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Abstract

This paper examines the potential of emulating Raspberry Pi Zero, a selected ex-

ample of one of the most widely adopted architectures for embedded systems —

the ARM architecture. The initial chapters delve into a general introduction to the

ARM architecture, highlighting its profound significance evidenced by billions of

electronic devices that leverage it. Transitioning to the second part, the thesis ad-

dresses the benefits of utilizing an ARM emulator, delineating overall requirements,

and reviewing existing methodologies.

The second part centers on the development of a custom Raspberry Pi Zero em-

ulator whose functionality is systematically tested using a set of examples pertinent

to operating system development. The thesis concludes with an objective evaluation

of the emulator’s performance, identifying its key benefits, and suggesting areas for

further enhancements.

Abstrakt

Diplomová práce se zabývá zkoumáním potenciálu emulace Raspberry Pi Zero,

který reprezentuje jednu z nejrozšířenějších architektur pro vestavěné systémy -

architekturu ARM. Úvodní kapitoly přinášejí obecné seznámení s ARM architek-

turou, jejíž významnost je demonstrována více než miliardou elektronických za-

řízení, které ji využívají. Dále se práce zaměřuje na výhody využívání ARM emulá-

toru, stanovení celkových požadavků a analýzu existujících možností řešení.

Druhá část textu se soustředí na vývoj samotného Raspberry Pi Zero emulátoru,

jehož funkčnost je systematicky testována pomocí sady příkladů vztahujících se k

vývoji operačních systémů. Práce je zakončena objektivním hodnocením výkonu

emulátoru, identifikací jeho klíčových výhod a navrhováním oblastí pro další

vylepšení.

Keywords

ARM • Processor • Emulator • Raspberry Pi Zero
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Introduction 1
Over the past several years, ARM

1
, as a computer architecture, has garnered popular-

ity across a wide array of applications. Its usage spans from low-power solutions and

affordablemicrocontrollers to real-time applications and safety-critical systems that

include medical devices, automotive technology, and aviation. Furthermore, ARM

is extensively utilized in personal computers and the cell phone industry. Presently,

it is estimated that ARM powers over 99% of the world’s smartphones [1]. Covering

such a diverse range of applications, ARM has tailored its processor cores into vari-

ous groups known as families. Notable among these is ARMv6, employed in devices

like Raspberry Pi Zero. This version introduced innovative technologies such as

TrustZone, Jazelle, and Single Instruction/Multiple Data instructions to the Classic

line of ARM processor cores.

Emulating such a widely adopted architecture can assist in illustrating concepts

of computer organization and operating system principles. In addition to educa-

tional purposes, the use of an ARM emulator can prove beneficial in the software

development process, particularly when immediate access to a development board

may not be feasible. Furthermore, it provides a safety net by enabling developers

to experiment with potentially risky code without concerns about damaging real

hardware. As a software tool, it could also be integrated into continuous-integration

automated testing to identify potential bugs before moving on to testing on actual

hardware, which may not be readily available.

This thesis delves into the fundamental principals of the ARM architecture,

exploring and evaluating existing emulation solutions tailored for an embedded

environment. The primary goal is to design, implement, and rigorously test a com-

prehensive and extensible Raspberry Pi Zero emulator capable of emulating KIV-

RTOS [2]— a real-time operating system developed for educational purposes at the

University of West Bohemia.

1
The term ARM is commonly recognized as an acronym, initially representing Acorn RISC

Machine before being redefined as Advanced RISC Machine.
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Computer
Architectures 2
A computer architecture can be generally considered a low-level principal design of

a computer system that defines the interaction of its components that work along-

side to accomplish a given task. While there are a number of different computer

architectures, some of the most widely recognized may include Intel, MIPS, ARM,

or the increasingly popular RISC-V architecture [3].

The internal workings of a computer architecture can be explained through

the concept known as Instruction Set Architecture, often abbreviated as ISA, which
provides a comprehensive understanding of computer’s operation capabilities. It

also provides insights into how the user can interact with the central processing

unit, the CPU, based on the specific types of instructions it supports.

2.1 Classification of Computer
Architectures

Computer architectures can be categorized by various aspects, such as how

they handle data, the addressing modes they support, how they organize mem-

ory, what register set they feature
1
, or the number of operands expected in an

instruction [4]. All these criteria must be taken into consideration when selecting

the appropriate architecture for a given application, as each one comes with its

own set of advantages and disadvantages. The following sections delve into differ-

ent types of computer architectures, explaining their fundamental ideologies along

with their pros and cons.

2.1.1 Basic Classification
As far as memory access is concerned, there are two major architectural ideas that

serve as the foundation for nearly all computer architectures: the Von Neumann

1
Although registers are the fastest type of memory, from an operating system perspective, fea-

turing an extensive number of registers can also pose a disadvantage, as it increases the time required

to perform a context switch, which might be critical for real-time applications.
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2. Computer Architectures

architecture and the Harvard architecture. While they are distinguished by various

factors, including their cost, intended usage environment, and more, their primary

distinction lies in how they organize and access memory [3].

2.1.1.1 Von Neumann Architecture

The Von Neumann architecture, designed by the mathematician and physicist John

von Neumann in 1945, is what can be found in modern personal computers [5]. As

illustrated in Figure 2.1, it features a single memory space for both code and
data, necessitating only a single address and data bus, which could pose the risk

of unintentionally overwriting the program’s instructions, potentially leading to a

system crash. On the other hand, its design is considerably cheaper compared to the

Harvard architecture, as it requires less physical space on the chip.

Central Processing
Unit (CPU)

ROM (code)

RAM (data)

Address bus

Data bus

Figure 2.1: Von Neumann architecture

Another potential drawback arises from the fact that data and instructions share

the same bus, even though fetching instructions occurs more frequently than data

transfers. Consequently, the shared data bus may represent a performance bottle-

neck within the entire system.

2.1.1.2 Harvard Architecture

As shown in Figure 2.2, the Harvard architecture employs distinct memory mod-
ules for code and data, requiring twice the number of bus lines compared to the

Von Neumann architecture [3]. This design is typically preferred in scenarios where

the performance benefits outweigh the additional costs, such as in microcontrollers,

and Field Programmable Gate Arrays, also known as FPGA boards.

Central Processing
Unit (CPU)

RAM (data)
volatile

Address bus

Data bus
ROM (code)
non-volatile

Address bus

Data bus

Figure 2.2: Harvard architecture

8



2.1.2. Instruction Set Architectures

Taking advantage of two separate memory modules, it can effectively mitigate

resource conflicts and enhance its performance through parallelism and separate

memory caching.

2.1.2 Instruction Set Architectures
Instruction set architectures can also by categorized by how they handle operands

in terms of their interaction with memory. As noted previously, each approach may

be beneficial for different types of applications.

2.1.2.1 Stack Architecture

The stack architecture, shown in Figure 2.3, does not rely on the main memory

to retrieve operands. Instead, the CPUmaintains an internal stack, which serves as

storage for operands. An operation is executed in a last-in-first-out (LIFO) fashion,
where two operands are first popped off the stack, and the operation’s result is

consequently pushed back onto it [4].

Arithmetic
Logic Unit

Stack pointer (SP)

CPU Memory

result

op1 op2

Figure 2.3: Stack architecture

A distinct advantage of this architecture is that it makes compiler implemen-

tation considerably easier compared to other types of architectures. However, the

main drawback is the stack itself, which introduces a bottleneck that hinders any

potential parallelization. This architectural design is employed, for example, by the

Java Virtual Machine.

2.1.2.2 Accumulator Architecture

Similar to the stack architecture, the accumulator architecture, illustrated in Fig-

ure 2.4, imposes minimal hardware requirements. It substitutes the stack with a

single register called the accumulator, which serves both as an input operand and

as storage for the operation’s result. Same as the previous architecture, the accu-

mulator represents a potential bottleneck. Furthermore, it leads to high memory

9



2. Computer Architectures

traffic, as every two-operand instruction requires the second operand to be retrieved

from memory. Some processor architectures are equipped with more than one ac-

cumulator. For instance, the MOS Technology 6502 microprocessor utilized in the

Apple II computer featured not only a primary accumulator but also two index

registers that functioned as additional accumulators [4].

Arithmetic
Logic Unit

Accumulator (ACC)CPU Memory

result

op1 op2

Figure 2.4: Accumulator architecture

2.1.2.3 Load-Store Architecture

Examining Figure 2.5, it can be observed that the load-store architecture does not

utilize memory during arithmetic-logic operations. Instead, it restricts memory
access to a specific pair of instructions - the load and store instructions, which
serve as an interface for reading and writing data to memory. As a result, when an

operation needs to be executed, the CPUmust ensure that all operands are stored in

individually addressable memory banks, known as CPU registers, before employing

the arithmetic-logic unit, or ALU, to proceed with the operation [4].

Arithmetic
Logic Unit

CPU

Memory

result

op1 op2

Figure 2.5: Load-store architecture

Figure 2.6 illustrates the process of retrieving operands from memory, carrying

out the necessary operation, and consequently storing the result back in the main

memory.
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2.1.3. Instruction Set Classification

Load-store architectures frequently use fixed-length instructions, providing the

potential for more efficient pipelining
2
, which can result in improved

performance [6]. However, a notable drawback of this architecture is its strong

reliance on a sophisticated compiler, which may not be as straightforward to imple-

ment as in the architectures mentioned previously.

perform the operation 

result of the operation

:CPU :Memory

Fetch the operand op1
Dispatch

:ALU

operand op1

Fetch the operand op2

operand op2

store the result
in memory

  Does not have to be 
 performed if the oprands 
 are already in registers

Figure 2.6: Load-store sequence diagram

2.1.3 Instruction Set Classification

RISC, which stands for Reduced Instruction Set Computer, and CISC, or Complex
Instruction Set Computer, are two prominent CPU architectures that have gained

widespread adoption over time. They employ distinct approaches in utilizing their

respective instruction sets to align with the hardware implementation [7].

2.1.3.1 Complex Instruction Set Computer

The CISC architecture places an emphasis on the underlying hardware, leading
to the development of complex, usually multi-clock, instructions that can vary in

length. This length variation may introduce complications in pipelining, which can

have an adverse effect on performance. However, implementing custom instructions

tailored to specific hardware specification results in smaller code sizes, as they take

a more concrete and less abstract approach to achieve the desired functionality. An

example of this type of architecture is the x86-64 Intel processor.

2
Pipelining is a low-level parallelization technique that involves breaking down the processing

of an instruction into multiple stages that can be executed simultaneously.
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2. Computer Architectures

2.1.3.2 Reduced Instruction Set Computer

RISC, on the other hand, focuses on the software aspect, resulting in fewer single-
clock instructions of a fixed-size, which facilitate easier pipeline processing. Another

significant aspect is that RISC does not perform operations directly on memory.

Instead, it adheres to the principle illustrated previously in Figure 2.6. As depicted

in Figure 2.7 below, another important consideration in this architecture is that

having more general and, perhaps, simpler instructions can potentially increase the

size of the final binary. This is due to the fact that, in RISC, achieving a specific

function might involve using multiple instructions, whereas the CISC architecture

usually accomplishes the same goal with a single instruction. An example of this

architecture is the ARM architecture, which is described more in detail in Chapter 3.

  R1 ← [addr(A) + 4 * R2] + 1   R3 ← 4 * R2

  R3 ← addr(A) + R3

  R5 ← [R4]

  R1 ← R5 + 1

  return

  return

variable length

fixed length

CISC RISC

ARM
(RISC)

x86-64
(CISC)

≈ 50

981
(at least)

Number of
instructions

0

200
400

800

600

1000

Figure 2.7: Comparison between the RISC and CISC architectures [8]

There are other types of computer architectures that can be categorized by

various aspects. The objective of this chapter was to provide the reader with

introductory insights into some of the key factors that define a computer archi-

tecture. Formore comprehensive information, the reader can refer, for instance,

to the book series Computer Organization and Design: The Hardware/Software
Interface [9].
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3.1 History
ARM was officially founded as a company in November 1990 under the name

Advanced RISC Machines Ltd. It originated as a joint venture involving compa-

nies such as Arcon Computers, Apple Computer, and VLSI Technology. Its early

indications of future potential became evident with the Nokia 6110 GSM mobile,

which experienced a remarkable surge in popularity after its release in 1998. Cur-

rently, it is estimated that over 99% of the world’s smartphones are built on ARM

technology [1].

Throughout the 2000s, ARM’s sustained success enabled it to evolve beyond

smartphones and become arguably the most widely used processor architec-
ture. Nowadays, as illustrated in Figure 3.1, ARM technology can be found across a

broad spectrum of embedded devices, ranging from sensors and low-power micro-

controllers to supercomputers and real-time mission-critical systems [1].

Figure 3.1: Devices leveraging ARM technology

An interesting aspect of ARM is that it does not engage in silicon manufac-
turing. Instead, it preserves the architecture as intellectual property, outsourcing
the implementation to its closely aligned silicon partners, who are part of the so-
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3. ARM Architecture

called Connected Community. This ARM surrounding community forms a global

network of companies that collaborate by sharing expertise, providing support ser-

vices, offering design consulting, and supplying tools for creating ARM-powered

solutions.

3.2 Processor Cores
ARM classifies its processors into three major groups, which makes it a vi-

able choice for a wide range of applications. Figure 3.2 displays these categories in

ascending order based on their capabilities.

Figure 3.2: ARM processor roadmap

3.2.1 Classic ARM Processors
The Classic ARM Processors represent the company’s initial line of processors.
A typical example within this category is the ARM7TDMI-S CPU core, which was

widely embraced by the cellphone industry [10]. Over time, ARM has introduced

additional Cortex families, each tailored for their intended domain of applications.

3.2.2 Embedded Cortex Processors
Generally speaking, the Cortex-M family is utilized in low-cost microcontrollers,
which can be commonly found embedded in Internet of Things, or IoT, devices

such as home automation systems, wearables
1
, or smart locks.

1
Wearable technology refers to any type of smart devices designed to be worn, such as smart-

watches, smart glasses, etc.
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3.2.3. Application Cortex Processors

Usually, the ARM Cortex-M family simplifies or modifies certain features,

resulting in slight deviations from the traditional ARM architecture. These

modifications may involve different CPUmodes, the exception model, or bank

registers, all of which are further discussed in the following sections.

Another line of processors targeted for the embeddedworld is the Cortex-R fam-

ily, known for delivering high performance and throughput while upholding precise

timing properties and minimizing interrupt latency. This characteristic makes it a

suitable core for domains with time-constrained requirements, including
automotive systems, medical devices, aerospace, defense, and real-time systems.

3.2.3 Application Cortex Processors
The Cortex-A line of processors is designed for applications that require a general-

purpose platform operating system, which is commonly used in laptops and
personal computers. As a result, they integrate an extended instruction set to im-

prove multimedia processing, along with an advancedmemorymanagement system

to ensure a seamless human-machine interaction experience.

Figure 3.3: Features of different ARM processor cores

Figure 3.3 illustrates the ongoing evolution of capability features across various

CPU cores.
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For instance, it can be observed that ARMv6 incorporates the Thumb instruc-
tion set version 2, which is runtime interchangeable with the ARM instruction set.

Additionally, it includes support for floating-point operations version 2, Jazelle for
execution of Java bytecode, TrustZone for secure data storage, and Single Instruc-
tion/Multiple Data instructions, often referred to as SIMD instructions.

3.3 Instruction Set Architecture
Asmentioned in Section 2.1,ARM is a load-store RISC architecture that supports
two major sets of fixed-size instructions - the standard 32-bit ARM instruction set

and the reduced 16-bit Thumb instruction set. The following sections delve into

some of the key characteristics of the Classic line of ARM processors. For a more

comprehensive understanding, the reader is encouraged to refer to the official ARM

Architecture Reference Manual [11].

3.3.1 Central Processing Unit Modes
There are a total of seven modes in which a modern ARM CPU can operate,
each represented by a unique 5-bit number stored in the Current Program Status
Register. The CPU can switch to one of these modes either implicitly, such as when

an interrupt occurs, or explicitly as intended by the programmer, for example, when

switching the currentCPU context. Allmodes except for theUsermode are privileged,

meaning that when the CPU is in the unprivileged mode, the execution of certain

instructions might be restricted
2
. Table 3.1 summarizes all available CPUmodes.

Table 3.1: List of ARM CPUmodes

CPUmode Description

User Normal program execution

FIQ Supports a high-speed data transfer or channel process

IRQ Used for general-purpose interrupt handling

Supervisor A protected mode for the operating system

Abort Implements virtual memory and/or memory protection

Undefined Supports software emulation of hardware co-processors

System Runs privileged operating system tasks

2
In the context of operating systems, a non-privileged mode is typically used for the execution

of user programs, while the kernel operates in a privileged mode.
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It is worth noting that Cortex-M utilizes only two CPUmodes - Threadmode,

an unprivileged mode designed for executing application code, and Handler
mode, a privileged mode intended for handling exceptions.

3.3.2 Exception Model
When an exception or interrupt occurs, the CPU sets the Program Counter Register, or
PC for short, to the address associated with that exception, known as the interrupt

vector, and switches to the corresponding CPUmode, which can be found in Table

3.2. The interrupt vector represents a fixed address inRAMwhere theCPU redirects its

execution. Therefore, during the system initialization, these memory locations are

typically filled with branch instructions to direct the execution to the corresponding

exception handlers.

As illustrated in Figure 3.4, this address region, also known as the interrupt

vector table, or IVT, can be found located either in the lower part or the upper

part of the virtual address space, depending on the current setting stored in the

System Control Co-processor. In practice, the lower part of the address space is usually
reserved for user processes, while the kernel is remapped to the upper part, hence

the option to relocate the IVT as well 3.

0x00000000

0xFFFFFFFF

Interrupt Vector Table

Interrupt Vector Table
0xFFFF0000

0x00000000

Figure 3.4: Possible locations of the interrupt vector table in RAM

Table 3.2 provides a list of addresses for individual vectors located in both the

lower and upper portions of the address space.

3
In the ARM architecture, the lower portion of the address space is typically controlled by

Translation Table 0, with its address is stored in the TTBR0 register. Simultaneously, the kernel section

is managed in parallel by Translation Table 1, whose address is located in the TTBR1 register. From
the viewpoint of an operating system, the presence of two distinct page tables provides the advantage

of avoiding the need to replicate kernel pages for each individual process created.
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Table 3.2: List of ARM CPU exceptions

Exception CPUmode Normal address High address

Reset Supervisor 0x00000000 0xFFFF0000

Undefined instruction Undefined 0x00000004 0xFFFF0004

Software interrupt Supervisor 0x00000008 0xFFFF0008

Prefetch abort Abort 0x0000000C 0xFFFF000C

Data abort Abort 0x00000010 0xFFFF0010

Interrupt IRQ 0x00000018 0xFFFF0018

Fast interrupt FIQ 0x0000001C 0xFFFF001C

Similar to the previously mentioned CPUmodes, the Cortex-M family employs

a slightly different exception model, specifically tailored for microcontroller

applications.

3.3.3 Registers

ARM offers 16 general-purpose 32-bit registers labeled r0 through r15, three of
which serve special functions, which are listed in Table 3.3. The programmer is free

to use the remaining registers as needed.

However, specific calling conventions were established to ensure a systematic

use of these registers. For instance, registers r0-r3 are used as argument values

passed into a subroutine, while return values are typically stored in registers r0-r1.

Further details on calling conventions can be found in Chapter 6 of the ARM’s

Procedure Call Standard Manual [12].

Table 3.3: List of special function ARM registers

Index Mnemonic Description

13 SP Stack pointer - holds the address of the top of the stack
14 LR Link register - holds the return address (when calling a

function, it is not pushed onto the stack)

15 PC Program counter - holds the address of the instruction
to be executed
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3.3.3.1 Banked Registers

A distinctive feature of ARM is its utilization of so-called bank registers. In this

concept, the majority of CPU modes have their own unique set of registers
that are automatically loaded whenever the current CPUmode changes.

Themore bank registers are utilized, the faster the switch into the corresponding

CPUmode is, as there is no need to preserve the current state by storing all registers

onto the stack. As a result, this concept is extensively employed by the FIQ mode

for ensuring fast interrupt handling, hence the mode’s name.

Figure 3.5 displays distinct bank registers for each CPUmode. Notably, User, the
unprivilegedmode, and System, a privilegedmode, utilize the same set of underlying

registers, which serves as a “meeting point” between the kernel and user space when,

for instance, running system tasks or handling system calls.

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13(SP)

r14(LR)

r15(PC)

CPSR

r8

r9

r10

r11

r12

r13(SP)

r14(LR)

CPSR

SPSR_fiq

r13(SP)

r14(LR)

CPSR

SPSR_svc

r13(SP)

r14(LR)

CPSR

SPSR_abt

r13(SP)

r14(LR)

CPSR

SPSR_irq

r13(SP)

r14(LR)

CPSR

SPSR_und

User/System

FIQ

Supervisor Abort IRQ Undefined

Figure 3.5: Bank registers of different CPUmodes

When the CPU is executing 16-bit Thumb instructions, only the first 8 registers
(r0-r7) can be addressed directly. These registers are sometimes referred to as the

Thumb State Low Registers.
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As far as Cortex-M is concerned, since there are only two CPU modes, the

banking scheme applies only to the SP register.

3.3.3.2 Control Registers

In general, control registers are specialized registers within a processor that
are used to manage system configuration, memory, interrupts, and power. They

enable software to interact with and configure hardware features, such as system-

wide settings and power-saving mechanisms.

Current Program Status Register
The CPSR register, which stands for Current Program Status Register, preserves

the current state of the CPU along with some additional information. To modify

the control register, its content must first be transferred into one of the general-

purpose registers using the MRS instruction, as its direct modification is not per-

mitted. Subsequently, after the necessary modifications have been made, it can be

transferred back from the general-purpose register using the MSR instruction.

This 32-bit register is segmented into four sections, as illustrated in Figure 3.6.

The initial letters of the section names (F, S, E, and C) can function as a bit mask

when using the MRS or MSR instruction to prevent unintentional modifications of

bits that are not meant to be changed.

N Z C V CPU modeI F TReserved

31 0430 29 28 27 8 57 6

Flag bits Status bits Extension bits Control bits

Overflow

Carry

Zero

Negative

Thumb/ARM mode

Interrupts Enabled

Fast interrupts enabled

Figure 3.6: Current Program Status Register
4

Saved Program Status Register
The Saved Program Status Register, or SPSR, serves as a copy of the CPSR regis-

ter utilized during CPUmode switching.When transitioning to amode that contains

an SPSR register, as shown in Figure 3.5, the contents of the CPSR register of the

current mode are copied into the SPSR register of the target mode.

4
The reserved area contains additional information and control bits including the result of SIMD

instructions, the status of the Jazelle bit, and endianness, which can also be changed at runtime.
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This process allows a future restoration of the original state when reverting to

the original CPUmode.

3.3.4 ARM Instructions
Asmentioned previously, all instructions in theARM instruction set are 32-bits
in length. As shown in Figure 3.7, the most significant four bits of each instruction

form a condition filed that constrains its execution. The CPU assesses the current

state of the flag bits in the CPSR register, and depending on the condition field, the

instruction is either skipped or executed. From the programmer’s standpoint, this

can be accomplished by suffixing the instruction name by the desired condition

code, as listed in Table 3.4.

In contrast to other architectures, the flag bits are not automatically set upon the

execution of an instruction. Instead, it is up to the programmer to choose whether

to update them by appending an ’S’ to the instruction name. For instance, the ADD

instruction does not update the flags, whereas ADDS does 5
.

N Z C V Rest of the ARM instruction encoding

31 030 29 28

Condition field

Overflow

Carry

Zero

Negative

Figure 3.7: Condition field of an ARM instruction

5
This concept does not apply to instructions like CMP, which, as its sole purpose suggests, im-

plicitly sets the status flags.
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Table 3.4: List of ARM instruction condition codes

Code Flags tested Meaning

EQ Z==1 Equal

NE Z==0 Not equal

CS or HS C==1 Unsigned higher or same (or carry set)

CC or LO C==0 Unsigned lower (or carry clear)

MI N==1 Negative (mnemonic - “minus”)

PL N==0 Positive or zero (mnemonic - “plus”)

VS V==1 Signed overflow (mnemonic - “V set”)

VC V==0 No signed overflow (mnemonic - “V clear”)

HI (C==1) && (Z==0) Unsigned higher

LS (C==0) || (Z==1) Unsigned lower or same

GE N==V Signed greater than or equal

LT N!=V Signed less than

GT (Z==0) && (N==V) Signed greater than

LE (Z==1) || (N!=V) Signed less than or equal

AL Not tested Always executed (suffix is omitted)

In general, ARM instructions can be classified into several different cate-
gories based on their purposes, such as data processing instructions, data transfer
instructions, branch instructions, or co-processor instructions, which are designed for
interactingwith external CPU co-processors. Detailed ARMv6 instruction encodings

can be found, for instance, in the B2 ARM Appendix document [13].

3.4 Co-processors
As showcased in Figure 3.8, a co-processor, as its name implies, operates alongside
the main CPU to further extend its functionality. Examples of co-processors

may include a floating-point unit or the system control co-processor. Each co-

processor is addressed by a unique 4-bit number
6
, resulting in up to 16 different

co-processors that can be attached to an ARM CPU.

As listed in Table 3.5, the CPU interacts with co-processors via three desig-
nated instructions, enabling it to offload specific functions to more specialized

hardware suitable for the given task, such as when multiplying two floating-point

numbers.

6
The co-processor ID is encoded in every co-processor instruction.
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Table 3.5: List of ARM co-processor instructions

Instruction Description

Coprocessor Data Operation
(CDP)

Signals a co-processor to perform an in-

ternal operation

Coprocessor Data Transfer
(LDC, STC)

Loads or stores a subset of co-processor’s

registers directly to memory

Coprocessor Register Transfer
(MRC, MCR)

Communicates information directly be-

tween the CPU and a co-processor

CPU registers

ARM CPU

internal registers

Coprocessor

Main memory

data

cmd

R/WR/W

Figure 3.8: Context of an ARM co-processor

3.4.1 System Control Co-processor
The system control co-processor, or CP15, incorporates a tree-like structure of

additional registers that are utilized for configuring various settings within the
overall system. For instance, the users can configure branch prediction, caching,

unaligned-memory access, paging, and so on. Moreover, via CP15, users can enable

or disable other co-processors and define their CPUmode access rights.

3.4.2 Floating-point Unit
The floating-point unit, also referred to as the FPU, is represented by two distinct

co-processors, CP10 (single-precision) and CP11 (double-precision). As illustrated

in Figure 3.9, this distinction occurs solely at an interface level, meaning that they
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share the same underlining set of registers, which are treated differently based on the

leveraged co-processor. The primary purpose of the FPU is to extend the capability

of an ARM CPU by incorporating floating-point arithmetic instructions, such
as addition, subtraction, multiplication, division, and square root operations.

S1 S0

S3 S2

D0

D1

S5 S4 D1

S29 S28

S31 S30

D14

D15

  Single double-precisition 
  64-bit register made up of two     
  32-bit registers)

  Two single-precision
  32-bit registers

Figure 3.9: Floating-point registers

Additionally, the FPU also provides its own Status Control Register, called FPSCR,
which contains the current state of flags. Whenever a comparison instruction is

executed, it becomes essential to transfer the FPU flags to the CPU, so they can be

used to determine the execution of the next instruction
7
.

Finally, the user can optionally set different rounding modes and exceptions

via the Exception Control Register named FPEXC. This register is also employed to

activate the FPU. As a result, it must be initially enabled on a co-processor level (in

CP15) and subsequently in the FPEXC register as well.

7
From the programmer’s perspective, this process is typically automated by the compiler, which

implicitly inserts a subsequent MRC instruction.
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Raspberry Pi Zero 4
Raspberry Pi Zero is a system on chip, or SoC, which is a design that integrates

various components into a single chip, such as a central and graphics processing

unit, memory interfaces, and input-output devices. As far as Raspberry Pi Zero is

concerned, it is equipped with 512 MB of RAM, an SD card holder, which is utilized

during the booting process, aMiniHDMI adapter, amicroUSB port, and theBCM2835

microcontroller, which is powered by the ARM1176JZF_S processor [14]. Figure

4.1 labels the main visual components of the board.

1
2

3

4
5

1 Power supply

2 USB port

3 BCM2835

4 Mini HDMI

5 SD card slot

Figure 4.1: Raspberry Pi Zero board

In contrast to other Raspberry Pi boards, such as Raspberry Pi 4, the Zero model

aims to be a compact, cost-effective, andminimalist system. Nonetheless, it ef-

fectively fulfills its role in illustrating fundamental principles shared bymore sophis-

ticated boards. This makes it particularly valuable for smaller non-computationally

intensive projects or educational purposes. Consequently, it had been chosen as an

example for implementing an ARM emulator.

4.1 ARM1176JZF_S

ARM1176JZF_S is a single-core 800MHzprocessor that implements theARM11
ARMarchitecture version 6. It supports both theARM andThumb instruction sets,
incorporates Jazelle technology for the direct execution of Java bytecodes, and
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includes a set of SIMD instructions designed to operate on 16-bit or 8-bit data

values within 32-bit registers. Table 4.1 provides a breakdown of the individual

letters and numbers found in the processor’s name.

Table 4.1: Breakdown of the processor’s name (ARM1176JZF_S)

Section Meaning

ARM11 Indicates that the processor belongs to the ARM11 family

76 Model identifier within the ARM11 family

J Presence of Jazelle technology (excution of Java bytecodes)

Z Support for Thumb-2 technology (mix of 16/32-bit instructions)

F Support for floating-point operations

S “Secure” - presence of security features (e.g. TrustZone)

While the majority of its functionality aligns with the principles described in

previous Chapter 3, for a more in-depth understanding, the reader can refer to the

reference manual [14].

4.2 Microcontroller BCM2835
BCM2835, a microcontroller made by the Broadcom company, incorporates a
range of memory-mapped peripherals that are made accessible to the ARM
processor. These peripherals include timers, an interrupt controller, General-Purpose

Input-Output pins (GPIO), a Universal Serial Bus interface (USB), a Direct Memory

Access controller (DMA), an I2C interface, a Serial Peripheral Interface (SPI), and the

Universal Asynchronous Receiver-Transmitter, also known as the UART interface 1
.

All peripherals, along with their memory-mapped registers, can be found de-

tailed in the BCM2835 ARM Peripherals datasheet [15].

However, it has been observed to contain a number of misleading pieces of

information, primarily related to typing errors. Consequently, a separate doc-

ument has been generated, explicitly enumerating known errors found across

various chapters [16].

1
The BCM2835 microcontroller also includes a couple of peripherals intended for use by the

GPU. However, due to complexity reasons, they were not taken into consideration in this paper.
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4.2.1 Memory-mapped peripherals
From the programmer’s perspective, memory-mapped peripherals are devices that
can be found located on a predefined known addresses in memory 2

. For

instance, according to the datasheet, the GPIO controller can be found located at

0x20200000. This concept is present in one form or another in most modern CPUs.

In addition to the ARM’s Memory Management Unit, or MMU, the BCM2835mi-

crocontroller is equippedwith a second coarse-grainedMMU responsible formapping

ARM physical addresses to system bus addresses.

0x80000000

I/O Peripherals

VC SDRAM
(optional)
SDRAM

(for the ARM)

0xFFFFFFFF

0x00000000

User-mode
page-mapped
virtual
addresses

Kernel-mode
virtual
addresses

ARM
MMU

I/O Peripherals

VC SDRAM
(optional)
SDRAM

(for the ARM)

0xFFFFFFFF

0x00000000

0x20000000

0xFFFFFFFF

0x00000000

0x40000000

VC/ARM
MMU

I/O Peripherals

SDRAM

I/O Peripherals

SDRAM

I/O Peripherals

SDRAM

I/O Peripherals

SDRAM

0xC0000000

System bus addresses Physical addresses Virtual addresses
(OS-specific)

0xC0000000

SW abstractionHW implementation

Figure 4.2: BCM2835 address translation processes
3

As shown in Figure 4.2, if the ARM MMU is employed, the first stage in a memory

read-write operation involves translating the virtual address to a physical address

based on the page table hierarchy set up by the kernel. Subsequently, once a physical

address is obtained, it is mapped to a bus address that corresponds to the particular

chip involved in the operation. This mapping occurs due to the fact that memory,

such as flash or Synchronous Dynamic Random Access Memory, or SDRAM, may of-

ten be composed of multiple chips, each potentially implementing different caching

policies.

2
In this context, the term “memory” refers to the entire address space rather than the physical

memory.

3
As an example, Figure 4.2 illustrates the virtual address space utilized in GNU/Linux.
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Emulation 5
Emulating Raspberry Pi Zero on a different platform, such as x86, can offer several

benefits and serve various purposes.

For instance, as noted previously, it can be a powerful tool for educational
purposes, allowing students and beginners to learn about the ARM architecture

in a visual and user-friendly way. Furthermore, it can be valuable for illustrating

concepts like operating system principles and embedded system development
1
. The

author suggests that it could find applications in a continuous-integration de-
velopment process, where it might be utilized for executing an initial set of unit

and regression tests to identify early bugs before carrying out testing on real hard-

ware, which may not always be readily available. Examples of applicable domains

may include medical devices, automotive, and other safety-related systems. Another

potential benefit is that it implicitly provides a level of isolation, which allows de-
velopers to experiment with potentially risky code without worrying about
damaging their board.

All these reasons are further accentuated by ARM’s omnipresence, as it is ar-

guably one of the most widely adopted architectures worldwide.

1
If modularized, it can also be extended by other external modules, allowing the user to create

a fully-customized system.
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5.1 Terminology
The following terms are sometimes used interchangeably. However, they fundamen-

tally differ in the purposes they serve. Therefore, it is essential to explain them in

order to establish a common understanding of their respective roles.

5.1.1 Simulation
In general, a simulation is a computer program designed to replicate a specific pro-

cess or sequence of events, with the goal of gaining a thorough understanding of

its behavior, especially in cases where a comprehensive analytical mathematical so-

lution may be unknown. Simulations are typically parameterized, allowing them

to be re-run with different input parameters to investigate how different changes

in these parameters impact the observed values. They are commonly employed in

various scenarios, such as modeling traffic in a city, simulating disease outbreaks, or

predicting weather conditions [17].

5.1.2 Emulation
In emulation, each instruction of architecture A, an emulated architecture, is re-

placed with one or more instructions of architecture B, the underlying architecture
[18]. This typically results in an implicit slowdown in performance as it requires

more operations to achieve the same functionality. The primary advantage of an

emulator is that it enables the execution of a program that is not originally writ-

ten for the underlying architecture. Some popular examples of emulators include

DOSBox [19], which can be used for playing retro video games on a modern com-

puter, and QEMU [20], a full-emulation system capable of running various architec-

tures.

5.1.3 Virtualization
Unlike emulation, virtualization allows the execution of a guest application, possibly

written for a different operating system, directly on the underlying hardware [21].

As shown in Figure 5.1, this is achieved through a hypervisor, installed on top of the

host operating system, which manages the execution of multiple distinct host ma-

chines that remain “invisible” to each other. Examples of such hypervisors include

Xen, KVM, and Microsoft’s Hyper-V. These days, virtualization plays a vital role

in cloud-based solutions, as it enables dynamic allocation of virtual machines that

can be utilized for various purposes, such as web servers, load balancers, computing

units, and more. There are also other types of virtualization techniques, such as

paravirtualization or full virtualization. In the case of further interest in this topic,
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the reader is encouraged to seek other sources of information, such as the Hard-
ware and Software Support for Virtualization book authored by Edouard Bugnion,
et al. [22].

Another popular technology that belongs to the emulation/virtualization cate-

gory is Docker. However, it adopts a slightly different approach by primarily emu-

lating software rather than the underlying hardware.

Host operating sytem

Host hardware

Emulator

Emulated applicaton User application

Guest operating sytem

User application

Guest operating sytem

Host hardware

Host operating sytem

Hypervisor

Emulation Virtualization

Figure 5.1: Emulation vs. virtualization

5.2 Existing Solutions
There are several available solutions that can serve as ARM emulators. However, it

becomes evident that not all of themmay be entirely suitable for the comprehensive

and configurable emulation of an embedded environment. The following sections

provide a review of some existing ARM emulators.

5.2.1 CPUlator
CPUlator is a sophisticated online emulator and debugger that offers support not
only for ARMv7 but also for MIPS and Nios II architectures [23]. It is specifi-
cally designed as a tool for learning assembly-language programming and gaining

insight into computer organization. As aweb browser-based application, it can
be accessed from any device, making it an excellent starting point for beginners,
as it does not require any installation. This accessibility is particularly advantageous

for those who might be deterred by the complexities of installing a custom build of

QEMU, for example.
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Figure 5.2: CPUlator

Its core is written in C++ and compiled into WebAssembly, resulting in a user-

friendly modern-looking interface that offers various debugging features such as

breakpoints, single step, reverse step, step over function, step out of a function,

modifying registers, showing the stack call, and more. The overall user interface can

be seen in Figure 5.2. An input file
2
can either be loaded from the user’s computer

or entirely written and compiled using its built-in editor. In addition to the built-in

compiler, it allows the user to directly upload an already built binary file.

According to its documentation, CPUlator boasts an outstanding emulation

speed of 13 mega-instructions per second. As far as ARM is concerned, it features

a 4 GB flat memory model with a maximum usable memory of 2042 MB. It also

incorporates several input/output devices including a Video Graphics Array, or

VGA, buttons, watchdog timers, seven-segment displays, and more. However, the

integration of custom external peripherals would be a welcomed feature.

Despite its support for floating-point numbers, CPUlator lacks support for a
memory-management unit, making it impossible to leverage the full 4 GB address

space. Similarly, it restricts the user from switching the default CPU mode,
rendering it unsuitable for demonstrating most of the operating system principles.

Nevertheless, it successfully fulfills its intended purpose as an excellent tool for

learning the ARM assembly language.

2
It supports both the C programming language and ARMv7 assembly.
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5.2.2 ARMSim#
Another tool designed primarily for educational purposes is the ARMSim# emu-

lator, developed at the University of Victoria in Canada [24]. This desktop appli-
cation, created using the .NET technology, allows users to observe and debug

the execution of ARM assembly programs on a system utilizing the ARM7TDMI

processor
3
, which implements the ARMv4 architecture. The user interface can

be seen in Figure 5.3. Similar to CPUlator, it supports debugging features such as

stepping through the source code and viewing the current contents of both the CPU

registers and memory. According to the CPUlator’s comparison chart, ARMSim# is

claimed to be capable of executing up to 3 mega-instructions per second [23].

Figure 5.3: ARMSim#

The emulator features so-called plugins that further extend its functional-
ity in a modular fashion. Examples of these plugins may include SWIInstructions,
which encapsulates a variety of system calls, such as reading and writing to a file,

or EmbestBoard, which allows the core to interact with external peripherals such as

3
As mentioned previously in Chapter 3, this processor was widely adopted by the cell phone

industry. However, it is no longer licensed by ARM and may be considered outdated.
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a keyboard, segment display, or a 40x15 display — all of which are also interacted

with via system calls.

ARMSim# also supports vector floating-point instructions; however, similar to

CPUlator, it lacks support for amemory-management unit. It can be concluded
that while it finds application in learning the ARM assembly language, it does not

provide features for advanced system-level programming, like developing an oper-

ating system, nor does it support the concept ofmemory-mapped peripherals,
which can be found in the majority of modern embedded devices.

5.2.3 QEMU

QEMU stands out as a powerful cross-platform full-emulation system, written

in C, with the capability to emulate operating systems across various architectures,

including x86,MIPS, ARM, and PowerPC [20].While it may not offer the same visual

appeal as the previous examples, its versatility surpasses them. QEMU can operate

in both graphics mode, if supported by the guest operating system, and terminal-

only mode. In terms of debugging, it allows the attachment of the GNU debugger,
a tool heavily utilized in Linux-based operating systems.

However, when attempting to emulate the Raspberry Pi Zero environment,

QEMU does not provide a plug-and-play solution upon installation. By de-
fault, it expects an ARM-based system to boot up from address 0x00010000. In

contrast, the Raspberry Pi Zero’s first stage bootloader necessitates the kernel’s reset
vector to be situated at address 0x00008000.

Consequently, users face two options. They can either relocate their kernel to the

required address or modify QEMU’s source code to change the kernel load address

and create a custom build. It is important to mention that the second approach may

pose certain challenges for beginners. Conveniently, the entire process of running

a custom image built for Raspberry Pi Zero is detailed in the KIV/OS - dodatek A

document [25].

While QEMU does support most of the features that the previous emulators

lack, its versatility may also come with certain disadvantages when emulating the

Raspberry Pi Zero environment. Specifically, there are reported issues related to
the system timer, hindering the implementation of a preemptive scheduler in the

custom operating system. Furthermore, it lacks a straightforward solution for at-

taching external hardware peripherals. In the case of Raspberry Pi, it can be inferred

that QEMU might not be the optimal choice for emulating such an embedded en-

vironment, given its primary focus on emulating more general-purpose operating

systems.
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5.3 General Requirements
Reviewing existing solutions renders a set of general requirements for an ideal

emulator designed to emulate the Raspberry Pi Zero environment.

Preciseness
It is evident that the emulator should identically mimic a real Raspberry Pi Zero

board. This is arguably the most crucial requirement to fulfill, as failing to do so

could result in unexpected behavior. Ideally, if the user compiles and runs their

application inside the emulator, they should be presented the with same output as

if it was executing on real hardware. However, this may sometimes be challeng-

ing to achieve, especially considering time constraints mentioned previously in

Section 5.1.2.

Effectiveness
In terms of performance, a slowdown in emulation speed is nearly inevitable.

Nevertheless, the emulator should leverage modern technologies to mitigate these

effects. Consequently, the use of certain programming languages like Python might

be ruled out, as they could adversely impact overall performance, which is discussed

further in Section 7.1. Moreover, the emulator should strive to consume only a

reasonable amount of the system’s resources.

User-friendliness
The final emulator should introduce users to embedded development princi-

ples through a visual and user-friendly interface
4
. They should have the capability

to perform all the previously mentioned actions, such as setting breakpoints and

viewing the contents memory and registers, without the necessity of connecting

an external debugger. This is particularly crucial for beginners, as they should have

access to these features effortlessly upon installation. Another essential requirement

is that users should not be restricted to the use of the emulator on a single platform,

such as Windows.

Extensibility
In the embedded world, microcontrollers are frequently programmed to com-

municate with external devices, including motors, displays, sensors, or even other

microcontrollers. Therefore, the emulator should facilitate the integration of ex-

ternal devices that can be developed independently of the emulator itself, thereby

enabling other developers to contribute to the project. This functionality would em-

power users to configure a real-world scenario tailored to their specific application.

4
In practice, this can be measured, for instance, through surveys.
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When designing a complex software system, it is important to take into considera-

tion deciding factors such as the intended usage environment, interaction methods,

system dependencies, preferred technologies, or different components constructing

the final application. Addressing these questions early on enhances the likelihood

of its successful completion as well as its long-term maintainability.

This chapter outlines the key design decisions made within the implementation

process of the ZeroMate emulator, which is the chosen name for the project
1
.

6.1 Input
The emulator necessitates a single input file in the ELF format, simplifying the Rasp-

berry Pi’s booting process. In this process, the stage 1 bootloader, residing in ROM,

reads the contents of the SD card and then initiates and delegates control to the GPU,

which subsequently resets the CPU and loads the kernel into RAM.

This file is further referred to as the kernel since the emulator was designed

within the context of operating systems development. Nevertheless, the input file

can fundamentally represent any application intended for execution on Raspberry

Pi Zero. Figure 6.2 illustrates the general process of building an ELF file, which

contains all essential data and information required for code emulation.

6.1.1 Executable and Linkage Format
ELF stands for Executable and Linkage Format [26], and it is one of the most com-

monly used formats for executable files, especially on Unix-like systems. There are

a number of other representations used in embedded development. For instance,

the Motorola S-Record format, or SREC for short, is often used for programming

non-volatile types of memory, such as flash or EEPROM. The structure of an SREC

record is visualized in Figure 6.1.

1
It combines the word Zero, as in Raspberry Pi Zero, andMate, which in this case is used as a

synonym for a friend or “buddy”.
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In terms of this project, the key advantage of ELF over SREC is that ELF is used
for both linkage and execution. Therefore, if the kernel is compiled with debug

symbols turned on, the symbol table stored in the finalELFfile can be used during the

parsing process, which is discussed in Section 6.3.2, to provide the userwith function

names as they were used in the source code, which should improve the readability

of the final disassembly. SREC, on the other hand, is only used for execution.
Therefore, it can be viewed as highly compressed as it comprises only the necessary

information for uploading firmware onto a microcontroller, which is commonly

referred to as flashing.

It can be concluded that ELF provides more information that can be useful when

reconstructing the original source code. Hence, it is used as the supported format

for the input files. It is worth mentioning that this choice does not have as much

impact on the core functionality as it does on visual aspects, which is discussedmore

in detail in Section 6.6.

S 0 F 0 0 0 0 6 8 6 5 6 C 0 2 0 2 0 3 C

Record
type

Byte
count

Destination
address

Data Check
sum

0

Figure 6.1: Single SREC record (16-bit addressing)

Edit the source code
Cross-compilation
using gcc-arm-
none-eabi

Link all translation
 units making up the

application

Load the ELF file
into ZeroMate

Compiler error Linker error

Kernel ELF is
successfully generated 

Figure 6.2: Process of building an ELF file (input for the emulator)
2

2
Cross-compiling is a process where the source code targets a different platform than the one it

is compiled on.
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6.2 User’s Interaction
As shown in the deployment diagram in Figure 6.4, the emulator was designed to
run as a native desktop application on Windows, Linux, and MacOS operat-
ing systems. It places a strong emphasis on visualization, serving as a debugging

tool to assist with troubleshooting embedded applications targeting Raspberry Pi

Zero.

The primary interaction with the system, from the user’s perspective, is visual-

ized in Figure 6.3, where the user is provided with an interface that allows them to

load an input file as well as to control the state of the emulation.

User

ZeroMate

Stop the execution
of the kernel

Load an .ELF file

<<include>>

<<include>>
Load the symbols 
of a user process

Load a kernel

Add/remove a
breakpoint

Start the execution
of the kernel

Reset the emulator

Figure 6.3: Primary use-cases of the ZeroMate emulator

ZeroMate.exe<<device>>
Host machine

{ OS = Windows |
Linux | MacOC }

<<artifact>>
zero_mate.exe <<deploy>>

<<artifact>>
ext_periph_01.dll

<<deploy>>

External peripherals
(buttons, LED, OLED display)

<<use>>

GUI (frontend)

Core (backend)

Figure 6.4: Deployment diagram of the ZeroMate emulator
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The main application is designed as a two-tier architecture. In this arrange-

ment, the top layer, which is the GUI, serves the dual purpose of visualizing data

and acting as the primary user interface. The following chapters delve into the ar-

chitectural structure of the core part of the emulator.

6.3 Core Components
There are a number of different components working alongside to achieve a thor-

ough emulation of a given kernel. Among these components, the ARM1176JZF_S

component, which represents the CPU itself, may arguably stand out as the most

complex one due to its encapsulation of various sub-components, including the

CPU context, ALU, MMU, ISA decoder, and more. The role of every component will

be examined further in the following sections.

«component»
System BUS

«component»
ELF loader

«component»
BCM2835 Peripheral(s)

Access to RAM 
to  load  the kernel 

ARM1176JZF_S

Read/Write - MMIO

Access to CP15 to 
check whether unaligned 
memory access is enabled

«component»
CP15

(System Control
Coprocessor)

«component»
CP10

(Single-precision FPU)

Read/Write

Figure 6.5: Core components of the ZeroMate emulator

Figure 6.5 illustrates the fundamental interactions among the core components.

It can be observed that the majority of the components communicate with one

another via the system bus
3
. For example, when the CPU executes a load/store

instruction, it propagates the target address to the system bus, and the system bus

then forwards the request to the corresponding peripheral associated with that

address.

3
What ZeroMate denotes as the system bus is typically regarded as the primary CPU bus.
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6.3.1 System Bus
As mentioned previously, the system bus serves as an intermediate unified in-
terface for accessing the RAM or any of the BCM2835memory-mapped peripherals

[15]. The primary functions this interface provides can be seen in Listing 6.1. Each

peripheral that is meant to be mapped into the address space must implement the

same interface, so the bus can forward the read/write request independently of

the peripheral’s implementation (see Section 6.3.3). All actions associated with the

request itself are then handled internally within the target peripheral.

:CPU_Core :System_Bus

Read a ui32 from a
 physical address

Dispatch

Retrieve the
corresponding

peripheral

:RAM

Read a ui32 from
within the peripheral

(relative address)

Return data
Return data

Check
unaligned

 access

May throw a 
Data_Abort exception

Figure 6.6: Example of a read/write data request issued by the CPU

As shown in Figure 6.6, there are two internal steps the system bus carries out

before proceeding with the request. First, it needs to determine what peripheral

should the request be forwarded to. Secondly, it checks whether unaligned memory

access is taking place or not.

In reality, the main system bus does not manage peripherals the same way it

does in ZeroMate. It only serves as a medium for connecting different types of

memory-mapped devices. Nevertheless, from an architectural point of view, it

is a reasonable place for implementing common validity checks as it plays the

role of a single point of access to all memory-mapped peripherals.
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Additionally, the system bus ensures that the peripheral receives an address
relative to its location in the address space 4

. In other words, it does not have any

knowledge about its location on the bus, which is desired, as it decreases coupling

and increases cohesion between the two components [27].

Source code 6.1: System bus interface for I/O operations

1 class CBus final {

2 public:
3 template <typename Type >

4 void Write(std:: uint32_t addr , Type value);

5

6 template <typename Type >

7 [[ nodiscard ]] Type Read(std:: uint32_t addr);

8 };

It can be argued that permitting the reading or writing of a general data type

may diverge from real hardware specifications, as the system bus is typically of

a fixed size, e.g. 32 bits. This simplification was made for convenience reasons

when accessing predefined data structures in the RAM, such as the page table(s).

6.3.1.1 Managing Peripherals

The system bus component maintains a collection of references to all memory-

mapped input-output devices, further referred to as MMIOs. Whenever a peripheral

needs to be attached to the bus, it is inserted into the appropriate position within the

collection, which is visualized in Figure 6.7. This ensures that the entire collection

remains sorted in ascending order based on the starting addresses of the peripherals.

This property enables the use of a binary search algorithm, resulting in faster lookup

times, particularly in O(log 𝑛) time complexity [28], which is crucial for improving

the overall speed of the emulation.

According to statistics, on average, load-store instructions account formore
than 50% of all instructions in an x86 application [29]. Although this research

applies to a different architecture, it is reasonable to conclude that optimizing pe-

ripheral access efficiency might be crucial for emulation speed.

When connecting a peripheral, the bus must also ensure that there is no overlap

between two peripherals and that they all fit within the address space, which, on a

32-bit architecture, spans out to 4GB.

4
The relative address is calculated as the address contained in the R/W request issued by the CPU

minus the address of the peripheral on the system bus.
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RAM

0x00000000

RAM_Size

GPIO

0x20200000

GPIO_Size

BSC_3

0x20805000

BSC_3_Size

  MMIO_Peripheral [0]   MMIO_Peripheral [1]   MMIO_Peripheral [2]

Figure 6.7: Collection of memory-mapped peripherals

6.3.1.2 Unaligned Memory Access

Unaligned memory access occurs when the CPU attempts to read or write data
from an address that is not divisible by the word size. For example, reading

4 bytes from address 0x00000011 triggers unaligned access as the address is not

word-aligned 5
. Nevertheless, this behavior can optionally be disabled, for exam-

ple, for compatibility reasons, in the System Control Co-processor (CP15) using the
sequence of ARM instructions shown in Listing 6.2.

Source code 6.2: Enabling unaligned access in CP15

1 mrc p15 , #0, r0 , c1 , c0 , #0 ;@ Copy ctrl reg of CP15 to R0

2 orr r0 , #0 x400000 ;@ Set bit 22 in R0

3 mcr p15 , #0, r0 , c1 , c0 , #0 ;@ Update CP15

5
A word is a fixed-size number of bits that the CPU can process as a single unit. In the case of

ARM1176JZF_S, one word equivocates to 4 bytes.
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6.3.2 Executable and Linkage Format File Loader
The main purpose of this module is to parse an input ELF file and copy the .text
section, which contains source code instructions, word by word, into RAM, as spec-

ified by the linker script. Additionally, it performs code disassembly, which is a

process of reconstructing the source code from machine code. This allows the user

to observe individual instructions in a more user-friendly way as they are executed.

For visualization purposes, the component also features the capability to parse

an ELF file without copying its data into memory, which can be useful for viewing

user processes that are compiled separately from the kernel itself. During this pro-

cess, the ELF loader also demangles all symbols found in the input file 6
, thereby

presenting the user with function names that have not undergone modification by

the compiler for its internal purposes. An example illustrating symbol demangling

is demonstrated in Listing 6.3.

Source code 6.3: Example of symbol demangling

1 Demangle("_ZNSt6vectorIiSaIiEE9push_backERKi") =

2 "std::vector <int ,std::allocator <int >>:: push_back(int␣const &)"

Figures 6.8 and 6.9 illustrate the steps and components involved in loading and

parsing an input ELF file.

ZeroMate

<<component>>
GUI

<<component>>
ELF Loader Copy data

to RAM
User

Parsed & demangled
source code for visualization

kernel.elf

Figure 6.8: Loading an input ELF file (kernel)

6
Demangling is a process of transforming C/C++ ABI identifiers into the original C/C++

source [30].
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NO

YESShould the
ELF file be treated

as a kernel?

Load and validate
the input ELF file

Map all segments
 into RAM 

Start

Disassemble
 instructions stored in the

.text section

End

Figure 6.9: Internal logic of the ELF Loader component

It is important to emphasize that ZeroMate does not perform the tasks of parsing

anELF file and demangling symbols all by itself. Instead, it utilizes two external open-

source libraries, ELFIO [31] and Demumble [32], to accomplish these functions.

6.3.3 BCM2835 Peripherals
ZeroMate distinguishes between two types of peripherals - those directly in-
tegrated within the microcontroller, such as RAM, ARM timer, or the interrupt con-

troller, and those referred to as external peripherals, which are externally connected

to another internal peripheral, the GPIO pins, forming a cascading set of connected

peripherals. Examples of external peripherals may include buttons, switches, LEDs,

displays, or keyboards. The following sections focus on the internal peripherals of

Raspberry Pi Zero.

45



6. Design of a Raspberry Pi Zero Emulator

ZeroMate
<<component>>

RAM

<<component>>
GPIO

Manager

<<component>>
Interrupt
Controller

<<component>>
ARM1176JZF_S

<<interface>>
IExternal_Peripheral

<<component>>
Button

<<component>>
7-segment display

<<component>>
LED

<<component>>
System Bus

Access to
 GPIO pins

Figure 6.10: Internal vs External peripherals

In Section 6.3.1, it is explained that the system bus manages a collection of ref-

erences to all peripherals that are mapped into the address space. Using a general

interface, the bus does not need to be concerned about how each peripheral func-

tions internally. In a proxy-like fashion, it simply forwards a R/W request initiated

by the CPU to the corresponding peripheral.

Every BCM2835 peripheral encapsulates a set of registers, whose functions are

detailed in the BCM2835 manual
7
[15]. By reading from or writing to these regis-

ters, the internal state of the peripheral can be modified, which is specific for each

peripheral.

«class»
CBus

«class»
CRAM

«class»
CGPIO_Manager 

«class»
CInterrupt_Controller  

«interface»
IPeripheral

+ Reset(void)
+ Get_Size(void): ui32
+ Read(ui32 addr, char* data, ui32 size)
+ Write(ui32 addr, const char* data, ui32 size)

N .... 1

Figure 6.11: Hierarchy of internal peripherals

7
As mentioned previously, the BCM2835 manual is known to contain several typographical

errors. As a result, the community surrounding it published a list of these errors along with their

respective corrections [16].
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The Get_Size()method shown in Figure 6.11 is used primarily for detecting

bus collisions when mapping peripherals into the address space, which was men-

tioned previously in Section 6.3.1.1.

RAM 
(512 MB)

Interrupt Controller

ARM Timer

GPIO

TRNG

AUX

BSC_1

BSC_2

BSC_3

Debug Monitor

Reserved

Reserved

0x00000000

0x1FFFFFFF
0x20000000

0x2000B200

0x2000B400

0x20104000

0x30000000

0x20200000

0x20205000

0x20215000

0x20804000

0x20805000

0xFFFFFFFF

Helper peripheral
for debugging

Memory-mapped
peripherals

Code, IVT,
stacks, heap, etc.

0x00000000

0x1FFFFFFF
0x20000000

0x2000B200

0x2000B400

0x20104000

0x30000000

0x20200000

0x20205000

0x20215000

0x20804000

0x20805000

0xFFFFFFFF

Figure 6.12: BCM2835 physical memory layout emulated by ZeroMate

It can be noticed that ZeroMate does not account for all BCM2835 peripher-
als since emulating every single one in its entirety would pose a significant complex-

ity. Consequently, ZeroMate focuses its emulation efforts on the most frequently

utilized peripherals, such as the ARM timer, GPIO, interrupt controller, and others.

Nonetheless, the system’s overall design is structured to allow for a smooth

integration of additional peripherals in the future if needed. The following sections
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explain the fundamental emulation principles of each of the peripherals listed in

Figure 6.12.

6.3.3.1 Memory-mapped Registers

As mentioned previously, each BCM2835 peripheral encapsulates a set of registers,

through which the user can interact with the peripheral. From an implementation

perspective, these registers can be represented as a fixed-size array of 32-bit inte-

gers, which are addressed relative to the peripheral’s base address.

Copy data from the
write request to the
addressed register

Execute Callback_1

Execute Callback_2

case Register_1

case Register_2

Execute Callback_ncase Register_n

Calculate the index of
the register from the

given address

E.g. set the state
of a GPIO pin

  Write(<addr>,<data>)

BCM2835 peripheral

Figure 6.13: Writing to a peripheral’s register
8

Whenever a read/write request is sent through the bus, the peripheral identifies

the addressed register, and the execution is then dispatched to the corresponding

callback function, which carries out the necessary actions associated with that spe-

cific register. Generally, this approach, which is shown in Figure 6.13, can be applied

to the vast majority of memory-mapped peripherals.

8
Readingworks in a similar way. Optionally, theremight be additional prior actions taken before

a value is read from a peripheral’s register, such as inserting a random number into the data register
when utilizing TRGN, which is described in Section 6.3.3.5.

48



6.3.3.2. System Clock Listener

6.3.3.2 System Clock Listener

Optionally, each peripheral can implement the ISystem_Clock_Listener inter-

face, which allows it to register with the CPU as a system clock listener. This concept

is visualized in Figure 6.14. Whenever an instruction is executed, the CPU notifies

all of the system clock listeners of how many CPU cycles it took to execute the in-

struction, allowing them to update themselves accordingly. Further information on

how ZeroMate emulates the execution time of individual ARM instructions can be

found in Section 6.3.4.6.

Examples of such listeners may include the ARM Timer or the AUX and BSC pe-

ripherals, which encapsulate time-based hardware communication functions. These

peripherals are described in Sections 6.3.3.6, 6.3.3.9, and 6.3.3.10, respectively.

«class»
CARM1176JZF_S

«class»
CARM_Timer

«class»
CAUX 

«class»
CBSC  

«interface»
ISystem_Clock_Listener

+ Increment_Passed_Cycles(ui32 count): void
N .... 1

<<update>>

Infinitely fetches &
executes instructions

<<implements>>

Figure 6.14: ISystem_Clock_Listener interface

It is important to mention that updating a system clock listener is, from the
emulated CPU’s perspective, a blocking operation. Therefore, the peripheral’s
callback function should avoid any unnecessary actions that might further prevent

the CPU from executing the next instruction. Alternatively, updating system clock

listeners could be performed asynchronouslywithin a separate thread.However, this

approach would introduce additional concurrency-related challenges that would

require thorough consideration.
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6.3.3.3 Random Access Memory

From an oversimplified perspective, a computer consists of two essential compo-

nents; the CPU and memory. One key parameter used to classify various types of

memory is their ability to retain data even after the power supply is shut down.

Raspberry Pi Zero is equipped with an SD card slot, which houses non-volatile
9

memory for storing the kernel image. However, from ZeroMate’s point of view, this

type of memory is implicitly provided by the host machine.

The board is also featured with 512MB of RAM, which functions as volatile mem-

ory for executing the kernel code. It accommodates runtime-critical sections such

as the stacks
10
, heap, page tables, or the interrupt vector table, often referred to as

the IVT.

The implementation of RAM is straightforward since it can be represented as an

array of bytes as shown in Figure 6.15 below. However, the downside of this ap-

proach is that it immediately takes up 512 MB of the host’s RAM, which may become

an issue on older computers with limited resources.

0x00000000

0x00000004

0x0FFFFFFF

512 MB
(128 words)

1 word

Figure 6.15: RAM implementation as a continuous piece of memory

A more effective approach would involve dynamically allocating fragmented

pieces ofmemory as they are being addressed by theCPU. However, the authorwould

argue that such an implementation would be algorithmically more complex, which

could lead to distracting errors when implementing memory-related instruction,

especially in the early stages of development. As a result, it was classified as a nice-
to-have feature that would be worth addressing in the future once the emulator has

been thoroughly QA-tested.

9
Non-volatile memory is capable of persisting data even after the supply voltage is turned off.

10
As described in Section 3.3.3.1, ARM uses a different set of registers for each CPUmode.
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6.3.3.4 Debug Monitor

The debugmonitor plays the role of a memory-mapped output device for displaying

8-bit character-based information.

This component is not included in Raspberry Pi Zero itself; its presence serves

solely for debugging purposes during the development of ZeroMate.

The ZeroMate project also includes a basic driver for the debugmonitor that the

user can seamlessly integrate into their build system. As showcased in Listing 6.4,

this allows them to use “print-like” functions they might be familiar with from

high-level programming languages, which may result in easier troubleshooting and

resolving errors.

Source code 6.4: Demonstration of the use of the debug monitor

1 #include "monitor.h"

2

3 int main() {

4 bool flag = false;
5 unsigned int my_var = 155;

6

7 sMonitor << "Hello␣World\n";

8 sMonitor << "myVar␣=␣" << my_var << ’\n’;

9 sMonitor << "flag␣=␣" << flag << ’\n’;

10

11 return 0;

12 }

0x00 0x20000000 0x30000000

RAM MMIOs Debug
monitor

H e l l o W o r l d !
m y V a r = 1 5 5
f l a g = f a l s e

80

25

Reserved

Figure 6.16: Memory-mapped debug monitor
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To attain the same capabilities in practice, the userwould need to utilize a formof

serial communication, such as UART, through which they could transmit characters

to an external device
11
. This is commonly achieved by running software like PuTTY

[33] on the user’s computer.

As shown in Figure 6.16, the debugmonitor is mapped to an unoccupied address

0x30000000. It is structured as a flat memory region, which is managed by the

driver the user code interacts with. Inspired by the standard terminal text mode, the

size of the monitor was chosen to be 80x25 8-bit characters 12
.

6.3.3.5 True Random Number Generator

The TRGN peripheral is an integrated 32-bit hardware random number generator.

Although it is not documented in the official BCM2835manual [15], its existence can

be confirmed, for instance, by examining the implementation in the GNU/Linux

kernel [34].

For simplification purposes, ZeroMate primarily focuses on providing random

numbers while omitting more advanced features such as configuring the generator’s

speed, generating interrupts, or the warm-up count. The warm-up count refers to

the process of generating and immediately discarding a set of random numbers

before the initialization is completed
13
.

From the user’s code perspective, the process of retrieving a random number
consists of two steps, which are displayed in Figure 6.17.

:Kernel code :TRNG

Dispatch
Enable 

Get random number

Random number

1

2

Figure 6.17: Reading random numbers from the TRNG peripheral

11
While there are alternative methods to achieve the same functionality, this approach is among

the most common ones.

12
From an implementation point of view, it could vary in size as long as it does not overlap with

other memory regions.

13
The initial values are “less random”.
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Enabling TRNG
The TRNG peripheral is enabled by setting bit 0 of the control register to 1. If

implemented, this action would also trigger the processing of “warming up”, which

was mentioned previously.

Reading random numbers
First, the user should check the availability of random numbers in the TRNG’s

queue by examining the most significant 8 bits of the status register. If this number

is 0, they should wait until the generator accumulates a sufficient amount of entropy

to generate a random number. When data is ready, reading from the data register
will retrieve a random number from the queue.

ZeroMate can almost instantly generate a random number using a pseudo-

random number generator. As a result, when reading the most significant 8 bits

of the status register, the userwill consistently receive the value 1, meaning they

can read random numbers without delay, which could potentially be another

area for future improvements.

Utilizing a pseudo-random number generator, such as an LCG [35] or

Mersenne-Twister, can greatly improve the performance of the emulation. De-
pending on the implementation, accessing a true random number generator via the

host operating system may have a detrimental impact on overall speed, as it may

continually gather entropy from user inputs, like key presses or cursor movements.

This can potentially lead to a blocking operation if there is currently insufficient

entropy available.

6.3.3.6 ARM Timer

One of the most frequently used functions of the ARM timer is to periodically trigger

interrupts, whether it is for toggling an LED, generating a PWM signal, or switching

the current CPU context, which is an integral part of any preemptive OS scheduler.

As shown in Figure 6.18, there are two data/control paths through which the

timer can be interacted with. The first path, when the timer is treated as a memory-

mapped peripheral, serves the purpose of reading from and writing to its internal

registers in order to configure its desired functionality. This may involve steps such

as setting up the prescaler, enabling interrupts, or defining the initial threshold value.

The other path is used implicitly by the CPU to notify the peripheral about howmany

CPU cycles it took to execute the last instruction. The ARM timer then leverages the

prescaler to divide the input frequency, as the main CPU frequency may not always

be suitable for the given task.
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As far as ZeroMate is concerned, all time-related functionalities, such as the

ARM timer, UART, or I2C, are for synchronization purposes, inherently derived

from the emulated CPU’s clock.

«class»
CARM1176JZF_S

«interface»
ISystem_Clock_Listener

«interface»
IPeripheral

«class»
CBus

«class»
CARM_Timer

«class»
CPrescaler

<<implements>>

1

N

1

N

<<update
passed
CPU

cycles>>

<<RW>>

<<RW>>

<<increment>>

Contains a collection
of registers (BCM835 manual)

<<notify IC of
an interrupt>>

Figure 6.18: Context of the ARM timer component

As stated previously, the purpose of the prescaler is to divide the CPU’s frequency

by a factor of 1, 16, or 256, which ultimately affects the timer’s period - how rapidly

the value register counts down to zero. Additionally, the timer’s period can be

adjusted by modifying the value in the load register, which serves to re-initialize
the value register whenever it reaches zero. If enabled, with each such event, the

timer will trigger an interrupt. This concept is visualized in Figure 6.19.
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0

value [1]

load

time [CPI]

Interrupt is triggered
(value == 0)

Prescaler value
(1, 16, 256)

Figure 6.19: Content of the value register of the ARM timer over time

6.3.3.7 General Purpose Input/Output

The GPIO manager is a peripheral that manages the 54 general-purpose input-
output pins that are available to the programmer. These GPIO pins also function as

a connecting interface for all external devices, which is shown in Figure 6.10. Each

pin can be represented as a separate class encapsulating its current state, which con-

sists of the pin’s function, a list of enabled interrupts, an indication of any pending

interrupts, and its current state.

«class»
CGPIO_Manager

«interface»
IPeripheral

<<implements>>
«class»
CPin

- m_state: NState
- m_function: NFunction
- m_enabled_interrupts: Interrupts_t 
- m_pending_irq: bool

1 N

Contains a collection
of registers (BCM835 manual)

<<notify IC of
an interrupt>>

Figure 6.20: Structure of the GPIOmanager
14

All GPIO pin functions, as well as interrupt types, can be found explained in the

BCM2835manual [15].

14
The CPin class also exposes a set of public functions (getters/setters) that allow the caller to

access its private data members.

55



6. Design of a Raspberry Pi Zero Emulator

The pin’s function restricts the way the pin can be interacted with. For instance,

when the user tries to read from an output pin, theywill be promptedwith awarning

message indicating that their action is inconsistent with the current pin configura-

tion.

ZeroMate does not provide support for analog pins. Therefore, all GPIO pins

mentioned in this document are regarded as digital pins, with only two possible

states - HIGH and LOW. To accommodate analog signals, the GPIO controller

would need to be extended by an additional piece of information indicating

whether a pin is digital or analog to either hold a bool or signed integer

value respectively
a
.

a
In reality, the GPIO controller routes analog pins to the ADC, or Analogue to Digital Con-

verter, which is another internal peripheral of Raspberry Pi Zero.

Emulation of latches
Some of the GPIO registers work, on a hardware level, as latches, which

may not be as intuitive from a software emulation point of view. An example of

this principle would be the GPSETx and GPCLRx registers, which respectively set

an output pin to a logical one and zero. These registers are stateless, meaning they

do not retain their previous state internally. As shown in Listing 6.5, one approach

to emulate such behavior is to reset the register to its default value after a write

operation has been performed.

Source code 6.5: SW emulation of a HW latch register

1 void Set_Pin_High(std:: uint32_t& gpset0)

2 {

3 / / I t e r a t e o v e r a l l b i t s o f g p s e t 0 .
4 / / I f g p s e t 0 [ i ] = = 1 , t h e n s e t t h e
5 / / c o r r e s p o n d i n g p i n t o HIGH .
6

7 gpset0 = 0; / / SW l a t c h e m u l a t i o n
8 }

Detecting Interrupts
Whenever the state of a pin changes, a series of checks is performed to deter-

mine whether an interrupt has occurred. One of the most commonly used types

of interrupts is triggered by a change in the logical value of a specific pin, either

transitioning from HIGH to LOW or vice versa. The types of interrupt to be detected

for each pin can be specified in the corresponding registers. When an interrupt is

detected, it is reported to the interrupt controller, which can then initiate further

actions, which is captured in Figure 6.20.
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6.3.3.8 Interrupt Controller

As shown in Figure 6.21, the interrupt controller serves as the primary interface

for managing all peripherals that can generate interrupts. Through the interrupt

controller, users can enable or disable various interrupt sources, including GPIO

pins, the ARM timer, and the UART peripheral.When an interrupt is signaled to
the interrupt controller, it checks whether the source is enabled; otherwise,
the event is discarded. From the CPU’s point of view, after an instruction has been

executed, it checks with the interrupt controller to ascertain the existence of any

pending interrupts. If the interrupt controller has a record of a pending interrupt,

and global interrupts are enabled, the CPU proceeds to throw an IRQ exception.

«class»
CInterrupt_Controller

«class»
CARM1176JZF_S

«class»
CGPIO_Manager

«class»
CARM_Timer

«class»
CAUX

Notify of a
pending/cleared IRQ

(WRITE)

Check for a
pending IRQ (READ)

«class»
CBus

<<clear IRQ>>

Figure 6.21: Context of the interrupt controller

In terms of design, the interrupt controller encapsulates an associative storage

that pairs each IRQ source 15
with its associated metadata, indicating whether it is

enabled and if there is a pending interrupt. From the CPU’s perspective, this storage,

which is shown in Figure 6.22, is read-only, as its sole purpose is to check for any

pending interrupts. The contents of this storage are modified by the peripherals

themselves, either when they generate an interrupt or clear a pending interrupt.

As noted in Chapter 3, an ARMprocessor also features so-called fast interrupts,

orFIQ for short. However, ZeroMate does not offer support for it as it primarily

focuses on fundamental principles rather than more advanced features.

15
The reader can find a list of all available IRQ sources in the BCM2835 datasheet [15].
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IRQ Source Enabled Pending

GPIO_0 true false

GPIO_1 true true

UART false false

AUX false false

Could be found in
the BCM2835 datasheet

<<component>>
Interrupt Controller

Figure 6.22: Encapsulated information about IRQ sources

It is worth mentioning that the interrupt controller of the BCM2835microcon-

troller distinguishes between two types of interrupt sources - Basic IRQ, which
are ARM-specific, and IRQ, which are shared between the GPU and the CPU. Both

types can be found listed in the BCM2835 datasheet [15]. Nevertheless, from a design

perspective, the underlying principles remain the same.

6.3.3.9 Auxiliaries

The auxiliary peripheral comprises three distinct peripherals - Mini_UART,
SPI_0, and SPI_1. Among these, only Mini_UART is currently supported by Zero-

Mate.

There are two primary registers shared among all auxiliary peripherals - the

enable register, responsible for activating the respective peripheral, and the IRQ

register, which signals pending interrupts. The remaining registers are specific to

each peripheral, as depicted in Figure 6.23.

AUX_IRQ AUX_Enable

Shared AUX registers

0x00 0x04 0x40 0x80

Mini_UART Registers SPI_0 & SPI_1 Registers

Figure 6.23: Registers of the AUX peripheral

Whenever a read/write request is received, using the technique described in

Section 6.3.3.1, the AUX class can efficiently redirect the execution to the relevant

auxiliary peripheral, which will subsequently handle the request internally.
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«class»
CAUX

«class»
CMini_UART

«interface»
ISystem_Clock_Listener

«interface»
IPeripheral

<<implements>>

«class»
CInterrupt_Controller

«class»
CGPIO_Manager

<<access to TX /RX>> <<Mini_UART interrupts>>

Figure 6.24: Structure of the AUX peripheral

Figure 6.24 shows the internal structure and dependencies of the AUX periph-

eral. It can be noticed that it implements the ISystem_Clock_Listener interface,

whose purpose is described in Section 6.3.3.2, which allows it to synchronize with

the rest of the system.

Mini_UART

UART, which stands for Universal Asynchronous Receiver-Transmitter, inherently
operates as asynchronous communication, which means there is no explicit syn-

chronization between the two devices. Since these devices may have different clock

speeds, theymust adjust their frequencies to establish a common speed known as the

baudrate, which expresses how many bits can be received/transmitted per second.

«external peripheral»
Serial terminal

«emulator core»
ZeroMate

RX

RX TX

TX

CLK

Explicit synchronization
with the system clock

common communication
speed (baudrate)

Figure 6.25: UART communication with an external peripheral

59



6. Design of a Raspberry Pi Zero Emulator

The BCM2835microcontroller does not incorporate a full version of UART. In-

stead, it supports a simplified version known as Mini_UART, which omits some of

the extended features. As a result, the user is only able to modify the baudrate and

the number of data bits transferred within a single frame, which can be either seven

or eight. The remaining parameters, such as parity and the number of stop bits, are

fixed according to the datasheet [15].

In ZeroMate, all external peripherals are provided read-only access to the

system clock, enabling them to synchronize themselves if required. This ap-

proach, depicted in Figure 6.25, contradicts the fundamental principles of asyn-

chronous communication since it introduces a form of synchronization. How-

ever, this design choice was made to enhance the emulation’s reliability while

still enabling users to utilize Mini_UART as if they were interacting with real

hardware.

The implementation of Mini_UART communication can be accomplished through

a state machine driven by a pre-divided system clock, as shown in Figure 6.27.When

a predefined number of CPU cycles have passed, the state machine updates itself to

transmit and receive the next bit of the current data frame, which can be seen in

Figure 6.26
16
.

1

0
time

D7 D6 D5 D4 D3 D2 D1 D0

  Start bit
  (HIGH to LOW)

  Stop bit
  (stays HIGH)

GPIO
pin state

Payload = 0b00101011 = 0x2B

Figure 6.26: Example of a Mini_UART data frame with 8 bits of data

Receiving data can be implemented in a similar manner. Instead of setting the

value of the TX pin, the state machine reads the value of the RX pin, which has been

set previously by an external peripheral.

16
Transmitting a single bit can be done by setting the corresponding TX pin to the desired value.

Further details on what GPIO pins are designated for Mini_UART can be found in the datasheet [15].
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S0

D7

CLK

IDLE
CLK

CLK

  Start bit is sent

CLK

S1
CLK

CLK

  Stop bit is sent   LSB of the data

 MSB of the data

Transmit
data (8 bits)

D0

Figure 6.27: Mini_UART state machine (transmitting 8 bits)

6.3.3.10 Broadcom Serial Controller

The Broadcom serial controller, often abbreviated as BSC, is a peripheral device that

allows the user to communicate with external devices, usually sensors, using the

I2C protocol, which is a synchronous serial communication standard. I2C utilizes

two GPIO pins - SDA for data transmission and SCL for synchronization. Raspberry

Pi Zero is equipped with three of these devices that can be found mapped to their

respective addresses in Figure 6.12.

From a design point of view, the emulation of an I2C bus is nearly identical to

UART, with the primary distinctions being the frame structure and the synchronous

transmission of individual bits using an additional GPIO pin instead of the emulated

CPU clock.

While there are various configurations of the I2C communication protocol
a
,

ZeroMate exclusively supports only one, which is presented in Figure 6.28. As

stated previously, ZeroMate emphasizes the emulation of fundamental prin-

ciples, rather than attempting to implement every conceivable configuration,

which would only add unnecessary complexity without delivering any added

value.

a
They vary in voltage levels for representing logical 1 and 0, as well as in how they define

the start and stop bits using the SDA and SCL signals.
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SCL
1

0

SDA
1

0

0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

  Start bit (SDA
  goes low after SCL)

Address = 0b0111100 = 0x3C RW ACK data[0] = 0b00000000 = 0x00
(peripheral specific)

ACK

time

I2C pin states
  Awlays 0 since ZeroMate only
  supports writing to the I2C bus

I2C pin states

1 0 1 0 1 1 1 0

  ACK is supposed to be 0

0 0
time

RW ACKdata[1] = 0b10101110 = 0xAE
(peripheral specific)

SCL
1

0

SDA
1

0

  Stop bit (SDA
  goes high after SCL)

Figure 6.28: Structure of an I2C frame

The ZeroMate emulator comeswith several standalone external peripherals that

employ the same communication interface. Users can connect these peripherals to

the system based on their preferences using a configuration file, which is further

discussed in Section 6.4.

6.3.4 ARM1176JZF_S

All the previously mentioned peripherals are not self-sufficient in opera-
tion; they require external control. This is where ARM1176JZF_S, which serves as
the central processing unit in the BCM2835microcontroller, comes into play, as it

executes individual 32-bit ARM instructions that may utilize these peripherals in

various ways.

In terms of architecture, the ARM1176JZF_S component is divided into several

tightly integrated building blocks, as shown in Figure 6.29, to maintain a struc-

tured and organized design. The subsequent sections detail how each of these sub-

peripherals contributes to the overall emulation of the ARM1176JZF_S processor.
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«component»
CPU_Core

«component»
CPU_Context

«component»
ALU

«component»
MMU

«component»
ISA_Decoder

«component»
MAC

ARM1176JZF_S

«component»
Exceptions

Figure 6.29: Internal components of the ARM1176JZF_S processor

6.3.4.1 Central Processing Unit Context

The CPU context functions as an encapsulation of the current state of the CPU,
including details such as the current contents of the registers and the active CPU

mode. It is designed to provide an interface for accessing registers, enabling transi-

tions between different modes, and offering other utility functions that abstract the

underlying low-level logic, such as reading the state of individual bits of the Current
Program Status Register, which are shown in Figure 3.6. From a design standpoint,

its relationship with the CPU core is captured in Figure 6.30.

«class»
CPU_Context

«class»
CPU_Core

  contains:
  - current CPU mode
  - registers of different CPU modes
    (bank, CPSR, and SPSR)   Provides a unified interface

Figure 6.30: Relationship between the CPU context and the CPU core

Bank Registers
One of the presented challenges involves implementing so-called bank registers,

where, as mentioned in Section 3.3.3.1, each CPU mode possesses its distinct sub-

set of registers that are automatically loaded when the mode changes. Additional

information regarding this topic is available in Section A2.3 of the official ARM

Architecture Reference Manual [11].

As illustrated in Listing 6.6, one approach to address this challenge involves cre-

ating a lookup table for all bank registerswithin each CPUmode, effectively replacing

the ones used in the User/Systemmode, which are otherwise used by default.
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Source code 6.6: Retrieving a CPU register

1 uint32_t& Get_Register(uint32_t idx , NCPU_Mode mode)

2 {

3 / / Ch e c k i f a b a n k e d r e g i s t e r s h o u l d b e r e t u r n e d
4 if (m_banked_regs.at(mode).contains(idx))

5 return m_banked_regs[mode][idx];

6

7 / / A non − b a n k e d r e g i s t e r i s b e i n g a d d r e s s e d
8 return m_banked_regs[NCPU_Mode :: System ][idx];

9 }

Control Registers
The Current Program Status Register and the Saved Program Status Registers, com-

monly known as the CPSR and SPSR registers, are implemented in a similar way,

with each CPUmode having its designated pair of these registers.

6.3.4.2 Instruction Set Architecture Decoder

The primary role of the instruction set architecture decoder, abbreviated as
the ISA decoder, is to analyze a 32-bit value and ascertain the type of the
ARM instruction it represents, so it could be treated and decoded accordingly.

This task must be executed with the utmost efficiency, as it is repetitively performed

for each instruction the CPU executes.

In the case of the emulated CPU, the ISA decoder functions as a “black box”

offering a single-function interface, as demonstrated in Listing 6.7 below.

Source code 6.7: Interface of the ISA decoder

1 / / R e t u r n s t h e t y p e o f a g i v e n 32 − b i t ARM i n s t r u c t i o n
2 [[ nodiscard ]] static CInstruction :: NType

3 Get_Instruction_Type(uint32_t instruction) noexcept;

The typical and sole use-case of this interface is further illustrated in the se-

quence diagram shown in Figure 6.31. In this diagram, the CPU fetches the next

instruction from RAM and employs the ISA decoder to determine its type, enabling

it to proceed with the execution.
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:CPU_Core :System_Bus

Read a ui32 from the
address stored

in the PC register
Dispatch

:RAM

Read a ui32 from RAM

Return data
 (next instruction)Return data

 (next instruction)

:ISA_Decoder

Determine the type
of the  next instruction

Type of the
next instruction

Fetch

Decode

Figure 6.31: Use of the ISA decoder by the CPU

Internally, the ISA decoder maintains a look-up table of instructions masks

that are sequentially applied to the given 32-bit value until the operation’s result

matches the expected value associated with the current mask. Each mask serves

the purpose of zeroing out the variable bits specific to the instruction, leaving only

the known bits in place, the expected value, which is then used to unambiguously

determine the type of instruction.

End

idx := 0
tmp := 0

type: unknown

Start

tmp := (value & mask[idx])

tmp == expected[idx]

idx := idx + 1

idx exceeds
 the size of the look-up

table

type := type[idx]
YES

NO

NO YES

Get_Type(value: ui32): NType

return type

  Unknown instruction
  (might be used for     
  virtualization)

Figure 6.32: Algorithm for decoding ARM instructions
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Figure 6.32 shows the algorithm for decoding ARM instructions, which, in the

worst-case scenario, operates with time complexity of O(𝑛), where 𝑛 represents the
size of the look-up table. To ensure unambiguous decoding, it is essential to
test the bit masks in a specific order, starting with the most restrictive one
and proceeding to the least restrictive one, based on the number of bits set
within each mask. Otherwise, there might be a risk of incorrectly identifying the

instruction type, inevitably leading to unexpected behavior.

Once an instruction has been classified, the 32-bit value can be encapsulated

within its corresponding class representation, providing an interface to access the

specific fields relevant to that instruction. The contents of the look-up table can be

constructed using resources such as the B2 Appendix authored by Andrew Sloss

and Chris Wright, which provides ARM instruction encodings [13].

6.3.4.3 Exceptions

Exceptions can originate from various components within the ZeroMate emulator.

These exceptions may arise from factors such as the absence of an addressed page,

unaligned memory access, or the execution of a privileged instruction in the un-

privileged CPUmode. ZeroMate handles ARM CPU exceptions as runtime errors on

the host machine. As a result, the emulated CPU core must be prepared for the pos-

sibility that the currently executing instruction may abruptly trigger an exception

that must be properly handled. Figure 6.33 shows the hierarchy of CPU exceptions,

where each class may include additional information pertaining to the exception,

such as a descriptive message, the address at which it occurred, or the address of

the vector associated with that specific exception, which is shown in Table 3.2.

«class»
std::exception

«class»
std::runtime_error

«class»
CCPU_Exception 

«class»
CReset

«class»
CSoftware_Interrupt 

«class»
CPrefetch_Abort 

«class»
CData_Abort 

<<extends>>

<<extends>>

<<extends>>

Figure 6.33: Hierarchy of the CPU exceptions
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6.3.4.4 Arithmetic-Logic Unit

As the name suggests, the arithmetic-logic unit, also known as the ALU, is respon-
sible for carrying out arithmetic and logical operations, such as addition, sub-
traction, comparison, etc.

From a design standpoint, the ALU can be envisioned as a set of collaborative

functions concealed behind a single function interface, which is made accessible to

the central processing unit as shown in Figure 6.34.

ALU

CPU core

Execute_Operation

Execute_Arithmetic_Op

Execute_Logical_Op

public (interface)
functions

private (helper)
functions

  Data processing
  instruction (32 bits),
  operands, flags

Figure 6.34: Architectural structure of the ALU

As illustrated in Figure 6.34 above, when the ALU is employed, the CPU must

provide the current state of its flags as well as the data processing instruction cur-

rently in execution, which is then internally analyzed by the ALU to determine the

specific type of operation to be carried out.

MAC Unit
The ARM1176JZF_S also incorporates a module referred to as MAC, specifically

designed for performing a variety ofmultiplication operations. These operations
can involve the multiplication of either signed or unsigned 32-bit integers, signed

or unsigned 64-bit integers, or multiplication with addition, where a third value

is added to the result of a multiplication. All instruction encodings can be found

in the B2 Appendix document [13]. From an implementation perspective, it can be

integrated in a manner similar to the ALU.

6.3.4.5 Memory Management Unit

If enabled, the memory management unit, often referred to as the MMU, comes into

play just before the CPU sends a read/write request to the system bus. As shown in

Figure 4.2, its primary function is to convert a 32-bit virtual address into a
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corresponding 32-bit physical address based on the information stored in the

corresponding page table, allowing the user to reorganize the address space to their

needs. Furthermore, it performs a series of checks, the failure of which could result

in a MMU abort 17.

1. In the initial step, the MMU retrieves the page associated with the address from

the first-level page table to ascertain its type. This type indicates whether it

references a nested second-level page table or a physical frame. In the latter

case, the MMU also confirms the page’s presence in RAM, as it might have been

swapped out, for example, to a file.

2. When addressing a physical frame, the MMU checks access privileges of the

target frame based on the current mode of the CPU in order to ensure that no

security policy is being violated.

If all checks have successfully passed, the MMU proceeds to convert the virtual

address into a corresponding physical address. More detailed information about

how the MMU operates can be found in Chapter 6 of the ARM1176JZF_S Technical

Reference Manual [14].

The ZeroMate emulator lacks support for nested page tables, which inevitably

introduces certain limitations in the emulation. As a result, it utilizes a first-

level page table that spans over the entire address space.

«class»
CRAM

Page
table 0

TTBR_0

«class»
CMMU

«class»
CBus

«class»
CCU_Core

1

«class»
CPage_Table

2

«class»
CP15

«class»
CPage : uint32_t

1 N

Fetch the page table
from RAM if required

Convert the virtual addr
into a physical addr

Proceed with
the RW request

Holds the
address of the

translation table 0

Figure 6.35: Utilization of the MMU when processing a RW request

Placing an emphasis on the Memory Management Unit, Figure 6.35 illustrates

the essential steps to be taken when executing a read/write instruction. Whenever

the address of page table 0 changes in the TTBR_0 register, the MMU retrieves the

17
Users of the x86 architecture might already be acquainted with the concept of a page fault,

which, in this context, can be thought of in a similar way.

68



6.3.4.5. Memory Management Unit

entire page table from RAM and stores it within its private data structure. This ap-

proach eliminates the need to repeatedly read it with each memory access, which

would otherwise negatively impact the overall performance of the emulation. Once

a physical address is obtained, the CPU can then proceed with the request.

Implementation
As shown in Figure 6.36, the implementation of a first-level page table can be

tacked as an array of 4096 classes called CPage18. These classes serve as an abstrac-

tion for accessing individual fields of individual pages, where each page is repre-

sented as a 32-bit value.

0 1 2 3 4 5 6 7 8 9

31
frame physical address

12
page flags

0

1021 1022 1023

31
page index

12
address offset

0
virtual address

31
frame physical address

12
address offset

0
physical address

page[page_index]

Page_Table_0

  - access rights
  - access type
  - present in RAM?

Figure 6.36: Structure of the first-level page table

Translation Lookaside Buffer
Once a virtual address undergoes the process of translation, it is stored, along

with its corresponding physical address, in a look-up table
19
. In a real system, this

table is known as the Translation Lookaside Buffer, or TLB for short. The next time

the same address is used, it does not have to go through the translation process again,

which enhances performance. When a request is made to invalidate the TLB through

the System Control Co-processor, ZeroMate clears this associative data structure to

prevent invalid addressing across various virtual address spaces.

18
Assuming the page granularity is 1MB, covering the entire 4GB address space requires 4096 page

table entries.

19
It can be implemented, for instance, as an std::unordered_map<uint32_t, uint32_t>
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6.3.4.6 Central Processing Unit Core

The central processing unit utilizes the functionality of all previously mentioned

components. In terms of design, it is composed of multiple private member func-

tions that are invoked based on the type of instruction currently being executed.

These functions can be seen as microprograms, as they handle the specific opera-

tions associated with the current instruction.

Fetch the next
 instruction from RAM

Decode the instruction

Execute microprogram (1)
Instruction type (1)

e.g. a load-store inst.

Execute microprogram (2)
Instruction type (2)

e.g. a data processing inst.

Execute microprogram (n)
Instruction type (n)

e.g. a software interrupt inst.

Has an
exception been

thrown? 

Set the PC register to
the corresponding

vector address

YES

NO

May throw
an exception

Fetch

Decode

Execute

Update all CPU cycle
listeners

e.g. the ARM timer,
 AUX, and all external

peripherals

Post actions

timestamp A

timestamp B

Figure 6.37: Execution loop of the emulated CPU20

As shown in Figure 6.37, the microprograms are called within an infinite loop

known as the execution loop, which fetches the next instruction from RAM, decodes

20
The timestamp points serve as markers for performance measurement, which is further dis-

cussed in Chapter 9.
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it using the ISA decoder, and directs the execution to the appropriate micropro-

gram responsible for carrying out the necessary steps to execute it. These steps

may include tasks such as reading data from the stack, modifying register contents,

utilizing the arithmetic-logic unit, and more.

It is worth noting that a real system is significantly more complex than how

ZeroMate implements it. However, the author would contend that any form

of emulation involves trade-offs that result in the omission of certain details.

Catching Exceptions
As described in Section 6.3.4.3, the CPU must handle any exceptions that may

arise during the execution of the current instruction. When an exception occurs, the

CPU switches to the correspondingmode, saves the return address in the link register,

as if it was invoking a function call, and sets the address of the next instruction to

the value stored at the corresponding offset in the interrupt vector table.

Updating CPU clock listeners
As discussed in Section 6.3.3.2, prior to moving on to the next instruction, the

CPU informs all peripherals subscribed as system clock listeners about the number

of CPU cycles required to execute the last instruction.

While it is true that each instruction may require a varying number of CPU

cycles for execution, in the current implementation, ZeroMate empirically aver-

ages this number to 8, which presents a potential area for future improvement.

Users should be aware that the emulation speed does not match the speed of

real hardware, and as a result, theymay need to adjust timings in their firmware

accordingly.

6.3.5 Co-processors
As illustrated in Figure 6.38, ZeroMate takes into account two co-processors,
the design and functionality of which are described in the following two sections.

Although their capabilities may be somewhat limited compared to what a real sys-

tem offers, they serve the purpose of demonstrating the fundamental principles of

interactions that can also be applied in practice.

«component»
Coprocessor 15 (CP15)

«component»
Coprocessor 10 (CP10)

ARM1176JZF_S

Figure 6.38: Component diagram of the CPU and its co-processors
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As shown in Table 3.5, the CPU communicates with individual co-processors

through three types of instructions - data transfer, register transfer, and data opera-
tion. When the emulated CPU detects a co-processor instruction, it does not perform

any further analysis but promptly delegates it to the appropriate co-processor, de-

termined by the ID encoded within the instruction itself. The co-processor then

internally performs decoding and execution of the instruction using a technique

similar to that used by the emulated CPU.

Although theZeroMate emulator currently accommodates only two co-processors,

its overall design allows for a seamless integration of additional co-processors in the

future, should the need arise. As shown in Figure 6.39, the CPUmaintains a collec-

tion of available co-processors, all of which implement the same interface, through

which they are controlled by the CPU.

«class»
CCPU_Core

«interface»
ICoprocessor

«class»
CCP10

«class»
CCP15

<<implements>>

1

N
<<implements>>

Figure 6.39: Co-processor hierarchy

6.3.5.1 Co-processor 15

As stated previously, the System Control Co-processor comprises a tree-like hierarchy

of 32-bit registers that are used to enable a variety of additional features. These

features include caching policy, branch prediction, unalignedmemory access, setting

up access to other co-processors, and so on
21
. As far as ZeroMate is concerned, its

emulation efforts are directed primarily towards the registers listed in Table 6.1.

21
The list of all registers along with their functions can be found detailed in Chapter 3 of the

ARM1176JZF_S Technical Reference Manual [14].
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Table 6.1: List of emulated CP15 registers

Primary
register

Secondary
register

Index Description

C1 C0 0 Control Register (see Table 6.2)

2 Co-processor Access Control Register

C2 C0 0 Translation Table Base Register 0 (TTBR_0)

1 Translation Table Base Register 1 (TTBR_1)

2 Translation Table Base Control

C8 C7 0 Invalidate unified TLB unlocked entries

Other frequently used CP15 registers are implemented solely for the purpose

of completeness, even though modifying them has no effect. If a user’s firmware

attempts towrite to an unimplemented register, a warningmessagewill be displayed,

indicating this specific functionality is beyond the emulator’s current capabilities.

Table 6.2: List of emulated flags of the CP15 control register

Bit position Description

0 Enables the MMU

13 Determines the location of exception vectors

(0x00000000 vs 0xFFFF0000)

22 Enables unaligned data access operations
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From an emulation perspective, CP15 serves as an organized repository of infor-

mation that is queried fromwithin other components of the application, so they can,

if required, adjust their designated actions accordingly. This hierarchical structure

is visualized in Figure 6.40.

«class»
CCP15

«interface»
IPrimary_Reg

«class»
CC1

<<implements>>
1 N

«class»
CSecondary_Reg

«class»
CRegister : uint32_t

N
N

1

1
  e.g. accessing the control
  register: regs[C1][C0][0]

Figure 6.40: Design of the co-processor 15 register hierarchy (uses primary register

C1 as an example)

6.3.5.2 Co-processor 10

Co-processor 10 allowsusers toworkwith single-precision (32-bit) floating-
point numbers. The design of this co-processor closely resembles that of the CPU,

as illustrated in Figure 6.37. In this design, each instruction is first decoded and

consequently executed within a private member function, which can be considered

a microprogram.

While ZeroMate supports most common vector floating-point instructions

of version 2 (VFPv2 a
), including addition, subtraction, multiplication, division,

and square root, it simplifies its implementation by omitting support for various

rounding modes and floating-point exceptions.

a
All VFP instruction can be found listed in Chapter C3 of the ARMArchitecture Reference

Manual [11].

In terms of design, the floating-point unit, commonly denoted as the FPU, con-

sists of an array of 32 internal registers, each 32 bits in size. Despite representing

floating-point numbers, their underlining data type remains uint32_t, enabling

seamless data exchange between the CPU and the FPU.

However, it is essential to emphasize that all operations must be executed as

floating-point operations. As a result, the 32-bit number can be encapsulated

within a class that overrides its math operators, effectively hiding implementation

details from the caller. Whenever an operation needs to be carried out, the register

internally performs the following steps.
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1. For all operands, convert the raw 32-bit value into a float using the IEEE

754 floating-point representation [36]. This conversion can be accomplished

through the helper member function shown in Listing 6.8.

2. Carry out the floating-point operation.

3. Store the result back as a uint32_t using the same technique demonstrated

in Listing 6.8.

Source code 6.8: Conversion between uint32_t and float

1 template <typename Type >

2 [[ nodiscard ]] Type Get_Value_As () const
3 {

4 return std::bit_cast <Type >( m_value); / / s i n c e C++20
5 }
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6.4 External Peripherals
All the modules described previously form the core of the emulator, which is com-

piled as a standalone application. Furthermore, the ZeroMate emulator offers
a public single-header interface that enables the implementation of third-
party external peripherals, which can be compiled independently of the toolchain

used for the core itself. In other words, users can choose their preferred program-

ming language for developing an external peripheral, with the condition that they

implement the interface and compile it as a shared library
22
. This concept is illus-

trated in Figure 6.41.

Using a configuration file, these external peripherals can be then loaded by the

core at runtime, enabling the user to create a custom circuit of external peripherals.

Compiling as a shared library offers the advantage of creating multiple instances

of the same peripheral. For instance, the user can employ multiple instances of

led.dll to assemble a traffic light system, which can then be controlled by their

custom firmware.

«interface»
IExternal_Peripheral

ZeroMate emulator

button.dll

dip_switch.dll

serial_terminal.dll

peripherals.json

<<implements>><<configuration>>

1 N

Core of the
ZeroMate emulator

Public interface for
external peripherals

External peripherals
compiled as shared libraries

Figure 6.41: External peripheral interface

6.4.1 External Peripheral Interface
Upon construction, every external peripheral is given access to the GPIO pins,
as it is their primary way of interaction with the core of the emulator. The interface

also mandates that they implement a Get_GPIO_Subscription function, respon-

sible for returning a set of GPIO pins they wish to subscribe to 23
.

22
The format of a shared library is .dll on Windows and .so on Linux, respectively.

23
ZeroMate has support for connecting multiple external peripherals to the same GPIO pins,

effectively creating a parallel connection.
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Whenever the state of a GPIO changes, the emulator iterates over all external

peripherals, examining their GPIO subscriptions, and duly informing them of the

change. Additionally, they receive information about the number of CPU cycles it

took to execute the last instruction, the same way internal peripherals do, effectively

serving as an emulated replacement for an independent system clock.

Certain external peripherals, such as a serial terminal, come with their own

system clock. However, in ZeroMate, all timing functions are derived from the

emulated CPU frequency.

Optionally, they are provided access to the logging system, which proves to

be invaluable for debugging or providing insights into their current state. External

peripherals are not obliged to implement a graphical user interface; nevertheless,

they are implicitly providedwith a context that they can utilize to render themselves

within each frame.

6.4.2 Configuration
Upon startup, ZeroMate attempts to read a single configuration file in the JSON

format that details the connections of external peripherals. Table 6.3 outlines the

obligatory fields that must be provided for every peripheral. ZeroMate handles

the construction and management of all external peripherals within its dedicated

address space on the host machine.

Table 6.3: Information stored in peripherals.json

Field Example Description

name "7-segment Display" Unique name associated with

the peripheral

connection [ 2, 3, 4 ] Set of GPIO pins the periph-

eral is connected to

lib_dir "peripherals" Directory where the shared

library is held

lib_name "seven_seg_display" Name of the shared library
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Figure 6.42 provides a visual representation of a custom connection that con-

nects two 7-segment displays in parallel, having them simultaneously display the

same piece of information.

7_segment_display.dll (1)01
02
03
04
05
06
07
08 7_segment_display.dll (2)

53
54

GPIO pins

Figure 6.42: Illustration of connection of two parallel 7-segment displays

6.4.3 Examples of External Peripherals
ZeroMate comes pre-packaged with several external peripherals, many of which

mirror those found on the DPP-01 board [37], which was designed for educational

purposes within the KIV/OS class taught at the University of West Bohemia. Table

6.4 enumerates the external peripherals developed alongside the emulator.

Table 6.4: List of emulated external DPP-01 peripherals

Peripheral Additional information

button.dll -

dip_switch.dll -

led.dll Features multiple color support

7_seg_display.dll 7-segment display controlled via a shift register

ssd1306_oled.dll OLED display controlled via the I2C protocol

serial_terminal.dll Used for the UART communication

logic_analyzer.dll Visualization of GPIO pins’ state over time
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6.4.3.1 Serial Terminal

The serial terminal serves as the counterpart in full-duplex UART communica-
tion, enabling the user to communicate externally with the firmware running in the

emulator. In practice, this is exemplified by programs such as PuTTY [33], which

establish communication with the development board through the host’s operating

system. From a design perspective, it employs the same algorithmic techniques as

those described in Section 6.3.3.9.

6.4.3.2 Logic Analyzer

The logic analyzer works as a read-only observer of the current state of the
GPIO pins it is connected to. It graphically represents their state over time, allowing

the user to visually debug individual frames of various low-level communication

protocols, such the previously mentioned UART or I2C.

Depending on the specific use-case, the logic analyzer can either periodically

sample the state of the GPIO pins
24

or it can sample them whenever there is a

change in the state of any of the monitored pins, which can prove to be valuable

when observing synchronous types of communications.

6.5 Logging System
The ZeroMate project implements a custom logging system, which can be

utilized both within the emulator’s core and the external peripherals. From a design

perspective, the logging system component serves as a central access point, acting

as a proxy to forward log messages to individual endpoint loggers. This design,

which is visualized in Figure 6.43, enables the implementation of multiple loggers

for various purposes, such as logging to a file, console, or graphical user interface.

zero_mate.exe external_peripheral.dlllogging_system.dll

  Log a message

  forward the message
  to the endpoint loggers

Figure 6.43: Utilization of the logging system throughout the project

24
The frequency is derived from the emulated CPU clock.
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The logging system is compiled separately as a shared library, making it usable

across all project targets. When it receives a message, it applies a uniform formatting

and forwards it to all endpoint loggers.

The ILogger interface, shown in Figure 6.44, requires that all endpoint loggers

implement the Debug, Info,Warning, and Error callback functions, which are com-

monly found in the majority of logging systems. Moreover, each endpoint logger

can have a different logging level
25
, allowing them to filter out messages that do not

meet their specific criteria.

«interface»
ILogger

«class»
CLogger_STDO 

«class»
CLog_Window  

<<implements>>

«class»
CLogging_System 

1 N

<<log a message>>

logging_system.dll

zero_mate.exe

Utilized by both the
logging system

the main executable

<<log a message>>

external_peripheral.dll

Figure 6.44: Hierarchy of endpoint loggers utilized by the logging system

6.6 User Interface
ZeroMate places a strong emphasis on the visual aspects of emulation, aim-

ing to assist the user in debugging and troubleshooting potential bugs or issues. It

serves as a frontier interface, through which the user can interact with the emulator

and view the current system’s state. It consists of a set of hierarchically structured

windows, each displaying information about distinct aspects of the emulator’s core.

Figure 6.45 shows the architectural structure of all GUI windows, with each

window being periodically rendered within each frame.

25
For instance, when the logging level is set to Warning, the loger will only accept messages

classified asWarning or Error.
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«class»
CRAM_Window 

«interface»
IGUI_Window

+ Render(): void

«class»
CRegisters_Window 

«class»
CGPIO_Window  

«class»
CGPIO_Manager  

«class»
CCPU_Context  

«class»
CRAM  

«class»
CGUI 

1

N

<<implements>>

Graphical User Interface Backend logic
(emulator's core)

Figure 6.45: Structure of GUI windows

From Figure 6.45, it can be observed that every class windows has access to

the part of the emulator’s core whose state is supposed to visualize. This imposes a

one-direction dependency, allowing the core to be potentially used with different

GUI libraries in the future, should the needed arise.

In general, all windows can be categorized into three main types - component
windows, utility windows, and the primary source code window. The component win-

dows are designed to display the current state of specific components, such as the

CPU context, RAM, CPU registers, co-processors, and others. Utility windows aim to

enhance the user experience. This category includes windows like the logging win-

dow, the top bar menu, and the control window, which enable users to control the

state of execution. Lastly, the primary source code window is arguably of utmost

importance, as it presents the disassembled source code organized into different

functions. It provides the user with information about the current line of execution

and it allows them to set breakpoints at their desired locations.
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Further design and implementation details regarding both the core and GUI

components can be found in the documentation generated from the source

code. This documentation is accessible online through GitHub Pages [38].

Several screenshots of the final emulator, including external peripherals, can

be viewed in Figures 12.2, 12.3, and 12.4, which are included in the attachments.
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The development process aimed to establish an environment and employ techniques

for both creating and testing a Raspberry Pi Zero emulator that aligns with the

design concepts outlined in Chapter 6.

7.1 Programming Language
As emphasized earlier in Section 5.3, selecting the appropriate programming lan-

guage is crucial since the emulator’s speed is a critical factor. As a result, the use

of languages such as Java 1
or Python 2

may not be suitable for this project, as

they introduce an additional layer of runtime abstraction, which typically results in

slower execution.

For these reasons, C++, with its modern standards, stands out as a strong
candidate, as it offers high-level abstraction, commonly found in most mod-
ern programming languages, whilemaintaining low-level efficiency. One dis-
advantaged of choosing C++ is that it does not come with a package manager, which

may render handling third-party dependencies more challenging. Nevertheless, the

author believes that its speed and portability outweighs its potential disadvantages.

To mitigate common pitfalls in C++, the source code is written following the

guidelines outlined in the C++ Best Practices book, authored by Jason Turner [39].

7.2 Project Setup
The entire project is maintained on GitHub [40], which is the world’s largest

hosting platform for open source projects. It serves as the primary platform for

reporting issues, suggesting new features, and accepting public contributions.

1
In the case of Java, it does not run directly on the CPU; instead, its execution is carried out

through the Java Virtual Machine, often abbreviated as JVM.
2Python is an interpreted programming language, meaning it is not compiled down to machine

code. It relies on its runtime interpreter to carry out the execution, which similar to Java, may

adversely impact its performance.
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The overall structure of the ZeroMate project is detailed in Figure 12.1 in the

attachments.

7.2.1 Third-party Libraries
Using Git submodules, upon cloning the project, all third-party dependencies
are automatically fetched from GitHub, eliminating the need for their manual

installation. In partictular, ZeroMate takes advantage of the cross-platform libraries

listed in Tables 7.1, 7.2, 7.3, and 7.4.

Table 7.1: List of third-party backend dependencies

Library Description/purpose

capstone Disassembly framework for binary analysis

demumble Demangling compiler symbols (based on LLVM)

dylib Loading dynamic libraries (Windows, Linux, and MacOS)

elfio Parsing ELF files

fmt Modern text formatting library

json Parsing JSON files

magic_enum Static reflection for C++ enumerations

Table 7.2: List of third-party frontend dependencies

Library Description/purpose

IconFontCppHeaders Set of header files and classes for using icons

glew OpenGL extension library

glfw API for creating windows

stb Window icon handling

imgui Immediate mode GUI library for C++

imgui-filebrowser File browser implementation for imgui

imgui_club Hex editor & memory viewer for imgui

implot Immediate mode plotting library

Regarding the graphical user interface, another considered approach was to

utilize frameworks and libraries like Qt, GTK, or wxWidgets.
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7.2.2. Build System

However, the author believes that for rapid prototyping and experimentation

with graphical user interfaces, an immediate mode library such as imgui proves to

be more flexible.

When selecting a third-party library, it was crucial to ensure that it has cross-

platform support, ensuring that the emulator would not be confined to a single

operating system.

Table 7.3: List of third-party testing dependencies

Library Description/purpose

googletest C++ testing and mocking framework

Table 7.4: List of third-party documentation dependencies

Library Description/purpose

doxygen-awesome-css CSS theme for Doxygen HTML-documentation

7.2.2 Build System
ZeroMate employs CMake as its primary build system [41], allowing it to be

developed in various modern integrated development environments, or IDEs, such

as CLion, VSCode, and Microsoft Visual Studio.

Moreover, it comes with a CMakePresets.json file, which can be utilized to

preconfigure CMake for different generators and compilers
3
. CMake also handles

the building and linking of all third-party dependencies, ensuring a smooth project

setup.

7.2.3 Continuous Integration
Using GitHub Actions,ZeroMate leverages its custom set of CI pipeline con-
figurations that are automatically triggered whenever a change is integrated into

the project. The primary goal is to automatically verify that the project successfully

3
This file includes configurations for generators such as Unix Makefiles, Ninja, and Visual

Studio 17 2022, along with compilers like gcc, clang, and cl.
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builds and runs on all three major operating systems. The result of a pipeline run

is automatically reported and reflected in the top-level README.md file, providing

users with an overview of the current state of the project.

7.2.4 Testing

Following a successful build of the project, the next step of each pipeline involves
running a set of regression tests to confirm that they all still pass. Additionally,

the pipeline automatically uploads the result to the Codecov website, presenting

users with a detailed overview of the overall project code coverage [42].

7.2.5 Documentation

ZeroMate also features a dedicated pipeline configuration to automatically gen-
erate a Doxygen documentation directly from the source code, which is then

automatically uploaded to GitHub Pages [38]. Not only does it allow users to

browse through individual functions, classes, and namespaces, but it also provides

insight into various dependencies through automatically generated class diagrams.

7.3 Branching Strategy

The ZeroMate development follows the branching strategy illustrated in Figure

7.1. In this approach, individual features, such as the implementation of different

components, are developed in their designated feature branches. These branches
are consistently merged into the development branch, which, when stable enough, is

then merged into the main branch. Once a reasonable number of features have been

incorporated into the main branch, a new release is published.

v0.1.0
Release

Time

main branch

development
branch

feature branch/
bug-fix branch

  All pipelines
  are run (CI)

  e.g. implementation
  of the ARM timer

Figure 7.1: Branching strategy of the ZeroMate project
4
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In addition to release notes, each release includes the source code and a pre-

built executable for both Linux and Windows, along with their respective SHA256

checksums, providing a means to verify their authenticity.

7.3.1 Versioning
Each release is tagged with its version in the vX.Y.Z format. The value of X
increments whenever there is a change in the public interface, such as modifications

to the IExternal_Peripheral interface, which serves as the access point for all

external peripherals. The value of Y increases whenever a new feature is introduced,

and Z increases whenever a bug is fixed.

4
There is also an additional branch that runs in parallel with the main branch, which is used by

GitHub Pages to host the Doxygen documentation [38].
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As illustrated in Figure 8.1, the testing strategy for this project was segmented
into various tiers based on granularity. The core of the emulator underwent

rigorous testing through an extensive suite of unit tests, addressing its fundamental

yet crucial functionalities that other parts of the system heavily rely on. Functional

testing integrated different components of the emulator working alongside to ex-

ecute specific tasks, such as blinking an LED using a timer interrupt or scheduling

processes running in userspace. The final phase of testing, system testing, was con-

ducted by students enrolled in the KIV/OS class to assess its overall usability in

practice.

Unit testing

CPU core

Functional testing

BCM2835 peripherals

System & GUI testing

  GoogleTests

  Set of example
  programs

  Performed by students
  within the KIV/OS class

Figure 8.1: Testing strategy leveraged in the ZeroMate project

8.1 Unit Testing
The core of the emulator was developed with unit testing in mind, meaning they

were utilized from the very beginning of the project development
1
. Their primary

purpose is to test the correct execution of individual ARM instructions, in-
cluding setting the CPU flags, which are shown in Figure 3.6, switching between CPU

1
This strategy is sometimes referred to as test-driven development.
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modes, and accessing the main memory. Additionally, they are used to test out the

correct execution of floating-point instructions, the emulation of which is described

in Section 6.3.5.2.

Approximate area of the source
files associated with the core of 
the ZeroMate emulator

High code coverage (100%)

Low code coverage (0%)

Figure 8.2: Code coverage of individual source files (exported from Codecov [42])

Each block shown in Figure 8.2 corresponds to a single .cpp/.hpp file of the

project. The size and color of each block signify the number of statements and

the coverage, respectively. Notably, smaller files, often indicative of individual ARM

instructions, exhibit higher test coverage compared to larger files, which are typically

associated with peripheral implementations. In total, over 500 unit tests cover
approximately 78% of the emulator’s core.

As discussed in Section 7.2.3, unit tests are also used as regression tests in the

CI pipelines, ensuring that new changes do not break previously functioning code.

8.2 Functional Testing
Functional testing aimed at testing the BCM2835 peripherals that work in conjunc-

tion with the emulator’s core. This level of testing was carried out through a
series of example scenarios that progressively increase in complexity. These
scenarios were specifically designed for operating system development, beginning

with fundamental tasks such as blinking an LED, advancing to interrupt handling,

utilizing different BCM2835 peripherals, and ultimately, managing the execution of

different processes running in userspace
2
.

2
Each example was cross-compiled and linked to a single ELF file, which could then be loaded

directly into the emulator as discussed in Section 6.1.
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The final example used to assess the emulator’s functionality was the KIV-RTOS

project [2], which is a real-time operating systemdeveloped for educational purposes

at the University of West Bohemia.

The emulator ships with all test examples, allowing users to experiment with

them prior to creating their own applications. Each example is accompanied

by a brief description and a concise demo in the gif format, demonstrating

the exact functionality as well as its intended usage.

There are a total of 21 such examples that can be found in the ZeroMate project,

some of which are briefly described further below.

01 - factorial_recursive
This example marks a transition from unit testing to functional testing. Its pri-

mary objective is to test function calls, implicitly utilizing the stack along with

several essential instructions. The kernel recursively calculates 7! and subsequently

halts the CPU. The outcome of this operation, 5040, is located in register r0, which

is employed to store the return value from a function.

08 - LED_toggle_sos_signal
This example utilizes GPIO pin 47, the built-in LED, to emit the SOS signal in

an infinite loop. It employs an active sleep function to introduce a delay before

changing the pin’s state
3
.

11 - timer_and_GPIO_interrupt
This example illustrates the utilization of multiple interrupts originating simul-

taneously from various sources. One interrupt occurs periodically from the ARM

timer, while the second one originates from a GPIO pin, such as an external button.

The timer interrupt toggles an LED connected to pin 47, and the GPIO interrupt

toggles an LED connected to pin 48.

13 - context_switch_monitor
This examples showcases the use of context switching, which an essential part

of any operating system with a preemptive scheduler
4
. The kernel creates four

processes that take turns utilizing the CPU time. Whenever it is time to switch to

3
An active sleep function is a method that suspends ongoing execution by continuously looping,

essentially “not doing anything”, until the awaited event occurs or the specified time elapses. In

certain scenarios, this approach can be more efficient than using interrupts, especially when the

sleep period is anticipated to be relatively short.

4
In an operating system, preemption refers to temporarily interrupting a currently executing

task, such as when a high-priority task needs to be executed, with the intention of resuming it at a

later time.
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another process, as determined by the ARM timer, the CPU stores the context of the

current process and loads the context of the next one. Each process is assigned a

unique number, which it continuously prints out to the debug monitor, which is

discussed in Section 6.3.3.4.

16 - paging_userspace
This example demonstrates the management of virtual address spaces for user-

space processes. During system initialization, the kernel bootstraps the following

user processes, which are subsequently scheduled in a preemptive manner. (1) An

idle process that performs no active tasks but yields control. (2) Process 1, which

continuously writes digits 0 through 9 to a 7-segment display. (3) Process 2, which

leverages the random number generator (TRNG) along with the debug monitor to

print out random numbers.

19 - I2C
This example demonstrates the use of an SSD1306 OLED display that is con-

trolled over I2C. There are two userspace processes bootstrapped within this ex-

ample. (1) A “dummy” process that periodically blinks an LED. (2) A process that

utilizes TRNG to generate random numbers, serving as indices for an array of string

messages. These messages are then sent over I2C to be displayed on the SSD1306

OLED display.

20 - UART_game
The objective of this example is to showcase bidirectional interrupt-driven UART

communication. This is achieved through a simple number guessing game played

between the kernel and the user. In the game, the user thinks of a number, and the

kernel guesses the number by inquiring whether it is greater than a specific value.

The user interacts with the kernel by responding with ’y’ (yes) or ’n’ (no) to each

question posed.

8.3 System Testing
After the emulator was developed, it was used as an educational tool within the

KIV/OS class. Students, effectively playing the roles of end users, were encouraged

to use it during practical sessions and as a debugging tool for their final semester

projects.

The objective was to assess the usefulness and intuitiveness of the emulator

across various aspects, including the installation process, navigation through the

GUI, and the execution of their applications. To collect comprehensive feedback,

students were given a survey that included various questions regarding the overall
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usage of the emulator. However, due to the limited number of participants, the

results lack statistical interpretability. One student included the following in their

overall evaluation.

“Very usefull for debugging not computionally intensive projects / functions, the best
feature being the ability to view RAM and disassembled code. Testing code with tons of
instructions or loops with many iterations would be very impractical, since the emulator
runs slow for that (but it’s an emulator, this is kinda expected I guess). The main downside
was the not very well functioning UART emulation. These two problems were the reason
I left development for the emulator as well as real hardware and continued working only
on the device itself (used UART logging for debugging).”

Regarding the reported issues with the UART interface, a comprehensive analy-

sis was conducted, revealing that the root cause of the problem stemmed from

the firmware itself and not from within ZeroMate, as evidenced by its mani-

festation on a HW board as well.

93





Performance
Evaluation 9
The significance of the emulator’s speed has been emphasized repeatedly through-

out the thesis. As a result, the following experiment was conducted to assess the

emulator’s capability in terms of its emulation speed.

9.1 Experiment Parameters
As an input for this experiment, the KIV-RTOS operating systemwas chosen
since it was the targeted system for emulation [2]. It was considered complex enough

to offer a general understanding of the emulator’s capabilities. However, it is essential

to acknowledge that the results may vary depending on what application is used, as

each may differ in the quantity and types of individual instructions.

During the run of KIV-RTOS, the time taken to emulate each instruction
was continuously measured, starting from the point where the instruction is

being decoded to the pointwhen its execution is completed. These points aremarked

in Figure 6.37 as timestamp A and timestamp B. The goal was to focus solely on the

emulation of individual ARM instructions, excluding other actions such as updating

peripherals or checking for pending interrupts
1
.

The experiment was conducted on the Lenovo ThinkPad P50 laptop, running

the Windows 10 operating system. The laptop is equipped with an Intel(R)

Core(TM) i7-6820HQ CPU running at 2.70GHz and 16GB of RAM. In terms of

C++, the std::chrono::high_resolution_clock class was employed for

measuring execution speed in nanoseconds [43].

1
As all peripherals are updated synchronously, an inefficient implementation of a peripheral can

potentially compromise overall performance.
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9.2 Emulation Speed
Throughout the run, a total of 426,922,064 instructions were executed. The av-
erage emulation speed for each instruction is illustrated in Figure 9.1. Taking into

account both the frequency of individual instruction types and their respective av-

erage execution times, the overall performance was calculated to be 4.84 mega
instructions per second using the following formula

2
.

Emulation speed =
10

3

1

𝑡

∑𝑛
𝑖=1(𝑜𝑖 ∗ 𝑠𝑖)

[Minst/s],

where 𝑡 represents the total number of instructions, 𝑛 is the number of different

instruction types, 𝑜𝑖 is the absolute number of occurrences of instruction 𝑖, and 𝑠𝑖

denotes its average execution time in nanoseconds.

Emulation speed
[Minst/s]Instruction type Relative 

occurrence [%]

0

0.014 0.100

weighted
average = 4.84

Software interrupt

Store return state
0.436 0.833

Return from exception
0.033 1.282

Block data transfer

0.033 2.041
Co-processor register transfer

41.705 3.846

Change processor state
< 0.001 3.846

Program status register transfer

0.033 4.000
Data processing 41.061 5.556

Extend
0.007 5.882

Multiply long

5.388 8.333
Count leading zeros < 0.001 8.333

NOP 0.100 31.250

Signed multiply
1.214 16.949

Branch
0.002 10.000

Multiply
9.940 10.000

Branch and exchange

0.003 9.091

Single data transfer
0.001 2.500

Halfword data transfer 0.020 3.846

6 12 18 24 30

Figure 9.1: ZeroMate’s emulation performance of KIV-RTOS

2
This process was repeated multiple times, consistently yielding results in the range of 4 to 5

mega instructions per second.
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Figure 9.1 also highlights the top 3 most executed instructions - Single data
transfer, Data processing, and Branch.
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Figure 9.2: Performance comparison of different emulators

Figure 9.2 shows the performance comparison of ZeroMate to other emulators

along with a list of architectures they support. This comparative analysis is sourced

from the CPUlator website [23]. It is noteworthy that among these emulators, Ze-
roMate distinguishes itself as the only emulator supporting an MMU. When

activated, the MMU is inevitably utilized in every memory access operation, leading

to a notable reduction in the overall emulation speed.

However, it is crucial to note that the source lacks information on how these

statistics were obtained
a
. Therefore, the data presented in Figure 9.2 is included

merely as an intriguing observation and should be approached with caution,

as it may not be entirely reliable for drawing definitive conclusions.

a
Measurements might have been taken on different machines with varying parameters.

Additionally, emulators may not universally support the same features, which could impact

their overall performance.

9.3 Performance-affecting Instructions
To accurately assess the overall impact of different instruction types on emulation

performance, both the emulation speed and the frequency of occurrences must be

considered. For instance, in Figure 9.1, it can be observed that the Software inter-
rupt instruction exhibits the poorest emulation performance, meaning it takes a

significant amount of time to emulate. However, its execution frequency is lower
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compared to other instructions, mitigating its substantial negative impact on overall

performance.

As far as KIV-RTOS is concerned, Figure 9.3 enumerates the top 8 instructions

that affect the overall emulation speed. This analysis could potentially serve as an

indication of which instruction types should be prioritized for further optimization.

Impact on performace
(portion of the total execution time [%])Instruction type

0

52.46

Software interrupt

Store return state

35.76
4.81

Block data transfer
3.13

0.67

0.12

Data processing

Extend
Branch

Branch and exchange

Single data transfer

2.53

0.35

10 15 30 35 505 20 25 40 45 55

Figure 9.3: Top 8 most performance-affecting instructions
3

It can be noticed that both the Single data transfer and Block data transfer in-
structions exert a significant impact on overall performance, which is unsurprising,

given that ARM, as mentioned earlier, operates on a load-store architecture, which

requires both operands to be present in registers, leading to increased memory traf-

fic. This finding aligns with the statement made in Section 6.3.1 - “It is reasonable
to conclude that optimizing peripheral access efficiency might be crucial for emulation
speed.”

3
The data collected for this experiment is presented in Table 12.2, which can be found in the

attachments.
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Potential
Improvements 10
Implementing a complete Raspberry Pi Zero emulator is a complex task that poses

numerous challenges. Throughout the thesis, some of ZeroMate’s limitations were

highlighted and suggested as future improvements. From a critique yet objective

point of view, this chapter lists out some of the limitations and ideas for further

enhancements.

10.1 Current Limitations
RAM Implementation

The existing RAM implementation employs a continuous array of bytes. How-

ever, since not all of RAM is immediately utilized, a more resource-friendly approach

would involve dynamically allocating individual blocks of memory as they are ad-

dressed by the emulated CPU.

Implementation of CPU Exceptions
ZeroMate implements CPU exceptions as std::runtime_error, which can

potentially overlapwith genuine exceptions thatmay arise at runtime due to a bug in

the source code. Consequently, the emulated CPUmay face difficulty distinguishing

between an actual exception and an emulated CPU exception.

Support for a Second-level Page Table
The current implementation of ZeroMate only permits the use of a first-level

page table, with its entries pointing directly to physical frames. This limitation hin-

ders users from further managing the address space through nested paging.

Implementation of All ARM Instructions
There are still a few ARMv6 instructions that are yet to be implemented, such

as the SETEND instruction, responsible for changing the current endianness, or the

PLD instruction, designed to minimize cache-miss latency by preloading data into
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cache before it is accessed. However, the majority of commonly used instructions

have already been fully implemented and rigorously tested, as evidenced by the

successful emulation of KIV-RTOS [2].

Asynchronous Update of Peripherals
In the current implementation, all peripherals are updated synchronously im-

mediately after an instruction is executed, temporarily halting the execution of the

next instruction. A more effective approach, mirroring real hardware, would in-

volve updating them asynchronously in a separate thread. This way, the CPU could

continue its execution without any delay.

Thorough & Accurate Peripheral Implementation
It has been noted that the implementation of certain BCM2835 peripherals was

simplified to illustrate a general approach of how they can be used, rather than delv-

ing into every single piece functionality they are capable of. Consequently, some

of the more advanced features might be omitted or deviate from the real hardware

specifications. Additionally, it is important to mention that ZeroMate does not cur-

rently support all of the BCM2835 peripherals.

Code Disassembly
As highlighted by the students, despite being segmented into distinct function

blocks, navigating through the current program disassembly may become challeng-

ing as the codebase grows in size.

10.2 Future Enhancements
Enhancing the functionality of the system also requires addressing the issues previ-

ously outlined in Section 10.1.

CLIMode
ZeroMate functions as a GUI application. Nevertheless, there could be an advan-

tage in introducing a CLImode, specifically tailored for deployment in continuous

integration environments as a testing utility for embedded applications.

Socket Communication
A notable improvement could entail the integration of inter-process communi-

cation, or IPC, facilitating bidirectional communication between multiple instances

of the emulator, each effectively functioning as independent computing unit. This

featurewould empower users to emulate a distributed environment and could poten-
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tially serve as a practical platform for showcasing a variety of distributed computing

techniques, such as the farmer-worker scheme or MapReduce.

WebAssembly
Taking inspiration from CPUlator [23], the author believes that it would be

a welcomed addition to introduce the capability of compiling the application into

WebAssembly, whichwould enable users to access it directly from a browserwithout

the need for any installation.

Further Modularization
Currently, all the BCM2835 peripherals are an integral part of the final executable.

It would be advantageous if theywere compiled as separate dynamic libraries, which

would enable them to be replaced if needed, allowing users to configure their own

system. For instance, users could upgrade their RAM, replace timers, and so on.More-

over, developing them independently as separate projects, akin to external periph-

erals, facilitates seamless integration of new peripherals into the system without the

need to recompile the core itself.

Support for Analog Pins
Currently, ZeroMate supports only digital pins. However, its applications would

be more extensive if the emulator also supported both analog and digital inputs.
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Conclusion 11
The goal of this thesis was to explore and evaluate potential approaches to emulate

Raspberry Pi Zero, representing one of the most widely embraced architectures

for embedded devices. Beyond educational purposes, the compelling reasons for

this undertaking included compensating for a physical board, which may not al-

ways be readily available, and experimenting with software without concerns about

damaging real hardware.

To provide context, the paper initially explored the general concept and classifi-

cation of various computer architectures before delving into some of the distinctive

characteristics specific to the ARM architecture itself. The thesis then proceeded to

scrutinize existing solutions that could potentially emulate KIV-RTOS [2], an edu-

cational real-time operating system, which eventually served as the primary source

for testing. However, the study ultimately concluded that these solutions might not

be suitable for such a purpose, primarily due to their limited support for some of

the more advanced system-related features, such as paging, which is indispensable

in the development of an operating system.

As a result, the paper shifted its focus to an abstract design of a custom modular

Raspberry Pi Zero emulator with the aim to address these limitations and provide

a user-friendly interface that would enable seamless debugging of embedded appli-

cations targeting the Raspberry Pi Zero platform. One of the design goals was to

enable communication with third-party external peripherals that could be devel-

oped independently of the core itself, allowing users to emulate an environment

with custom hardware components, such as screens, sensors, and actuators. Aligning

with the design decisions, the emulator was consequently developed using modern

standards of the C++ programming language. In addition to rigorous unit testing,

the entire system underwent functional testing using a set of examples pertained to

operating system development and practical use by students enrolled in the KIV/OS

class.

The thesis concludes with a performance evaluation, proposing areas for future

improvements and suggesting ideas for further enhancements, such as employing

socket communication to potentially emulate distributed applications.

103





Bibliography

1. TEAM, Arm Editorial. The Official History of Arm [online]. 2023. [visited on

2023-09-25]. Available from: https://newsroom.arm.com/arm-official-h

istory.

2. ÚBL, Martin. KIV-RTOS - An educational operating system for bare-metal Rasp-
berry Pi Zero W (BCM2835-based board) [online]. University of West Bohemia.

[visited on 2023-09-27]. Available from: https://github.com/MartinUbl/KI

V-RTOS.

3. NOERGAARD, T. Embedded Systems Architecture: A Comprehensive Guide for
Engineers and Programmers. Elsevier Science, 2005. isbn 978-0750677929.

4. GILREATH, W.F.; LAPLANTE, P.A. Computer Architecture: A Minimalist Per-
spective. Springer US, 2012. isbn 978-1461502371.

5. CRAGON, Harvey G. Computer Architecture and Implementation. 2000. isbn
978-0521651684.

6. FURBER, S.B. ARM System-on-chip Architecture. Addison-Wesley, 2000. isbn

978-0201675191.

7. JAMIL, T. RISC versus CISC [online]. Institute of Electrical and Electronics

Engineers, 1995 [visited on 2023-11-02]. Available from: https://ieeexplor

e.ieee.org/abstract/document/464688.

8. KINGATUA, Amos. ARM Processor vs X86: Choosing the Right Architecture for
Your PC [online]. 2023. [visited on 2023-11-02]. Available from: https://elec

tronicsandict.com/arm-processor-vs-x86-choosing-the-right-arch

itecture-for-your-pc.

9. A., Patterson David. Computer Organization and Design Arm Edition: The Hard-
ware Software Interface. Morgan Kaufmann, 2016. isbn 978-0128017333.

10. SEGARS, Simon. Arm Partners Have Shipped 200 Billion Chips [online]. 2021.
[visited on 2023-09-26]. Available from: https://newsroom.arm.com/200bn-

arm-chips.

105

https://newsroom.arm.com/arm-official-history
https://newsroom.arm.com/arm-official-history
https://github.com/MartinUbl/KIV-RTOS
https://github.com/MartinUbl/KIV-RTOS
https://ieeexplore.ieee.org/abstract/document/464688
https://ieeexplore.ieee.org/abstract/document/464688
https://electronicsandict.com/arm-processor-vs-x86-choosing-the-right-architecture-for-your-pc
https://electronicsandict.com/arm-processor-vs-x86-choosing-the-right-architecture-for-your-pc
https://electronicsandict.com/arm-processor-vs-x86-choosing-the-right-architecture-for-your-pc
https://newsroom.arm.com/200bn-arm-chips
https://newsroom.arm.com/200bn-arm-chips


Bibliography

11. ARM Architecture Reference Manual [online]. ARM. [visited on 2023-10-15].

Available from: https://documentation-service.arm.com/static/5f8dac

c8f86e16515cdb865a?token=.

12. ARM. Procedure Call Standard for the Arm® Architecture [online]. 2023. [visited
on 2023-11-16]. Available from: https://github.com/ARM-software/abi-a

a/releases/download/2023Q3/aapcs32.pdf.

13. SLOSS, Andrew; WRIGHT, Chris. ARM and Thumb Instruction Encodings (B2
APPENDIX) [online]. ARM. [visited on 2023-09-28]. Available from: https://

gab.wallawalla.edu/~curt.nelson/cptr380/textbook/advanced%20mat

erial/Appendix B2.pdf.

14. ARM1176JZF-S Technical Reference Manual [online]. ARM, 2009. [visited on

2023-09-28]. Available from: https://developer.arm.com/documentation/

ddi0301/h.

15. BROADCOM. BCM2835 ARM Peripherals [online]. Broadcom Corporation,

2012. [visited on 2023-12-03]. Available from: https://datasheets.raspber

rypi.com/bcm2835/bcm2835-peripherals.pdf.

16. BCM2835 datasheet errata [online]. Embedded Linux Wiki. [visited on 2023-

12-03]. Available from: https://elinux.org/BCM2835 datasheet errata.

17. DURÁN, Juan Manuel. Computer Simulations in Science and Engineering: Con-
cepts - Practices - Perspectives. Springer International Publishing, 2018. isbn
978-3319908823.

18. STEVENS, Kenneth. The Emulation User’s Guide. Lulu.com, 2008. isbn 978-

1435753730.

19. VEENSTRA, Peter; SJOERD; FRÖSSMAN, Tommy; WOHLERS, Ulf.DOSBox
[online]. [visited on 2023-12-16]. Available from: https://www.dosbox.com.

20. DEVELOPERS, TheQEMUProject.QEMU - A generic and open source machine
emulator and virtualizer [online]. [visited on 2023-12-16]. Available from: htt

ps://www.qemu.org.

21. PORTNOY, Matthew. Virtualization Essentials 3rd edition. Wiley, 2023. isbn

978-1394181575.

22. BUGNION, E.; NIEH, J.; TSAFRIR, D. Hardware and Software Support for Vir-
tualization. Springer International Publishing, 2022. isbn 978-3031017537.

23. CPUlator Computer System Simulator [online]. [visited on 2023-12-16]. Avail-

able from: https://cpulator.01xz.net.

106

https://documentation-service.arm.com/static/5f8dacc8f86e16515cdb865a?token=
https://documentation-service.arm.com/static/5f8dacc8f86e16515cdb865a?token=
https://github.com/ARM-software/abi-aa/releases/download/2023Q3/aapcs32.pdf
https://github.com/ARM-software/abi-aa/releases/download/2023Q3/aapcs32.pdf
https://gab.wallawalla.edu/~curt.nelson/cptr380/textbook/advanced%20material/Appendix_B2.pdf
https://gab.wallawalla.edu/~curt.nelson/cptr380/textbook/advanced%20material/Appendix_B2.pdf
https://gab.wallawalla.edu/~curt.nelson/cptr380/textbook/advanced%20material/Appendix_B2.pdf
https://developer.arm.com/documentation/ddi0301/h
https://developer.arm.com/documentation/ddi0301/h
https://datasheets.raspberrypi.com/bcm2835/bcm2835-peripherals.pdf
https://datasheets.raspberrypi.com/bcm2835/bcm2835-peripherals.pdf
https://elinux.org/BCM2835_datasheet_errata
https://www.dosbox.com
https://www.qemu.org
https://www.qemu.org
https://cpulator.01xz.net


Bibliography

24. HORSPOOL, R. Nigel; LYONS, W. D.; SERRA, M. ARMSim# [online]. Depart-
ment of Computer Science, University of Victoria. [visited on 2023-12-17].

Available from: https://webhome.cs.uvic.ca/~nigelh/ARMSim-V2.1/inde

x.html.

25. ÚBL, Martin. KIV/OS - dodatek A - qemu [online]. University of West Bohemia.

[visited on 2023-11-07]. Available from: https://home.zcu.cz/~ublm/files

/os/practicals/0a kivrtos cz.pdf.

26. COMMITTEE, TIS.Tool Interface Standard (TIS) Executable and Linking Format
(ELF) Specification [online]. Linux Foundation, 1995. [visited on 2023-08-26].
Available from: https://refspecs.linuxfoundation.org/elf/elf.pdf.

27. COPLIEN, James O. Multi-Paradigm Design for C++. Addison-Wesley, 1999.

isbn 978-0201824674.

28. BALOGUN, Ghaniyyat Bolanle. A Comparative Analysis of the Efficiencies of
Binary and Linear Search Algorithms [online]. Department of Computer Science,

University of Ilorin, Ilorin, Nigeria., 2020. [visited on 2024-01-02]. Available

from: https://afrjcict.net/wp-content/uploads/2020/03/Vol13No1Mar

20pap3journalformatpagenumb.pdf.

29. KANKOWSKI, Peter. x86 Machine Code Statistics [online]. 2008. [visited on

2023-10-27]. Available from: https://www.strchr.com/x86 machine code

statistics.

30. The GNU C++ Library - Chapter 28. Demangling [online]. The GNU Compiler

Collection, 2008. [visited on 2023-10-01]. Available from: https://gcc.gnu

.org/onlinedocs/libstdc++/manual/ext demangling.html.

31. LAMIKHOV-CENTER, Serge. ELFIO - ELF (Executable and Linkable Format)
reader and producer implemented as a header-only C++ library [online]. [visited
on 2023-08-26]. Available from: https://elfio.sourceforge.net.

32. WEBER, Nico. Demumble - A better c++filt and a better undname.exe, in one
binary [online]. [visited on 2023-08-28]. Available from: https://github.com

/nico/demumble.

33. TATHAM, Simon. PuTTY - free implementation of SSH and Telnet for Windows
and Unix platforms, along with an xterm terminal emulator [online]. [visited on
2023-10-13]. Available from: https://www.putty.org.

34. TORVALDS, Linus. Linux kernel [online]. [visited on 2023-12-05]. Available

from: https://github.com/torvalds/linux/blob/master/drivers/char/

hw random/bcm2835-rng.c.

107

https://webhome.cs.uvic.ca/~nigelh/ARMSim-V2.1/index.html
https://webhome.cs.uvic.ca/~nigelh/ARMSim-V2.1/index.html
https://home.zcu.cz/~ublm/files/os/practicals/0a_kivrtos_cz.pdf
https://home.zcu.cz/~ublm/files/os/practicals/0a_kivrtos_cz.pdf
https://refspecs.linuxfoundation.org/elf/elf.pdf
https://afrjcict.net/wp-content/uploads/2020/03/Vol13No1Mar20pap3journalformatpagenumb.pdf
https://afrjcict.net/wp-content/uploads/2020/03/Vol13No1Mar20pap3journalformatpagenumb.pdf
https://www.strchr.com/x86_machine_code_statistics
https://www.strchr.com/x86_machine_code_statistics
https://gcc.gnu.org/onlinedocs/libstdc++/manual/ext_demangling.html
https://gcc.gnu.org/onlinedocs/libstdc++/manual/ext_demangling.html
https://elfio.sourceforge.net
https://github.com/nico/demumble
https://github.com/nico/demumble
https://www.putty.org
https://github.com/torvalds/linux/blob/master/drivers/char/hw_random/bcm2835-rng.c
https://github.com/torvalds/linux/blob/master/drivers/char/hw_random/bcm2835-rng.c


Bibliography

35. BHATTACHARJEE, Kamalika; DAS, Sukanta. A search for good pseudo-random
number generators: Survey and empirical studies [online]. 2022. [visited on 2023-
12-05]. Available from: https://www.sciencedirect.com/science/article

/pii/S1574013722000144.

36. 754-2019 - IEEE Standard for Floating-Point Arithmetic [online]. Institute of
Electrical and Electronics Engineers, 2019. [visited on 2023-11-05]. Available

from: https://ieeexplore.ieee.org/document/8766229.

37. ÚBL,Martin.KIV-DPP-01 - Expansion board documentation [online]. University
of West Bohemia, 2021. [visited on 2023-08-28]. Available from: https://hom

e.zcu.cz/~ublm/files/os/kiv-dpp-01-en.pdf.

38. ŠILHAVÝ, Jakub. ZeroMate Doxygen documentation [online]. 2023. [visited on
2024-02-16]. Available from: https://silhavyj.github.io/ZeroMate.

39. TURNER, Jason. C++ Best Practices 2nd edition. 2022. isbn 979-8822105607.

40. ŠILHAVÝ, Jakub. ZeroMate [online]. 2023. [visited on 2024-02-16]. Available

from: https://github.com/silhavyj/ZeroMate.

41. CMake [online]. [visited on 2024-01-07]. Available from: https://cmake.org.

42. ŠILHAVÝ, Jakub. ZeroMate Codecov report [online]. 2023. [visited on 2024-02-

16]. Available from: https://app.codecov.io/gh/silhavyj/ZeroMate.

43. std::chrono::high_resolution_clock [online]. [visited on 2024-01-04]. Available

from: https://en.cppreference.com/w/cpp/chrono/high resolution

clock.

108

https://www.sciencedirect.com/science/article/pii/S1574013722000144
https://www.sciencedirect.com/science/article/pii/S1574013722000144
https://ieeexplore.ieee.org/document/8766229
https://home.zcu.cz/~ublm/files/os/kiv-dpp-01-en.pdf
https://home.zcu.cz/~ublm/files/os/kiv-dpp-01-en.pdf
https://silhavyj.github.io/ZeroMate
https://github.com/silhavyj/ZeroMate
https://cmake.org
https://app.codecov.io/gh/silhavyj/ZeroMate
https://en.cppreference.com/w/cpp/chrono/high_resolution_clock
https://en.cppreference.com/w/cpp/chrono/high_resolution_clock


List of Abbreviations

A
ABI - Application Binary Interface

ACC - Accumulator

ADC - Analogue to Digital Converter
ALU - Arithmetic-Logic Unit

API - Application Programming Interface

ARM - Advanced RISC Machines

AUX - Auxiliary

B
BSC - Broadcom Serial Controller

C
CISC - Complex Instruction Set Computer

CI - Continuous Integration
CLI - Command Line Interface

CP10 - Co-processor 10
CP15 - Co-processor 15
CPI - Cycles Per Instruction
CPSR - Current Program Status Register

CPU - Central Processing Unit

E
EEPROM - Electrically Erasable Programmable Read-only Memory

ELF - Executable Linkage Format

F
FIQ - Fast Interrupt Request
FPGA - Field Programmable Gate Array

FPU - Floating-Point Unit

109



List of Abbreviations

G
GPIO - General Purpose Input/Output
GPU - Graphics Processing Unit
GUI - Graphical User Interface

H
HDMI - High-Definition Multimedia Interface

I
I/O - Input-Output
IC - Interrupt Controller
IDE - Integrated Development Environment

IPC - Inter-Process Communication

IRQ - Interrupt Request
ISA - Instruction Set Architecture

IVT - Interrupt Vector table
I2C - Inter-Integrated Circuit
IoT - Internet of Things

J
JVM - Java Virtual Machine

L
LCG - Linear Congruential Generator
LED - Light-emitting diode

LIFO - Last-In-First-Out
LSB - Least Significant Bit

M
MAC - MAC Unit (performs multiply-accumulate operations)

MMIO - Memory-mapped Input-Output device

MMU - Memory Management Unit

MSB - Most Significant Bit

O
OLED - Organic Light-Emitting Diode

OS - Operating System

110



List of Abbreviations

P
PWM - Pulse Width Modulation

Q
QA - Quality Assurance

R
R/W - Read-Write

RAM - Random Access Memory

RISC - Reduced Instruction Set Computer

ROM - Read-Only Memory

RX - Receive

S
SDRAM - Synchronous Dynamic Random Access Memory

SD - Secure Digital
SHA - Secure Hash Algorithm
SIMD - Single Instruction/Multiple Data

SOS - Save Our Souls
SPI - Serial Peripheral Interface
SPSR - Saved Program Status Register

SP - Stack Pointer
SREC - Motorola S-record (file format)

STDO - Standard Output
SoC - System on Chip

T
TLB - Translation Lookaside Buffer

TRNG - True Random Number Generator

TTBR - Translation Table Base Register

TX - Transmit

U
UART - Universal Asynchronous Receiver/Transmitter

USB - Universal Serial Bus

111



List of Abbreviations

V
VFP - Vector Floating-Point
VGA - Video Graphics Array

112



List of Figures

2.1 Von Neumann architecture . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Harvard architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Stack architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Accumulator architecture . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Load-store architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 Load-store sequence diagram . . . . . . . . . . . . . . . . . . . . . . . 11

2.7 Comparison between the RISC and CISC architectures [8] . . . . . . . 12

3.1 Devices leveraging ARM technology . . . . . . . . . . . . . . . . . . . 13

3.2 ARM processor roadmap . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Features of different ARM processor cores . . . . . . . . . . . . . . . . 15

3.4 Possible locations of the interrupt vector table in RAM . . . . . . . . . 17

3.5 Bank registers of different CPUmodes . . . . . . . . . . . . . . . . . . 19

3.6 Current Program Status Register
1

. . . . . . . . . . . . . . . . . . . . 20

3.7 Condition field of an ARM instruction . . . . . . . . . . . . . . . . . . 21

3.8 Context of an ARM co-processor . . . . . . . . . . . . . . . . . . . . . 23

3.9 Floating-point registers . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Raspberry Pi Zero board . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 BCM2835 address translation processes
2
. . . . . . . . . . . . . . . . . 27

5.1 Emulation vs. virtualization . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 CPUlator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3 ARMSim# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.1 Single SREC record (16-bit addressing) . . . . . . . . . . . . . . . . . . 38

6.2 Process of building an ELF file (input for the emulator)
3

. . . . . . . . 38

6.3 Primary use-cases of the ZeroMate emulator . . . . . . . . . . . . . . 39

6.4 Deployment diagram of the ZeroMate emulator . . . . . . . . . . . . 39

6.5 Core components of the ZeroMate emulator . . . . . . . . . . . . . . 40

6.6 Example of a read/write data request issued by the CPU . . . . . . . . 41

6.7 Collection of memory-mapped peripherals . . . . . . . . . . . . . . . 43

113



List of Figures

6.8 Loading an input ELF file (kernel) . . . . . . . . . . . . . . . . . . . . . 44

6.9 Internal logic of the ELF Loader component . . . . . . . . . . . . . . . 45

6.10 Internal vs External peripherals . . . . . . . . . . . . . . . . . . . . . . 46

6.11 Hierarchy of internal peripherals . . . . . . . . . . . . . . . . . . . . . 46

6.12 BCM2835 physical memory layout emulated by ZeroMate . . . . . . . 47

6.13 Writing to a peripheral’s register
4
. . . . . . . . . . . . . . . . . . . . . 48

6.14 ISystem_Clock_Listener interface . . . . . . . . . . . . . . . . . . 49

6.15 RAM implementation as a continuous piece of memory . . . . . . . . . 50

6.16 Memory-mapped debug monitor . . . . . . . . . . . . . . . . . . . . . 51

6.17 Reading random numbers from the TRNG peripheral . . . . . . . . . . 52

6.18 Context of the ARM timer component . . . . . . . . . . . . . . . . . . 54

6.19 Content of the value register of the ARM timer over time . . . . . . . . 55

6.20 Structure of the GPIOmanager
5

. . . . . . . . . . . . . . . . . . . . . 55

6.21 Context of the interrupt controller . . . . . . . . . . . . . . . . . . . . 57

6.22 Encapsulated information about IRQ sources . . . . . . . . . . . . . . 58

6.23 Registers of the AUX peripheral . . . . . . . . . . . . . . . . . . . . . . 58

6.24 Structure of the AUX peripheral . . . . . . . . . . . . . . . . . . . . . . 59

6.25 UART communication with an external peripheral . . . . . . . . . . . . 59

6.26 Example of a Mini_UART data frame with 8 bits of data . . . . . . . . 60

6.27 Mini_UART state machine (transmitting 8 bits) . . . . . . . . . . . . . 61

6.28 Structure of an I2C frame . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.29 Internal components of the ARM1176JZF_S processor . . . . . . . . . 63

6.30 Relationship between the CPU context and the CPU core . . . . . . . . 63

6.31 Use of the ISA decoder by the CPU . . . . . . . . . . . . . . . . . . . . 65

6.32 Algorithm for decoding ARM instructions . . . . . . . . . . . . . . . . 65

6.33 Hierarchy of the CPU exceptions . . . . . . . . . . . . . . . . . . . . . 66

6.34 Architectural structure of the ALU . . . . . . . . . . . . . . . . . . . . 67

6.35 Utilization of the MMU when processing a RW request . . . . . . . . . . 68

6.36 Structure of the first-level page table . . . . . . . . . . . . . . . . . . . 69

6.37 Execution loop of the emulated CPU6 . . . . . . . . . . . . . . . . . . . 70

6.38 Component diagram of the CPU and its co-processors . . . . . . . . . 71

6.39 Co-processor hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.40 Design of the co-processor 15 register hierarchy (uses primary register

C1 as an example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.41 External peripheral interface . . . . . . . . . . . . . . . . . . . . . . . 76

6.42 Illustration of connection of two parallel 7-segment displays . . . . . . 78

6.43 Utilization of the logging system throughout the project . . . . . . . . 79

6.44 Hierarchy of endpoint loggers utilized by the logging system . . . . . 80

6.45 Structure of GUI windows . . . . . . . . . . . . . . . . . . . . . . . . . 81

114



List of Figures

7.1 Branching strategy of the ZeroMate project
7

. . . . . . . . . . . . . . 86

8.1 Testing strategy leveraged in the ZeroMate project . . . . . . . . . . . 89

8.2 Code coverage of individual source files (exported from Codecov [42]) 90

9.1 ZeroMate’s emulation performance of KIV-RTOS . . . . . . . . . . . 96

9.2 Performance comparison of different emulators . . . . . . . . . . . . . 97

9.3 Top 8 most performance-affecting instructions
8
. . . . . . . . . . . . . 98

12.1 ZeroMate project structure . . . . . . . . . . . . . . . . . . . . . . . . 124

12.2 External peripherals (1) . . . . . . . . . . . . . . . . . . . . . . . . . . 126

12.3 External peripherals (2) . . . . . . . . . . . . . . . . . . . . . . . . . . 127

12.4 ZeroMate emulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

115





List of Tables

3.1 List of ARM CPUmodes . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 List of ARM CPU exceptions . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 List of special function ARM registers . . . . . . . . . . . . . . . . . . 18

3.4 List of ARM instruction condition codes . . . . . . . . . . . . . . . . . 22

3.5 List of ARM co-processor instructions . . . . . . . . . . . . . . . . . . 23

4.1 Breakdown of the processor’s name (ARM1176JZF_S) . . . . . . . . . 26

6.1 List of emulated CP15 registers . . . . . . . . . . . . . . . . . . . . . . 73

6.2 List of emulated flags of the CP15 control register . . . . . . . . . . . 73

6.3 Information stored in peripherals.json . . . . . . . . . . . . . . . 77

6.4 List of emulated external DPP-01 peripherals . . . . . . . . . . . . . . 78

7.1 List of third-party backend dependencies . . . . . . . . . . . . . . . . 84

7.2 List of third-party frontend dependencies . . . . . . . . . . . . . . . . 84

7.3 List of third-party testing dependencies . . . . . . . . . . . . . . . . . 85

7.4 List of third-party documentation dependencies . . . . . . . . . . . . 85

12.1 List of required dependencies for a successful build of ZeroMate . . . 121

12.2 Execution speed raw data . . . . . . . . . . . . . . . . . . . . . . . . . 125

117





List of Listings

6.1 System bus interface for I/O operations . . . . . . . . . . . . . . 42

6.2 Enabling unaligned access in CP15 . . . . . . . . . . . . . . . . . 43

6.3 Example of symbol demangling . . . . . . . . . . . . . . . . . . . 44

6.4 Demonstration of the use of the debug monitor . . . . . . . . . . 51

6.5 SW emulation of a HW latch register . . . . . . . . . . . . . . . . . 56

6.6 Retrieving a CPU register . . . . . . . . . . . . . . . . . . . . . . . 64

6.7 Interface of the ISA decoder . . . . . . . . . . . . . . . . . . . . . 64

6.8 Conversion between uint32_t and float . . . . . . . . . . . . . 75

12.1 Cloning the project repository . . . . . . . . . . . . . . . . . . . . 122

12.2 Listing of all CMake presets . . . . . . . . . . . . . . . . . . . . . . 122

12.3 Configuring the project using a CMake preset . . . . . . . . . . . . 123

12.4 Building the project using a CMake preset . . . . . . . . . . . . . . 123

119





Attachments 12
12.1 Building the Project
The user has the option to either download a pre-built executable for both Linux

and Windows from the latest release [40], or they can attempt to build the emulator

themselves from the source code.

12.1.1 Dependencies
If they choose to build the application themselves, they are required to have the

tools listed in Table 12.1 already installed on their system. The remaining third-

party dependencies are then handled automatically by CMake.

Table 12.1: List of required dependencies for a successful build of ZeroMate

Tool Purpose

Git Cloning the repository from GitHub

CMake Configuring and building the project

C/C++ compiler e.g. Clang that will be employed during the

building process

Build system of choice e.g. Ninja, Unix Makefiles, MSVC

OpenGL Utilized by the ZeroMate’s user interface

(likely already installed on the user’s machine)
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12. Attachments

12.1.2 Build Steps
12.1.2.1 Clone

Once all mandatory dependencies have been installed, the user can pull down the

project from GitHub using the command provided in Listing 12.1.

Listing 12.1: Cloning the project repository

1 silhavyj@my-pc:$ git clone −−recursive

2 https :// github.com/silhavyj/ZeroMate.git

It is important to use the --recursive option, which automatically clones

all submodules used by the project.

12.1.2.2 Configuration

Once cloned and in the directory, using the command showcased in Listing 12.2, the

user can inspect a predefined set of CMake configurations they can use to configure

the project. Nevertheless, they are not obliged to adhere strictly to these configu-

ration sets. Users have the flexibility to customize the CMake project according to

their specific needs.

Listing 12.2: Listing of all CMake presets

1 silhavyj@my-pc:ZeroMate$ cmake −−list −presets

2 Available configure presets:

3

4 "unix_makefiles_gcc_release"

5 "unix_makefiles_gcc_debug"

6 "unix_makefiles_gcc_code_coverage"

7 "unix_makefiles_clang_release"

8 "unix_makefiles_clang_debug"

9 "unix_makefiles_clang_code_coverage"

10 "ninja_clang_release"

11 "ninja_clang_code_coverage"

12 "ninja_clang_debug"

13 "ninja_gcc_release"

14 "ninja_gcc_debug"

15 "ninja_gcc_code_coverage"

16 "msvc"

17 silhavyj@my-pc:ZeroMate$

After the user has chosen their preferred combination of build system, compiler,

and build type, they can configure the project by executing the command shown

in Listing 12.3. In this instance, the ninja_clang_release preset is used as an

example.
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12.1.2.3. Build

Listing 12.3: Configuring the project using a CMake preset

1 silhavyj@my-pc:ZeroMate$ cmake −−preset ninja_clang_release

12.1.2.3 Build

After a successful completion of the previous command, the user can build the

project by executing the final command as demonstrated in Listing 12.4. It is im-

portant to note that the name of the preset must match the one used during the

project configuration. The --parallel option is employed to accelerate the entire

process.

Listing 12.4: Building the project using a CMake preset

1 silhavyj@my-pc:ZeroMate$ cmake −−build −−parallel −−preset

2 ninja_clang_release

Upon a successful build of the project, the user can find all libraries along with

the main executable in the output folder located in the root folder of the project

structure, whose contents can be seen in Figure 12.1. This output folder is what

can be found in individual GitHub releases if the user opts not to go through the

process of compiling the emulator themselves.
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12.2 Project Structure

cmake
docs
examples
external

lib
misc

peripherals
src
test
tools

zero_mate
include

# cmake config files

# documentation
# example programs

# 3rd party dependencies

# public interfaces

# project libraries

# interface for external peripherals

# project libraries

# external peripherals (.dll)

# source code

# unit tests
# development tools

.clang-format

.clang-tidy

.gitignore

.gitmodules

clean.bat

clean.sh

CMakeLists.txt

CMakePresets.json

codecov.yaml

Doxygen

imgui.ini

LICENSE

peripherals.json

README.md

# source code formatting style

# static code analysis config

# gitignore file

# 3rd party Git dependencies

# cleans the project structure (Linux)

# cleans the project structure (Windows)

# build configurations

# source code documentation config

# code coverage conf

# top level CMake file

# top level readme

# connection of external peripherals

# project license

# GUI windows default layout

build # generated build configurations (CMake)
.github # CI configuration

output # generated output folder

Figure 12.1: ZeroMate project structure
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12.3. Execution Speed Raw Data

12.3 Execution Speed Raw Data

Table 12.2: Execution speed raw data

Instruction type Avg. execution
time [ns]

Count

Program status register transfer 170 30976

Single data transfer 260 178049029

Branch and exchange 59 5184115

Multiply 110 13659

Branch 100 42436124

Data processing 180 175296849

Block data transfer 1200 1859703

Signed multiply 100 6816

Co-processor register transfer 400 3176

NOP 32 471397

Store return state 780 141139

Halfword data transfer 260 83910

Extend 120 23003265

Change processor state 250 141146

Return from exception 490 141138

Software interrupt 10000 59524

Multiply long 260 82

Count leading zeros 120 16
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12.4 Screenshots

LED

Serial terminal
Seven-segment display

SSD1036 OLED display

Toggle switch Button

Figure 12.2: External peripherals (1)
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12.4. Screenshots

Logic analyzer

Figure 12.3: External peripherals (2)
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Figure 12.4: ZeroMate emulator
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