&¼ censored.

Table 1 A sample of times (days) to relapse among patients randomised
to receive radiotherapy with or without adjuvant chemotherapy

Radiotherapy (n¼ 86) 18, 23a, 25, 27, 28, 30, 36, 45, 55, 56,
57, 57, 57, 59, 62, y,
2252a, 2286a, 2305a, 2318a, 2940a

Radiotherapy+CAP (n¼ 78) 9, 22, 35, 53, 76, 81, 94, 97, 103, 114,
115, 126, 147, 154, y,
2220a, 2375, 2566, 2875b, 3067b

CAP¼ cytoxan, doxorubicin and platinum-based chemotherapy. aLost to follow-up
and considered censored. bRelapse-free at time of analysis and considered censored.

Basic concepts of survival analysis
TG Clark et al

233

British Journal of Cancer (2003) 89(2), 232 – 238& 2003 Cancer Research UK

Figure 2.1: An example of censored data. (Left) – graph displays real-world patient

data with different outcomes (𝐷 – death from cancer, 𝐷𝑜 – death from other cause,

𝐴 – alive, 𝐿 – did not attend, and 𝑅 – relapse). The dashed vertical line represents

the end of the study. (Right) – data converted in survival analysis format where the

dates are normalized to the relative time since diagnosis and outcomes are encoded

as × – death and □ – censored. Image taken from [21].

into survival format in Figure 2.1. Left censoring occurs when we observe the event,

but it is unknown when it started. In other words, censoring occurs when complete

information about the time-to-event is not available for some subjects before the

start or by the end of an observation period.

Themain goal of the survival analysis can be expressed as estimating the survival

and hazard functions. The survival function 𝑆 describes the probability that the

target event does not occur before a specific time 𝑡 and can be formulated as:

𝑆(𝑡) = 𝑃 (𝑇 ≥ 𝑡) . (2.1)

Starting at 1, the function monotonically lowers to 0 [20]. The hazard function

expresses the likelihood that the target event will occur at the time 𝑡 if it has not

occurred before. It can be defined as in the [9]:

𝜆(𝑡) = lim

Δ𝑡→0

𝑃 (𝑡 ≤ 𝑇 < 𝑡 + Δ𝑡 |𝑇 ≥ 𝑡)
Δ𝑡

. (2.2)

The integral from the expression represents the cumulative hazard function [20],

and it is used to evaluate the cumulative probability of worsening.

9



2. Related Work

To summarize, survival analysis is a regression problem with a twist – the data

are censored. The problem is then addressed with different methods, which can be

roughly divided into two main categories: statistical and machine-learning-based

methods. The shared goal is to predict the survival time and to estimate the proba-

bility of survival at specific time points [20].

2.2.2 Traditional Approaches
Compared to statistical methods, machine learning techniques experience high pop-

ularity in a wide range of tasks due to the ability to model non-linear relationships

and subsequently deliver accurate predictions [20]. Compared to regression models,

the survival analysis models differ in data (time-to-event, censoring), the output

(probability of an event over time), and model assumptions (proportional hazards

or specific distributions of event times). Multiple frequently used methods, i.e., their

survival analysis counterparts, are described below to provide context for the pro-

posed solution to the multiple sclerosis prediction problem. Furthermore, many

teams in the iDPP competition used such approaches with positive results.

Survival Trees. Survival trees are classification and regression trees designed to
handle censored data. They operate on the principle of recursively partitioning data

according to a specified splitting criterion, where similar objects are grouped within

the same node. The key difference compared to the standard decision trees lies in

the selection of splitting criterion that can, however, widely vary [20].

Random Survival Forest. The random survival forest is a specialized extension of
random forests. It leverages ensemble learning principles and combines decision

trees with survival analysis concepts [22]. The model fits several survival trees on

various sub-samples of the dataset and averages between them to improve the pre-

dictive performance and to control the over-fitting [8]. The randomization reduces

the correlation among the trees, improving the performance [20].

Gradient Boosting. The gradient-boosting does not refer to one particular model
but is a versatile framework to optimize many loss functions [8]. It creates multiple

base learners and combines their predictions to form a powerful overall model.

Boosting is built from a series of simple models, weak learners, usually decision

trees that are iteratively trained. Each learner fits the data, and the weights of the

samples are updated based on the model’s performance [22]. In each iteration, the

weights of wrong ormisclassified samples are increased, while theweights of correct

predictions are decreased. The predictions obtained from all these weak learners

are weighted and averaged to produce the final predictions.
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Survival Support Vector Machine. The survival SVM extends the standard Sup-

port Vector Machine by handling the right-censored time-to-event data. They use

the kernel trick to model complex, non-linear relationships between features and

survival chance [8]. Survival support vectormachines are viewed as a very successful

supervised learning approach [20] that applies to a wide range of data.

2.2.3 SurvTRACE Transformer
Transformers are popular neural networks that introduce a so-called attention

mechanism to comprehend long sequence data and to focus on specific parts of the

input [23]. Even though originally designed for text translation, transformers were

successfully adapted tomany othermachine-learning tasks, such as computer vision,

natural language processing, dialogue systems, etc. The SurvTRACE, an acronym for
Survival analysis using Transformers with Competing Events, is a recent and novel

transformer-based model suited for survival analysis tasks [9]. It is an advanced

multi-task transformer-based network designed for handling censored data and

multiple competing risks. Competing risks emerge when it is acknowledged that a

patient can suffer from several different diseases, and the result of diagnoses is not

binary but can contain multiple events. In this case, it is even more challenging to

estimate the effect on the predictions, and therefore, it is usually assumed that these

events are independent, leading to a selection bias [9]. The SurvTRACE solves this

issue using a distinct loss function – inverse propensity score [24], further described

in the original paper. However, the datasets for the multiple sclerosis predictions

have mostly a binary target and do not consider other events.

Themodel architecture is divided into three distinct components (see Figure 2.2).

Starting with the Input & Embedding module, the raw data are divided into cate-

gorical and numerical sets and embedded via matrix multiplication as 𝑡𝑐
𝑖
= 𝑉𝑐𝑥

𝑐
𝑖

(categorical) and 𝑡𝑛
𝑖
= 𝑉𝑛𝑥

𝑛
𝑖
(numerical). These are concatenated and represent em-

bedded information about the 𝑖-th patient. The second section is described as the En-

coder module which leverages multi-head self-attention. The inputs are processed

as follows:

𝑡
ˆ𝑗

𝑖
=

𝐷∑︁
𝑘=1

𝛼 𝑗,𝑘(𝑊𝑣𝑎𝑙𝑢𝑒𝑡
𝑘
𝑖 ) , (2.3)

where 𝛼 𝑗,𝑘 is a product of softmax outputs of the attention function with two

weight matrices𝑊𝑞𝑢𝑒𝑟 𝑦 and𝑊𝑘𝑒𝑦 . The𝑊𝑣𝑎𝑙𝑢𝑒 is also a learnable weight matrix. This

process can be stacked both vertically and horizontally. In addition, residual con-

nections are established between the final horizontal stacks. The final embedding is

obtained:

𝑡
𝑗
𝑟𝑒𝑠 = 𝑆𝐸𝐿𝑈 (𝑊𝑟𝑒𝑠𝑡

ˆ𝑗 + 𝑡 𝑗) . (2.4)
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Figure 2.2: SurvTRACE architecture overview. The three main components are (i)

Input & Embedding Module, (ii) Encoder Module, and (iii) Shared Representation

& Sub-networks Module. Image is taken from [9].

The decision on the usage of the SELU (Scaled Exponential Liner Unit) is not elab-

orated on in the original paper. In the third module a shared representation 𝑡𝑆𝑅 is

created from the encoder and is defined as:

𝑡𝑆𝑅 = 𝑆𝐸𝐿𝑈 (𝑊𝑆𝑅 (𝑡 ⊕ 𝑡)) , (2.5)

where 𝑡 is the final output from the stacked transformers and is concatenated with

the raw embeddings 𝑡. This output feature vector can be used for various down-

stream tasks which share the same input data but can vary in the prediction target.

There are multiple learnable tasks described in [9], however, the Single-Event Sur-

vival Analysis, which aims to estimate the hazard function, will suffice for the means

of this project. This hazard rate is formulated as 𝜆(𝜏 𝑗) = 𝑃 (𝑇 = 𝜏 𝑗 |𝑇 > 𝜏 𝑗−1)
where 𝑇 = {𝜏1, ..., 𝜏𝑛} is predefined set of time points. The sub-network uses the
transformer output 𝑡𝑆𝑅 to predict the hazard rate prediction at specific time 𝑡:

𝜆(𝑡) = 𝑙𝑜𝑔[1 + 𝑒𝑥𝑝(𝑓 (𝜅(𝑡) |𝑡𝑆𝑅)] . (2.6)

The 𝜅(𝑡) = {1, ..., 𝑛} is a discrete index set of the time point set 𝑇 . The model was
originally trained on very large datasets (METABRIC [25], SUPPORT [26]) and com-

pared to other traditional and deep learning models based on the time-dependent

C-Index performance for the single event predictions. The results are presented

in Table 2.3, where the CPH stands for the Cox Proportional Hazards model [27]

and the RSF for Random Survival Forests [28]. The DeepSurv [29], DeepHit [30],

PC-Hazard [31], and DSM [32] are other deep-learning-basedmodels. It is clear, that

the SurvTRACE transformer achieves comparatively the best results and surpasses

all the other methods in different time intervals.
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Algorithm METABRIC SUPPORT

25% 50% 75% 25% 50% 75%

CPH 0.628 0.627 0.632 0.549 0.564 0.586

DeepSurv 0.660 0.648 0.644 0.594 0.591 0.605

DeepHit 0.712 0.657 0.603 0.656 0.605 0.574

RSF 0.698 0.658 0.630 0.660 0.621 0.602

PC-Hazard 0.713 0.680 0.644 0.652 0.620 0.607

DSM 0.707 0.663 0.636 0.640 0.609 0.596

SurvTRACE w/o MTL 0.722 0.686 0.649 0.665 0.630 0.614

SurvTRACE 0.728 0.690 0.655 0.670 0.633 0.617

Table 2.3: SurvTRACE time-dependent C-Index benchmarks on METABRIC [25]

and SUPPORT [26] datasets at different quantiles of event times (the % values). The

best scores are in bold. The table is taken from [9].

2.3 Metrics
Eventually, the credibility of predictions has to be analysed and validated. Therefore,

it is essential to define or select reliable metrics. There are two different tasks for

which efficient metrics have to be provided. Following the selected dataset and the

accompanying challenge, the C-Index [10] was used to validate the overall risk of

worsening in patients with multiple sclerosis. Likewise, for the second task, the AU-

ROC [11] and O/E ratio [12] were picked to evaluate the predictions of the cumula-

tive probability of worsening in specific time intervals. A more detailed explanation

of these terms is provided in the following section.

C-Index. The Harrell’s concordance index or C-Index [10] is a metric that general-
izes the AUROC (area under the receiver operating characteristic) by considering

the possibility of censored data. Censoring occurs when the event of interest has not

emerged by the end of the study. To explain the concordance, a pair of individuals

is considered concordant if the individual with the higher risk score experiences

the event (e.g., disease occurrence) sooner than the individual with the lower risk

score. Conversely, a pair is discordant if the individual with the higher risk score ex-

periences the event later than the individual with the lower risk score. The C-Index

quantifies the proportion of concordant pairs to all informative pairs, measuring

the model’s ability to correctly rank individuals based on their predicted risk scores.

In other words, it outlines how well a predicted risk score describes an observed

sequence of events. It provides a comprehensive evaluation of the model’s discrimi-

nation power, indicating its ability to reliably distinguish between different survival

outcomes. As formulated in [5, 6], the value of C-Index can be determined as:
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C–Index =

∑𝑁
𝑖=1

Δ𝑖

∑𝑁
𝑗=𝑖+1

𝐼 (𝑇 𝑜𝑏𝑠
𝑖

< 𝑇 𝑜𝑏𝑠
𝑗

)𝐼 (𝑀𝑖 > 𝑀𝑗)∑𝑁
𝑖=1

Δ𝑖

∑𝑁
𝑗=𝑖+1

𝐼 (𝑇 𝑜𝑏𝑠
𝑖

< 𝑇 𝑜𝑏𝑠
𝑗

)
, (2.7)

where Δ𝑖 is a binary variable which equals 1 if the subject 𝑖 experienced the event at

some point and 0 if event is censored, 𝑀 is a predicted risk score of a subject, and

𝑇 is a censoring of event times. The value of C-Index is ∈ ⟨0, 1⟩ where 1 represents
perfect concordance. A C-Index = 0.5 is equivalent to the performance of random

prediction, while the values below indicate a counter-correlation.

AUROC. The Receiver Operating Characteristic (ROC) curve is generated by tabu-
lating sensitivities and specificities for various thresholds of a continuous test mea-

sure [33]. Sensitivity (true positive rate) is plotted against 1-specificity (false positive

rate) to visually assess the diagnostic performance of the test. A curve above the

diagonal line indicates better-than-chance performance. Sensitivity and specificity

can be mathematically expressed as:

sensitivity =
number of true positives

number of true positives + number of false negative

, (2.8)

specificity =
number of true negatives

number of true negatives + number of false positives

. (2.9)

The AUROC is the area under the ROC and quantifies the test’s ability to discrim-

inate between conditions, with values ranging from 0 to 1, where 0 indicates a com-

pletely inaccurate model and a value of 1 indicates a perfectly accurate model that

can distinguish between individuals who will experience worsening and those who

will not. Conversely, a value of 0.5 suggests a classifier that assigns labels randomly.

Therefore, a higher AUROC reflects a better ability of the model to discriminate

between different outcomes [5, 6].

To address the survival data, an extended version of the AUROC is used, which

acknowledges sensitivity and specificity as time-dependent measures. Defined in

the scikit-survival [8] library, the cumulative dynamic AUROC at a time 𝑡 is:

�AUC(𝑡) =
∑𝑛

𝑖=1

∑𝑛
𝑗=1

𝐼 ( 𝑦𝑗 > 𝑡)𝐼 ( 𝑦𝑖 ≤ 𝑡)𝜔𝑖𝐼 ( ˆ𝑓 (x𝑗) ≤ ˆ𝑓 (x𝑖))
(∑𝑛

𝑖=1
𝐼 ( 𝑦𝑖 > 𝑡)) (∑𝑛

𝑖=1
𝐼 ( 𝑦𝑖 ≤ 𝑡)𝜔𝑖)

, (2.10)

where
ˆ𝑓 (x𝑖) is predicted risk score of 𝑖-th patient, and 𝜔𝑖 are weights derived from

the train dataset.
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O/E Ratio. The O/E (Observed-to-Expected) ratio is a measure commonly used
in epidemiology, statistics, and medical research to assess the relationship between

observed and expected values [12]. It provides a way of calibration for the model’s

predictions. It compares the actual number of observed worsening events to the

number of events expected based on the model’s predictions. Ideally, the O/E ratio

should be close to 1, indicating good predictive performance and alignment between

predicted and observed outcomes. A ratio significantly above 1 suggests that the

observed events are occurring more frequently than expected, while a ratio below 1

indicates that the observed events are occurring less frequently than expected.

This ratio is especially useful in assessing the performance of diagnostic tests,

evaluating the effectiveness of interventions, or studying the prevalence of dis-

eases within specific populations. It provides a quantitative measure to understand

whether observed outcomes deviate from what would be anticipated based on spe-

cific parameters or historical data. Monitoring the O/E ratio at each time interval

allows for assessing the model’s calibration performance over time [5, 6].
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Methodology 3
This chapter describes and explains the steps taken during the assembly of the

machine learning pipeline used to produce predictions of the progression of mul-

tiple sclerosis. Generating these predictions requires undergoing many data pre-

processing steps in which numerous technical issues of the dataset are addressed.

The data are converted into a form suitable for the model input. These steps are

taken to maximize the prediction accuracy of machine learning methods and are

followed by the selection of models capable of performing these predictions. Subse-

quently, the procedures employed for training, validating, and fine-tuning the mod-

els’ hyper-parameters are specified as they are crucial to maximizing the predictive

performance. The program workflow is visualised in a diagram in Figure 3.1, and

comprises data pre-processing, model selection, training and validating the selected

models, hyper-parameter fine-tuning, and combining best-performing models to

ensembles.

Figure 3.1: Machine-learning workflow. Stages of model training and validation.

Methods consist of data pre-processing (1), selection of the specific model (2), and

k-fold validation based on C-Index performance in 100 iterations (3). Model hyper-

parameters are fine-tuned (4). Afterwards, additional methods are created by ensem-

bling the best-performing models of each type (5).
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The whole pipeline was programmed in the Python language, version 3.10. The

source code is freely available in the GitHub repository
1
. All experiments were

conducted on a Lenovo Notebook with a 6-core AMD Ryzen 5 5600H CPU and 16

GB of DDR4 RAM with a Windows 10 operation system.

3.1 Objective
The main objective of this paper is split between two tasks, namely, to predict the

overall risk of worsening (Task 1) and to predict the cumulative probability of wors-

ening over extended timewindows (Task 2) of patients withmultiple sclerosis. More

precisely, the goal is to design and produce a machine learning program which

would be able to assess the likelihood of a patient experiencing the event of wors-

ening based on the provided clinical data. The single source of real-world data will

be the iDPP 2023 dataset because it contains the most data and is openly available.

Additionally, participation in the outgoing competition provides many research

opportunities. Therefore, the tasks are inspired by the iDPP challenge [5, 6].

As the tasks belong to the field of survival analysis since only parts of the pa-

tient’s outcomes are observable, the proposed methods will differ from traditional

machine learning. For instance, in the case of clinical studies, the patients are usually

monitored over a specific period. When an event occurs during this period, it can

be precisely recorded. The data is uncensored. Alternatively, suppose no event is

registered during the study period. In that case, the data are right-censored as it

remains unknown whether or not an event occurred after the end of the study [8].

This atypical characteristic has to be considered during the method proposal. Fur-

thermore, it is essential to formulate and define reliable metrics for both tasks to

evaluate the performance of newly proposed methods.

3.1.1 Predicting Risk of Disease Worsening
The first task of this project focuses on the critical task of ranking subjects based

on the overall risk of worsening, measured by a risk score ranging between 0 and 1,

and it should reflect how early a patient experienced the "worsening" event. The def-

inition of worsening is based on the EDSS [13], adhering to clinical standards, and

is divided into two distinct sub-tasks. The effectiveness of predictions made by pro-

posed methods will be measured using Harrell’s Concordance Index (C-Index) [10]

according to the competition rules. The definition is provided in Equation 2.7.

Task 1a. A patient experiences a worsening if the EDSS crosses the threshold of 3
(𝐸𝐷𝑆𝑆 ≥ 3) at least twice within an interval of a single year.

1
https://github.com/Silvador386/IDPP2023
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3.1.2. Predicting Cumulative Probability of Worsening

Task 1b. There are three specific instances when worsening occurs depending on
the first recorded value of EDSS, according to the current clinical standards.

• EDSS ∈ ⟨0, 1); worsening occurs when EDSS increments by 1.5 points.

• EDSS ∈ ⟨1, 5.5); worsening occurs when EDSS increments by 1.0 points.

• EDSS ∈ ⟨5.5, 10); worsening occurs when EDSS increments by 0.5 points.

3.1.2 Predicting Cumulative Probability of Worsening
The second task builds upon the first task and extends it by explicitly assigning

the cumulative probability of worsening at different time windows between years

(0, 2, 4, 6, 8, and 10). It is also divided between two sub-tasks (A and B) based on the

two definitions of worsening. To evaluate the predictive performance of produced

cumulative predictions, two following distinct metrics will be employed. Namely,

the AUROC Curve and the O/E Ratio, described in Section 2.3.

3.2 Data Pre-processing
The success of machine learning in achieving optimal performance on a given task

relies on various factors, with the representation and quality of the instance data

being of critical importance. Effective knowledge discovery during training phases

becomes arduous when irrelevant and redundant information or noisy and unreli-

able data are present. Data preparation and filtering steps, including data cleaning,

normalization, transformation, feature extraction, and selection, are vital in achiev-

ing the best validation performance on the specific dataset [34]. However, there are

many ways how to perform these steps. So how do we choose the best? In this case,

the C-Index validation performance on the dataset A was employed as the ruling

factor when selecting features or pre-processing methods. The premise is that the

data in both datasets should be almost equivalent except for the EDSS feature defi-

nition, implying that the particular decision considering pre-processing should be

generally valid for both cases.

First, all available information in the medical records is loaded from provided

dataset files and subsequently grouped by unique patient ID. To be precise, many pa-

tients have multiple medical records based on the number of repetitions of different

medical examinations. In this manner, the presence of all the available information

concerning each patient is ensured. The features are divided into several groups

derived from their characteristics, e.g., static and time-dependent features and cate-

gorical and numerical features. Static variables represent the time-invariant features.
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If these are likewise categorical, then the one-hot encoding is applied, which ele-

gantly solves the issue of missing values as themissing is its own category. Currently,

these features are the patient’s sex, residence, ethnicity, centre, multiple sclerosis di-

agnosis in pediatric age, and the record of the presence of several symptoms derived

from their physical location. However, the "time_since_onset" and "diagnostic_delay"
features tended to result in poorer performance and were, therefore, omitted.

In the case of time-dependent features, it is crucial to extract the temporal con-

text of measured values. A "sliding time-window" segmentation approach [2] was
implemented to achieve this goal, where a 6-month-long non-overlapping time

window, together with a series of gradually extending, cumulative time windows

(6, 12, 18, 24, and 30 months) are applied. This process is visualised in Figure 3.2.

Various statistical functions were applied to the segmented features to extract the

information. To name a few, mean, standard deviation, median, mode, and, in some

instances, a sum of all occurrences of a feature was calculated. In the case of the

EDSS and Relapses dataset sub-sets, the mean, one standard deviation, median, and

mode of the EDSS score and the relapse occurrences were computed, respectively.

Meanwhile, in the Evoked Potentials sub-set, a sum of all occurrences where the

altered potential feature was positive and a sum of all occurrences where the altered

potential feature was both positive and negative was measured. These steps should

capture information about the percentage of diagnosed altered potentials. In the

MS-type dataset section, generally, no more than two different recordings were

present for each patient. These determine the diagnosed MS type and the time of

the diagnosis. The one-hot encoding was tried and tested on an MS-type record,

and the time of diagnosis was added. However, this did not lead to any improve-

ment in performance, and thus, the data were omitted. The application of the MRI

dataset section mostly led to similar results, and with a single exception, the data

were unused.

Figure 3.2: Visualisation of time-windows segmentation of the dynamic time-

dependent data. For each dynamic feature (e.g., EDSS score, Evoked potentials, etc.),

five 6-month non-overlapping and four accumulative (overlapping) time windows

were created.
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The missing feature values were handled in the last step of pre-processing. The

numerical features were normalized to reduce the scale of the data, leading to an

improvement in the numerical qualities of the dataset. The retaining the maximum

amount of data available. Therefore, all the missing values were filled via the use of

Fast.ai [35] functions, namely TabularPandas. This function creates a new categorical
feature for every featurewith at least onemissing value. In this new feature, there are

two categories representing missing or not missing values. In the original feature,

the missing values are filled with a median of the whole feature. Afterwards, they

are normalized by subtracting the mean and dividing by one standard deviation,

which are both derived from the newly filled feature. Additionally, several methods

were tested to fill in missing time-dependent values for each patient. Yet, they led

to worse overall prediction performance.

3.3 Models
There are numerous approacheswhen estimating the survival function (Equation 2.1)

or cumulative hazard function (Equation 2.2), which are addressed by traditional

and deep learning survival analysis models. To design a method that could auto-

matically produce the target predictions, it is important to select the most capable

survival analysis machine learning models. General regression models can also be

used to make predictions, however, based on the iDPP results [5, 6] and others, they

tend to perform worse than their survival analysis counterparts, as they do not ad-

dress the specific characteristics of the survival data. Therefore, they are omitted

from the selection. The validation C-Index on the dataset A was used in the early

stage of development as a ruling factor to narrow the model selection.

Variousmodels from the popular Python library scikit-survival [8], built on top of
scikit-learn, were tested to address the more traditional approaches. These include
Survival Trees, Survival Support Vector Machines, and Ensemble Models. From

these, the best-performing and themost stable were three ensemblemodels. Namely,

RandomSurvival Forest, Gradient Boosting Survival Analysis, andComponent-wise

Gradient Boosting Survival Analysis (CGBSA). The linear Coxnet Survival Analysis

was tested as well but failed due to linear dependencies in the pre-processed data.

From deep learning approaches, a novel transformer [23] model suited for survival

analysis, the SurvTRACE [9] transformer, was selected as it achieved the best results
according to the benchmarks in Table 2.3. Other deep learning models were not

tested. The deep learning models tend to require large training datasets to deliver

good results and it is challenging to find these in survival analysis. Nonetheless, a

large correctly trained transformer model should be able to contain all the available

information, i.e., data and the time context, and should deliver good prediction

capabilities.
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Additionally, the best-performing, trained models of every model type were

combined to create a new ensemble model and their predictions were averaged.

This should lead to a compensation of extreme predictions made by these models,

improving their stability. Likewise, it was attempted to use the maximal predicted

values from combined models for prediction instead. However, this approach per-

formed worse than the averaged predictions and was omitted.

3.4 Training & Validation Strategy
The training and validation procedure is described as follows: Each model was

trained and validated in 100 iterations. In each iteration, the pre-processed dataset

is randomly split into training and validation sets in an 80/20 ratio (i.e., the same

ratio as in the provided training and test datasets). The C-Index is measured for

both training and validation sets. Afterwards, the best model is chosen based on

the achieved average and one standard deviation of the C-Index calculated across

all the performed iterations. Furthermore, the MinVal 95/5 split ratio for several
runs was experimented with. This meant that models were provided with an even

larger proportion of available data in the training stage. Multiple iterations were

performed to mitigate the effect of randomly split data, as it is likely that some splits

are easier for model fitting and can lead to unreasonably high performance. Thus, it

is better to evaluate model performance by averaging multiple iterations, reducing

the effect of randomness by averaging it out. The transformer was trained with

Adam optimizer for 40 epochs with 10-epoch early-stopping. Finally, the run with

the highest validation C-Index value (one from 100 iterations) was selected to make

the final predictions, i.e., predictions for the submission. The same seed was used

for every run to prevent the introduction of an additional bias.

3.5 Hyper-parameter Fine-tuning
The selected models start with multiple available hyper-parameters, whose initial

settings are presumably inadequate for the current task. Meaning, optimal model

settings can be found through extensive iterative hyper-parameter search and lead

to further maximization of validation performance.

The Weights & Biases framework [36] was used for this task, more precisely, the

"Sweeping tool" with a mix of a random search for continuous hyper-parameters
and grid search for categorical hyper-parameters in specific intervals. These were

obtained by first applying a random search over a broader range of parameter space,

which led to localizing the roughly optimal intervals. These intervals were then ex-

haustively searched through. The target was the maximum validation C-Index per-

formance on the dataset A. The full list of all pre-selected search hyper-parameters
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is provided in Table A.1
2
in the Appendix A. In total, approximately 3,500 separate

runs were performed. After the extensive search through the parameters of selected

models, performed in Table A.1, the optimal hyper-parameters converged to the

following values:

• Random Forest:
n_estimators=300, max_depth=6, min_samples_split=10,

min_samples_leaf=3, min_weight_fraction_left=0.0, max_features=’sqrt’

• Gradient Boosting:
n_estimators=500, subsample=0.5, dropout_rate=0.2,

ccp_alpha = 0.0, learning_rate=0.5, max_depth=3, min_samples_split=4,

min_samples_leaf=1, min_weight_fraction_left=0.0, max_features=’sqrt’

• CGBSA:
loss=coxph, n_estimators=300, learning_rate=0.5, subsample=0.75,

dropout_rate=0.2

• SurvTRACE:
batch_size: 64, weight_decay: 0.0000284, learning_rate: 0.006157,

hidden_size: 16, intermediate_size: 64, num_hidden_layers: 2,

num_attention_heads: 4, hidden_dropout_prob: 0.2444,

attention_probs_dropout_prob: 0.1143

Random Random Gradient Component-wise SurvTRACEForest Forest MRI Boosting Gradient Boosting

Before 0.731 0.738 0.741 0.719 0.561

After 0.741 0.747 0.750 0.725 0.698

Δ +0.95% +0.93% +0.92% +0.67% +15.36%

Table 3.1: Improvement of themethods due to the hyper-parameter searchmeasured

by the average validation C-Index performance on the dataset A.

After setting the optimal hyper-parameter values, only marginal improvements

for standardmodels were achieved, which likely indicates that the key part to achiev-

ing better performance lies in proper data pre-processing. On the other hand, the

fine-tuning proved critical for the transformer’s performance, as the average valida-

tion C-Index improved by 15.36%. However, the transformer predictions remained

still quite volatile. The complete results of the hyper-parameter fine-tuning are avail-

able in Table 3.1.

2
Default values were used for all non-mentioned hyper-parameters. For details, please

refer to the scikit-survival documentation. Link to the original web page: https://scikit-

survival.readthedocs.io/en/stable/api/index.html

23

https://scikit-survival.readthedocs.io/en/stable/api/index.html
https://scikit-survival.readthedocs.io/en/stable/api/index.html
https://scikit-survival.readthedocs.io/en/stable/api/index.html


3. Methodology

3.6 Validation Results
This section covers the validation results of the best-performingmethods, measured

by the C-Index score on the validation set for both datasets (A, B). The previously

discussed models (Random Forrest, Gradient Boosting, Component-wise Gradient

Boosting, SurfTRACE transformer, and averaging Ensemble model) were used to-

gether with the Random Forest MRI. An extended version of pre-processed data was
used in this method, enhanced with specific MRI data. For a few submissions, a

MinVal strategy was tested, where the data were randomly split into training and
validation sets in a 95/5 ratio during the K-Fold training. The rationale is that with

a larger size of the training set, more information is provided to the models in the

training stage, possibly decreasing the likelihood of over-fitting. The overall val-

idation performance after 100 independent iterations is visible in the following

boxplots in Figures 3.3 and 3.4.

In the case of the dataset A, the averaging Ensemble model achieved the top

performance. This outcome is easily explained as the model already consists of

the pre-trained, most well-performing models and is only tested for the average

prediction accuracy over 100 separate iterations. The traditional models provide

very similar results with only minor differences. However, the Gradient Boosting

model delivers slightly better. Compared to the other methods, the transformer
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Figure 3.3: Results of validation C-Index performance of selected methods after 100

iterations with baseline splits. (Up) – dataset A, (Down) – dataset B. The results are

sorted based on the best mean C-Index.
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Figure 3.4: Results of validation C-Index performance of selected methods after 100

iterations withMinMax splits. (Up) – dataset A, (Down) – dataset B. The results are
sorted based on the best mean C-Index.

suffers from substantial deviation, likely due to insufficient convergence and early

stopping during model training. The predictive performance on the dataset B is gen-

erally worse than that of the dataset A, partially due to the optimisation being solely

done on the dataset A. Although, the most substantial impact is presumably caused

by the definition of the EDSS score, or possibly by the different data distribution,

which would subsequently require different data pre-processing steps. Additionally,

the CGBSA model performance comparatively drops even more. While theMinVal
strategy led to a slight improvement in validation performance for both datasets,

the strategy has an expected side-effect of amplified variance between different it-

erations. This is explicable by significantly reducing the size of the validation set,

making it more unbalanced in the process.

The runs with the best overall validation C-Index were used tomake predictions

for final submissions for both tasks and their respective sub-tasks. These predictions

were made on two distinct test datasets, A and B, which were originally provided

without ground-truth outcomes. In total, 18 files for Task 1 and 10 files for Task 2

were submitted to the iDPP 2023 competition. It was permitted to submit up to 10

runs per sub-task.
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Results 4
This section provides the official results of the submitted test runs for Task 1 and

Task 2 and their respective sub-tasks. The scores achieved for the numerous results

are discussed, and a case study of the best model’s predictions is provided.Moreover,

the final part compares the best test runs of the top 5 teams participating in the iDPP

competition. Astonishingly, the proposed methods provided the best predictions

in several tasks, with the best method achieving the test C-Index of 0.834. These

submissions were selected in part based on the best-achieved validation C-Index

values and in part to test all the previously proposed models and strategy variants.

The names of the displayed methods correspond to the model names. Concern-

ing the competition, the names correspond to the freefield1 section of the formal sub-
mission name described in the competition naming convention. To specify, survRf is

the Random Forest, survGB is the Gradient Boosting, and AvgEnsemble is Ensemble

Avg. The rest of the submission names remain more or less the same as defined.

4.1 Predicting Risk of Disease Worsening
Here follows the discussion of the results of the prediction accuracies described by

the C-Index values and their 95% confidence intervals corresponding to the submis-

sions made in Task 1, the sub-tasks (datasets) A and B. Additionally, a comparison

of validation to test performance is provided to highlight the training effectiveness.

The official results are displayed in Figure 4.1 together with the validation perfor-

mance. Methods are sorted descendingly based on the mean C-Index. The dashed

line corresponds to the score of predictions made by random choice.

Starting with the results on the dataset A, the overall highest C-Index score of

0.834 (0.741–0.927)was achieved by the Random Forest MRI model (enhanced with
data fromMRI scans), which was just slightly better than the second-best model, the

Averaging Ensemble model which scored a C-Index of 0.828 (0.739–0.917). The Ran-
dom Forest MRI significantly surpassed its validation performance by roughly 8%,

1
http://brainteaser.dei.unipd.it/challenges/idpp2023/
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4. Results

Figure 4.1: Achieved C-Index scores of submitted test runs and their respective 95%

confidence intervals for both sub-tasks. (Up) – sub-task A (Task 1), (Down) – sub-task

B (Task 1). Blue scores stand for validation results, and orange for test resultsForest.

The dashed line represents random predictions.
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4.2. Predicting Cumulative Probability of Worsening

leading to an assumption of a favourably selected model run. Contrarily, the Averag-

ing Ensemblemodel slightly under-performed. However, the results aremuch closer

to the expectations. Other submitted models perform similarly well. Although, a

majority of them scored better than expected. It is also apparent that the MinVal
strategy under-delivers, yet it keeps its high variance. At the lowest point is the Surv-

TRACE transformer model, completely missing the expectation, scoring even lower

than the random chance. This likely leads to a conclusion that there must have been

some unanticipated issue in the learning process.

Moving to the test results on the dataset B, the first place was acquired by the

SurvTRACE transformer with the test C-Index of 0.601 (0.482–0.721), delivering
the closest performance to the expectation. Contrarily, the majority of other meth-

ods significantly under-delivers. For instance, the Averaging Ensemble performance

decreased on the test dataset by almost 20% than was expected. A theoretical ex-

planation of this unanticipated difference could be that the test dataset consisted

of data differing in distribution from the training dataset. Additionally, it is possi-

ble that during the 100-randomly-sampled training process, the best-performing

model runs were fitted to divergent data samples, leading to significantly worse

performance on the test sample. The worst performance was again achieved by the

SurfTRACE transformer, which is likely due to a selection of badly convergedmodel

runs for the submission. The sub-optimal convergence is explainable by a model

over-fitting over a specific data subset.

4.2 Predicting Cumulative Probability of
Worsening

In the second task of predicting the cumulative probability of worsening, the official

results of prediction are provided to discuss the findings. The test scores consist of

cumulative AUROCvalues, O/E ratios, and their respective 95% confidence intervals

of all five submitted methods. These are based on tree models: Random Forest,

Gradient Boosting, and CGBSA, and are separated into five distinct 2-year time

intervals from 0 up to 10 years. The results are sorted in descending order based

on the mean AUROC score produced from means of all target time intervals. The

data is presented in two distinct forms. The first form is a set of two radial graphs

where one depicts the AUROC score – the larger the covered surface, the better

the method performed. The second one shows the O/E ratio, which represents

the ratio of observed to expected events at each time interval. The ideal value is

equal to 1 and is highlighted by the black circle. The results are supplemented by

tables that contain detailed performancewith precisemean values and the respective

confidence intervals. The following name enumeration is applied:
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4. Results

I – Random Forest MRI IV – Gradient Boosting
II – Random Forest V – Component-wise Gradient Boosting
III – Gradient Boosting - MinVal

Startingwith scores for sub-task A (dataset A), the RandomForestMRI, similarly

to the first task, provides the best with the mean AUROC score of 0.881 which is

visualized in Figure 4.2 and in Table 4.1.

Figure 4.2: The test results of Task 2, dataset A. (Up) – average AUROC, (Down) –

average O/E ratio. For the AUROC, the larger surface means better predictions. In

this case, the best method is blue (Random Forest MRI). For the O/E ratio, the closer

the value to 1, the better. In this case, the green method seems the best (Gradient

Boosting - MinVal). Methods are ordered based on achieved mean AUROC.

ID AUROC 0–2 AUROC 0–4 AUROC 0–6 AUROC 0–8 AUROC 0–10

I 0.924 (0.800-1.000) 0.907 (0.816–0.998) 0.896 (0.801–0.991) 0.838 (0.713–0.964) 0.839 (0.699–0.979)

II 0.914 (0.784–1.000) 0.893 (0.798–0.989) 0.898 (0.808–0.989) 0.828 (0.702–0.954) 0.820 (0.672–0.968)

III 0.894 (0.787–1.000) 0.898 (0.810–0.985) 0.901 (0.800–1.000) 0.818 (0.677–0.959) 0.808 (0.648–0.967)

IV 0.877 (0.745–1.000) 0.891 (0.796–0.986) 0.868 (0.753–0.984) 0.790 (0.641–0.938) 0.812 (0.654–0.969)

V 0.862 (0.731–0.993) 0.842 (0.713–0.971) 0.805 (0.670–0.941) 0.747 (0.597–0.898) 0.798 (0.649–0.947)

ID O/E Ratio 0–2 O/E Ratio 0–4 O/E Ratio 0–6 O/E Ratio 0–8 O/E Ratio 0–10

I 1.889 (0.937–2.842) 2.339 (1.391–3.287) 1.797 (1.068–2.525) 1.731 (1.065–2.396) 1.447 (0.875–2.019)

II 1.811 (0.879–2.744) 2.283 (1.347–3.220) 1.796 (1.067–2.524) 1.732 (1.066–2.398) 1.458 (0.884–2.032)

III 0.946 (0.272–1.620) 1.759 (0.937–2.581) 1.768 (1.045–2.490) 1.926 (1.224–2.628) 1.658 (1.046–2.270)

IV 0.919 (0.255–1.583) 1.831 (0.993–2.670) 1.739 (1.022–2.455) 1.906 (1.207–2.604) 1.644 (1.035–2.254)

V 3.106 (1.885–4.327) 1.975 (1.104–2.847) 1.366 (0.731–2.002) 1.312 (0.732–1.891) 1.467 (0.891–2.042)

Table 4.1: The AUROC and O/E ratio cumulative test scores in the given time in-

tervals for all submitted methods to the Task 2, sub-task A. Methods are denoted

based on the ID described in the accompanying text.
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4.2. Predicting Cumulative Probability of Worsening

Moreover, it even managed to score more than 90% in the first two years (0.924)

and the second two years (0.907). Conversely, the O/E ratio is relatively high across

all the predictions. This likely indicates a practical issue when there is a greater

portion of observed patient events than was expected. Other methods performed

similarly well. In the case of the Gradient Boosting methods, the MinVal strategy

is better than the default one, in contrast to the first task. Additionally, they both

perform the best in the case of the O/E ratio.

Lastly, the test results for sub-task B are provided in Figure 4.3 and Table 4.2.

The Gradient Boosting MinVal strategy method scored first with a mean AUROC of

0.607 while delivering one of the best O/E ratios. The overall results are yet again

significantly worse than would be expected from scores achieved on dataset A. A

similar trend is observable here as in Task 1, sub-task B, where the scores worsen

across all predictions. This behavior could be explained with the same reasoning as

previously discussed. These are:

1. Optimisation based on the validation C-Index for dataset A during training.

2. Different definitions of the EDSS feature.

3. Different properties of the test data or fitting of the best-performing model

on very divergent data subset.

ID AUROC 0–2 AUROC 0–4 AUROC 0–6 AUROC 0–8 AUROC 0–10

III 0.606 (0.437–0.776) 0.612 (0.468–0.756) 0.602 (0.451–0.754) 0.587 (0.433–0.742) 0.626 (0.465–0.787)

V 0.514 (0.311–0.717) 0.580 (0.423–0.737) 0.604 (0.452–0.756) 0.627 (0.477–0.777) 0.628 (0.463–0.793)

IV 0.569 (0.392–0.747) 0.597 (0.454–0.741) 0.589 (0.440–0.737) 0.580 (0.427–0.733) 0.594 (0.430–0.758)

I 0.596 (0.421–0.770) 0.561 (0.407–0.715) 0.559 (0.407–0.711) 0.525 (0.369–0.681) 0.491 (0.324–0.658)

II 0.590 (0.410–0.769) 0.552 (0.401–0.704) 0.549 (0.398–0.700) 0.522 (0.367–0.678) 0.506 (0.340–0.672)

ID O/E Ratio 0–2 O/E Ratio 0–4 O/E Ratio 0–6 O/E Ratio 0–8 O/E Ratio 0–10

III 0.920 (0.353–1.486) 1.228 (0.716–1.740) 1.375 (0.896–1.854) 1.430 (0.979–1.880) 1.489 (1.052–1.926)

V 1.818 (1.021–2.615) 0.774 (0.367–1.180) 1.515 (1.012–2.017) 1.295 (0.866–1.724) 1.166 (0.780–1.553)

IV 1.045 (0.441–1.649) 1.259 (0.741–1.778) 1.363 (0.886–1.840) 1.404 (0.957–1.850) 1.454 (1.022–1.885)

I 2.257 (1.370–3.145) 1.525 (0.955–2.096) 1.364 (0.886–1.841) 1.302 (0.872–1.732) 1.316 (0.905–1.726)

II 2.292 (1.398–3.187) 1.523 (0.953–2.093) 1.351 (0.876–1.826) 1.304 (0.873–1.734) 1.313 (0.903–1.724)

Table 4.2: The AUROC and O/E ratio cumulative test scores in the given time in-

tervals for all submitted methods to the Task 2, sub-task B. Methods are denoted

based on the ID described in the accompanying text.
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4. Results

Figure 4.3: The test results of Task 2, dataset B. (Up) – average AUROC, (Down) –

average O/E ratio. For the AUROC, the larger surface means better predictions. The

0.5 circle shows random prediction. In this case, the best method is blue (Gradient

Boosting - MinVal). For the O/E ratio, the closer the value to 1, the better. In this

case, the blue method seems the best as well. Methods are ordered descendingly

based on achieved mean AUROC.

4.3 Case Study

To better understand the prediction mechanism, we can visualize the estimated

survival functions of the best-performing model Random Forest MRI for two sets

of patients in Figure 4.4. Both sets contain four randomly selected patients from the

test set of the dataset A. Some are censored due to the end of the study or missing

follow-up, and in some cases, the worsening occurred. The survival models try to

estimate the real survival function as stated in Equation 2.1 for the whole time frame.

However, the predicted values are not as important as the relative order of survival

functions in the relationship to the time of worsening or censoring. It should be

noted, that both C-Index (Task 1) and AUROC (Task 2) are evaluated based on

the pair ranking of estimated survival probabilities. Consequentially, evaluating

specific cases is complicated as the scores have meaning only when compared to

other predictions. In other words, the AUROC measures how many pair estimates

are correctly ordered in a specific time 𝑡, while the C-Index evaluates the whole

time frame. At the time of worsening of an individual, their estimated probability

of survival should be the lowest compared to others.

Starting with the upper graph, the predictions are almost flawless relative to

each other. The first worsening event C) occurred in the function with the lowest

probability of survival at the time. The same is true for D). The survival functions

of censored data should be above the survival functions that ended in worsening at

the time of censoring, which is also true for both shown cases. The average AUROC
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4.3. Case Study

Figure 4.4: Example of survival functions estimated by Random Forest MRI for 4

randomly selected patients per graph, from the original 110 of the test dataset A,

Task 2. (Up) – Correct predictions, (Down) – Wrong predictions – in the relative

context to each other. The markers show the ground truth time of censoring or

occurrence of worsening.
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4. Results

score calculated by Equation 2.10 drawn solely from these four samples reaches

near 1.0. In the lower graph are examples of very poor predictions relative to each

other. The first event of worsening B) has the second largest estimated probability of

survival at the time of the event, even though it should be the lowest. In the second

event C), the estimated survival probability should be the lowest, but it is above the

A), and D). The survival function of the censored data A) should have ideally been

above the others at times of worsening. The average AUROC score drawn solely

from these four samples reaches only about 0.35. That is an extremely poor result

compared to the average AUROC of 0.881 of the whole test set (110 individuals).

4.4 Competition Results & Comparison
Thanks to the participation in the iDPP 2023 challenge, it is possible to evaluate

the achieved results in comparison with other participating teams. The proposed

methods delivered the overall best performance in several tasks while remaining

competitive in the others. From 45 registered teams, 9 made submissions into at

least one of Task 1 and Task 2. One hundred twenty-four runs were submitted into

these tasks in total (76 and 48) [5, 6]. We decided to show and compare runs with

the best predictive performance from the top 5 participating teams for each task

and their respective sub-tasks.

Starting with Task 1, the results are presented as the mean test C-Index score

for both sub-tasks. Each submission is named by a team shortcut and with an ab-

breviation of the method name. These are shown in Table 4.3 for sub-tasks A and

B. They are sorted by the by the highest mean C-Index. In sub-task A, the methods

delivered the best performance of mean C-Index 0.834, surpassing the competition

by 3.2% with the Random Forest MRI method. It was the highest achieved perfor-

mance altogether, leading to the conclusion that our methods were designed and

optimized appropriately for this task. In the second sub-task, we scored third place

with a mean C-Index of 0.601 with the SurvTRACE transformer method, still pro-

viding comparable performance even for the not-optimized dataset. This leaves a

considerable space for further improvement. Other well-placed methods provided

by competing teams are also based on Random Survival models or completely dif-

ferent models, namely Fast Kernel SVM models [37] or CoxNet models [38]. These

provide further options to test and experiment on.

Moving to the competition results for Task 2, we again selected the best-per-

forming method, best on mean AUROC score, per every top 5 team. The methods

are sorted descendingly by averaged AUROC score over all time intervals. They are

displayed in Table 4.4. In sub-task A, our Random Forest MRI method delivered

the highest AUROC score with an average of 0.881, while providing the best pre-

dictive performance in the first 2 and 4 years, even surpassing the 90% threshold
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(0.924% and 0.907% respectively). These are exceptional results and point to a good

optimization. In sub-task B, we placed in second place with an average AUROC

score of 0.607 across all intervals with the Gradient Boosting MinVal method. This

is only about 5.24% behind the first competing team, which implies that the method

delivers competing predictions even though it was not primarily optimized for this

metric. All achieved results and findings were presented at the Conference and Labs

of the Evaluation Forum (CLEF 2023) in Thessaloniki, Greece.

Task 1 A Task 1 B
Rank Submissions C-Index Submissions C-Index

1. uwb_T1a_survRFmri 0.834 fcool_T1b_FastKernelSurvSVM 0.690

2. CBMUniTO_T1a_coxnet 0.802 CBMUniTO_T1b_coxnet 0.634

3. fcool_T1a_RandomSurvivalForest 0.801 uwb_T1b_SurvTRACE 0.601
4. HULATUC3M_T1a_survcoxnet 0.774 uhu-etsi-1_T1b_s02 0.598

5. sisinflab-aibio_T1a_RF2 0.771 sisinflab-aibio_T1b_GB2 0.587

Table 4.3:Official competition results – risk ofworsening – for top 5 teams for Task 1,

sub-task A and sub-task B, sorted by mean C-Index. The results of the proposed

methods are in bold.

Task 2 A
Rank Submission 2 years 4 years 6 years 8 years 10 years

1. uwb_T2a_survRFmri 0.924 0.907 0.896 0.838 0.839
2. HULATUC3M_T2a_survcoxnet 0.864 0.898 0.938 0.859 0.831

3. CBMUniTO_T2a_coxnet 0.890 0.900 0.856 0.787 0.796

4. sisinflab-aibio_T2a_RF1 0.754 0.873 0.871 0.746 0.745

5. uhu-etsi-1_T2a_05 0.774 0.740 0.774 0.703 0.722

Task 2 B
Rank Submission 2 years 4 years 6 years 8 years 10 years

1. CBMUniTO_T2b_cwgbsa 0.632 0.626 0.655 0.673 0.709

2. uwb_T2b_survGB_minVal 0.606 0.612 0.602 0.587 0.626
3. sbb_T2b_Cox 0.642 0.567 0.601 0.594 0.622

4. sisinflab-aibio_T2b_GB2 0.614 0.639 0.629 0.616 0.527

5. uhu-etsi-1_T2b_s02 0.644 0.590 0.610 0.567 0.609

Table 4.4: Official competition results – cumulative probability of worsening – for

top 5 teams. Mean AUROC score for Task 2, sub-task A and sub-task B. The results

of the proposed methods are in bold.
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Conclusion 5
This work was dedicated to studying, designing, and advancing the options to es-

timate the overall risk and the cumulative probability of worsening of patients

with multiple sclerosis. Various openly available multiple sclerosis datasets, ma-

chine learning models, and metrics were searched and described. To provide further

comparison, the proposed methods were submitted to the iDPP 2023 challenge,

which focused on providing clinicians with new machine-learning-based methods

to predict the progression of multiple sclerosis.

An extensive overview of the newly designed methods was provided, followed

by the achieved results based on the defined metrics. The proposed data analysis,

pre-processing, feature selection methods and strategies, model selection, training

and validation strategy, and hyperparameter search were fully discussed. Likewise,

the steps to assemble the entire machine-learning pipeline were extensively de-

scribed. The best-performing survival-analysis-based models were selected for de-

velopment, comprising random-forest-based and gradient-boosting-based decision

tree methods alongside the recent SurvTRACE transformer. To further enhance

baseline performance, an extensive hyper-parameter search for picked methods

was conducted, and the benefits of fine-tuning were described, resulting in a 16%

improvement of transformer predictions and approximately 1% improvement in

the others (Table 3.1).

The performance was measured and optimized based on the mean validation

C-Index achieved after 100 randomly sampled separate iterations on the dataset A.

These metrics became a ruling factor for most of the decisions. The runs with the

highest score were then used to make the final submissions to the competition. The

achieved validation results (Figures 3.3 and 3.4) were thoroughly discussed. These

were then compared with the test results in Figures 4.1 for the first task and in

Figures 4.2, and 4.3 for the second task. Furthermore, a case study of the predictions

estimated by the best model – Random ForestMRI, was conducted, with an example

provided in Figure 4.4.

Participation in the competition proved to be valuable for the comparison of

achieved performance. The results of the submitted methods were compared with
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5. Conclusion

the top 5 competing teams in Table 4.3, for Task 1, and in Table 4.4 for Task 2. The

best predictive performance was achieved in multiple categories, and the findings

were summarized. In terms of the C-Index and average AUROC, the first place

was scored in both A sub-tasks with a C-Index of 0.834 and a mean AUROC score

of 0.881, respectively. In the case of sub-task B, results comparable with others were

achieved. In Task 1, third place was attained with a C-Index of 0.601, and second,

in Task 2 based on the average AUROC score of 0.607. Considerable robustness

towards overfitting on a specific dataset was demonstrated, as the proposed meth-

ods achieved third and second place, even though they were purely designed and

optimized for sub-task A. This possibly suggests the importance of the EDSS score

definition. Furthermore, the proposed design and findings were presented at the

Conference and Labs of the Evaluation Forum (CLEF 2023) in Thessaloniki, Greece.

38



Searched
Hyper-parameters A

MLMethod Hyper-parameters Values Search method

Random Forest

n_estimators [100, 300, 500]

Grid search

max_depth [6, 8, 10]

min_samples_split [8, 10, 15]

min_samples_leaf [4, 6, 8]

min_weight_fraction_leaf [0.0, 0.3]

max_features [sqrt, log2]

Gradient Boosting

n_estimators [100, 200]

Grid search

subsample [0.2, 0.5, 1]

dropout_rate [0, 0.2]

ccp_alpha [0, 0.1, 1]

learning_rate [0.1, 0.5]

max_depth [3, 5, 7]

min_samples_split [2, 4]

min_weight_fraction_leaf [0.0, 0.3]

max_features [sqrt, log2]

CGBSA

loss [coxph, squared, ipcwls]

Grid search

n_estimators [100, 200, 300, 500]

learning_rate [0.1, 0.5, 1]

subsample [0.2, 0.5, 1]

dropout_rate [0, 0.2, 1]

SurvTRACE

batch_size (48–128)

Random search

weight_decay (5e
-5
–1e

-3
)

learning_rate (5e
-4
–1e

-2
)

hidden_size [16, 32, 64]

intermediate_size [64, 128, 256, 512]

num_hidden_layers [2, 4, 6]

num_attention_heads [2, 4, 6]

hidden_dropout_prob (0.2–0.4)

attention_probs_dropout_prob (0.1–0.3)

Table A.1: Hyper-parameter values of selected methods used for fine-tuning. Evalu-

ation of performance was based on achieved C-Index values on the dataset A.
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